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Abstract

The Mixed Finite Element (MFE) method is well adapted for the simulation of fluid flow in
heterogeneous porous media. However, when employed for the transport equation, it can
generate solutions with strong unphysical oscillations because of the hyperbolic nature of
advection. In this work, a robust upwind MFE scheme is proposed to avoid such unphysical
oscillations. The new scheme is a combination of the upwind edge/face centred finite volume
method with the hybrid formulation of the MFE method. The scheme ensures continuity of
both advective and dispersive fluxes between adjacent elements and allows to maintain the
time derivative continuous, which permits employment of high order time integration
methods via the Method of Lines (MOL).

Numerical simulations are performed in both saturated and unsaturated porous media to
investigate the robustness of the new upwind-MFE scheme. Results show that, contrarily to
the standard scheme, the upwind-MFE method generates stable solutions without under and
overshoots. The simulation of contaminant transport into a variably saturated porous medium
highlights the robustness of the proposed upwind scheme when combined with the MOL for

solving nonlinear problems.

Keywords:
Hybrid Mixed Finite Element, upwind scheme, advection-dispersion transport, numerical

oscillations, Method of Lines.
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1. Introduction

The Mixed Finite Element (MFE) method (Raviart and Thomas, 1977; Brezzi et al., 1985;
Chavent and Jaffré, 1986; Brezzi and Fortin, 1991, Younes et al., 2010) is known to be a
robust numerical scheme for solving elliptic diffusion problems such as the fluid flow in
heterogeneous porous media. The method combines advantages of the finite volumes, by
ensuring local mass conservation and continuity of fluxes between adjacent cells, and
advantages of finite elements by easily handling heterogeneous domains with discontinuous
parameter distributions and unstructured meshes. As a consequence, the MFE method has
been largely used for flow in porous media (see, for instance, the review of Younes et al.
(2010) and references therein). The hybridization technique has been largely used with the
MFE method to improve its efficiency (Chavent and Roberts, 1991; Traverso et al. 2013).
This technique allows to reduce the total number of unknowns and produces a final system
with a symmetric positive definite matrix. The unknowns with the hybrid-MFE method are
the Lagrange multipliers which correspond to the traces of the scalar variable at edges/faces
(Chavent and Jaffré, 1986).

When applied to transient diffusion equations with small time steps, the hybrid-MFE method
can produce solutions with small unphysical over and undershoots (Hoteit et al., 2002a,
2002b; Mazzia, 2008). A lumped formulation of the hybrid-MFE method was developed by
Younes et al. (2006) to improve its monotonicity and reduce nonphysical oscillations. The
lumped formulation ensures that the maximum principle is respected for parabolic diffusion
equations on acute triangulations (Younes et al., 2006). For more general 2D and 3D element
shapes, the lumping procedure allows to significantly improve the monotonous character of
the hybrid-MFE solution (Younes et al., 2006; Koohbor et al., 2020). As an illustration, the
lumped formulation was shown to be more efficient and more robust than the standard hybrid

formulation for the simulation of the challenging nonlinear problem of water infiltration into
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an initially dry soil (Belfort et al., 2009). The lumped formulation has recently been used for
flow discretization in the case of density driven flow in saturated-unsaturated porous media
(Younes et al., 2022a).

However, the MFE method remains little used for the discretization of the full transport
equation. When employed to the advection-dispersion equation, the MFE method can
generate solutions with strong numerical instabilities in the case of advection-dominated
transport because of the hyperbolic nature of the advection operator. To avoid these
instabilities, one of the most popular and easiest ways is to use an upwind scheme. Indeed,
although upwind schemes introduce some numerical diffusion leading to an artificial
smearing of the numerical solution, they avoid unphysical oscillations and remain useful,
especially for large domains and regional field simulations. In the literature, some upwind
mixed finite element schemes have been employed to improve the robustness of the MFE
method for advection-dominated problems (Dawson, 1998; Dawson and Aizinger, 1999;
Radu et al., 2011; Vohralik, 2007; Brunner et al., 2014).

