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Abstract 39 

The Mixed Finite Element (MFE) method is well adapted for the simulation of fluid flow in 40 

heterogeneous porous media. However, when employed for the transport equation, it can 41 

generate solutions with strong unphysical oscillations because of the hyperbolic nature of 42 

advection. In this work, a robust upwind MFE scheme is proposed to avoid such unphysical 43 

oscillations. The new scheme is a combination of the upwind edge/face centred finite volume 44 

method with the hybrid formulation of the MFE method. The scheme ensures continuity of 45 

both advective and dispersive fluxes between adjacent elements and allows to maintain the 46 

time derivative continuous, which permits employment of high order time integration 47 

methods via the Method of Lines (MOL).  48 

Numerical simulations are performed in both saturated and unsaturated porous media to 49 

investigate the robustness of the new upwind-MFE scheme. Results show that, contrarily to 50 

the standard scheme, the upwind-MFE method generates stable solutions without under and 51 

overshoots. The simulation of contaminant transport into a variably saturated porous medium 52 

highlights the robustness of the proposed upwind scheme when combined with the MOL for 53 

solving nonlinear problems.  54 

 55 

Keywords:  56 

Hybrid Mixed Finite Element, upwind scheme, advection-dispersion transport, numerical 57 

oscillations, Method of Lines. 58 
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1. Introduction 61 

The Mixed Finite Element (MFE) method (Raviart and Thomas, 1977; Brezzi et al., 1985; 62 

Chavent and Jaffré, 1986; Brezzi and Fortin, 1991, Younes et al., 2010) is known to be a 63 

robust numerical scheme for solving elliptic diffusion problems such as the fluid flow in 64 

heterogeneous porous media. The method combines advantages of the finite volumes, by 65 

ensuring local mass conservation and continuity of fluxes between adjacent cells, and 66 

advantages of finite elements by easily handling heterogeneous domains with discontinuous 67 

parameter distributions and unstructured meshes. As a consequence, the MFE method has 68 

been largely used for flow in porous media (see, for instance, the review of Younes et al. 69 

(2010) and references therein). The hybridization technique has been largely used with the 70 

MFE method to improve its efficiency (Chavent and Roberts, 1991; Traverso et al. 2013). 71 

This technique allows to reduce the total number of unknowns and produces a final system 72 

with a symmetric positive definite matrix. The unknowns with the hybrid-MFE method are 73 

the Lagrange multipliers which correspond to the traces of the scalar variable at edges/faces 74 

(Chavent and Jaffré, 1986). 75 

When applied to transient diffusion equations with small time steps, the hybrid-MFE method 76 

can produce solutions with small unphysical over and undershoots (Hoteit et al., 2002a, 77 

2002b; Mazzia, 2008). A lumped formulation of the hybrid-MFE method was developed by 78 

Younes et al. (2006) to improve its monotonicity and reduce nonphysical oscillations. The 79 

lumped formulation ensures that the maximum principle is respected for parabolic diffusion 80 

equations on acute triangulations (Younes et al., 2006). For more general 2D and 3D element 81 

shapes, the lumping procedure allows to significantly improve the monotonous character of 82 

the hybrid-MFE solution (Younes et al., 2006; Koohbor et al., 2020). As an illustration, the 83 

lumped formulation was shown to be more efficient and more robust than the standard hybrid 84 

formulation for the simulation of the challenging nonlinear problem of water infiltration into 85 
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an initially dry soil (Belfort et al., 2009). The lumped formulation has recently been used for 86 

flow discretization in the case of density driven flow in saturated-unsaturated porous media 87 

(Younes et al., 2022a).  88 

However, the MFE method remains little used for the discretization of the full transport 89 

equation. When employed to the advection-dispersion equation, the MFE method can 90 

generate solutions with strong numerical instabilities in the case of advection-dominated 91 

transport because of the hyperbolic nature of the advection operator. To avoid these 92 

instabilities, one of the most popular and easiest ways is to use an upwind scheme. Indeed, 93 

although upwind schemes introduce some numerical diffusion leading to an artificial 94 

smearing of the numerical solution, they avoid unphysical oscillations and remain useful, 95 

especially for large domains and regional field simulations. In the literature, some upwind 96 

mixed finite element schemes have been employed to improve the robustness of the MFE 97 

method for advection-dominated problems (Dawson, 1998; Dawson and Aizinger, 1999; 98 

Radu et al., 2011; Vohralik, 2007; Brunner et al., 2014).  99 

The main idea of an upwind scheme for an element E, is to calculate the mass flux exchanged 100 

with its adjacent element E’ using the concentration from E in the case of an outflow and the 101 

concentration from E’ in the case of an inflow. However, this idea cannot be applied as such 102 

with the hybrid-MFE method since the hybridization procedure requires to express the flux at 103 

the element interface as only a function of variables at the element E (and not E’). To 104 

overcome this difficulty, Radu et al. (2011), and Brunner et al. (2014) proposed an upwind 105 

MFE method where, in the case of an inflow, the concentration at the adjacent element E’ is 106 

replaced by an approximation using the concentration at E and the trace of concentration at 107 

the interface EE  by assuming that the edge concentration is the mean of the concentrations in 108 

