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Abstract. Climate change may systematically impact hydro-meteorological processes and their interactions, resulting in 

changes in flooding mechanisms. Identifying such changes is important for flood forecasting and projection. Currently, there 

is a lack of observational evidence regarding trends in flooding mechanisms in Europe, which requires reliable methods to 10 

disentangle emerging patterns from the complex interactions between flood drivers. Recently, numerous studies have 

demonstrated the skill of machine learning (ML) for predictions in hydrology, e.g., for predicting river discharge based on its 

relationship with meteorological drivers. The relationship, if explained properly, may provide us with new insights into 

hydrological processes. Here, by using a novel explainable ML framework, combined with cluster analysis, we identify three 

primary patterns that drive 52,247 annual maximum discharge events in around a thousand European catchments. The patterns 15 

can be associated with three catchment-wide river flooding mechanisms: recent precipitation, antecedent precipitation (i.e., 

excessive soil moisture), and snowmelt. The results indicate that over half of the studied catchments are controlled by a 

combination of the above mechanisms, especially recent precipitation in combination with excessive soil moisture, which is 

the dominant mechanism in one-third of the catchments. Over the past 70 years, significant changes in the dominant flooding 

mechanisms have been detected within a number of European catchments. Generally, the number of snowmelt-induced floods 20 

has decreased significantly whereas floods driven by recent precipitation have increased. The detected changes in flooding 

mechanisms are consistent with the expected climate change responses, and we highlight the risks associated with the resulting 

impact on flooding seasonality and magnitude. Overall, the study offers a new perspective on understanding changes in weather 

and climate extreme events by using explainable ML and demonstrates the prospect of future scientific discoveries supported 

by artificial intelligence. 25 

1 Introduction 

River flooding is a pervasive natural hazard that regularly causes substantial economic, societal, and environmental damages 

worldwide (Tellman et al., 2021; Merz et al., 2021). With a warming atmosphere, flooding risk is projected to increase due to 

an intensification of the water cycle over large areas (Hirabayashi et al., 2013; Alfieri et al., 2017). For Europe, large-scale 

studies have revealed changes in flooding frequency, seasonality, and magnitude over the past decades, with considerable 30 

variations across catchments (Blöschl et al., 2017; Hall and Blöschl, 2018; Bertola et al., 2020; Blöschl et al., 2019; Alfieri et 
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al., 2015). The spatial inconsistency in these trends reflects differences in flood generating processes across the continent, 

which underscores the need for a better understanding of flood drivers (Keller et al., 2018). 

 

In recent years, numerous studies have investigated river flooding mechanisms and some of them have provided European-35 

scale assessments (e.g., Berghuijs et al., 2019; Kemter et al., 2020; Bertola et al., 2021; Berghuijs et al., 2016; Stein et al., 

2020). Catchment-level floods can typically be attributed to the interaction of hydro-meteorological processes, such as extreme 

precipitation, soil moisture excess, and snowmelt (Merz and Blöschl, 2003; Tarasova et al., 2019). The dominant controlling 

processes in catchments were usually identified either qualitatively by comparing the observed flood trends with the 

contemporaneous changes in flooding drivers (e.g., Blöschl et al., 2019; Blöschl et al., 2017) or quantitatively by calculating 40 

the seasonal similarities between flood events and potential drivers (e.g., Berghuijs et al., 2019; Berghuijs et al., 2016). Such 

analyses revealed the dominant flood generating processes at a catchment level, improving the understanding of climate change 

effects on flooding magnitude and timing. However, the methods often implicitly assume temporally consistent flood processes 

within a catchment (Merz et al., 2012), making it difficult to detect possible changes in flooding mechanisms themselves in a 

warming climate. 45 

 

Flooding mechanisms that dominate one catchment are not always immutable but might shift over time, particularly in light 

of climate change (Hall et al., 2014). For example, increasing temperatures can affect snow dynamics in cold regions and result 

in more rainfall extremes, which could make snowmelt-dominated catchments more susceptible to extreme rainfall and thereby 

alter the regional flood seasonality and magnitudes (Davenport et al., 2020; Rottler et al., 2021; Vormoor et al., 2016). 50 

Therefore, a systematic investigation of the changes in flooding mechanisms is necessary. Yet few studies have been able to 

quantify how the mechanisms evolved over time on a continental scale in Europe. The identification of specific trends in 

flooding mechanisms requires a comprehensive understanding of hydrological processes underlying individual events (Stein 

et al., 2020).  Currently available studies that attempted to classify river flooding processes on an event basis typically rely on 

multicriteria approaches, which require predefining thresholds for a variety of hydrometeorological indicators, such as the 55 

storm duration and snowmelt amount (e.g., Nied et al., 2014; Stein et al., 2021). Using a multicriteria approach, Kemter et al. 

(2020) identified the flooding mechanisms in Europe by classifying approximately 174,000 flood peaks and revealed their 

trends over the past 50 years. Likewise, Stein et al. (2020) analyzed flood events over 4,155 catchments worldwide and 

classified them into five flood-generating processes. Despite the computational efficiency of using multicriteria approaches, 

the obtained insights are often dependent on the careful choice of indicators and thresholds. For example, in some cases, a 60 

small change in a threshold value modifies the classification, potentially compromising the robustness of the results (Sikorska 

et al., 2015). Alternatively, some studies grouped flood events by inductive analyses, which adopted clustering methods to 

obtain flood types from hydrometeorological indicators (e.g., Turkington et al., 2016; Keller et al., 2018). However, the chosen 

indicators (e.g., snow-covered area, day of occurrence, and 95th percentile of spatial precipitation distribution) did not 
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unambiguously indicate flooding mechanisms since they were not indicative of the causal contribution of flood drivers to peak 65 

discharges (Tarasova et al., 2019). 

 

An effective way to identify flooding mechanisms for individual flood events is to quantify the contribution of possible drivers 

to its occurrence, which involves uncovering the implicit connections that may exist between flood events and meteorological 

observations. This can be achieved by machine learning (ML), which has been receiving increasing attention in Earth and 70 

climate sciences for its remarkable ability to identify and generalize predictive relations with a high-level abstract 

representation (Reichstein et al., 2019; Yu and Ma, 2021). In hydrology particularly, one excellent example is the prevalence 

of long short-term memory (LSTM) neural networks (Kratzert et al., 2018; Shen, 2018), which have been demonstrated to 

learn patterns conceptually consistent with qualitative understandings of how hydrological systems work as opposed to simply 

trivial coincidences (Kratzert et al., 2019a). Extraction of captured patterns from “black-box” ML models with feature 75 

attribution techniques (i.e., ML interpretations) may lead to theoretical advances and can assist in making new scientific 

discoveries, as recently demonstrated for climate, ocean, and weather applications (e.g., Toms et al., 2020; Barnes et al., 2020; 

Labe and Barnes, 2021), including the identification of flooding mechanisms (Jiang et al., 2022). 

 

In this study, we revisit flooding mechanisms in Europe over the period 1950–2020 by using an improved framework based 80 

on the explainable ML methods developed by Jiang et al. (2022) and compare the results with existing studies. We base the 

analysis on around 1,000 catchments and the only dynamic information necessary for the analysis is precipitation, temperature, 

and streamflow. These three variables can be readily measured, thereby reducing the reliance on possibly uncertain estimations 

of fluxes and state variables (such as soil moisture). The combination of supervised learning-based feature attribution and 

unsupervised learning-based cluster analysis reduces subjectivity and uncertainty for the selection of appropriate indicators 85 

and thresholds in the categorization of flood drivers. Moreover, taking an event-level perspective, we quantify the changes 

that occurred in these mechanisms in the past seven decades, and discuss the possible reasons and implications of the detected 

changes. Overall, the study contributes to a better understanding of river flood risk and how it is affected by climate change 

and illustrates how explainable ML can advance knowledge about the Earth system. 

