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Abstract. Climate change may systematically impact hydro-meteorological processes and their interactions, resulting in
changes in flooding mechanisms. Identifying such changes is important for flood forecasting and projection. Currently, there
is a lack of observational evidence regarding trends in flooding mechanisms in Europe, which requires reliable methods to

disentangle emerging patterns from the complex interactions between flood drivers. By—using-a-nevel-explainable-machine

learningRecently, numerous studies have demonstrated the skill of machine learning (ML) for predictions in hydrology, e.g.,

for predicting river discharge based on its relationship with meteorological drivers. The relationship, if explained properly,

may provide us with new insights into hydrological processes. Here, by using a novel explainable ML framework, combined

with cluster analysis, we identify three primary patterns that drive 55,828 annual maximum discharge events in over a thousand
European catchments. The patterns can be associated with three catchment-wide river flooding mechanisms: recent
precipitation, antecedent precipitation (i.e., excessive soil moisture), and snowmelt. The results indicate that over half of the
studied catchments are controlled by a combination of the above mechanisms, especially recent precipitation in combination
with excessive soil moisture, which is the dominant mechanism in one-third of the catchments. Over the past 70 years,
significant changes in the dominant flooding mechanisms have been detected within a number of European catchments.
Generally, the number of snowmelt-induced floods has decreased significantly whereas floods driven by recent precipitation
have increased. The detected changes in flooding mechanisms are consistent with the expected climate change responses, and
we highlight the risks associated with the resulting impact on flooding seasonality and magnitude. Overall, the study
aroffers a new
perspective on understanding changes in weather and climate extremesextreme events and-theirdriversunderelmatechangeby

using explainable ML and demonstrates the prospect of future scientific discoveries supported by artificial intelligence.

1 Introduction

River flooding is a pervasive natural hazard that regularly causes substantial economic, societal, and environmental damages
worldwide (Merz et al., 2021; Tellman et al., 2021). With a warming atmosphere, flooding risk is projected to increase due to
an intensification of the water cycle over large areas (Hirabayashi et al., 2013; Alfieri et al., 2017). For Europe, large-scale

studies have revealed changes in flooding frequency, seasonality, and magnitude over the past decades, with considerable
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variations across catchments (Alfieri et al., 2015; Bloschl et al., 2017; Hall and Bloschl, 2018; Bloschl et al., 2019; Bertola et
al., 2020). The spatial inconsistency in these trends reflects differences in flood generating processes across the continent,

which underscores the need for a better understanding of flood drivers (Keller et al., 2018).

In recent years, numerous studies have investigated river flooding mechanisms and some of them have provided European-
scale assessments (e.g., Berghuijs et al., 2016; Berghuijs et al., 2019; Kemter et al., 2020; Bertola et al., 2021; Stein et al.,
2021). Catchment-level floods can typically be attributed to the interaction of hydro-meteorological processes, such as extreme
precipitation, soil moisture excess, and snowmelt (Merz and Bloschl, 2003; Tarasova et al., 2019). The dominant controlling
processes in catchments were usually identified either qualitatively by comparing the observed flood trends with the
contemporaneous changes in flooding drivers (e.g., Bloschl et al., 2017; Bloschl et al., 2019) or quantitatively by calculating
the seasonal similarities between flood events and potential drivers (e.g., Berghuijs et al., 2016; Berghuijs et al., 2019). Such
analyses revealed the dominant flood generating processes at a catchment level, improving the understanding of climate change
effects on flooding magnitude and timing. However, the methods eitheroften implicitly assumedassume temporally consistent

flood processes within a catchment (Merz et al., 2012), er—weretimited—in—thetitteinterannualvariability-of seasenality

statisties5-making it difficult to detect possible changes in flooding mechanisms themselves in a warming climate.

Flooding mechanisms that dominate one catchment are not always immutable but might shift over time, particularly in light
of climate change (Hall et al., 2014). For example, increasing temperatures can affect snow dynamics in cold regions and result
in more rainfall extremes, which could make snowmelt-dominated catchments more susceptible to extreme rainfall and thereby
alter the regional flood seasonality and magnitudes (Vormoor et al., 2016; Davenport et al., 2020; Rottler et al., 2021).
Therefore, a systematic investigation of the changes in flooding mechanisms is necessary. Yet few studies have been able to
quantify how the mechanisms evolved over time on a continental scale in Europe. The identification of specific trends in
flooding mechanisms requires a comprehensive understanding of hydrological processes underlying individual events (Stein
et al., 2020). Currently available studies that attempted to classify river flooding processes on an event basis typically rely on
multicriteria approaches, which require predefining thresholds for a variety of hydrometeorological indicators, such as the

storm duration and snowmelt amount (e.g., Nied et al., 2014; Stein et al., 2021). Using a multicriteria approach, Kemter et al.