E and E’. However, this assumption cannot be verified for a general configuration. 109 
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Furthermore, with such an assumption, each of the advective and dispersive fluxes is 110 

discontinuous at the element interfaces, and continuity is only fulfilled for the total flux. 111 

In this work, a new upwind-MFE method is proposed for solving the full transport equation 112 

without requiring any approximation of the upwind concentration. The new scheme is a 113 

combination of the upwind edge/face centered finite volume (FV) scheme with the lumped 114 

formulation of the MFE method. It guarantees continuity of both advective and dispersive 115 

fluxes at element interfaces. Further, the new upwind-MFE scheme maintains the time 116 

derivative continuous and thus, allows to employ high order time integration methods via the 117 

method of lines (MOL), which was shown to be very efficient for solving nonlinear problems 118 

(see, for instance, Fahs et al. (2009) and Younes et al. (2009)). 119 

This article is structured as follows. In section 2, we recall the hybrid-MFE method for the 120 

discretization of the transport equation. In section 3, we introduce the new upwind-MFE 121 

method based on the combination of the upwind edge/face FV scheme with the lumped 122 

formulation of the MFE method. In section 4, numerical experiments are performed for 123 

transport in saturated and unsaturated porous media to investigate the robustness of the new 124 

developed upwind-MFE scheme. Some conclusions are given in the last section of the article. 125 

2. The hybrid-MFE method for the advection-dispersion equation 126 

The mass conservation of the contaminant in variably saturated porous media is:  127 

 
 

  0a d

C
.

t

 


  q q  (1) 128 

where C  is the normalized concentration [-],   is water content [L3L−3], ], t is time [T], 129 

a Cq q  is the advective flux with q  the Darcy velocity [LT-1] and dq  the dispersive flux 130 

given by: 131 

 d C  q D  (2) 132 

with D , the dispersion tensor, expressed by: 133 
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  D I q q q q Im L T TD /        (3) 134 

in which L  and T  are the longitudinal and transverse dispersivities [L], mD  is the pore 135 

water diffusion coefficient [L2T-1] and I  is the unit tensor.  136 

The water content   and the Darcy velocity q  are linked by the fluid mass conservation 137 

equation in variably saturated porous media: 138 

 0.
t


 


q  (4) 139 

Substituting Eq. (4) into Eq. (1) yields the following advection-dispersion equation: 140 

   0a d

C
. C .

t





    q q q  (5) 141 

In this work, we consider that the velocity q  is obtained by solving Richards’ equation using 142 

the hybrid-MFE method. For a two-dimensional domain with a triangular mesh, q  is 143 

approximated inside each triangle E  using the lowest-order Raviart-Thomas (RT0) vectorial 144 

basis functions E

jw :  145 

 
3

1

E E

j j

j

Q


q w  (6) 146 

where E

jQ  is the water flux across the edge jE  of E  (see Figure 1) and 
1

2

E

j
E

j
E

j

x x

E y y

 
 
  

w  147 

is the typical RT0 basis functions (Younes et al., 1999) with  E E

j jx , y  the coordinates of the 148 

node j  opposite to the edge jE  of E  and E , the area of E . 149 
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 150 

Figure 1: Vectorial basis functions for the MFE method. 151 

 152 

To apply the hybrid-MFE method to the transport Eq. (5), we approximate the dispersive flux 153 

dq  with RT0 vectorial basis functions as: 154 

 
3

1

d ,E E

d j j

j

Q


q w  (7) 155 

where 

j

d ,E E

j d j

E

Q .  q η  is the dispersive flux across the edge jE  of the element E  and E

jη  is 156 

the outward unit normal vector to the edge jE . 157 

The variational formulation of Eq. (2) using the test function 
E

iw  yields: 158 

 1

j

E E E E

d i i i j

jE E E

C . C .     D q w w w η  (8) 159 

Substituting Eq. (7) into Eq. (8) and using properties of the basis functions E

jw  give  160 
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 1 1 1

i

d ,E E E

j E j i

j iE E E

E

E i

Q . C C
E E

C TC

  

 

   D w w
 (9) 161 

in which, ED  is the local dispersion tensor at the element E , EC  is the mean concentration at 162 

E  and E

iTC  is the edge (trace) concentration (Lagrange multiplier) at the edge iE . 163 

Denoting the local matrix  1E E E

i , j E j i

E

B .  D w w , the inversion of the system of Eq. (9) gives 164 

the expression for the dispersive flux d ,E

iQ :  165 

  1d ,E E , E

i i , j E j

j

Q B C TC   (10) 166 

Besides, the integration of the mass conservation Eq. (6) over the element E  writes 167 

 0a d

E E E E

C
. . C .

t





         q q q  (11) 168 

which becomes, using Green’s formula,  169 

 0

i i

E EE
E i d i

i iE E E

C
E C . . C .