2 Data and methodologies 90 

2.1 Data 

The study considers 1,077 catchments in the domain of Europe (Fig. 1a) based on the data availability of daily river discharge 

observations from the Global Runoff Data Centre (GRDC) dataset (https://www.bafg.de/GRDC). We restricted our analysis 

to catchments having a minimum of 20 years of discharge records within 1950–2020 to ensure sufficient samples to train the 

ML models. The catchment areas range between 8 km2 and 10,000 km2 — very large catchments, where the effect of spatial 95 

heterogeneity of flood drivers tends to be substantial, were not considered. For those catchments, the sample size of daily 
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discharge records ranges from 7,300 to 25,753, with a median of 20,455 time steps. Overall, the selected catchments encompass 

a variety of geographical and climatic conditions, as illustrated by the catchment distributions in terms of average elevation, 

average slope, catchment size, aridity index, snowfall fraction, and flood mean date (Fig. 1). The elevation, slope, and size 

were derived from the Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018), the aridity index and 100 

snowfall fraction were calculated from the catchment-averaged precipitation and temperature described later. In the study, 

floods are defined as the annual maxima (peaks) of river discharge time series in line with common practices (e.g., Blöschl et 

al., 2019; Blöschl et al., 2017). The above properties will also be used to discuss their relevance to the catchment-level 

dominant flood mechanisms. 

 105 

We considered precipitation, temperature, and day length as input variables of the ML models. Using the 0.1° daily gridded 

precipitation and mean surface temperature data from the E‐OBS dataset (version 23.1e) (Haylock et al., 2008), we calculated 

the catchment-averaged time series of these variables based on area-weighted averages of the data pixels within the catchment 

boundary. The weight of each pixel was determined by the fraction of its area covered by the relevant catchment. The 

catchment boundaries were obtained from readily available GRDC (Lehner, 2012) and GSIM (Do et al., 2018) databases, with 110 

GRDC being prioritized when the boundary of a catchment was available in both databases. Note that for smaller catchments 

under 100 km2 (approximately 0.1° × 0.1°), uncertainties may exist due to the relatively coarser spatial resolution of the 

meteorological data. Nonetheless, those catchments with large uncertainties will not be considered for the subsequent 

attribution analysis if ML models cannot capture the relationship between inputs and outputs effectively. Day length was 

included in the study since it was shown to improve model accuracy in a series of preliminary tests, including the cases where 115 

only precipitation and temperature were used and day length was additionally incorporated. Catchments where day length 

largely improves accuracy are mainly located in northern Europe. Day length was calculated based on the day of the year and 

the latitude of the catchment center by the Brock model following Forsythe et al. (1995).  
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 120 
Figure 1: An overview of the 1,077 catchments and their properties, including average (a) elevation and slope of the catchments, (b) 
the catchment size, (c) the aridity index, expressed by the ratio between mean annual potential evapotranspiration (PET) over mean 
annual precipitation, (d) the fraction of precipitation falling as snowfall (i.e., precipitation falling with temperature below 0 °C), and 
(e) the seasonality of annual maximum discharges. PET was estimated via Hamon’s formulation (Hamon, 1961).  

2.2 Attribution framework and ML model 125 

Figure 2 illustrates the framework of using explainable ML methods for flooding attribution in the present study, which was 

originally developed by Jiang et al. (2022) and involves three main steps. First, we built ML models for individual catchments 

to establish the nonlinear predictive maps from meteorological factors (i.e., precipitation, temperature, and day length) to daily 

discharges (Fig. 2a). Secondly, an ML interpretation technique was applied to interpret the trained models to quantify the 

contributions of the three input variables at each time step (i.e., time-wise feature importance) to the generation of respective 130 

flood events (Fig. 2b). The time-wise feature importance was further aggregated into contributions of specific features. Finally, 

cluster analysis was used to group the specific feature contributions from multiple flood events that had similar patterns into 

several categories, from which we then identified different flood mechanisms. Detailed explanations of the methods are given 

below. 

 135 
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Figure 2: The workflow of using explainable ML methods for attributing flood peaks (annual maxima of river discharge) to their 
drivers. (a) Diagrammatic representation of the used LSTM models. The window in the time series of discharge highlights the target 
output (which is a point) and the window in the inputs indicates the input features used to predict the illustrated peak discharge 140 
sample. (b) The feature importance of the inputs for predicting the peak discharge shown in (a), which was obtained by using the 
ML interpretation technique (namely integrated gradient). The vertical dashed lines in the windows separate the feature importance 
into a recent 7-day period and an earlier period to calculate the aggregated feature contributions (see main text). 

 

In the study, we used the classical LSTM network (Hochreiter and Schmidhuber, 1997) as the ML model. The LSTM is one 145 

of the most popular ML architectures for modeling dynamic hydrological variables (e.g., Kratzert et al., 2018; Lees et al., 

2021), which can effectively capture nonlinear and temporal dependencies between variables owing to its recurrent structure 

and unique gating mechanism (Gers et al., 1999). The effectiveness of the LSTM is partially due to the comparability of its 

formulation to the hydrological behavior of a catchment. Specifically, the backbone of the LSTM network is composed of 

recurrent cells that can store previous information from input sequences, which is conceptually similar to the way 150 

meteorological information (e.g., precipitation) is stored in the form of soil moisture or snowpack (Lees et al., 2022). The 

physically realistic mapping from inputs to outputs facilitates gaining hydrologically meaningful insights from subsequent 

model interpretations. Figure 2a illustrates the data flow of one sample in the LSTM model, with the dashed windows 

highlighting the predictors and the target variable. The input layer of the model brings in precipitation (𝑃), temperature (𝑇), 

and day length (𝐷) over the past 180 days (i.e., [𝑋!", 𝑋#",…, 𝑋!$%" ; 𝑋!&, 𝑋#&,…, 𝑋!$%& ; 𝑋!', 𝑋#',…, 𝑋!$%' ]) and the output layer 155 

produces the discharge of the following day (i.e., 𝑦%). The hidden layers consist of a single LSTM layer and a dense layer with 
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32 units. The number of time steps and hidden units were determined by considering both the model performance and 

efficiency, which had been evaluated in preliminary experiments. Preliminary experiments also suggest using fewer time steps 

(e.g., 90 days) would not impair the conclusions of the study about flooding mechanisms, because contributions from inputs 

at very early time steps to output are limited in LSTM models (i.e., memory decay) (Su and Kuo, 2019). Here, we skip the 160 

technical details of the LSTM architecture and refer to Sherstinsky (2020) for a comprehensive explanation of the fundamentals 

of LSTM networks.  

 

To improve the robustness of model evaluation and analysis, we fitted 10 independent LSTM models for each of the 1,077 

catchments. Specifically, the data for each catchment was divided into 10 folds without shuffling the temporal sequence, and 165 

each fold was tested once with a model trained with the remaining 9 folds. During the training process, a portion of the training 

data (70%) was repeatedly used to update the model parameters every epoch until no further decrease in the loss function was 

observed on the remaining 30% (also known as validation data). The initial learning rate and maximum training epoch number 

were configured to 0.01 and 200, respectively, with the adaptive moments estimation (Adam) algorithm (Kingma and Ba, 

2015) being used for training the models.  170 

2.3 Model interpretations and cluster analysis 

The integrated gradient (IG) technique developed by Sundararajan et al. (2017) was employed to interpret the trained models, 

which allows for obtaining the time-wise feature importance of the three input variables for each sample of the output (i.e., 

daily discharges). The IG method is a gradient-based interpretation technique that exploits the gradient of the model’s output 

to its input features to trace back the specific contributions of the inputs. It aims to assign an importance score to each feature 175 

(e.g., to the precipitation at each time step prior to the flooding). A large positive score indicates that the feature substantially 

increases the network output (e.g., that the precipitation at a certain time step contributes to increasing the flooding), a large 

negative score indicates a decrease in the network output, and a score close to zero indicates little influence on the output. The 

IG score for the input feature 𝑥 (e.g., precipitation at the 𝑖-th time step) is formulated as: 

𝜙((𝑥) = (𝑥( − 𝑥()) ∫
*+,-!./0-1-!23

*-"
d𝛼!