(2020)_identified the flooding mechanisms in Europe by classifying approximately 174,000 flood peaks and revealed their

trends over the past 50 years. Likewise, Stein et al. (2020)_analyzed flood events over 4,155 catchments worldwide and

classified them into five flood-generating processes. Despite the computational efficiency of using multicriteria approaches,

the obtained insights are often dependent on the careful choice of indicators and thresholds. For example, in some cases, a
small change in a threshold value modifies the classification, potentially compromising the robustness of the results (Sikorska
et al., 2015). Alternatively, some studies grouped flood events by inductive analyses, which adopted clustering methods to
obtain flood types from hydrometeorological indicators (e.g., Turkington et al., 2016; Keller et al., 2018). However, the chosen

indicators (e.g., snow-covered area, day of occurrence, and 95th percentile of spatial precipitation distribution) did not
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unambiguously indicate flooding mechanisms since they were not indicative of the causal contribution of flood drivers to peak

discharges (Tarasova et al., 2019).

An effective way to identify flooding mechanisms for individual flood events is to quantify the contribution of possible drivers
to its occurrence, which involves uncovering the implicit connections that may exist between flood events and meteorological
observations. This can be achieved by machine learning (ML), which has been receiving increasing attention in Earth and
climate sciences for its remarkable ability to identify and generalize predictive relations with a high-level abstract
representation (Reichstein et al., 2019; Yu and Ma, 2021). In hydrology particularly, one excellent example is the prevalence
of long short-term memory (LSTM) neural networks (Kratzert et al., 2018; Shen, 2018), which have been demonstrated to
learn patterns conceptually consistent with qualitative understandings of how hydrological systems work as opposed to simply
trivial coincidences (Kratzert et al., 2019a). Extraction of captured patterns from “black-box” ML models with feature
attribution techniques (i.e., ML interpretations) may lead to theoretical advances and can assist in making new scientific
discoveries, as recently demonstrated for climate, ocean, and weather applications (e.g., Barnes et al., 2020; Toms et al., 2020;

Labe and Barnes, 2021), including the identification of flooding mechanisms (Jiang et al., 2022).

In this study, we-wiH revisit flooding mechanisms in Europe over the period 1950-2020 by using an improved framework
based on the explainable ML methods developed by Jiang et al. (2022) and compare the results with existing studies. We base
the analysis on over 1,000 catchments and the only dynamic information necessary for the analysis is precipitation,
temperature, and streamflow. These three variables can be readily measured, thereby reducing the reliance on possibly
uncertain estimations of fluxes and state variables (such as soil moisture). The combination of supervised learning-based
feature attribution and unsupervised learning-based cluster analysis reduces subjectivity and uncertainty for the selection of
appropriate indicators and thresholds in the categorization of flood drivers. Moreover, taking an event-level perspective, we
quantify the changes that occurred in these mechanisms in the past seven decades, and discuss the possible reasons and
implications of the detected changes. Overall, the study contributes to a better understanding of river flood risk and how it is

affected by climate change and illustrates how explainable ML can advance knowledge about the Earth system.

2 Data and methodologies
2.1 Data

The study considers 1,077 catchments in the domain of Europe (Fig. +12a) based on the data availability of daily river discharge
observations from the Global Runoff Data Centre (GRDC) dataset (https://www.bafg.de/GRDC). We restricted our analysis
to catchments having an-area-of10;000-km>-or-less-to-exclude-overly large-catchments-and-having-a minimum of 20 years of

discharge records within 1950-2020 to ensure sufficient samples to train the ML models. The catchment areas range between

8 km? and 10,000 km?* — very large catchments, where the effect of spatial heterogeneity of flood drivers tends to be

3



100

105

110

115

substantial, were not considered. For those catchments, the sample size of daily discharge records ranges from 7,300 to 25,753,

with a median of 20,455. Overall, the selected catchments encompass a variety of geographical and climatic conditions, as
illustrated by the catchment distributions in terms of average elevation, average slope, catchment size, aridity index, snowfall
fraction, and flood mean date (Figurelig. 1). The elevation, slope, and size were derived from the Global Streamflow Indices
and Metadata Archive (GSIM) (Do et al., 2018), the aridity index and snowfall fraction were calculated from the catchment-
averaged precipitation and temperature described later. In the study, floods are defined as the annual maxima (peaks) of river
discharge time series in line with common practices (e.g., Bloschl et al., 2017; Bloschl et al., 2019). The above properties will

also be used to discuss their relevance to the catchment-level dominant flood mechanisms.