t





       q η q η q  (12) 170 

where E  is the water content of the element E. 171 

Substituting Eq. (2) into Eq. (12) yields  172 

   0

t ,E
i

a,E d ,E EE
E i i E i

i i

Q

C
E Q Q C Q

t





      (13) 173 

in which t ,E a,E d ,E

i i iQ Q Q   is the total flux at the edge iE  with a,E

iQ  the advective flux given 174 

by a,E E E

i i iQ Q TC  and d ,E

iQ  the dispersive flux given by Eq. (10). 175 

The hybridization of the MFE method is performed in the following two steps: 176 

1) The flux Eq. (10) is substituted into the mass conservation Eq. (13), which is then 177 

discretized in time using the first-order implicit Euler scheme 178 



 9 

  1 1 1 1 1 0n n E E ,n n E E n E E ,n

E E E i i E i E i i

i i i

E
C C Q TC C Q C TC

t
           


    (14) 179 

in which 1E E ,

i i , j

j

B   and E E

i

i

  . 180 

Hence, the mean concentration at the new time level 1n

EC   can be expressed as a function 181 

of 1E ,n

iTC  , the concentration at the edges of E , as follows: 182 

  1 11n E E E ,n nE
E i i i E

iE E

C Q TC C



 

     (15) 183 

in which E E

E

t
 


 and 

E E

E E i

i

Q  
 

   
 

 . 184 

The mean concentration given by Eq. (15) is then substituted into the flux Eq. (10), which 185 

allows expressing the dispersive flux 1d ,E ,n

iQ   (the subscript n+1 will be omitted to alleviate 186 

the notations) as only a function of the traces of concentration at edges 
1E ,n

iTC 
:  187 

    1 1
E

d ,E E E E , E ,n E ni E
i j j i , j j i E

j E E

Q Q B TC C
 

 
 

  
    

 
  (16) 188 

2) The system to be solved is obtained by imposing the continuity of the total flux 189 

 0t ,E t ,E

i iQ Q


   as well as the continuity of the trace of concentration  1 1E ,n E ,n

i iTC TC
   190 

at the edge i between the two elements E and E’ (Figure 2).  191 
 

E  

E

jTC  

E

kTC  

E E'

i iTC TC  t ,E E E d ,E

i i i iQ Q TC Q   

t ,E' E' E' d ,E'

i i i iQ Q TC Q   

E'

kTC  

E'TC  

E'  

 192 
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Figure 2: Continuity of concentration and total flux between adjacent elements with the 193 

hybrid-MFE method. 194 

Note that the advective flux a,E

iQ  is continuous between E and E’ because of the continuity 195 

of the water flux and the continuity of the trace of concentration at the interface. Thus, for 196 

the continuity of the total flux  0t ,E t ,E'

i iQ Q  , it is required that the dispersive flux is 197 

continuous: 198 

    1 0t ,E t ,E' E E' E ,n d ,E d ,E' d ,E d ,E'

i i i i i i i i iQ Q Q Q TC Q Q Q Q         (17) 199 

Using Eq. (16), we obtain: 200 

 

   1 1 1 1
E E

E , E E E ,n E , E E E ,ni i
i , j j j j i , j j j j

j jE E

E n E nE E
i E i E

E E

B Q TC B Q TC

C C

 
 

 

 
 

 


      








   
       

   

 

 
 (18) 201 

The continuity Eq. (18) is written for all mesh edges, and the resulting equations form the 202 

final system to be solved for the traces of concentration at edges 
1E ,n

iTC 
 as unknowns. 203 

Note that the hybrid-MFE Eqs (18), obtained by approximating the dispersive flux with RT0 204 

basis functions, is equivalent to the new MFE method proposed in Radu et al. (2011).  205 

3. The upwind and lumped MFE approaches  206 

In this section, we recall the main principles of two existing approaches, developed to 207 

improve the stability of the MFE solution of the transport equation. The first approach is the 208 

upwind-hybrid MFE scheme of Radu et al. (2011), developed for advection dominated 209 

transport. The second approach is the lumped hybrid-MFE method of Younes et al. (2006), 210 

developed for dispersive transport. 211 

3.1 The upwind-hybrid MFE of Radu et al. (2011) 212 

 213 
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In the case of advection-dominated transport, solving the hybrid-MFE Eq. (18) can yield 214 

solutions with strong instabilities. A common way to avoid such instabilities is to use an 215 

upwind scheme for the advective flux. Thus, for an element E, the advective flux 216 

a,E E E

i i iQ Q TC  at the edge i (common with the element E’), has to be calculated using either 217 

the concentration from E (if 0E

iQ  ) or the concentration from E’ (if 0E

iQ  ). Radu et al. 218 

(2011) suggested replacing the advective flux a,E E E

i i iQ Q TC  at the interface by: 219 

 
0

0

E E E

i ia,E

i
E E' E

i i

Q C if Q
Q

Q C if Q

 
 



 (19) 220 

The advective term is now calculated using the upwind mean concentration, which can be that 221 

of the element E or of its adjacent element E’.  222 

The advective flux of Eq. (19) is rewritten in the following condensed form 223 

   1a,E E E E E E'

i i i iQ Q C C     (20) 224 

with 1E

i   for an outflow  0E

iQ   and 0E

i   for an inflow  0E

iQ  . 225 

However, this expression is incompatible with the hybridization procedure. Indeed, if we 226 

replace, in the Eq. (14), the advective term 
E E

i iQ TC  by Eq. (20), the latter will contain both 227 

EC  and E'C . Thus, the first step of the hybridization procedure cannot allow expressing 228 