/4%        (1) 180 

where 
*+,-!./0-1-!23

*-"
 denotes the local gradient of the network 𝑓 at a point interpolated from a baseline input (𝑥), when 𝛼 =

0), which is meant to represent the “absence” of feature input, to the target input (𝑥, when 𝛼 = 1). An important property of 

the IG is completeness, which states that the IG scores add up to the difference between the output of 𝑓 at the target input 𝑥 

and the baseline input 𝑥), i.e., ∑ 𝜙((𝑥)( = 𝑓(𝑥) − 𝑓(𝑥)). Therefore, the model output can be decomposed into the sum of 

features’ individual contributions, and it enables us to examine the contribution of a group of features by summing up their 185 

individual IG scores. 

 



8 
 

In the study, we focus specifically on the IG scores for annual maximum peak discharge events to gain insights into flooding 

mechanisms. Given that we trained 10 independent models, 10 sequences of time-wise feature importance were generated for 

each peak discharge, with each sequence having the same dimensions as the input variables (i.e., [𝜙!", 𝜙#",…, 𝜙!$%" ; 𝜙!&, 𝜙#&,…, 190 

𝜙!$%& ; 𝜙!', 𝜙#',…, 𝜙!$%' ]). Then, the 10 sequences were averaged into one sequence (i.e., [𝜙4!", 𝜙4#",…, 𝜙4!$%" ;	𝜙4!&, 𝜙4#&,…, 𝜙4!$%& ;	

𝜙4!', 𝜙4#',…, 𝜙4!$%' ], which is simplified as {𝜙4(∙} hereafter) to reduce the impact of the stochasticity associated with training the 

different LSTMs. Figure 2b exemplifies the averaged IG scores corresponding to the sample shown in Fig. 2a, i.e., it shows 

the contribution of the three input variables to the selected annual maxima of river discharge. The warm or cool colors in the 

heatmap denoting the input variable at the particular time step has increased or decreased the network output, while white 195 

indicates little effect. Note that the averaged IG scores for an individual peak were computed by averaging the scores obtained 

from all the independent 10 models, regardless of whether the peak was part of the training data or the testing data in the 

models. Overall, the IG scores extracted from the 10 models for each target peak discharge generally follow a similar pattern, 

though with inevitable differences due to randomness and uncertainties in training processes (see Figs. S1–S3 in the 

Supplementary Material for examples). Note that using the IG scores based on the target peaks in testing datasets alone does 200 

not yield substantial impacts on our conclusion in subsequent analyses (see Figs. S4–S5 in the Supplementary Material). 

 

In the following step, the sequences of averaged IG scores {𝜙4(∙} can be clustered directly using time series clustering techniques 

based on their similar shapes, such as using the K-means method with the dynamic time warping algorithm (DTW) as the 

distance metric (Tavenard et al., 2020). However, the main drawback of clustering time series is the heavy computational 205 

burden. The DTW distance between any two samples has a quadratic time complexity with respect to the sequence length, 

which would make clustering long feature importance sequences a time-consuming process, and it would be especially 

challenging when dealing with tens of thousands of sequences (Salvador and Chan, 2007). Moreover, for this large-sample 

study that aims to understand flood mechanisms at a continental scale, it might not be necessary to distinguish the daily 

contributions of meteorological drivers in detail. Therefore, before carrying out the cluster analysis, we aggregated each 210 

sequence of averaged IG scores {𝜙4(∙} by using a 7-day separating window, which generate a low-dimensional contribution 

vector with only six elements [∑ 𝜙4("6
! , 	∑ 𝜙4("!$%

$ ,	∑ 𝜙4(&6
! , 	∑ 𝜙4(&!$%

$ ,	∑ 𝜙4('6
! , 	∑ 𝜙4('!$%

$ ]. Here ∑ 𝜙4(∙6
!  and 	∑ 𝜙4(∙!$%

$  represent 

contributions of a variable in recent 7 days and an earlier antecedent period, respectively. The separating window size should 

cover the period of precipitation and snowmelt events leading to each peak discharge, which depends highly on the local 

characteristics. After examining the relationship between catchment area and mean event response time, Stein et al. (2020) 215 

suggested a synoptic window of 7 days should be sufficient to guarantee the response time for large catchments. As a result, 

this study used a 7-day period, similar to the practice in most studies that examined flooding causes (e.g., Blöschl et al., 2017; 

Berghuijs et al., 2019). However, using a shorter period (e.g., 5 days) does not affect the conclusions about dominant flooding 

mechanisms and their trends (see discussion in Section 3.7). Figure 2b demonstrates the values of the aggregated feature 

contributions based on respective daily IG scores represented by the heatmap.  220 
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To obtain an overall picture from the individual aggregated feature contributions, we used the K-means method to cluster the 

results for all annual maximum peak discharges pooled from all considered catchments. Considering that the feature 

importance values are correlated to the magnitude of the predicted peak discharge due to the completeness property, we 

normalized each accumulated vector by its Manhattan norm (i.e., dividing each element by the sum of its absolute values while 225 

keeping its sign) to make the contributions comparable across different floods. To determine the optimal cluster number for 

the K-means algorithm, we evaluated the cluster characteristics for candidate cluster numbers ranging from 2 to 8 using the 

silhouette coefficient (Rousseeuw, 1987), which reflects the separation distance between the resulting clusters. The silhouette 

coefficient for an individual sample is calculated as (𝑏 − 𝑎)/max(𝑏 − 𝑎), where 𝑎 represents the mean distance between the 

sample to all other points within the same cluster, and 𝑏 represents the mean distance between the sample and all other points 230 

in the next nearest cluster. The average silhouette coefficient over all samples is an indicator of the goodness of a clustering 

result, which ranges from -1 to 1, with a higher score generally indicating a better cluster number choice. 

2.4 Trend analysis of flooding mechanisms 

Based on the clustering results, we can identify the mechanism responsible for each annual maximum peak discharge and 

calculate the proportions of different flooding mechanisms at either the continental or catchment scale. The trend magnitude 235 

in these proportions was then analyzed by Theil-Sen’s Estimator, with the modified Mann-Kendall test (Hamed and Rao, 1998) 

being used to determine the significance of the trend. Specifically, at the continental scale, we estimated the overall trends of 

various flooding mechanisms based on their respective proportions within all the annual maximum peak discharges per year. 

At the catchment scale, to capture the variations of flooding mechanisms over different periods, we calculated the proportion 

series using a 20-year moving window in each catchment. The 20-year time frame was used to ensure an adequate sample size 240 

for reliably estimating the intra-period proportions and also to guarantee enough periods to observe decadal variability (Pagano 

and Garen, 2005). Only proportions that were calculated with at least 10 years of peak discharge data in each window were 

used to estimate the trend slope. 

 

Moreover, in order to analyze the possible causes of trends, we selected a number of regions where most catchments present 245 

consistent trends in certain mechanisms. We investigated those catchments exhibiting significant changes in flooding 

mechanisms and compared the temporal regional changes in flooding mechanisms with changes in potential flooding drivers.  