We considered precipitation, temperature, and day length as input variables of the ML models. Using the 0.1° daily gridded
precipitation and mean surface temperature data from the E-OBS dataset (version 23.1e) (Haylock et al., 2008), we calculated
the catchment-averaged time series of these variables based on area-weighted averages of the data pixels within the catchment
boundary. The weight of each pixel was determined by the fraction of its area covered by the relevant catchment;—where-the.
The catchment boundaries were obtained from readily available GRDC (Lehner, 2012) and GSIM (Do et al., 2018) databases-,

with GRDC being prioritized when the boundary of a catchment was available in both databases. Note that for smaller

catchments under 100 km? (approximately 0.1° x 0.1°), uncertainties may exist due to the relatively coarser spatial resolution

of the meteorological data. Nonetheless, those catchments with large uncertainties will not be considered for the subsequent

attribution analysis if ML models cannot capture the relationship between inputs and outputs effectively. Day length was

included in the study since it was shown to improve model accuracy in a series of preliminary tests—, including the cases

where only precipitation and temperature were used and day length was additionally incorporated. Catchments where day

length largely improves accuracy are mainly located in northern Europe. Day length was calculated based on the day of the

year and the latitude of the catchment center by the Brock model following Forsythe et al. (1995).
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Figure 1: An overview of the 1,077 catchments and their properties, including average (a) elevation and slope of the catchments, (b)
the catchment size, (c) the aridity index, expressed by the ratio between mean annual potential evapotranspiration (PET) over mean
annual precipitation, (d) the fraction of precipitation falling as snowfall (i.e., precipitation falling with temperature below 0 °C), and
(e) the seasonality of annual maximum discharges. PET was estimated via Hamon’s formulation (Hamon, 1961).

2.2 Attribution framework and ML model

Figure 2 illustrates the framework of using explainable ML methods for flooding attribution in the present study, which was
originally developed by Jiang et al. (2022) and involves three main steps. First, we built ML models for individual catchments
to establish the nonlinear predictive maps from meteorological factors (i.e., precipitation, temperature, and day length) to daily
discharges (Fig. 2a). Secondly, an ML interpretation technique was applied to interpret the trained models to quantify the
contributions of the three input variables at each time step (i.e., time-wise feature importance) to the generation of respective
flood events (Fig. 2b). The time-wise feature importance was further aggregated into contributions of specific features. Finally,
cluster analysis was used to group the specific feature contributions from multiple flood events that had similar patterns into
several categories, from which we then identified different flood mechanisms-(Fig—2e)-. Detailed explanations of the methods

are given below.
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Figure 2: The workflow of using explainable ML methods for attributing flood peaks (annual maxima of river discharge) to their
drivers. (a) Diagrammatic representation of the used LSTM models;-where-the-windews. The window in the time series of discharge
highlights the target output (which is a peint) and the window in the inputs and-eutput-highlightindicates the input features and

target-outputin-predietingused to predict the illustrated peak discharge sample. (b) The feature importance extraetedof the inputs
for predicting the peak discharge shown in (a), which was obtained by using the ML interpretation technique (namely integrated

gradient-dG)-technique for-the flood-event shown-in-(a):). The vertical dashed lines in the windows separate the feature importance
into a recent 7-day perlod and an earller perlod to calculate the aggregated feature contrlbutlons (see main text) —(e)—A—subset—ef

In the study, we used the classical LSTM network (Hochreiter and Schmidhuber, 1997) as the ML model. The LSTM is one
of the most popular ML architectures for modeling dynamic hydrological variables (e.g., Kratzert et al., 2018; Lees et al.,
2021), which can effectively capture nonlinear and temporal dependencies between variables owing to its recurrent structure

and unique gating mechanism (Gers et al., 1999). The effectiveness of the LSTM is partially due to the comparability of its

formulation to the hydrological behavior of a catchment. Specifically, the backbone of the LSTM network is composed of

recurrent cells that can store previous information from input sequences, which is conceptually similar to the way

meteorological information (e.g., precipitation) is stored in the form of soil moisture or snowpack (Lees et al., 2022). The

physically realistic mapping from inputs to outputs facilitates gaining hydrologically meaningful insights from subsequent

model interpretations. Figure 2a illustrates the data flow of one sample in the LSTM model, with the dashed windows