The main idea of an upwind scheme for an element E, is to calculate the mass flux exchanged
with its adjacent element E’ using the concentration from E in the case of an outflow and the
concentration from £ in the case of an inflow. However, this idea cannot be applied as such
with the hybrid-MFE method since the hybridization procedure requires to express the flux at
the element interface as only a function of variables at the element E (and not E’). To
overcome this difficulty, Radu et al. (2011), and Brunner et al. (2014) proposed an upwind
MFE method where, in the case of an inflow, the concentration at the adjacent element E’ is
replaced by an approximation using the concentration at E and the trace of concentration at

the interface 0. by assuming that the edge concentration is the mean of the concentrations in

E and E’. However, this assumption cannot be verified for a general configuration.
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Furthermore, with such an assumption, each of the advective and dispersive fluxes is
discontinuous at the element interfaces, and continuity is only fulfilled for the total flux.

In this work, a new upwind-MFE method is proposed for solving the full transport equation
without requiring any approximation of the upwind concentration. The new scheme is a
combination of the upwind edge/face centered finite volume (FV) scheme with the lumped
formulation of the MFE method. It guarantees continuity of both advective and dispersive
fluxes at element interfaces. Further, the new upwind-MFE scheme maintains the time
derivative continuous and thus, allows to employ high order time integration methods via the
method of lines (MOL), which was shown to be very efficient for solving nonlinear problems
(see, for instance, Fahs et al. (2009) and Younes et al. (2009)).

This article is structured as follows. In section 2, we recall the hybrid-MFE method for the
discretization of the transport equation. In section 3, we introduce the new upwind-MFE
method based on the combination of the upwind edge/face FV scheme with the lumped
formulation of the MFE method. In section 4, numerical experiments are performed for
transport in saturated and unsaturated porous media to investigate the robustness of the new

developed upwind-MFE scheme. Some conclusions are given in the last section of the article.

2. The hybrid-MFE method for the advection-dispersion equation

The mass conservation of the contaminant in variably saturated porous media is:

o(ec)

P +V.(G,+6,)=0 1)

where C is the normalized concentration [-], € is water content [L3L7], ], t is time [T],
g, =qC is the advective flux with q the Darcy velocity [LT™] and ¢, the dispersive flux
given by:

g, =—-DVC (2)

with D, the dispersion tensor, expressed by:
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D=D,l +(a —or)a®q/g|+a g1 (3)
in which «, and o, are the longitudinal and transverse dispersivities [L], D, is the pore

water diffusion coefficient [L2TY] and | is the unit tensor.

The water content @ and the Darcy velocity g are linked by the fluid mass conservation

equation in variably saturated porous media:

06
—+V.q=0 4
8t+ a )

Substituting Eqg. (4) into Eq. (1) yields the following advection-dispersion equation:
9%+v.(qa+qd)—cv.q=o (5)

In this work, we consider that the velocity q is obtained by solving Richards’ equation using
the hybrid-MFE method. For a two-dimensional domain with a triangular mesh, q is
approximated inside each triangle E using the lowest-order Raviart-Thomas (RTO) vectorial

basis functions WJ-E :

=2 Qjw; (6)

X—xE
where QF is the water flux across the edge E; of E (see Figure 1) and w® ﬁ( jE]
Y-y,

is the typical RTO basis functions (Younes et al., 1999) with (x[,y}) the coordinates of the

node j opposite to the edge E; of E and |E|, the area of E.
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Figure 1: Vectorial basis functions for the MFE method.

To apply the hybrid-MFE method to the transport Eq. (5), we approximate the dispersive flux

G, with RTO vectorial basis functions as:
&~ : Nd.E\, E
Oy = ZQJ W (7
j=L

where Q{*

qu .qu is the dispersive flux across the edge E; of the element E and qu is

the outward unit normal vector to the edge E;.

The variational formulation of Eq. (2) using the test function w" yields:

'[D’lqdwf :ICV.WiE —Z I Cwi ap; (8)
E E i E

Substituting Eq. (7) into Eqg. (8) and using properties of the basis functions WjE give
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— | C
il E (9)

in which, D is the local dispersion tensor at the element E, C_ is the mean concentration at
E and TCS is the edge (trace) concentration (Lagrange multiplier) at the edge E, .

Denoting the local matrix B :I(Dglwf).wf , the inversion of the system of Eq. (9) gives
E

the expression for the dispersive flux Q{’*E :
Q'f = Z éil,zjﬁl (CE _TCjE ) (10)
i
Besides, the integration of the mass conservation Eg. (6) over the element E writes
oC
0—+|VG,+|V4,-|CVag=0 (11)
o5 [vadva-]

which becomes, using Green’s formula,

oC ~
0E|E| é’tE +chq"1iE +Zj.qd n; _ICV-‘IZO (12)
I E I E E

where & is the water content of the element E.