The time series of proportions in regions were calculated by applying the previously described 20-year moving window to 

peak discharge classifications for the considered catchments. The flooding drivers considered include annual maximum 7-day 

total precipitation, mean spring temperatures (January to April), and 30-day precipitation preceding the 7-day window of recent 250 

precipitation, which is a common proxy for soil moisture prior to flooding (e.g., Bertola et al., 2021). All the drivers were 

averaged across the catchments and then smoothed by using a 20-year moving average window as well. 
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3 Results and discussion 

3.1 Model predictive performance and interpretations 

Before moving to the analysis of annual maximum peak discharges, we used the Nash-Sutcliffe efficiency (NSE) (Nash and 255 

Sutcliffe, 1970) to assess model accuracy in predicting discharges. The NSE value ranges from negative infinite to 1.0, and 

NSE > 0.5 is generally deemed satisfactory for discharge simulations (Moriasi et al., 2015). Based on the NSE value computed 

in the testing period for each model in the 10-fold cross-validation, we acquired the average and standard deviation of NSE 

values for each of the 1,077 catchments, as shown in Fig. 3. The overall warm colors in the map (Fig. 3a) indicate that the 

model performed satisfactorily for most catchments, with the median of NSE averages reaching 0.72 (Fig. 3b). The standard 260 

deviations of NSE values (Fig. 3c) further indicate robust model performance in most cases. Accordingly, the models have 

effectively captured the generalizable predictive relationship between meteorological factors and discharges. As an accurate 

predictive relation is essential for deriving meaningful information from ML models (Murdoch et al., 2019), the subsequent 

analyses focus specifically on the 943 catchments (out of 1,077; 88%) with average NSE values above 0.5. In the following, 

we move to the analysis of annual maximum peak discharges. 265 

 

 
Figure 3: (a) Nash-Sutcliffe efficiency (NSE) values in the evaluation period averaged over the 10-fold cross-validation. (b) The 
cumulative frequency of the averaged NSE values. (c) The distribution of the standard deviation values for the NSE values across 
the 10-fold cross-validation. The NSE values were calculated using all samples in respective testing datasets. 270 

 

A total of 52,247 annual maximum discharges were identified from the 943 catchments (20–70 peaks per catchment). By using 

the IG method, we can obtain 52,247 feature importance sequences averaged across the models from the 10-fold cross-
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validation. In the case shown in Fig. 2b, precipitation is the dominant driver behind the annual maximum peak discharge 

occurrence, showing consistently non-negative feature importance with the precipitation peaks that occur closer to the target 275 

flood peak having a greater influence (see pronounced positive contributions in red). Nevertheless, the total contribution from 

antecedent precipitation is more important in predicting the peak compared with the contribution from recent precipitation, as 

indicated by the aggregated scores ∑ 𝜙4("6
!  and	∑ 𝜙4(".!$%

$  The temperature, on the other hand, has an overall negative impact, 

which may be related to evapotranspiration that could decrease the discharge magnitude, while the influence of the day length 

is relatively negligible. Additionally, Fig. 4 further illustrates two other typical cases of feature importance patterns, where the 280 

contribution from recent precipitation (i.e., ∑ 𝜙4("6
! ) and temperature (i.e., ∑ 𝜙4(&6

! ), respectively, is dominant in predicting target 

peak discharges. The distinct patterns of predictor contribution to annual maximum peak discharge predictions suggest that 

these flood events were triggered by different mechanisms. 

 

 285 
Figure 4: Additional examples to the case shown in Fig. 2, which illustrate the importance pattern of temperature, precipitation, and 
day length in predicting two discharge peaks from other catchments. (a) Recent precipitation contributes most to the discharge 
peak. (b) Recent temperature contributes most strongly to the discharge peak.  
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3.2 Flooding types revealed by cluster analysis 290 

To separate the 52,247 annual maximum peak discharges into discrete groups characterized by distinct patterns of predictor 

contributions, we performed K-means clustering on the normalized contribution vectors. The results of the silhouette analysis 

suggest that clustering into three main groups would lead to the best clustering quality, because it achieves the high average 

silhouette coefficient and silhouette coefficients for individual samples are reasonably distributed within each cluster (see Fig. 

A1 in Appendix A for more details). It should be noted that the clustering results here only reveal major patterns widespread 295 

in data, with certain local and specific mechanisms unlikely to be detected. 

 

Figures 5a–c show the distinct patterns of the three identified clusters, with cluster 1 featuring high importance of recent 

temperature (Fig. 5a, a positive contribution in line with high temperature favoring snowmelt), cluster 2 featuring the dominant 

contributions from recent precipitation (Fig. 5b), and cluster 3 featuring the importance of antecedent precipitation events (Fig. 300 

5c). Compared to cluster 1, clusters 2 and 3 show a generally negative effect of antecedent temperature, in line with drying 

favored by evapotranspiration. Moreover, annual maximum peak discharges in cluster 1 are characterized by higher 

contributions from day length (Fig. 5a) when compared to the other two clusters. The role of day length implies that the 

magnitude of these peak discharges can be partially explained by the seasonality presented by day length, which peaks around 

the June solstice. In contrast, the main differences between clusters 2 and 3 are due to the fractions of ∑ 𝜙4("6
!  and ∑ 𝜙4("!$%

$ . 305 

Overall, each cluster accounts for 16.5%, 48.8%, and 34.7% of all the identified annual maximum peak discharges, respectively. 
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Figure 5: The cluster centroids and variance for the three clusters and their respective proportions of all peak discharge events in 
each catchment. The bars and error bars in (a), (b), and (c) represent the cluster centroids and standard deviations of the six 310 
aggregated feature contributions. The proportions in (d), (e), and (f) correspond to clusters 1–3, respectively. 

 

Figures 5d–f illustrate the distributions in terms of the proportion of annual maximum peak discharges associated with each 

cluster within a catchment. Annual maximum peak discharges associated with high contributions from temperature (cluster 1) 

mainly occur in northern Europe and in mountainous regions such as the Alps (Fig. 5d), i.e., in regions with high snowfall 315 

fractions (Fig. 1d) where rising air temperature can lead to snowmelt. The spatial distribution together with the feature pattern 

shown in Fig. 5a indicates that these floods were probably driven by snowmelt events. In contrast, catchments with cluster 2, 

where recent precipitation played a decisive role in causing most floods (Fig. 5b), are primarily located in regions that have a 

west-facing or north-west-facing coast or mountain range, such as Ireland, Scotland, Wales, the Norwegian coast, north-west 

of the Iberian Peninsula, as well as the area extending from the Alps, the Massif Central and the Pyrenees (Figs. 5e and 1a). 320 

These regions are characterized by a generally humid climate (Schiemann et al., 2018), as also indicated by Fig. 1c, and are 

strongly affected by the Northern Atlantic polar front and the associated storm tracks (Bengtsson et al., 2006) and/or by the 

presence of mountain barriers perpendicular to the prevailing flow direction, which force moist air to lift and condense (Isotta 

et al., 2014). Previous studies indicate that flooding in the regions could be largely explained by individual heavy precipitation 

events (Gobiet et al., 2014; Whan et al., 2020; Blanchet and Creutin, 2017), some of which are associated with atmospheric 325 

rivers (Lavers and Villarini, 2013).  
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Catchments associated with cluster 3 are mostly located over the North European Plain, South Scandinavia, and parts of the 

British Isles (Fig. 5f). Here, information from antecedent precipitation has an overall higher weight than that from recent 

precipitation or other predictors (Fig. 5c), suggesting that recent precipitation alone would not suffice to explain annual 330 

maximum peak discharges. Therefore, flooding in these areas presents additionally heavy reliance on antecedent precipitation 

that is stored in the form of soil moisture. For example, Nied et al. (2014) revealed that in the Elbe River basin some weather 

patterns only cause flooding in case of preceding soil saturation. Also, Ledingham et al. (2019) found that in southeast England 

fewer than 15% of daily flood events correspond to extreme precipitation events, lower than in the rest of Britain, which was 

attributed to the relevant contribution of soil moisture storage to flooding. 335 

 

It should be noted that the three kinds of flooding mechanisms (i.e., snowmelt-driven, recent precipitation-driven, and 

antecedent precipitation-driven) identified from the cluster analysis using the optimal cluster number only indicate which 

features carry greater weights for peak discharge predictions, and they are not necessarily mutually exclusive. Particularly, the 

peak discharge events near the decision boundaries between the three clusters, such as those with similar Euclidean distances 340 

to at least two different “closest” centroids, are likely affected by two or more flooding processes simultaneously.  For example, 

the events categorized as snowmelt-driven floods are probably impacted additionally by saturated soils or extreme precipitation, 

such as rain-on-snow events (Cohen et al., 2015). These events generally represent compound flood events that arise from 

several drivers occurring concurrently (Bevacqua et al., 2021; Zscheischler et al., 2018). Recently, compound events have 

received increasing attention (Zscheischler et al., 2020), however, this study will only focus on the main flooding types 345 

obtained from the clustering results, regardless of whether compound effects were involved. 