highlighting the predictors and the target variable. The input layer of the model brings in precipitation (P), temperature (T),
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and day length (D) over the past 180 days (i.e., [XF, XF,..., XFeo; XT, XT,..., XTg0; XP, X2,..., XPs]) and the output layer
produces the discharge of the following day (i.e., y,). The hidden layers consist of a single LSTM layer and a dense layer with
32 units. The number of time steps and hidden units were determined by considering both the model performance and
efficiency, which had been evaluated in preliminary experiments. Preliminary experiments also suggest using fewer time steps
(e.g., 90 days) would not impair the later-conclusions of the study about flooding mechanisms, because contributions from
inputs at very early time steps to output are limited in LSTM models (i.e., memory decay) (Su and Kuo, 2019). Here, we skip
the technical details of the LSTM architecture and refer to Sherstinsky (2020) for a comprehensive explanation of the
fundamentals of LSTM networks.

Given-a-eatehment-To improve the robustness of model evaluation and analysis, we fitted 10 independent LSTM models for

each of the 1,077 catchments. Each independent model was trained and tested based on samples that were randomly split in a

7-to-3 proportion;+

aeross-variousperiods—tn-the trainingproeess;. During the training process, a portion of the training data (70%) was repeatedly

used to update the model parameters every epoch until no further decrease in the loss function was observed on the remaining

30% (also known as validation data). The trained models were independently evaluated on the testing datasets. Note that here

we adopted a random sampling strategy instead of the time-series splitting strategy with fixed time intervals in order to enable

capturing the overall hydrometeorological variability observed across various periods. It should be emphasized that while the

random sampling strategy is appropriate with respect to the purpose of this study, it might not be the best practice if the models

were developed for prediction tasks, particularly if they were to be applied to new datasets. The initial learning rate and

maximum training epoch number were configured to 0.01 and 200, respectively, with the adaptive moments estimation (Adam)

algorithm (Kingma and Ba, 2015) wa

used for training the models.

2.3 Model interpretations and cluster analysis

The integrated gradient (IG) technique developed by Sundararajan et al. (2017) was employed to interpret the trained models,

which allows for obtaining the time-wise feature importance of the three input variables for each sample- of the output (i.e.

daily discharges). The IG method is a gradient-based interpretation technique that exploits the gradient of the model’s output
to its input features to trace back the specific contributions of the inputs. It aims to assign an importance score to each feature
(e.g., to the precipitation at each time step prior to the flooding). A large positive score indicates that the feature substantially
increases the network output (e.g., that the precipitation at a certain time step contributes to increasing the flooding), a large
negative score indicates a decrease in the network output, and a score close to zero indicates little influence on the output. The

IG score for the input feature x (e.g., precipitation at the i-th time step) is formulated as:
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where denotes the local gradient of the network f at a point interpolated from a baseline input (x’, when a =

0), which is meant to represent the “absence” of feature input, to the target input (x, when @ = 1). An important property of
the IG is completeness, which states that the 1G scores add up to the difference between the output of f at the target input x
and the baseline input x’, i.e., Y;; ¢;(x) = f(x) — f(x"). Therefore, the model output can be decomposed into the sum of
features’ individual contributions, and it enables us to examine the contribution of a group of features by summing up their

individual IG scores.

In the study, we focus specifically on the IG scores for annual maximum peak discharge events to gain insights into flooding
mechanisms. Given that we trained 10 independent models, 10 sequences of time-wise feature importance were generated for
each peak discharge, with each sequence having the same dimensions as the input variables (i.e., [¢F, @5 ..., pFeo: dT, PI....,
dTo0: dP, @2...., d%0]). Then, the 10 sequences were averaged into one sequence (i.e., [PF, ¢F,..., dreo; T, d1...., pls0:
o2, d2,..., PP, 1, which is simplified as {¢;} hereafter) to reduce the impact of the stochasticity associated with training the
different LSTMs. Figure 2b exemplifies the averaged IG scores corresponding to the sample shown in Fig. 2a, i.e., it shows
the contribution of the three input variables to the selected annual maxima of river discharge. The warm or cool colors in the
heatmap denoting the input variable at the particular time step has increased or decreased the network output, while white

indicates little effect. Note that the averaged IG scores for an individual peak were computed by averaging the scores obtained

from all the independent 10 models, regardless of whether the peak was part of the training data or the testing data in the

models. Overall, the IG scores extracted from the 10 models for each target peak discharge generally follow a similar pattern

though with inevitable differences due to randomness and uncertainties in training processes (see Figs. S1-S3 in the

Supplementary Material for examples).