Substituting Eq. (2) into Eq. (12) yields

oC
ot

O [E| =5+ (G5 +QMF)-C. > Q" =0 (13)
[ i

oi®

in which Q' = QP +Q"* is the total flux at the edge E, with Q*F the advective flux given
by Q*F =QFTCF and Q°F the dispersive flux given by Eq. (10).

The hybridization of the MFE method is performed in the following two steps:

1) The flux Eg. (10) is substituted into the mass conservation Eq. (13), which is then

discretized in time using the first-order implicit Euler scheme
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‘9E %(CEMI _ CEn ) + ZQiETCiEYnH _ CEn+leiE + dECEnJrl _ ZdiETCiE 0 (14)

inwhich @F =) BE™ and a® =) af .
i i

Hence, the mean concentration at the new time level C."" can be expressed as a function

of TC”", the concentration at the edges of E, as follows:

CEn+1 — ﬁiz(dlE _QiE )TCiE,n+l +%CEH (15)

E i E
g N
in which 2, =6, N and B =| A +a®-> Qf |.
The mean concentration given by Eq. (15) is then substituted into the flux Eq. (10), which

allows expressing the dispersive flux Qid'E'“” (the subscript n+1 will be omitted to alleviate

the notations) as only a function of the traces of concentration at edges TC”"*:

0t -3 A (af )-8 fre s B e a9

2) The system to be solved is obtained by imposing the continuity of the total flux

(Q}'E +Q'F = 0) as well as the continuity of the trace of concentration (TCiE’n+1 =TCiE"”*1)

at the edge i between the two elements E and £’ (Figure 2).

TCS

El

TCF = TCiE'/ Q”ItE — QFTCF + Q"id E
TCJ.E
/ TCE

Qit,E' — QiE'TCiE' + Qid E'

TC/S
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Figure 2: Continuity of concentration and total flux between adjacent elements with the

hybrid-MFE method.
Note that the advective flux Q€ is continuous between E and £ because of the continuity
of the water flux and the continuity of the trace of concentration at the interface. Thus, for

the continuity of the total flux (QJ'E +Q'F :O), it is required that the dispersive flux is

continuous:
Q~i1:,E +Q~it,E' :(QiE +QiE')TCiE,n+1+Q~id,E +Q~id,E' :Q~id,E +Q~id,E' :O (17)

Using Eq. (16), we obtain:

]

~E
Z( éfjﬁl - ;—iE(djE -Qr )JTCJ-E"]+1 - Z(Igﬁ’l % (djE' —QF )]TC;E',nJrl

=G -G
Pe Pe:
The continuity Eq. (18) is written for all mesh edges, and the resulting equations form the
final system to be solved for the traces of concentration at edges TC7"" as unknowns.

Note that the hybrid-MFE Eqgs (18), obtained by approximating the dispersive flux with RTO

basis functions, is equivalent to the new MFE method proposed in Radu et al. (2011).

3. The upwind and lumped MFE approaches

In this section, we recall the main principles of two existing approaches, developed to
improve the stability of the MFE solution of the transport equation. The first approach is the
upwind-hybrid MFE scheme of Radu et al. (2011), developed for advection dominated
transport. The second approach is the lumped hybrid-MFE method of Younes et al. (2006),

developed for dispersive transport.

3.1 The upwind-hybrid MFE of Radu et al. (2011)

10
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In the case of advection-dominated transport, solving the hybrid-MFE Eq. (18) can yield
solutions with strong instabilities. A common way to avoid such instabilities is to use an

upwind scheme for the advective flux. Thus, for an element E, the advective flux

Q*F =QFTCF at the edge i (common with the element £°), has to be calculated using either
the concentration from E (if Q° >0) or the concentration from £’ (if QF <0). Radu et al.

(2011) suggested replacing the advective flux Q*F =QFTCF at the interface by:

aE _
i

(19)

QFCE if QF>0
QFC® if QF<O

The advective term is now calculated using the upwind mean concentration, which can be that

of the element E or of its adjacent element £".

The advective flux of Eq. (19) is rewritten in the following condensed form
GF =QF (rFCt +(1-7F)C®) (20)
with 7 =1 for an outflow (QF >0) and 7" =0 for an inflow (QF <0).

However, this expression is incompatible with the hybridization procedure. Indeed, if we

replace, in the Eq. (14), the advective term Q°TCF by Eq. (20), the latter will contain both

C® and CF . Thus, the first step of the hybridization procedure cannot allow expressing

C."" as only a function of TC*"" as in the Eq. (15).