1n

EC 
 as only a function of 

1E ,n

iTC 
 as in the Eq. (15). 229 

To avoid this difficulty, Radu et al. (2011) suggested replacing, E'C  by the following 230 

expression: 231 

 2E' E E

iC TC C  (21) 232 

This approximation is based on the assumption that   2E E E'

iTC C C .  233 

Plugging Eq. (21) into Eq. (20), the advective flux a,E

iQ  depends only on the variables of the 234 

element E (mean concentration EC  and edge concentration 
E

iTC ): 235 
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     1 2 1a,E E E E E E E E

i i i i i iQ Q C C TC        (22) 236 

Eq. (22) can then be used to replace the advective term 
1E E ,n

i iQ TC 
 in Eq. (14), and thus the 237 

hybridization procedure allows to express 1n

EC   as a function of 1E ,n

iTC   as in the Eq. (15). 238 

Then, the expression of 1n

EC   is substituted into the dispersive flux Eq. (10), and the final 239 

system is obtained by prescribing continuity of the total flux  0t ,E t ,E'

i iQ Q   at the interface 240 

between E and E’. This scheme was shown to be more efficient (by using a sparser system 241 

matrix with fewer unknowns) than the non-hybrid upwind mixed method of Dawson (1978). 242 

The two methods yielded optimal first order convergence in time and space (Brunner et al., 243 

2014). 244 

The assumption given by Eq. (21) can be a rough approximation, especially in the case of a 245 

heterogeneous domain where dispersion can vary with several orders of magnitudes from 246 

element to element. For such a situation, the edge concentration can be significantly different 247 

from the average of the mean concentrations of adjacent elements. Furthermore, the advective 248 

flux is not uniquely defined at the interface and can be different for the two adjacent elements 249 

E and E’. For instance, in the case of 0E

iQ Q  , the advective flux leaving the element E is 250 

a,E E

iQ QC , whereas the flux entering the element E’ is  2a,E' E E'

i iQ Q TC C   which could 251 

be different as 
E

iTC  is not necessarily the mean of EC  and E'C . In this situation, because of 252 

the discontinuity of the advective flux, the dispersive flux will not be continuous at the 253 

interface since the continuity is prescribed only for the total flux. 254 

3.2 The lumped hybrid-MFE scheme for dispersion transport 255 

In this section, we recall the main principles of the lumped hybrid-MFE method of Younes et 256 

al. (2006), developed to improve the stability of the MFE solution in the case of dispersive 257 

transport. 258 
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Considering only dispersion, Eq. (5) simplifies to: 259 

 0d

C
.

t





 q  (23) 260 

As detailed above, the hybrid MFE method for Eq. (23) is based on two stages:  261 

 Stage1: discretization of the transient mass conservation equation over the element E:  262 

The integration of the mass conservation Eq. (23) over the element E gives (see Eq. 263 

13): 264 

 0d ,EE
E i

i

C
E Q

t





   (24) 265 

 Stage2: imposing the continuity of the flux across the edge i sharing the two elements 266 

E and E’:  267 

 0d ,E d ,E

i iQ Q


   (25) 268 

Note that the continuity equation (25) can be interpreted as a steady state mass conservation 269 

equation at the edge level. Hence, the hybrid MFE discretization uses the transient mass 270 

conservation equation at the element level, given by Eq. (24), and the steady state mass 271 

conservation at the edge level, given by Eq. (25). With the lumped hybrid MFE method of 272 

Younes et al. (2006), the transient term is taken into account at the edge level. Hence, the 273 

lumped formulation uses a steady state mass conservation equation at the element level and a 274 

transient mass conservation equation at the edge level. The two stages of the lumped hybrid 275 

MFE are as follows:  276 

 Stage1: discretization of the steady-state mass conservation equation over E:  277 

The steady-state transport over the element E writes: 278 

 0
d ,E

i
i

Q   (26) 279 

where 
d ,E

i
Q  is the steady-state dispersive flux across the edge iE . 280 

Therefore, the mean concentration of Eq. (15) becomes  281 
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E

Ei
E iE

i

C TC



  (27) 282 

and using Eq. (16), the steady-state dispersive flux writes  283 

 1

E E
d ,E i j E , E

i , j jEi
j

Q B TC
 




 

   
 

  (28) 284 

 Stage2: discretization of the transient mass conservation equation over the lumping 285 

region iR   286 

The edge centered finite volume discretization of the transient transport Eq. (23) over 287 

the lumping region iR  (hatched area in Figure 3), associated with the edge i , writes:  288 

 0

i i

d

R R

C
.

t





    q  (29) 289 

where the lumping regions iR  is formed by the two simplex regions 
E

iS  and 
E

iS

, for 290 

an inner edge i sharing the two elements E  and E , and by the sole simplex region 291 