3.3 Dominant flooding mechanisms in Europe 

The result of event-based flooding classification allows us to identify the dominant flooding mechanisms (among clusters 1–

3, Fig. 5) for each catchment (Fig. 6a). A mechanism is considered dominant in a catchment if the proportion of the annual 

maximum peak discharges exceeded the maximum proportion of the other annual maximum peak discharges by more than 350 

70%. Otherwise, the catchment was regarded as being dominated by a mixture of flooding mechanisms. The mixture of 

mechanisms could be further classified into specific combinations based on which clusters were present in the catchment. 

Accordingly, for the catchments investigated in the study, 53.2% were dominated by a mixture of mechanisms, while snowmelt, 

recent precipitation, and antecedent precipitation solely accounted for 10.7%, 25.6%, and 10.5% of catchments, respectively. 

Among the mixtures of mechanisms, the combination of recent precipitation and antecedent precipitation accounted for 35.1% 355 

of all the catchments, followed by the combination of all three mechanisms (16.0%), the combination of recent precipitation 

and snowmelt (1.7%), and the combination of antecedent precipitation and snowmelt (0.4%). 
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Figure 6: The dominant flooding mechanisms and their relevance to catchment attributes and seasonality. Each dot in (b), (c), (d), 360 
and (e) represents one catchment. Mixture means the associated catchments are dominated by two or more flooding mechanisms. 
For example, mixture (r+s) indicates either recent precipitation (r) or snowmelt (s) is the primary cause of the annual maximum 
discharges for the associated catchments, and the difference between the two proportions is less than 70%. 

 

It is worth noting again that the presence of a mixture of flooding mechanisms in a catchment only indicates that annual 365 

maximum discharges in the catchment are not uniformly caused by the same mechanism, rather than signifying whether 

individual annual maximum peak discharge events are driven by multiple processes (i.e., compound events). Despite this, 

floods in catchments with a mixture of flooding mechanisms, in general, are more likely to be affected by two or more flooding 

processes, since the classification of floods in these catchments can be ambiguous (e.g., the events near the decision boundaries 

between clusters).  For example, floods caused by both heavy precipitation and excessive soil moisture tend to present high 370 

reliance on both recent precipitation and antecedent precipitation, which results in the catchment presenting a mixture of 

flooding mechanisms, depending on which feature importance is superior. Using 0.10 as a distance threshold to define events 

near the cluster decision boundaries (i.e., the difference between the distance from one point to its closest centroids and to its 

second-closest centroids is less than 0.10), 78.5% of such events were found in catchments dominated by a mixture of 

mechanisms, whereas only 21.5% were found in catchments dominated by single mechanisms. 375 

 

In Figs. 6b–e, we further examine the relevance of dominant mechanisms to catchment physiographic and hydroclimatic 

characteristics demonstrated in Fig. 1. Unsurprisingly, snowmelt dominates flooding in regions with high snowfall fractions 

and obvious characteristics in latitude and altitude, where floods usually occur from May to July. The catchments dominated 

by antecedent precipitation are within plain terrains, where flooding occurs mainly during the winter and spring. Catchments 380 
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with a gentle slope generally tend to have thicker soil, slower transmission, and therefore more potential to store antecedent 

precipitation (Hallema et al., 2016). In contrast, recent precipitation-dominated catchments have a broader spectrum of slopes 

and elevations and experience also summer floods. The distribution of catchment attributes from catchments dominated by a 

mixture of mechanisms is consistent with what we found based on catchments dominated by a single mechanism. For example, 

catchments dominated by snowmelt mixed with recent precipitation (purple in Fig. 6) or antecedent precipitation (yellow in 385 

Fig. 6) have relatively high snowfall fractions, with the former mainly occurring on areas with steep slopes (mainly in the Alps 

and Scandinavian mountains) and the latter mainly occurring on gentle slopes (such as parts of Finland). The catchments 

controlled by both recent and antecedent precipitation (light blue in Fig. 6) are located mostly in western Europe, suggesting 

that floods there were likely to be affected by the interaction between extreme precipitation and antecedent soil moisture, and 

their respective relative importance has varied between events. In addition, some catchments in the Alps, Germany, and Poland 390 

are impacted by all three mechanisms (slate grey in Fig. 6). In summary, these findings indicate that dominant flooding 

mechanisms differ substantially across catchments and are related to their geographic and climatic characteristics. In addition 

to elevation, slope, and snow fraction, the study by Stein et al. (2021) on catchments in the United States demonstrated that 

other catchment characteristics (e.g., aridity, precipitation seasonality, and mean precipitation) also significantly influence 

flood generating processes. An in-depth investigation of how geographic and climatic characteristics affect flood mechanisms 395 

in European catchments can be expected in future studies. 

3.4 Comparative analysis with other studies 

A better understanding of the generating processes of river flooding is crucial for interpreting past flood changes and improving 

future flood-risk predictions. In recent years, large-scale quantitative investigations of flooding mechanisms specifically for 

Europe have been undertaken in several studies, with different methodologies and scales applied. For example, by using 400 

circular statistics analysis, Berghuijs et al. (2019) examined the relative importance of three flooding mechanisms based on 

the seasonality of floods and three potential drivers such as the largest daily precipitation, the largest daily soil moisture excess, 

and the largest daily snowmelt. Bertola et al. (2021) attributed changes in the magnitude of flood quantiles to changes in 

possible drivers by using regression analysis and determined their contributions to flood changes accordingly. In contrast to 

these analyses conducted at catchment or coarser levels, Kemter et al. (2020) and Stein et al. (2020) performed event-based 405 

classifications to determine flooding mechanisms in respective regions or catchments, both using predefined criteria but with 

different indicators and thresholds. Table 1 summarizes the main findings in these studies regarding the major flooding 

mechanisms per geographic subregion of Europe and compares them with those identified in this study. 

 

 410 
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Table 1. Comparisons of identified flooding mechanisms in Europe by different methods. 

 Methods 
used 

Research 
scales 

Catchment sizes 
(km2) 

Northern 
Europe 

Western 
Europe 

Central 
Europe 

Southern 
Europe 

Alpine 

This 
study 

Machine 
learning 

Event-
based 

8 – 10,000 Snowmelt Antecedent 
precipitation+ 
recent 
precipitation 

Antecedent 
precipitation+ 
recent 
precipitation, 
snowmelt 

Lack of 
samples 

Recent 
precipitation, 
snowmelt 

Berghuijs 
et al. 
(2019) 

Seasonality 
analysis 

Catchment-
based 

~10 – ~100,000 Snowmelt Soil moisture Soil moisture, 
snowmelt 

Soil 
moisture 

Extreme 
precipitation, 
snowmelt 

Bertola et 
al. (2021) 

Changes 
attribution 

200 km 
× 200 km 

5 – 100,000 Snowmelt Extreme 
precipitation 

Extreme 
precipitation, 
snowmelt 

Soil 
moisture 

Extreme 
precipitation, 
snowmelt 

Kemter et 
al. (2020) 

Multi- 
criteria 

Event-
based 

1 – 800,000 Snowmelt Soil moisture Rain-on-snow, 
soil moisture 

Soil 
moisture 

Stratiform 
rainfall 

Stein et 
al. (2020) 

Multi- 
criteria 

Event-
based 

1 – ~2,000,000* Snowmelt Excess 
rainfall 

Snow/rain, 
Excess rainfall 

Excess 
rainfall 

Short rainfall 

Note: The summaries above were compiled from relevant figures or qualitative descriptions in the respective studies, and the 415 

subregions of Europe were not strictly defined. The definitions of various flooding mechanisms were not identical between the 

studies. * The catchment size range was not stated in the paper, and we calculated it from the original results provided by the 

authors. 

 

As indicated in Table 1, despite the different definitions, methods, and standards in recognizing flooding mechanisms, the five 420 

studies present some consistency, especially in Northern Europe and the Alps, which are dominated by snowmelt or by 

snowmelt combined with extreme precipitation. Among the four previous studies, this study shows the largest consistency 

with Berghuijs et al. (2019), especially when it comes to the contribution of meteorological drivers to flood generation in 

individual catchments. However, Berghuijs et al. (2019) and Kemter et al. (2020) regarded floods in regions from northern 

France to northern Germany as a consequence of soil moisture excess almost exclusively. In contrast, Bertola et al. (2021) and 425 

this study included extreme precipitation also as a crucial factor, and we have demonstrated that floods in those regions are 

driven by a combination of both heavy precipitation and saturated soil moisture.  