To avoid this difficulty, Radu et al. (2011) suggested replacing, CF by the following

expression:

C® =2TCF -CF (21)
This approximation is based on the assumption that TCF = (C® +C*') /2.
Plugging Eqg. (21) into Eq. (20), the advective flux Q""’E depends only on the variables of the

element E (mean concentration C* and edge concentration TC):

11
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Qr€ =QF (¢FC" —(1-2F )C* +2(1—7F ) TCF) (22)

Eq. (22) can then be used to replace the advective term Q°TCS"* in Eq. (14), and thus the
hybridization procedure allows to express C."" as a function of TCF"" as in the Eq. (15).

Then, the expression of C."" is substituted into the dispersive flux Eq. (10), and the final
system is obtained by prescribing continuity of the total flux (QfE +C§i‘*E' :0) at the interface

between E and E£°. This scheme was shown to be more efficient (by using a sparser system
matrix with fewer unknowns) than the non-hybrid upwind mixed method of Dawson (1978).
The two methods yielded optimal first order convergence in time and space (Brunner et al.,
2014).

The assumption given by Eq. (21) can be a rough approximation, especially in the case of a
heterogeneous domain where dispersion can vary with several orders of magnitudes from
element to element. For such a situation, the edge concentration can be significantly different
from the average of the mean concentrations of adjacent elements. Furthermore, the advective

flux is not uniquely defined at the interface and can be different for the two adjacent elements

E and E’. For instance, in the case of Q° =Q >0, the advective flux leaving the element E is
Q*F =QCF, whereas the flux entering the element E” is Q*F = Q(ZTCiE —C*') which could

be different as TCF is not necessarily the mean of C* and CF . In this situation, because of

the discontinuity of the advective flux, the dispersive flux will not be continuous at the

interface since the continuity is prescribed only for the total flux.

3.2 The lumped hybrid-MFE scheme for dispersion transport
In this section, we recall the main principles of the lumped hybrid-MFE method of Younes et
al. (2006), developed to improve the stability of the MFE solution in the case of dispersive

transport.

12
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Considering only dispersion, Eq. (5) simplifies to:

oC ~
GE-FV.qd =0 (23)

As detailed above, the hybrid MFE method for Eq. (23) is based on two stages:
e Stagel: discretization of the transient mass conservation equation over the element E:
The integration of the mass conservation Eq. (23) over the element E gives (see Eq.
13):

oC
ot

O |E|[—=+> Q" =0 (24)

e Stage2: imposing the continuity of the flux across the edge i sharing the two elements
Eand E’:
Q' +Q'F =0 (25)

Note that the continuity equation (25) can be interpreted as a steady state mass conservation
equation at the edge level. Hence, the hybrid MFE discretization uses the transient mass
conservation equation at the element level, given by Eq. (24), and the steady state mass
conservation at the edge level, given by Eq. (25). With the lumped hybrid MFE method of
Younes et al. (2006), the transient term is taken into account at the edge level. Hence, the
lumped formulation uses a steady state mass conservation equation at the element level and a
transient mass conservation equation at the edge level. The two stages of the lumped hybrid
MFE are as follows:

e Stagel: discretization of the steady-state mass conservation equation over E:

The steady-state transport over the element E writes:

>4, " =0 (26)

where g?  is the steady-state dispersive flux across the edge E, .

Therefore, the mean concentration of Eq. (15) becomes

13
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d-E
C. =Y -LTCf (27)
—a
and using Eqg. (16), the steady-state dispersive flux writes

~d, arar .
Q. j =Z( ~—-B7" IC} (28)
j

~E
a

Stage2: discretization of the transient mass conservation equation over the lumping
region R
The edge centered finite volume discretization of the transient transport Eq. (23) over

the lumping region R, (hatched area in Figure 3), associated with the edge i, writes:

je%%+jqu=0 (29)

R; R;
where the lumping regions R, is formed by the two simplex regions SF and SF, for
an inner edge i sharing the two elements E and E’, and by the sole simplex region

SF for a boundary edge. The simplex region S is defined by joining the centre of E

with the nodes j and k forming the edge i.

14
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Figure 3: The lumping region R. associated with the edge i, sharing the elements E and
E’ and formed by the two simplex regions S° and S° .