In the following step, the sequences of averaged IG scores {¢;} can be clustered directly using time series clustering techniques
based on their similar shapes, such as using the K-means method with the dynamic time warping algorithm (DTW) as the
distance metric (Tavenard et al., 2020). However, the main drawback of clustering time series is the heavy computational
burden. The DTW distance between any two samples has a quadratic time complexity with respect to the sequence length,
which would make clustering long feature importance sequences a time-consuming process, and it would be especially
challenging when dealing with tens of thousands of sequences (Salvador and Chan, 2007). Moreover, for this large-sample
study that aims to understand flood mechanisms at a continental scale, it might not be necessary to distinguish the daily
contributions of meteorological drivers in detail. Therefore, before carrying out the cluster analysis, we aggregated each

sequence of averaged IG scores {¢;} inteby using a 7-day separating window, which generate a low-dimensional contribution

vector with only six elements [Y] ¢F, Y380 dF, BT pT, ¥ pT, 37 P, Y280 pPlswhere]. Here Y17 ¢; and Y38 ¢; represent
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contributions of a variable in recent 7 days and an earlier antecedent period, respectively. The separating window size should

cover the period of precipitation and snowmelt events leading to each peak discharge, which depends highly on the local

characteristics. After examining the relationship between catchment area and mean event response time, Stein et al. (2020)Fhe

is-alse-consistent-with-the-majority-of suggested a synoptic window of 7 days should be sufficient to guarantee the response

time for large catchments. As a result, this study used a 7-day period, similar to the practice in most studies that examined

flooding causes (e.g., Bloschl et al., 2017; Berghuijs et al., 2019)-. However, using a shorter period (e.g., 5 days) does not

affect the conclusions about dominant flooding mechanisms and their trends (see discussion in Section 3.7). Figure 2b

demonstrates the values of the aggregated feature contributions based on respective daily IG scores represented by the heatmap.

To obtain an overall picture from the individual aggregated feature contributions, we used the K-means method to cluster the

results for muttipleall annual maximum peak discharges pooled from all considered catchments;we-used-the K—means-methed

o-cluster-ageregated feature-contributions—into-groups-with-similar-patterns—{as-Hustrated-in-Fig-—2¢).. Considering that the
feature importance values are correlated to the magnitude of the predicted peak discharge due to the completeness property,
we normalized each accumulated vector by its Manhattan norm (i.e., dividing each element by the sum of its absolute values
while keeping its sign) to make the contributions comparable across different floods. To determine the optimal cluster number
for the K-means algorithm, we evaluated the cluster characteristics for candidate cluster numbers ranging from 2 to 8 using
the silhouette coefficient (Rousseeuw, 1987), which reflects the separation distance between the resulting clusters. The
silhouette coefficient for an individual sample is calculated as (b — a)/max(b — a), where a represents the mean distance
between the sample to all other points within the same cluster, and b represents the mean distance between the sample and all
other points in the next nearest cluster. The average silhouette coefficient over all samples is an indicator of the goodness of a

clustering result, which ranges from -1 to 1, with a higher score generally indicating a better cluster number choice.

2.4 Trend analysis of flooding mechanisms

Based on the clustering results, we can identify the mechanism responsible for each annual maximum peak discharge and

calculate the proportions of different flooding mechanisms at either the continental or catchment scale. The trend magnitude

in these proportions was then analyzed by the Theil-Sen’s Estimator, with the modified Mann-Kendall test (Hamed and Rao,

1998) being used to determine the significance of the trend. Specifically, at the continental scale, we estimated the overall

trends of various flooding mechanisms based on their respective proportions within all the annual maximum peak discharges

per year. At the catchment scale, to capture the variations of flooding mechanisms over different periods, we calculated the

proportion series using a 20-year moving window in each catchment. The 20-year time frame was used to ensure an adequate

sample size for reliably estimating the intra-period proportions and also to guarantee enough periods to observe decadal

variability (Pagano and Garen, 2005). Only proportions that were calculated with at least 10 years of peak discharge data in

each window were used to estimate the trend slope.

10
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Moreover, in order to analyze the possible causes of trends, we selected some catchments exhibiting significant changes in

flooding mechanisms and compared the temporal regional changes in flooding mechanisms with changes in potential flooding

drivers. The time series of proportions in regions were calculated by applying the previously described 20-year moving window

to peak discharge classifications for the considered catchments. The flooding drivers considered include annual maximum 7-

day total precipitation, mean spring temperatures (January to April), and 30-day precipitation preceding the 7-day window of

recent precipitation, which is a common proxy for soil moisture prior to flooding (e.g., Bertola et al., 2021). All the drivers

were averaged across the catchments and then smoothed by using a 20-year moving average window as well.