 

In addition to methodological differences, the inconsistent catchment samples are also responsible for the divergent attribution 

results in different studies. As shown in Table 1, the catchments examined in this study are generally smaller, which tend to 430 

be more susceptible to rainfall with high intensity. Moreover, discrepancies in the estimation of soil moisture might be an 

additional reason. In the absence of direct observations, soil moisture in the four previous studies was explicitly estimated by 

using simple water balance models (Berghuijs et al., 2019; Stein et al., 2020), reanalysis data (Kemter et al., 2020), and a proxy 

based on antecedent precipitation (Bertola et al., 2021). The uncertainty associated with soil moisture estimates may, however, 

make a difference in determining whether floods are triggered by extreme precipitation or soil moisture excess. Tarasova et al. 435 

(2020) conducted a rigorous uncertainty analysis of input data for a runoff event classification framework, emphasizing the 
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importance of developing novel indicators to reduce these uncertainties. Here, profiting from the memory property of LSTM 

models, the present study identified flooding mechanisms based on long-term predictive relationships between precipitation, 

temperature, day length and discharge. The method has reduced the need for accurate catchment wetness estimates, yet such 

uncertainty is not eliminated completely, particularly since we chose a 7-day window to separate between antecedent and 440 

recent precipitation. Compared to analyses at catchment or coarser levels, event-based investigations of flooding mechanisms 

have the advantage of allowing for the detection of stronger signals about their potential changes over time, since averaged 

information tends to obscure information about individual event processes and thus makes the trends imperceptible. For 

example, Berghuijs et al. (2019) found no discernible change in the relative importance of flood drivers for most regions in 

Europe, while some regional studies (e.g., Vormoor et al., 2016; Beniston and Stoffel, 2016) and event-based studies (e.g., 445 

Kemter et al., 2020) have indicated such changes.  

3.5 Temporal evolutions of flooding mechanisms 

To test whether the dominant mechanism has changed over the period 1950–2020, we first compared the catchment-level 

dominant mechanisms separately for 1950–1985 and 1985–2020 by applying the procedure implemented in Section 3.3. Only 

the 795 catchments with at least 15 years of records in each period were considered. Figure 7a summarizes the proportions of 450 

the single dominant mechanisms (represented by colorful blocks) and their combinations (represented by grey blocks) during 

each period along with shifts between them. The Sankey plot indicates that a majority of catchments (81.0%) retain their 

dominant mechanisms, and there has not been a shift from one dominant mechanism to another (see the absence of data flow 

between two different blocks from left to right). However, some catchments with single mechanisms have become dominated 

by a mixture of mechanisms (i.e., flowing from colorful blocks to grey ones, which accounts for 6.5% of the total), while some 455 

behave in the opposite way (7.5%). In a few catchments with a mixture of mechanisms (5.0%), the dominant mechanisms have 

also changed, though they remain mixed. 

 

Despite only a few fractions of catchments presenting a change in their dominant flooding mechanisms, Fig. 7b reveals 

tendencies for specific mechanisms at event levels when considering all annual maximum peak discharges in the 795 460 

catchments over the past seven decades. In particular, the annual maximum peak discharges driven by snowmelt have been 

declining by 0.8% per decade. In contrast, recent precipitation has become more dominant in causing floods, increasing by 

0.9% per decade, despite weaker significance probably due to the inconsistent changes from 2005 onward. Both frequency 

changes are probably associated with the warming atmosphere, which causes decreased snowpack (Fontrodona-Bach et al., 

2018). Also, because of the rising temperatures, the atmosphere has a higher moisture holding capacity, leading to an increase 465 

in precipitation extremes on average (Trenberth, 2011; Fischer and Knutti, 2016). These factors make it more likely that the 

annual floods are driven by recent precipitation and less frequently by snowmelt. Additionally, we observe an overall slight 

decrease in soil moisture excess-driven floods as a result of counterbalancing the other two trends, though the trend is not 
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statistically significant when considering the entire period. The above conclusions hold when considering a smaller subset of 

catchments (451 in the case) with at least 25 years of records in each period. 470 

 

 

 
Figure 7: (a) Sankey plot indicating the proportions of single dominant flood generating mechanisms and their combinations during 
two time periods, with the flow lines indicating shifts between them. The proportions were calculated based on the 795 catchments 475 
that have at least 15 years of records available in each period. (b) The evolution of the proportions of annual maximum peak 
discharges with the three flooding mechanisms. The shades denote the 95% confidence interval of the proportions, which was 

calculated as 𝒑	# ± 𝟏. 𝟗𝟔 × *𝒑	# (𝟏&	𝒑#)
𝒏

		(𝒑	#  is the estimated proportion and 𝒏 is the sample size). The dashed black lines indicate the slope 

of their trends estimated by Theil-Sen’s Estimator, with their significance being assessed by the modified Mann-Kendall test. (c), 
(d), and (e) The spatial trends in different event-based flooding mechanisms, where the trends indicated by the colorful dots were 480 
calculated using a 20-year moving window. Markers with black edges denote catchments with significant trends (α=0.05).  The black 
boxes highlighted five hotspot regions that are discussed in the main text. 
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Note that Fig. 7b only presents the overall trends in flooding mechanisms at the continental scale, while disparate trends may 

exist in different regions that could cancel each other out. Therefore, we further examined the trends in different event-based 485 

mechanisms in the 795 catchments (Figs. 7c–e), with the color representing the Theil-Sen slopes computed on the time series 

of respective proportions in individual catchments. The results indicate that most catchments in the Alps, which are typically 

dominated by snowmelt, have experienced significant decreases in snowmelt-driven floods, while similar cases have occurred 

in Scandinavia as well (Fig. 7c). In contrast, extreme precipitation has become a more frequent cause of annual maximum 

discharges in the Massif Central, North European Plain, and the Alps, while decreased trends are observed in some regions of 490 

Western Europe and especially southeast England (Fig. 7d). As for soil moisture-induced floods, their proportion generally 

shows opposing trends relative to those of extreme precipitation (Fig. 7e). 

 

The decreasing trend in snowmelt-driven floods was also detected by Kemter et al. (2020), with 1.65% per decade, mainly 

occurring in eastern Europe, which was outside of our study area. In addition, they detected an increase in stratiform rainfall-495 

driven floods (0.49% per decade) mainly along the Mediterranean coast and an increase in soil moisture excess-driven floods 

(1.55% per decade) in the British Isles and central and northern Europe. The difference between Kemter et al. (2020) and this 

study probably arises from the varying study areas (the former additionally includes a large number of eastern and southern 

European catchments), as well as the definition of flood types. For example, their study defined soil moisture excess-driven 

floods as non-snowmelt floods when the mean soil water content was above 70% before a time window, and the remainder 500 

were stratiform rainfall-driven floods. In contrast, this study used cluster analysis for the actual contributions of precipitation 

events before floods, and soil moisture-induced floods were related to annual maximum peak discharges where the contribution 

from antecedent precipitation is more important than recent precipitation. 

3.6 Possible causes and implications of the trends 

To gain insights into the causes of the identified trends, we analyze five selected regions highlighted in Figs. 7c–e (see region 505 

numbers in panel c), which feature consistent trends in certain mechanisms. For region 1 (the Alps) and region 3 (northeast 

Scandinavia), catchments with significant decreasing trends in snowmelt-driven events were considered. For region 2 

(southeast France) and region 4 (northern Germany), we considered catchments with significant increasing trends in extreme 

precipitation-driven events, as well as those presenting significant decreases for region 5 (southeast England). Figure 8 shows 

the temporal regional evolution of the event-level mechanisms within the considered catchments, along with the change in 510 

magnitude of the annual maximum 7-day precipitation and mean spring temperatures over the past 70 years. For the two 

regions with significant soil moisture effect on flooding (i.e., regions 4 and 5), we additionally added the averaged trends of 

antecedent soil moisture conditions prior to flooding for analysis. 