Associating the edge concentration TC to R, (see Figure 3 for notations), Eq. (29) gives

[E| | oTCE  ~de  <de o
{?GETH_Q” +Q, +{ } =0 (30)

in which QEE and TCijE are respectively the dispersive flux and the concentration at the

interior interface (ij)” between the simplex regions SF and SE. The shortcut {

15
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designates the same contribution as { } , but of the adjacent element E’, in the case of Eq.

!

E
S e

E ' - '
oTC, +Qd,E +9:1k,E .

30), it corresponds to )
(30) p ++G,

Besides, applying the steady-state dispersive transport Eq. (26) on the simplex region S°

yields:

~d,E ~d,E ~d,E

O +Q " +Q " =0 (31)

—ij —i
Finally, substituting Eq. (28) and Eqg. (31) into the transport Eq. (30) give the final system
to solve with the lumped hybrid MFE scheme:

E| ~ oTCE e, Ofa; :
{%0E7|+Z[Bﬁ 1—d—;]ch}+{ V=0 (32)

j

Note that

1. The lumped hybrid formulation Eq. (32) and the standard hybrid formulation (Eqs (24)-
(25)) are exactly the same in the case of steady state diffusion transport.

2. In the lumped formulation Eq (32), the term of mass (with time derivative) has a
contribution only on the diagonal term of the final system matrix. This improves the
monotonous character of the solution (see Younes et al., 2006). For instance, in the case
of an acute triangulation, the maximum principle is respected by the lumped
formulation Eq. (32) whatever the heterogeneity of the porous medium (Younes et al.,

2006).

3. Contrarily to the standard hybrid-MFE scheme, where the discretization of the temporal

derivative performed in Eqg. (14) was necessary to obtain the final system given by Eq.
(18), the lumped scheme given by Eq. (32) keeps the time derivative continuous which

allows the use of efficient high order temporal discretization methods via the MOL.

4. In the case of 2D triangular elements, the lumped formulation Eq. (32) is algebraically

equivalent to the nonconforming Crouzeix-Raviart (Crouzeix and Raviart, 1973) finite

16
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element method (see Younes et al., 2008). The nonconforming Crouzeix-Raviart
method uses the chapeau functions as basis functions to approximate the concentration,

like the standard finite element method, but seed nodes are the midpoints of the edges.

4. The new upwind-hybrid MFE scheme for advection-dispersion transport

To avoid the rough approximation (21), we develop hereafter a new upwind-MFE scheme
where the advection term is calculated using upwind edge concentration instead of upwind
mean concentration of the element E. The idea of the scheme is to extend the lumped hybrid-
MFE procedure to transport by both advection and dispersion and to use an upwind edge
centered FV scheme to avoid unphysical oscillations caused by the hyperbolic nature of
advection.

The integration of the whole mass conservation Eq. (5) over the lumping region R. writes:

ot

R;

[02+[v.(aC)+[va,-[cva=0 (33)
Ri R; Ri
Using notations of Figure 3, we obtain

E
{g O 6Ta$i +QijETCijE +QiETCiE +9~§ " +9~:<£ _TCiE (QIF +QiE )}—i_{ }, - =

in which QF is the water flux at the interior interface (ij)E, evaluated using the RTO

approximation of the velocity given by Eqg. (6), which yields

Qf -3 (e Q) (35)

E
Using Eq (28) and Eqg. (31) and denoting A. = 6. % Eq. (34) becomes

ATCE ., afar r
e T8 - 2T e e e -(of v et o1 -0 @
i

17
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The interior concentration TC;® at the interface between the simplex regions SF and S: is
calculated using an upwind scheme (See Figure 3) defined by:
TCf =7 TCF +(1-7; )TCF (36)
with 77 =1 if (QF 20), else 7 =0

Thus, the final system to solve becomes,

{ 2 6T6<t3f N Z(éﬁ,l _ “:OE‘JE JTC §+Qf (1-7f )(TC] -TCF)+Qf (17 )(TCS -TCF )}

+{ } =0

J

@37)
In the case of a first-order Euler implicit time discretization, Eq. (37) becomes
. aEat
Z Bil’Ej,—l _ I~EJ CjE,n+1 +ﬂ»ETCiE’n+l + QI:E (1_z_i|j5 )(chE,n+1 _TCiE,IH—l) .
j a +{} =0 (39)

+Qp (L-7 )(TCE™ —TCF ™) = 4. TCF"

E
where 4. =6, |_A|t

It is easy to see that, due to upwinding, the system matrix corresponding to Eq. (38) is always

an M-matrix (a non singular matrix with m; >0, m; <0) in the case of transport by advection.