3 Results and diseussionsdiscussion
3.1 Model predictive performance and interpretations

Before moving to the analysis of annual maximum peak discharges, we used the Nash-Sutcliffe efficiency (NSE) (Nash and

Sutcliffe, 1970) to assess model accuracy in predicting discharges. The NSE value ranges from negative infinite to 1.0, and
NSE > 0.5 is generally deemed satisfactory for discharge simulations (Moriasi et al., 2015). Based on the NSE value computed
in the testing period for each independent model, we acquired the average and standard deviation of NSE values for each of
the 1,077 catchments, as shown in Figurelig. 3. The overall warm colors in the map (Fig. 3a) indicate that the model performed
satisfactorily for most catchments, with the median of NSE averages reaching 0.81 (Fig. 3b). The low standard deviations of
NSE values (Fig. 3c) further indicate robust model performance in most cases. Accordingly, the models have effectively
captured the generalizable predictive relationship between meteorological factors and discharges. As an accurate and robust
predictive relation is essential for deriving meaningful information from ML models (Murdoch et al., 2019), the subsequent
analyses focus specifically on the 1,009 catchments (out of 1,077; 94%) with average NSE values above 0.5 and coefficients

of variation below 0.1. In the following, we move to the analysis of annual maximum peak discharges.
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Figure 3: (a) Nash-Sutcliffe efficiency (NSE) values in the evaluation period averaged over the 10 independent LSTM models. (b)
The cumulative frequency of the averaged NSE values. (¢) The distribution of the standard deviation values for the NSE values
across the 10 independent models. The NSE values were calculated using all samples in respective testing datasets.

A total of 55,828 annual maximum discharges were identified from the 1,009 catchments (20-70 peaks per catchment). By
using the IG method, we can obtain 55,828 feature importance sequences averaged across the 10 independent models. In the
case shown in Fig. 2e2b, precipitation is the dominant driver behind the annual maximum peak discharge occurrence, showing
consistently non-negative feature importance with the precipitation peaks that occur closer to the target flood peak having a
greater influence (see pronounced positive contributions in red). Nevertheless, the total contribution from antecedent
precipitation is more important in predicting the peak compared with the contribution from recent precipitation, as indicated
by the aggregated scores Y7 ¢F and Y28 ¢F. The temperature, on the other hand, has an overall negative impact, which may
be related to evapotranspiration that could decrease the discharge magnitude, while the influence of the day length is relatively
negligible. Additionally, Fig. 4 further illustrates two other typical cases of feature importance patterns, where the contribution
from recent precipitation (i.e., Y. ¢F) and temperature (i.e., 2.7 ¢T), respectively, is dominant in predicting target peak

discharges. The distinct patterns of predictor contribution to annual maximum peak discharge predictions suggest that these

flood events were triggered by different mechanisms.
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Figure 4: Additional examples to the case shown in Fig. 2, which illustrate the importance pattern of temperature, precipitation, and
day length in predicting two discharge peaks from other catchments. (a) Recent precipitation contributes most to the discharge
peak. (b) Recent temperature contributes most strongly to the discharge peak.

3.2 Flooding types revealed by cluster analysis

To separate the 55,828 annual maximum peak discharges into discrete groups characterized by distinct patterns of predictor

contributions, we performed K-means clustering on the normalized contribution vectors. The results of the silhouette analysis
suggest that clustering into three main groups would lead to the best clustering quality, because it achieves the highest average
silhouette coefficient and silhouette coefficients for individual samples are reasonably distributed within each cluster (see Fig.

Al in Appendix A for more details). It should be noted that the clustering results here only reveal major patterns widespread

in data, with certain local and specific mechanisms unlikely to be detected.

Figures 5a—c show the distinct patterns of the three identified clusters, with cluster 1 featuring high importance of recent
temperature (Fig. 5a, a positive contribution in line with high temperature favoring snowmelt), cluster 2 featuring the dominant
contributions from recent precipitation (Fig. 5b), and cluster 3 featuring the importance of antecedent precipitation events (Fig.
5¢). Compared to cluster 1, clusters 2 and 3 show a generally negative effect of antecedent temperature, in line with drying

favored by evapotranspiration. Moreover, annual maximum peak discharges in cluster 1 are characterized by higher

contributions from day length (Fig. 5a) when compared to the other two clusters. The role of day length implies that the

magnitude of these peak discharges can be partially explained by the seasonality presented by day length, which peaks around
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the June solstice. In contrast, the main differences between clusters 2 and 3 are due to the fractions of 3.7 ¢F and Y.38° ¢pF.