 

 515 
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Figure 8: The temporal changes of the event-level mechanisms in relevant catchments within the five selected regions (see Fig. 7c), 
as well as the changes in average extreme precipitation (represented by annual maximum 7-day total precipitation), mean spring 
temperatures (represented by average temperature between January and April), and antecedent soil moisture conditions prior to 520 
flooding (represented by the 30-day total precipitation preceding the 7-day window of recent precipitation). The numbers in panel 
titles indicate the number of catchments considered. The proportions were calculated by a 20-year moving window, while 
precipitation and temperature were smoothed by using a 20-year moving average window, with their values at central positions in 
time windows. The dashed grey lines indicate the slope of relevant trends with their significance. 

 525 

Mean spring temperatures have increased significantly in all five regions (Fig. 8), confirming the previous explanations for 

the reduced influence of snowmelt on river discharge annual maxima in snowy areas (regions 1-3) (Vormoor et al., 2016; 

Beniston and Stoffel, 2016). Furthermore, in regions 1–4, the increased magnitude of maximum 7-day precipitation can explain 

the rise in proportions of annual maximum peak discharges driven by extreme precipitation events. In contrast, the maximum 

7-day precipitation in southeast England (region 5) remained almost unchanged (Fig. 8e). Nonetheless, soil moisture conditions 530 

before discharges might have increased in southeast England, as indicated by the increasing antecedent precipitation 

accumulations, which causes annual maximum discharge there to be more likely driven by soil moisture excesses than by 
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recent precipitation. Blöschl et al. (2017) stated that the region has a large subsurface water storage capacity, which is capable 

of storing a large amount of water that continuously increases until flooding occurs. In comparison, in northern Germany 

(region 4), the antecedent precipitation before annual maximum peak discharges has increased more slightly (Fig. 8d), while 535 

the increase in precipitation extremes likely caused an increase in floods driven by recent heavy precipitation. Note that here 

we merely examined the monotonic trends within data over the 70 years, while the trends may vary piecewise (e.g., the changes 

in maximum weekly precipitation in the Alps and southeast France), the impact of which on flooding mechanisms deserves 

further research. These figures are robust against spatial variability within regions (see Fig. S6 in the Supplementary Material). 

 540 

A change in flooding mechanisms may affect the seasonality and magnitude of flooding, which might ultimately impair the 

current flood risk management measures. For example, in catchments previously dominated by snowmelt, increasing floods 

from extreme precipitation and soil moisture excess may lead to shifted flood mean dates and less concentrated seasonal 

patterns (as exemplified in Fig. B1 in Appendix B). By simulating daily discharge for a reference period (1961–1990) and a 

future period (2071–2099), Vormoor et al. (2015) predicted that floods in some Nordic catchments could even shift from 545 

spring to autumn as rain replaced snowmelt as the dominant flood-inducing process. These results suggest that, in a warmer 

climate, flood risk predictions in snowmelt-affected catchments should consider the interconnection between changes in 

flooding drivers and seasonality. 

 

As for the impact on flooding magnitude, while it is challenging to link observed changes in individual flooding drivers alone 550 

to changes in flooding magnitudes, a link may appear especially in light of climate change (Blöschl et al., 2019). For example, 

the catchments where floods are dominated by recent precipitation tend to be more susceptible to changes in extreme 7-day 

precipitation (Fig. B2 in Appendix B). Despite a lack of sufficient observational evidence that the magnitude of floods increases 

with more extreme precipitation (Sharma et al., 2018), the trend of which is often determined jointly by both changes in rainfall 

and changes in antecedent soil moisture, some studies demonstrated the changed precipitation severity could vary the 555 

relationship between precipitation and streamflow (Bennett et al., 2018). When recent rainfall increases, changes in antecedent 

moisture conditions would become less important in modulating the response to rainfall (Wasko and Nathan, 2019). Brunner 

et al. (2021) indicated that it is possible to identify a catchment-specific extremeness threshold, above which precipitation 

increases clearly produce greater flood magnitudes, and below which flood magnitude is strongly modulated by soil moisture. 

Therefore, the persistent risk that recent extreme precipitation would have an increasingly decisive role in flood generation for 560 

a large proportion of catchments, as implied by Fig. 7, cannot be disregarded. Recognizing the impact of such mechanism 

shifts in flooding mechanisms is crucial for understanding the link between changes in precipitation and flood risk in a warming 

climate. 
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3.7 Limitations and outlooks 

In this study, we trained LSTM models in a local fashion (i.e., training the model individually for each catchment), rather than 565 

a regional fashion (training a single model across multiple catchments), since the main objective of the study is to identify 

distinguishable patterns of meteorological variables’ contributions at local scales. From a prediction standpoint, particularly 

for unprecedented events and ungauged basins (Nearing et al., 2021; Frame et al., 2022), regional modeling may be a better 

choice because it is capable of learning more general relationships from a larger variety of hydrological data (Kratzert et al., 

2019b). However, for the regional modeling, both meteorological time series and static catchment attributes are used as inputs 570 

to distinguish response behaviors across time and space. Adding such static attributes would introduce substantial 

multicollinearities among the considered variables (see Fig. S7 in the Supplementary Material for illustration). 

Multicollinearity might not be a problem for ML models when they are used for prediction, as long as the collinearity between 

variables remains stationary (Dormann et al., 2013). Nevertheless, for our study that aims to interpret the effects of predictors 

on responses, high multicollinearity in predictors indicates considerable information may be shared among the collinear sets. 575 

This would result in difficulties in separating the physical effects of these variables – this is also the case in traditional 

regression models (Hartono et al., 2020). Therefore, interpreting flooding mechanisms with regional LSTM models may 

become more challenging than with local LSTM models that use only meteorological time series, since some catchment 

attributes would confound the interpretation. In this study, we therefore employed simple local models, which avoids 

confounding and multicollinearity resulting from static catchment attributes. However, in light of the benefit of regional 580 

modeling that can provide insights into how flooding mechanisms vary spatially by geographic and climatic characteristics of 

catchments, how to deal with these challenges in the interpretation merits more exploration in future studies. 

 

The multicollinearity also exists in meteorological drivers at daily scales, which requires careful handling of the interpretation 

results if adding more predictors. For example, radiation is usually an important driver of snowmelt that favors flooding (Merz 585 

and Blöschl, 2003), but the interpretation method might not assign it high importance when it is combined with day length as 

an additional predictor due to the high correlation between the two variables (see Fig. S8 in the Supplementary Material for 

an example). This is because the used interpretation technique does not measure how important a feature is in the real world, 

but how important it is to the model. Therefore, it is not necessarily better to add more input features to a model in terms of 

process understanding, which can be even misleading if the interpretation results are not justified by sufficient physical 590 

knowledge (Kroll and Song, 2013). In this study, instead of using more predictors that result in less interpretability, we 

restricted ourselves to few input features whose effect can be relatively easily interpreted and understood. Therefore, we only 

selected daily precipitation, temperature, and day length as meteorological inputs, the combination of which results in 

uncovering three well-known flooding mechanisms. The results are physically interpretable and comparable with findings 

from other studies that used classical methods. Incorporating more meteorological drivers into the model might, in theory, 595 

allow for the identification of additional flooding mechanisms that may be overlooked. However, multicollinearity and 



24 
 

confounding can pose a challenge to interpretability, especially when the recognized patterns cannot be linked to fundamental 

physical processes. Therefore, we leave how to resolve the trade-off as an open question for future studies. 