The M-matrix property insures the stability of the scheme since it guaranties the respect of the
discrete maximum principle i.e. local maxima or minima will not appear in the C solution in

a domain without local sources or sinks.

Further, Eq. (37) expresses the total exchange between E and E’ and therefore reflects the
continuity of the total advection-dispersion flux between them. Both advective and dispersive
fluxes are continuous between the adjacent elements E and E’. The advective flux, calculated
using the upwind edge concentration, is uniquely defined at the interface of the lumping

region and is therefore continuous. As a consequence, the dispersive flux is also continuous

18
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between E and E’ since the total flux is continuous at the interface between them.

5. Numerical Experiments

In this section, a first test case dealing with transport in saturated porous media is simulated
with the standard hybrid-MFE and the new upwind-MFE schemes. The results are compared
against an analytical solution in order to validate the new developed scheme and to show its
robustness for solving advection-dominated transport problems compared to the standard one.
The second test case deals with transport in the unsaturated zone and aims to investigate the
robustness of the new scheme when combined with the MOL for solving highly nonlinear

problems.

5.1 Transport in saturated porous media: comparison against a 2D analytical solution

The hybrid and upwind MFE formulations are compared against the analytical solution
developed by Leij and Dane (1990) for a simplified 2D transport problem (Figure 4). The test
case has been employed by Putti et al. (1990) and Siegel et al. (1997) for the verification of

transport codes. It deals with the contamination from the left boundary of a 2D rectangular

domain of dimension (0,100)x(0,40).

Impermeable layer

T >

Saturated porous medium

0,=05 H =100m
o, =02m oC/ox=0] | 40m
o; =0.05m

Impermeable layer

100m
Figure 4: Description of the problem of the contamination of a 2D saturated porous medium.

The boundary conditions for the transport are of Dirichlet type at the inflow (left vertical

boundary), with
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0 for x=0 and 0<y<12
C=<1 for x=0and 12<y<28 (39)
0 for x=0and 28<y<40

A zero diffusive flux is imposed at the right vertical outflow boundary. The top and bottom
are impermeable boundaries. A uniform horizontal flow occurs from left to right with a

constant flux g, =0.5 m/day prescribed at the left vertical boundary and a fixed head

H =100m at the right vertical boundary. The longitudinal and transverse dispersivities are
a, =0.2m and o, =0.05m, respectively. The domain is discretized with a fine unstructured
triangular mesh formed by 33216 elements, and the simulation is performed for a final
simulation time T = 30 days using the Euler-implicit time discretization with a fixed time step
of 0.1 day. The linear systems are solved in each time step with a direct solver using an
unsymmetric-pattern multifrontal method and a direct sparse LU factorization (UMFPACK).

The analytical solution of this test case for an infinite domain is given by Leij and Dane

(1990):

X o y-12 28—y C(x—7)
Cara (X:3:1) _(167zaL)]/2!T {erf{(mg)“}erf{(mﬂ)“}em{ Ao,z 17 (40)

with erf (x)=%jexp(—r2)dr.
7T o

The final distributions of the concentration with both hybrid-MFE and upwind-MFE schemes
are depicted in Figure 5. Although we have used an unstructured mesh, the two schemes yield
almost symmetrical results. The hybrid-MFE scheme (Figure 5a) yields a solution with

unphysical oscillations. Indeed, around 1.2 % of the contaminated region (i.e. the region with

|C|>10"°) exhibits unphysical oscillations with 0.4 % of the contaminated region with

C<-10° and 0.8 % of the contaminated region with C>1.001. These unphysical

oscillations, although they seem moderate, can be dramatic, for instance, when dealing with
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reactive transport where some reactions occur only if the concentration excesses a certain
threshold. The solution obtained with the new upwind formulation (Figure 5b) is monotone
(all concentrations are between 0 and 1) which is in agreement with the physics. However,
these results come at the expense of some numerical diffusion added to the solution. To
appreciate the quality of both solutions and validate the upwind-MFE method, we compare
the concentration profile of the two methods to the analytical solution of Leij and Dane (1990)

for a horizontal section located at y = 20 m and a vertical section located at x =20 m.