Overall, each cluster accounts for 15.2%, 48.3%, and 36.5% of all the identified annual maximum peak discharges, respectively.
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Figure S: The cluster centroids and variance for the three clusters and their respective proportions of all peak discharge events in
each catchment. The bars and error bars in (a), (b), and (c) represent the cluster centroids and standard deviations of the six
aggregated feature contributions. The proportions in (d), (e), and (f) correspond to clusters 1-3, respectively.

Figures 5d—f illustrate the distributions in terms of the proportion of annual maximum peak discharges associated with each

cluster within a catchment. Annual maximum peak discharges associated with high contributions from temperature (cluster 1)

mainly occur in northern Europe and in mountainous regions such as the Alps (Fig. 5d), i.e., in spewy-regions with high

snowfall fractions (Fig. +e1d) where rising air temperature can lead to snowmelt. The spatial distribution together with the

feature pattern shown in Fig. 5a indicates that these floods were probably driven by snowmelt events. In contrast, catchments
with cluster 2, where recent precipitation played a decisive role in causing most floods (Fig. 5b), are primarily located in
regions that have a west-facing or north-west-facing coast or mountain range, such as Ireland, Scotland, Wales, the Norwegian
coast, north-west of the Iberian Peninsula, as well as the area extending from the Alps, the Massif Central and the Pyrenees
(Figs. 5e and 1a). These regions are characterized by a generally humid climate (Schiemann et al., 2018), as also indicated by
Fig. 1c, and are strongly affected by the Northern Atlantic polar front and the associated storm tracks (Bengtsson et al., 2006)

and/or by the presence of mountain barriers perpendicular to the prevailing flow direction, which force moist air to lift and
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condense (Isotta et al., 2014). Previous studies indicate that flooding in the regions could be largely explained by individual
heavy precipitation events (Gobiet et al., 2014; Blanchet and Creutin, 2017; Whan et al., 2020), some of which are associated

with atmospheric rivers (Lavers and Villarini, 2013).

Catchments #velvedassociated with cluster 3 are mostly located over the North European Plain, South Scandinavia, and parts
of the British Isles (Fig. 5f). Here, information from antecedent precipitation has an overall higher weight than that from recent
precipitation or other predictors (Fig. 5c), suggesting that recent precipitation alone would not suffice to explain annual
maximum peak discharges. Therefore, flooding in these areas presents additionally heavy reliance on antecedent precipitation
that is stored in the form of soil moisture. For example, Nied et al. (2014) revealed that in the Elbe River basin some weather
patterns only cause flooding in case of preceding soil saturation. Also, Ledingham et al. (2019) found that in southeast England
fewer than 15% of daily flood events correspond to extreme precipitation events, lower than in the rest of Britain, which was

attributed to the relevant contribution of soil moisture storage to flooding.

It should be noted that the three kinds of flooding mechanisms (i.e., snowmelt-driven, recent precipitation-driven, and
antecedent precipitation-driven) identified from the cluster analysis using the optimal cluster number only indicate which
features carry greater weights for peak discharge predictions, and they are not necessarily mutually exclusive. Particularly, the
peak discharge events near the decision boundaries between the three clusters, such as those with similar Euclidean distances
to at least two different “closest” centroids, are likely affected by two or more flooding processes simultaneously. For example,
the events categorized as snowmelt-driven floods are probably impacted additionally by saturated soils or extreme precipitation,

such as rain-on-snow events (Cohen et al., 2015).

—These events generally represent
compound flood events that arise from several drivers occurring concurrently (Zscheischler et al., 2018; Bevacqua et al., 2021).
Recently, compound events have received increasing attention (Zscheischler et al., 2020), however, this study will only focus

on the main flooding types obtained from the clustering results, regardless of whether compound effects were involved.