 

In the clustering procedure, we chose to use a 7-day window to aggregate the daily IG scores into a low-dimensional 600 

contribution vector for the sake of efficiency in clustering lengthy time series, which could induce inevitable uncertainties and 

subjectivity. Despite this, additional tests indicate that our findings are similar when using a 5-day window, which is also a 

common interval to consider flooding drivers (e.g., Rottler et al., 2021). Specifically, based on the 5-day window, the events 

identified with snowmelt, recent precipitation, or antecedent precipitation as the primary causes account for 16.3%, 48.4%, 

and 35.3% of all the 52,247 annual maximum peak discharges (Fig. S9 in the Supplementary Material), which is only slightly 605 

different from using a 7-day window. As for the three mechanisms in individual catchments, decreasing the window length 

has the least impact on identifying snowmelt-driven floods, with the absolute changes in their proportions within 1% for 86.7% 

of catchments and within 5% for 98.6% of catchments. In comparison, the proportion changes for two other flooding types are 

more sensitive, with changes within 5% for 83.2% (83.3%) of catchments in terms of recent (antecedent) precipitation-driven 

flooding. However, this does not affect the conclusion regarding the respective trends in flooding mechanisms (Fig. S10 in the 610 

Supplementary Material), indicating the robustness of the methodology. Despite this sensitivity analysis, we would like to 

emphasize that the selection of the separating window remains somewhat subjective, and further exploration is needed to avoid 

a possible bias due to arbitrary judgments in identifying flooding mechanisms. 

4 Conclusions 

Flooding in rivers is usually caused by complex interactions between heavy precipitation, high soil moisture, and melting snow. 615 

Climate change has resulted in an overall decreased snowpack and more intense short-term precipitation extremes, which 

might systematically alter the interaction between flood drivers at the catchment level. To investigate whether flooding 

mechanisms have changed in European catchments, this study introduced a novel explainable ML method to identify flooding 

mechanisms. Compared with conventional classification approaches, where the results are usually dependent on appropriate 

flood process definitions and sensitive to the selected indicators and threshold parameters, the combination of explainable ML 620 

and cluster analysis is able to avoid such predefinitions and reduces subjectivities in identification processes. With the ML-

captured feature importance of precipitation, temperature, and day length for predicting annual maximum discharges, we 

aggregated driver contributions in the recent 7 days and an earlier period (back to 180 days) and then applied cluster analysis 

to group them based on similar patterns. As a result, the method identifies three major patterns that induce floods across 943 

European catchments, corresponding to three typical flooding mechanisms, including recent precipitation (responsible for 48.8% 625 

of the annual maximum discharge events), antecedent precipitation (i.e., excessive soil moisture, accounting for 34.7%), and 

snowmelt (16.5%). The results indicate that for 25.6% of catchments, recent precipitation is the typical main contributor to 

floods, while floods are typically controlled by antecedent precipitation (linked to excessive soil moisture) in 10.5% of 
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catchments. In around one-third (35.1%) of catchments, floods are dominated by a combination of recent heavy precipitation 

and antecedent precipitation events, meaning that some floods there were caused by recent rains, and others were primarily 630 

driven by antecedent precipitation, although many of them were likely due to the compound effect between the two drivers. 

The remaining catchments are dominated by snowmelt (10.7%), or by combinations of snowmelt with the other two drivers. 

The spatial distribution of the dominant flooding mechanisms reflects the variation of the catchment’s geographic and climatic 

characteristics and is generally consistent with results reported in earlier studies, some of which did not perform event-based 

classifications but rather identified the overall mechanisms within individual catchments. 635 

 

We further detected changes in dominant flooding mechanisms over the last 70 years in over 19% of European catchments, 

especially some catchments that were previously dominated by single mechanisms became dominated by a mixture of 

mechanisms and some catchments show opposite shifts. Despite no regime shift from one single flooding mechanism to 

another single one, tendencies in their mechanisms at event levels were found. Specifically, when taking all annual maximum 640 

discharge events into account, those triggered by snowmelt have significantly decreased, with their proportion dropping by 

0.8% per decade. Recent 7-day precipitation, on the other hand, has become increasingly important for flooding, with flooding 

triggered by such recent heavy precipitation increasing by 0.9% per decade. The changes in flooding mechanisms present a 

largely consistent pattern with climate change responses, and we discuss the potential risks associated with the resulting effects 

on flooding seasonality and magnitude. 645 

 

Overall, this study highlights the usability of explainable ML in helping uncover complex and possibly non-linear changes in 

weather and climate extreme events in the warming Earth system. With more large-sample hydrometeorological datasets 

becoming readily accessible, one next step is to extend the research to a larger scale for a better understanding of variations in 

flooding mechanisms globally. Still, many challenges remain for future work, providing potential research opportunities. For 650 

example, the clustering procedure can be improved by developing algorithms to aggregate daily feature importance adaptively, 

thereby avoiding the predefined separation window while maintaining high efficiency. Moreover, regional LSTM models that 

incorporate static catchment attributes can be employed to capture the spatial variations in flooding mechanisms and quantify 

the influence of catchments’ geographical and climatic conditions on flooding processes. In addition to the integrated gradient 

method used in this study, other interpretation techniques might be explored further to uncover potentially valuable information 655 

when more input variables are included. 
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Appendix A 

 
Figure A1: Determination of optimal cluster number. (a) The average silhouette coefficients and total within-cluster sum-of-squares 
assessed for respective candidate cluster numbers. (b) The silhouette plots for various clusters when the cluster number being 2 or 660 
3, where the x-axis represents the silhouette coefficient for individual samples, and they were ordered by the coefficients and grouped 
by clusters in the y-axis. (a) suggests that clustering the samples into either two or three groups can achieve the similarly highest 
average silhouette coefficients, while the silhouette plots for individual samples under the two candidate numbers in (b) further 
suggest that clustering into three groups would be the best choice because a cluster with all below-average silhouette coefficients is 
present when clustering into two groups. Therefore, we cluster annual maximum peak discharges into three main groups in the 665 
main text. 

Appendix B 

 
Figure B1: (a) Change in flooding mean dates (difference from 1985–2020 to 1950–1985) in 40 catchments with a significant 
reduction of snowmelt-driven floods in the Alps (region 1 in Fig. 7c) for snowmelt-driven floods and all floods irrespective of their 670 
cause. For these catchments, the overall proportion of annual maximum discharges caused by snowmelt has decreased from 49.6% 
in 1950–1985 to 38.7% in 1985–2020. (b) The differences in mean resultant length of flood dates for the same cases as in (a). The 
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mean resultant length is a measure in circular statistics between 0 and 1 that reflects the spread of a circular variable, with 0 
representing the spread of flood dates evenly distributed over the year and 1 representing the spread concentrated at one day. It can 
be deducted from (a) that following the temperature increase, snowmelt-driven floods generally occur earlier in the year during 675 
1985–2020 compared to 1950–1985, with a median shift of -4.8 days. On the other hand, annual peak discharges occur later in more 
than half of the catchments due to the increasing presence of other types of floods. Furthermore, (b) shows that the seasonality of 
annual maximum discharges has become more diffuse (decreasing mean resultant length) in most catchments for the same reason, 
though snowmelt-driven floods remain relatively stable. 

 680 

  

Figure B2: The distribution of Spearman’s correlations between annual maximum discharge and annual maximum 7-day 
precipitation for two groups of catchments (blue, recent precipitation-dominated catchments; green, antecedent precipitation-
dominated catchments, based on Fig. 6a). It shows that the catchments where floods are dominated by recent precipitation tend to 
have higher correlations than antecedent precipitation-dominated catchments, which implies that the former might be more 685 
susceptible to changes in extreme 7-day precipitation. 

Data and code availability 

The river discharge data can be obtained from the GRDC dataset (https://www.bafg.de/GRDC). The E-OBS gridded 

precipitation and temperature dataset is available at https://www.ecad.eu/download/ensembles/download.php(Haylock et al., 

2008). Catchment attributes and boundaries are available at https://doi.pangaea.de/10.1594/PANGAEA.887477 (Do et al., 690 

2018) and https://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/222_WSB/watershedBoundaries.html (Lehner, 2012). The 30 

arc-second elevation data shown in Fig. 1a is accessible at http://doi.org/10.5066/F7DF6PQS. The code for the explainable 

machine learning framework is available at https://doi.org/10.5281/zenodo.4686106. 
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