MinC =-0.03
Max C =1.06
Oscil. Region =1.2%

MaxC=1.0
Oscil. Region =0%

0 20 X (m) 40 60
Figure 5: Concentration distribution with the hybrid-MFE and the upwind-MFE methods for

the 2D saturated transport problem (only the region x <70 m is depicted).
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The results of figure 6 show that the solution of both hybrid-MFE and upwind-MFE methods
are in very good agreement with the analytical solution, which validates the new upwind-
MFE numerical model. Note, however, that a small numerical diffusion is observed with the
upwind-MFE solution, which is especially visible in figure 6b. Indeed, for the simulated
problem, the transverse dispersivity is much smaller than the longitudinal one, and, as a
consequence, the concentration front is sharper in the vertical section than in the horizontal
one. This explains why the numerical diffusion generated by the upwind-MFE method is

more pronounced in Figure 6b than in Figure 6a.

1,0
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0,6 4
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0,2 4
Ja
0,0 s
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Figure 6: Concentration profiles at y = 20m (a) and x = 20 m (b) with the analytical, hybrid-
MFE and upwind-MFE solutions.
The test problem is then simulated using different mesh refinements to investigate the order of
convergence of the new method. We start with a uniform mesh formed by 1000 triangles and
a time step At =0.1s. In each level of refinement, each triangle is subdivided into four similar
triangles, by joining the three mid-edges and the time step At is halved. The following error

is computed (Brunner et al., 2014):

Er= { Coanaiy (tN )_C (tN )Hz +AtZN: q;nalyt (tn)_qt (t”)
n-1

where ' =4, +§, is the total advection-dispersion flux and N the total number of time

) 1/2
} (39)

0

steps.
The runs are performed on a single computer with an Intel Xeon E-2246G processor and 32
GB memory. The results of the computations, summarized in Table 1, clearly show optimal

first order convergence in space and time for the developed upwind-hybrid MFE method.

Ref. level # unknowns Error Er Reduction CPU time (s)
1 1535 2.55 4.9
2 6070 1.296 1.97 38.6
3 24140 0.655 1.98 272
4 96280 0.329 1.99 2068
5 384560 0.165 2.00 16567

Table 1: Numerical results for the new upwind-hybrid MFE method.

5.2 Transport in a variably-saturated porous medium

In this test case, the developed upwind-MFE method is combined with the MOL for solving
contaminant transport in a variably-saturated porous medium. The advection-dispersion

equation is transformed to an Ordinary Differential Equation (ODE) using the new upwind-
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MFE formulation for the spatial discretization, whereas the time derivative is maintained
continuous. Therefore, high-order time integration methods included in efficient ODE solvers
can be employed. With these solvers, both the time step size and the order of the time
integration can vary during the simulation to deliver accurate results in an acceptable
computational time.

To investigate the robustness and efficiency of the combination of the developed upwind-
MFE method with the MOL, we simulate in this section the problem of contaminant

infiltration into a variably-saturated porous medium.

q,=10"m/s

| c-

-m‘
0.1m

Variably-saturated porous medium
2m

b T T T T T . T T T T T T T T T T . . |

A A A A A L

3m

Figure 7: Description of the problem of contaminant infiltration into a 2D variably-saturated

porous medium.

The domain (Figure 7) is a rectangular box of 3m x 2m, filled with sand, with an initial water
table at 0.65m and hydrostatic pressure distribution. An infiltration of a tracer contaminant is
applied over the left-most 0.1m of the surface with a constant flux of 10°m/s. The right

vertical side has a fixed head H =0.65m below the water table and an impermeable boundary
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above it. The left vertical side as well as the upper (except the infiltration zone) and bottom
boundaries are impermeable boundaries.
In this problem, the flow and transport are coupled by the velocity, which is obtained by

solving the following pressure-head form of the nonlinear Richards’ equation:

6 \oH
(C(h)"FSSH—]E‘FVC]:o (40)

S
q=-k KVH (41)

with S, the specific mass storativity related to head changes [L™], H =h+y the equivalent

head [L], h :ig the pressure head, P the pressure [Pa], p the fluid density [ML®], g the
2

gravity acceleration [LT2], y the upward vertical coordinate [L], c(h) the specific moisture

capacity [L7'], 6, the saturated water content [L3L], q the Darcy velocity [LTY],

K :ﬂk the hydraulic conductivity [LT?], k the permeability [L?], x the fluid dynamic
M

viscosity [ML*T*] and k, the relative conductivity [-].