E

iS  for a boundary edge. The simplex region 
E

iS  is defined by joining the centre of E 292 

with the nodes j and k forming the edge i. 293 
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j  

 k k
x ,y  

 j jx ,y  

 i ix ,y  

k  

i  

E  

E

kQ  E

jQ  

E

ijQ  
E

ikQ  

E

ikTC  
E

ijTC  

E  

E

iTC  

E

jTC  
E

kTC  

E

iQ  

d ,E

ik
Q  

d ,E

i
Q  

d ,E

ij
Q  

  interface
E

ij  

 l l
x ,y  

d ,E

lj
Q



 
d ,E

lk
Q



 

 294 

Figure 3: The lumping region iR  associated with the edge i , sharing the elements E  and 295 

E  and formed by the two simplex regions 
E

iS  and 
E

iS

. 296 

Associating the edge concentration 
E

iTC  to iR  (see Figure 3 for notations), Eq. (29) gives 297 

   0
3

E
d ,E d ,E

i
E ij ik

E TC
Q Q

t


      
 

 (30) 298 

in which 
d ,E

ij
Q  and E

ijTC  are respectively the dispersive flux and the concentration at the 299 

interior interface  
E

ij  between the simplex regions 
E

iS  and E

jS . The shortcut    300 
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designates the same contribution as   , but of the adjacent element E , in the case of Eq. 301 

(30), it corresponds to 
3

E
d ,E d ,E

i
E ij ik

E TC
Q Q

t


 



 
 


. 302 

Besides, applying the steady-state dispersive transport Eq. (26) on the simplex region E

iS  303 

yields:  304 

 0
d ,E d ,E d ,E

ij ik i
Q Q Q    (31) 305 

Finally, substituting Eq. (28) and Eq. (31) into the transport Eq. (30) give the final system 306 

to solve with the lumped hybrid MFE scheme: 307 

  1 0
3

E EE
i jE , Ei

E i , j jE
j

E TC
B TC

t

 





             

  (32) 308 

Note that  309 

1. The lumped hybrid formulation Eq. (32) and the standard hybrid formulation (Eqs (24)-310 

(25)) are exactly the same in the case of steady state diffusion transport. 311 

2. In the lumped formulation Eq (32), the term of mass (with time derivative) has a 312 

contribution only on the diagonal term of the final system matrix. This improves the 313 

monotonous character of the solution (see Younes et al., 2006). For instance, in the case 314 

of an acute triangulation, the maximum principle is respected by the lumped 315 

formulation Eq. (32) whatever the heterogeneity of the porous medium (Younes et al., 316 

2006). 317 

3. Contrarily to the standard hybrid-MFE scheme, where the discretization of the temporal 318 

derivative performed in Eq. (14) was necessary to obtain the final system given by Eq. 319 

(18), the lumped scheme given by Eq. (32) keeps the time derivative continuous which 320 

allows the use of efficient high order temporal discretization methods via the MOL. 321 

4. In the case of 2D triangular elements, the lumped formulation Eq. (32) is algebraically 322 

equivalent to the nonconforming Crouzeix-Raviart (Crouzeix and Raviart, 1973) finite 323 
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element method (see Younes et al., 2008). The nonconforming Crouzeix-Raviart 324 

method uses the chapeau functions as basis functions to approximate the concentration, 325 

like the standard finite element method, but seed nodes are the midpoints of the edges. 326 

4. The new upwind-hybrid MFE scheme for advection-dispersion transport 327 

To avoid the rough approximation (21), we develop hereafter a new upwind-MFE scheme 328 

where the advection term is calculated using upwind edge concentration instead of upwind 329 

mean concentration of the element E. The idea of the scheme is to extend the lumped hybrid-330 

MFE procedure to transport by both advection and dispersion and to use an upwind edge 331 

centered FV scheme to avoid unphysical oscillations caused by the hyperbolic nature of 332 

advection.  333 

The integration of the whole mass conservation Eq. (5) over the lumping region iR  writes: 334 

   0

i i i i

d

R R R R

C
. C . C .

t





         q q q  (33) 335 

Using notations of Figure 3, we obtain  336 

     0
3

E
d ,E d ,EE E E E E E Ei

E ij ij ik ik i ij ikij ik

E TC
Q TC Q TC Q Q TC Q Q

t


          
 

 (34) 337 

in which E

ijQ  is the water flux at the interior interface  
E

ij , evaluated using the RT0 338 

approximation of the velocity given by Eq. (6), which yields  339 

  
1

3

E E E

ij j iQ Q Q   (35) 340 

Using Eq (28) and Eq. (31) and denoting 
3

E E

E
  , Eq. (34) becomes 341 

    1 0

E EE
i jE , E E E E E E E Ei

E i , j j ij ij ik ik ij ik iE
j

TC
B TC Q TC Q TC Q Q TC

t

 





                 

  (36) 342 
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The interior concentration E

ijTC  at the interface between the simplex regions E

iS  and E

jS  is 343 

calculated using an upwind scheme (See Figure 3) defined by: 344 

  1E E E E E

ij ij i ij jTC TC TC     (36) 345 

with 1E

ij   if  0E

ijQ  , else 0E

ij   346 

Thus, the final system to solve becomes, 347 

     

 

1 1 1

0

E EE
i jE , E E E E E E E E Ei

E i , j j ij ij j i ik ik k iE
j

TC
B TC Q TC TC Q TC TC

t

 
  




   

             

 


 348 

  (37) 349 

In the case of a first-order Euler implicit time discretization, Eq. (37) becomes  350 

 
  

  
 

, 1 , 1 , 1 , 1 , 1

,

, 1 , 1 ,

1
0

1

E E

i jE E n E n E E E n E n

i j j E i ij ij j iE
j

E E E n E n E n

ik ik k i E i

B TC TC Q TC TC

Q TC TC TC

 
 



 

    

 

  
             

 
     


 (38) 351 

where 
3

E E

E

t
 


. 352 

It is easy to see that, due to upwinding, the system matrix corresponding to Eq. (38) is always 353 

an M-matrix (a non singular matrix with 0, 0ii ijm m  ) in the case of transport by advection. 354 

The M-matrix property insures the stability of the scheme since it guaranties the respect of the 355 

discrete maximum principle i.e. local maxima or minima will not appear in the C  solution in 356 

a domain without local sources or sinks. 357 

Further, Eq. (37) expresses the total exchange between E and E’ and therefore reflects the 358 

continuity of the total advection-dispersion flux between them. Both advective and dispersive 359 

fluxes are continuous between the adjacent elements E and E’. The advective flux, calculated 360 

using the upwind edge concentration, is uniquely defined at the interface of the lumping 361 

region and is therefore continuous. As a consequence, the dispersive flux is also continuous 362 
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between E and E’ since the total flux is continuous at the interface between them. 363 

5. Numerical Experiments 364 

In this section, a first test case dealing with transport in saturated porous media is simulated 365 

with the standard hybrid-MFE and the new upwind-MFE schemes. The results are compared 366 

against an analytical solution in order to validate the new developed scheme and to show its 367 

robustness for solving advection-dominated transport problems compared to the standard one. 368 

The second test case deals with transport in the unsaturated zone and aims to investigate the 369 

robustness of the new scheme when combined with the MOL for solving highly nonlinear 370 

problems. 371 

5.1 Transport in saturated porous media: comparison against a 2D analytical solution 372 

The hybrid and upwind MFE formulations are compared against the analytical solution 373 

developed by Leij and Dane (1990) for a simplified 2D transport problem (Figure 4). The test 374 

case has been employed by Putti et al. (1990) and Siegel et al. (1997) for the verification of 375 

transport codes. It deals with the contamination from the left boundary of a 2D rectangular 376 

domain of dimension    0 100 0 40, , .  377  
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Figure 4: Description of the problem of the contamination of a 2D saturated porous medium. 379 

The boundary conditions for the transport are of Dirichlet type at the inflow (left vertical 380 

boundary), with  381 
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0 for 0 and 0 12

1 for 0 and 12 28

0 for 0 and 28 40

x y

C x y

x y

  


   
   

 (39) 382 

A zero diffusive flux is imposed at the right vertical outflow boundary. The top and bottom 383 

are impermeable boundaries. A uniform horizontal flow occurs from left to right with a 384 

constant flux 0 5xq .  m/day prescribed at the left vertical boundary and a fixed head 385 

100H  m at the right vertical boundary. The longitudinal and transverse dispersivities are 386 

0 2L . m   and 0 05T . m  , respectively. The domain is discretized with a fine unstructured 387 

triangular mesh formed by 33216 elements, and the simulation is performed for a final 388 

simulation time T = 30 days using the Euler-implicit time discretization with a fixed time step 389 

of 0.1 day. The linear systems are solved in each time step with a direct solver using an 390 

unsymmetric-pattern multifrontal method and a direct sparse LU factorization (UMFPACK). 391 

The analytical solution of this test case for an infinite domain is given by Leij and Dane 392 

(1990): 393 

  
     

 
2

3 2

1 2 1 2 1 2

0

12 28

416 4 4

T

analy

LL T T

xx y y
C x, y,t erf erf exp d


 

     


        

        
            

 (40) 394 

with    2

0

2
x

erf x exp d 


  . 395 

 396 

The final distributions of the concentration with both hybrid-MFE and upwind-MFE schemes 397 

are depicted in Figure 5. Although we have used an unstructured mesh, the two schemes yield 398 

almost symmetrical results. The hybrid-MFE scheme (Figure 5a) yields a solution with 399 

unphysical oscillations. Indeed, around 1.2 % of the contaminated region (i.e. the region with 400 

510C  ) exhibits unphysical oscillations with 0.4 % of the contaminated region with 401 

310C    and 0.8 % of the contaminated region with 1 001C . . These unphysical 402 

oscillations, although they seem moderate, can be dramatic, for instance, when dealing with 403 

https://www.sciencedirect.com/topics/engineering/lu-factorization
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reactive transport where some reactions occur only if the concentration excesses a certain 404 

threshold. The solution obtained with the new upwind formulation (Figure 5b) is monotone 405 