We use the standard van Genuchten (1980) model for the relationship between water content

and pressure head:
A% (1+|am|“)m (42)

where « [L™*] and n [-] are the van Genuchten parameters, m=1-1/n, S, [-] is the effective
saturation and 6, [-] is the residual water content. The conductivity-saturation relationship is

derived from the Mualem (1976) model:

m 2
k =512 [1—(1— 5.m) } 43)
The material properties of the test problem are given in Table 2.
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Parameters

0. 0.01
6, 0.3
a (cm™?) 0.033
n 4.1
K (cm/s) 1072
S, (cm™) 10
D, (m?fs) 10°
p (kg/md) 1000
u (kg/m/s) 0.001

Table 2: Parameters for the problem of infiltration into a 2D variably-saturated porous

medium.

The simulation is performed for 80 hours using a triangular mesh formed by 4273 triangular
elements. Two test cases are investigated. In the first test case, the longitudinal and transverse

dispersivities are «, =0.03m and o, =0.003m, respectively. The second test case is less
diffusive with ¢, =0.01Im and ¢, =0.001m.

The coupled nonlinear flow-transport system is solved using the MOL, which allows the use
of efficient high-order time integration methods, for both the hybrid-MFE and the upwind-
MFE schemes. To this aim, a hybrid-MFE formulation with continuous time derivative was
developed by extending the lumping procedure, developed in Younes et al. (2006) for the
flow equation, to the advection-dispersion transport Eq. (5).

The time integration is performed with the DASPK time solver which uses an efficient
automatic time-stepping scheme based on the Fixed Leading Coefficient Backward
Difference Formulas (FLCBDF). The linear systems arising at each time step are solved with
the preconditioned Krylov iterative method. The nonlinear problem is linearized using the
Newton method with a numerical approximation of the Jacobian matrix.

The results of the hybrid-MFE and the upwind-MFE methods are depicted in Figure 8 for the
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first test case involving high dispersion. Good agreement can be observed between the results
of the hybrid-MFE (Figure 8a) and upwind-MFE (Figure 8b) schemes when combined with
the MOL. In these figures, the contaminant progresses essentially vertically through the
unsaturated zone of the soil. When the saturated zone is reached, the contaminant progresses
horizontally and remains close to the water table. Note that the results of both schemes are

stable and free from unphysical oscillations (Figures 8a and 8b).
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Figure 8: Concentration distribution, with the hybrid-MFE (a) and the upwind-MFE (b)
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schemes for the transport problem with high dispersion in a variably-saturated porous

medium.

For the second test case with lower dispersion (¢, =0.01m, o =0.001m), the hybrid-MFE

method yields unstable results containing unphysical oscillations (red color in Figure 9a).
These oscillations hamper the convergence of the numerical model, and severe convergence
issues can be encountered if we further decrease the dispersivity values. The results of the
upwind-MFE scheme are monotone and do not contain any unphysical oscillation (Figure 9b).
These results point out the robustness of the new upwind MFE method for transport in
saturated and unsaturated porous media. The developed transport scheme has recently been
successfully combined with the MFE method for fluid flow to simulate nonlinear flow and
transport in unsaturated fractured porous media using the 1D-2D discrete fracture matrix
(DFEM) approach (Younes et al., 2022b).
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Figure 9: Concentration distribution with the hybrid-MFE (a) and upwind-MFE (b) methods

for the transport problem with low dispersion in variably-saturated porous medium.

6. Conclusion

MFE is a robust numerical method well adapted for diffusion problems on heterogeneous
domains and unstructured meshes. When applied to transport equations, the MFE solution can
exhibit strong unphysical oscillations due to the hyperbolic nature of advection. Upwind
schemes can be used to avoid such oscillations, although they introduce some numerical
diffusion. In this work, we developed an upwind scheme that does not require any
approximation for the upwind concentration. The method can be seen as a combination of an
upwind edge/face centred FV method with the lumped formulation of the hybrid-MFE
method. It ensures continuity of both advective and dispersive fluxes between adjacent
elements and allows to maintain the time derivative continuous, which facilitates employment
of high order time integration methods via the method of lines (MOL) for nonlinear problems.
Numerical simulations for the transport in a saturated porous medium show that the standard

hybrid-MFE method can generate unphysical oscillations due to the hyperbolic nature of
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advection. These unphysical oscillations are completely avoided with the new upwind-MFE
scheme. The simulation of the problem of contaminant transport in a variably-saturated
porous medium shows that only the upwind-MFE scheme provides a stable solution. The
results point out the robustness of the developed upwind-MFE scheme when combined with

the MOL for solving nonlinear transport problems.
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