(all concentrations are between 0 and 1) which is in agreement with the physics. However, 406 

these results come at the expense of some numerical diffusion added to the solution. To 407 

appreciate the quality of both solutions and validate the upwind-MFE method, we compare 408 

the concentration profile of the two methods to the analytical solution of Leij and Dane (1990) 409 

for a horizontal section located at y = 20 m and a vertical section located at x = 20 m.  410 

 411 

 412 

 413 
Figure 5: Concentration distribution with the hybrid-MFE and the upwind-MFE methods for 414 

the 2D saturated transport problem (only the region 70x  m is depicted). 415 

 416 
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The results of figure 6 show that the solution of both hybrid-MFE and upwind-MFE methods 417 

are in very good agreement with the analytical solution, which validates the new upwind-418 

MFE numerical model. Note, however, that a small numerical diffusion is observed with the 419 

upwind-MFE solution, which is especially visible in figure 6b. Indeed, for the simulated 420 

problem, the transverse dispersivity is much smaller than the longitudinal one, and, as a 421 

consequence, the concentration front is sharper in the vertical section than in the horizontal 422 

one. This explains why the numerical diffusion generated by the upwind-MFE method is 423 

more pronounced in Figure 6b than in Figure 6a. 424 
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Figure 6: Concentration profiles at y = 20m (a) and x = 20 m (b) with the analytical, hybrid-428 

MFE and upwind-MFE solutions. 429 

The test problem is then simulated using different mesh refinements to investigate the order of 430 

convergence of the new method. We start with a uniform mesh formed by 1000 triangles and 431 

a time step 0 1t . s  . In each level of refinement, each triangle is subdivided into four similar 432 

triangles, by joining the three mid-edges and the time step t  is halved. The following error 433 

is computed (Brunner et al., 2014): 434 

        
1 2

2 2

0 0
1

/
N

N N t n t n

analyt analyt

n

Er C t C t t t t


 
    
 

 q q  (39) 435 

where 
t

a d q q q  is the total advection-dispersion flux and N  the total number of time 436 

steps.  437 

The runs are performed on a single computer with an Intel Xeon E-2246G processor and 32 438 

GB memory. The results of the computations, summarized in Table 1, clearly show optimal 439 

first order convergence in space and time for the developed upwind-hybrid MFE method. 440 

Ref. level # unknowns Error Er  Reduction CPU time (s) 

1 1535 2.55  4.9 

2 6070 1.296 1.97 38.6 

3 24140 0.655 1.98 272 

4 96280 0.329 1.99 2068 

5 384560 0.165 2.00 16567 

Table 1: Numerical results for the new upwind-hybrid MFE method. 441 

5.2 Transport in a variably-saturated porous medium 442 

In this test case, the developed upwind-MFE method is combined with the MOL for solving 443 

contaminant transport in a variably-saturated porous medium. The advection-dispersion 444 

equation is transformed to an Ordinary Differential Equation (ODE) using the new upwind-445 
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MFE formulation for the spatial discretization, whereas the time derivative is maintained 446 

continuous. Therefore, high-order time integration methods included in efficient ODE solvers 447 

can be employed. With these solvers, both the time step size and the order of the time 448 

integration can vary during the simulation to deliver accurate results in an acceptable 449 

computational time.  450 

To investigate the robustness and efficiency of the combination of the developed upwind-451 

MFE method with the MOL, we simulate in this section the problem of contaminant 452 

infiltration into a variably-saturated porous medium.  453 
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 454 

Figure 7: Description of the problem of contaminant infiltration into a 2D variably-saturated 455 

porous medium. 456 

 457 

The domain (Figure 7) is a rectangular box of 3m  2m, filled with sand, with an initial water 458 

table at 0.65m and hydrostatic pressure distribution. An infiltration of a tracer contaminant is 459 

applied over the left-most 0.1m of the surface with a constant flux of 
610 m s

. The right 460 

vertical side has a fixed head 0 65H . m below the water table and an impermeable boundary 461 
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above it. The left vertical side as well as the upper (except the infiltration zone) and bottom 462 

boundaries are impermeable boundaries.  463 

In this problem, the flow and transport are coupled by the velocity, which is obtained by 464 

solving the following pressure-head form of the nonlinear Richards’ equation: 465 

   0S

S

H
c h S

t





  
   

 
q  (40) 466 

 rk H  q K  (41) 467 

with SS  the specific mass storativity related to head changes [L-1], H h y   the equivalent 468 

head [L], 
P

h
g

  the pressure head, P  the pressure [Pa],   the fluid density [ML-3], g  the 469 

gravity acceleration [LT-2], y the upward vertical coordinate [L],  c h  the specific moisture 470 

capacity [L−1], S  the saturated water content [L3L−3], q  the Darcy velocity [LT-1], 471 

g


K k  the hydraulic conductivity [LT-1], k  the permeability [L2],   the fluid dynamic 472 

viscosity [ML-1T-1] and rk  the relative conductivity [-]. 473 

We use the standard van Genuchten (1980) model for the relationship between water content 474 

and pressure head: 475 
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 
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 (42) 476 

where   [L-1] and n  [-] are the van Genuchten parameters, 1 1m n  , eS  [-] is the effective 477 

saturation and r  [-] is the residual water content. The conductivity-saturation relationship is 478 

derived from the Mualem (1976) model:  479 

  
2

1/2 1/1 1
m

m

r e ek S S   
  

 (43) 480 

The material properties of the test problem are given in Table 2. 481 
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Parameters  

r  0.01 

s  0.3 

 (cm-1) 0.033 

n  4.1 

K  (cm/s) 210   

sS (cm-1) 1010   

mD (m2/s) 910  

 (kg/m3) 1000 

  (kg/m/s) 0.001 

 482 

Table 2: Parameters for the problem of infiltration into a 2D variably-saturated porous 483 

medium.  484 

 485 

The simulation is performed for 80 hours using a triangular mesh formed by 4273 triangular 486 

elements. Two test cases are investigated. In the first test case, the longitudinal and transverse 487 

dispersivities are 0 03L . m   and 0 003T . m  , respectively. The second test case is less 488 

diffusive with 0 01L . m   and 0 001T . m  . 489 

The coupled nonlinear flow-transport system is solved using the MOL, which allows the use 490 

of efficient high-order time integration methods, for both the hybrid-MFE and the upwind-491 

MFE schemes. To this aim, a hybrid-MFE formulation with continuous time derivative was 492 

developed by extending the lumping procedure, developed in Younes et al. (2006) for the 493 

flow equation, to the advection-dispersion transport Eq. (5).  494 

The time integration is performed with the DASPK time solver which uses an efficient 495 

automatic time-stepping scheme based on the Fixed Leading Coefficient Backward 496 

Difference Formulas (FLCBDF). The linear systems arising at each time step are solved with 497 

the preconditioned Krylov iterative method. The nonlinear problem is linearized using the 498 

Newton method with a numerical approximation of the Jacobian matrix.  499 

The results of the hybrid-MFE and the upwind-MFE methods are depicted in Figure 8 for the 500 
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first test case involving high dispersion. Good agreement can be observed between the results 501 

of the hybrid-MFE (Figure 8a) and upwind-MFE (Figure 8b) schemes when combined with 502 

the MOL. In these figures, the contaminant progresses essentially vertically through the 503 

unsaturated zone of the soil. When the saturated zone is reached, the contaminant progresses 504 

horizontally and remains close to the water table. Note that the results of both schemes are 505 

stable and free from unphysical oscillations (Figures 8a and 8b).  506 

 507 

 508 

Figure 8: Concentration distribution, with the hybrid-MFE (a) and the upwind-MFE (b) 509 
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schemes for the transport problem with high dispersion in a variably-saturated porous 510 

medium. 511 

For the second test case with lower dispersion  0 01 0 001L T. m, . m   , the hybrid-MFE 512 

method yields unstable results containing unphysical oscillations (red color in Figure 9a). 513 

These oscillations hamper the convergence of the numerical model, and severe convergence 514 

issues can be encountered if we further decrease the dispersivity values. The results of the 515 

upwind-MFE scheme are monotone and do not contain any unphysical oscillation (Figure 9b). 516 

These results point out the robustness of the new upwind MFE method for transport in 517 

saturated and unsaturated porous media. The developed transport scheme has recently been 518 

successfully combined with the MFE method for fluid flow to simulate nonlinear flow and 519 

transport in unsaturated fractured porous media using the 1D-2D discrete fracture matrix 520 

(DFM) approach (Younes et al., 2022b). 521 

 522 
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 523 

Figure 9: Concentration distribution with the hybrid-MFE (a) and upwind-MFE (b) methods 524 

for the transport problem with low dispersion in variably-saturated porous medium. 525 

6. Conclusion 526 

 527 

MFE is a robust numerical method well adapted for diffusion problems on heterogeneous 528 

domains and unstructured meshes. When applied to transport equations, the MFE solution can 529 

exhibit strong unphysical oscillations due to the hyperbolic nature of advection. Upwind 530 

schemes can be used to avoid such oscillations, although they introduce some numerical 531 

diffusion. In this work, we developed an upwind scheme that does not require any 532 

approximation for the upwind concentration. The method can be seen as a combination of an 533 

upwind edge/face centred FV method with the lumped formulation of the hybrid-MFE 534 

method. It ensures continuity of both advective and dispersive fluxes between adjacent 535 

elements and allows to maintain the time derivative continuous, which facilitates employment 536 

of high order time integration methods via the method of lines (MOL) for nonlinear problems. 537 

Numerical simulations for the transport in a saturated porous medium show that the standard 538 

hybrid-MFE method can generate unphysical oscillations due to the hyperbolic nature of 539 
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advection. These unphysical oscillations are completely avoided with the new upwind-MFE 540 

scheme. The simulation of the problem of contaminant transport in a variably-saturated 541 

porous medium shows that only the upwind-MFE scheme provides a stable solution. The 542 

results point out the robustness of the developed upwind-MFE scheme when combined with 543 

the MOL for solving nonlinear transport problems.  544 

 545 

 546 

 547 

548 
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