3.3 Dominant flooding mechanisms in Europe

The result of event-based flooding classification allows us to identify the dominant flooding mechanisms (among clusters 1—

3, Fig. 5) for each catchment (Fig. 6a). A mechanism is considered dominant in a catchment if the proportion of the annual

maximum peak discharges exceeded the maximum proportion of the other annual maximum peak discharges by more than

70%. Otherwise, the catchment was regarded as being dominated by a mixmixture of flooding mechanisms. The mixedmixture
of mechanisms could be further classified into specific combinations based on which clusters were present in the catchment.
Accordingly, for the catchments investigated in the study, 52.8% were dominated by mixeda mixture of mechanisms, while
snowmelt, recent precipitation, and antecedent precipitation solely accounted for 25.6%, 12.3%, and 9.3% of catchments,

respectively. Among the mixedmixtures of mechanisms, the combination of recent precipitation and antecedent precipitation
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accounted for 33.2% of all the catchments, followed by the combination of all three mechanisms (16.5%), the combination of

recent precipitation and snowmelt (1.9%), and the combination of antecedent precipitation and snowmelt (1.2%).
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Figure 6: The dominant flooding mechanisms and their relevance to catchment attributes and seasonality. Each dot in (b), (c), (d),
and (e) represents one catchment. Mixture means the associated catchments are dominated by two or more flooding mechanisms.
For example, mixture (r+s) indicates either recent precipitation (r) or snowmelt (s) is the primary cause of the annual maximum
discharges for the associated catchments, and the difference between the two proportions is less than 70%.
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It is worth noting again that the presence of mixeda mixture of flooding mechanisms in a catchment only indicates that annual
maximum discharges in the catchment are not uniformly caused by the same mechanism, rather than signifying whether

individual annual maximum peak discharge events are driven by multiple processes (i.e., compound events). Despite this,

floods in catchments with mixeda mixture of flooding mechanisms, in general, are more likely to be affected by two or more
flooding processes, since the classification of floods in these catchments can be ambiguous (e.g., the events near the decision
boundaries between clusters). For example, floods caused by both heavy precipitation and excessive soil moisture tend to
present high reliance on both recent precipitation and antecedent precipitation, which results in the catchment presenting
mixeda mixture of flooding mechanisms, depending on which feature importance is superior. Using 0.10 as a distance
threshold to define events near the cluster decision boundaries (i.e., the difference between the distance from one point to its
closest centroids and to its second-closest centroids is less than 0.10), 77.1% of such events were found in catchments

dominated by mixeda mixture of mechanisms, whereas only 22.9% were found in catchments dominated by single mechanisms.

In Figs. 6b—e, we further examine the relevance of dominant mechanisms to catchment physiographic and hydroclimatic
characteristics demonstrated in Fig. 1. Unsurprisingly, snowmelt dominates flooding in regions with high snowfall fractions
and obvious characteristics in latitude and altitude, where floods usually occur from May to July. The catchments dominated
by antecedent precipitation are within plain terrains, where flooding occurs mainly during the winter and spring. Catchments
with a gentle slope generally tend to have thicker soil, slower transmission, and therefore more potential to store antecedent
precipitation (Hallema et al., 2016). In contrast, recent precipitation-dominated catchments have a broader spectrum of slopes
and elevations and experience also summer floods. The distribution of catchment attributes from catchments dominated by
mixeda mixture of mechanisms areis consistent with what we found based on catchments dominated by a single mechanism.
For example, catchments dominated by snowmelt mixed with recent precipitation (piskpurple in Fig. 6) or antecedent
precipitation (erangeyellow in Fig. 6) have relatively high snowfall fractions, with the former mainly occurring on areas with
steep slopes (mainly in the Alps and Scandinavian mountains) and the latter mainly occurring on gentle slopes (such as parts
of Finland). The catchments controlled by both recent and antecedent precipitation (light blue in Fig. 6) are located mostly in
western Europe, suggesting that floods there were likely to be affected by the interaction between extreme precipitation and
antecedent soil moisture, and their respective relative importance has varied between events. In addition, some catchments in
the Alps, Germany, and Poland are impacted by all three mechanisms (slate grey in Fig. 6). In summary, these findings indicate
that dominant flooding mechanisms differ substantially across catchments and are related to their geographic and climatic

characteristics. In addition to elevation, slope, and snow fraction, the study by Stein et al. (2021) on catchments in the United

States demonstrated that other catchment characteristics (e.g., aridity, precipitation seasonality, and mean precipitation) also

significantly influence flood generating processes. An in-depth investigation of how geographic and climatic characteristics

affect flood mechanisms in European catchments can be expected in future studies.
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3.34 Comparative analysis with other studies

A better understanding of the generating processes of river flooding is crucial for interpreting past flood changes and improving
future flood-risk predictions. In recent years, large-scale quantitative investigations of flooding mechanisms specifically for
Europe have been undertaken in several studies, with different methodologies and scales applied. For example, by using
circular statistics analysis, Berghuijs et al. (2019) examined the relative importance of three flooding mechanisms based on
the seasonality of floods and three potential drivers such as the largest daily precipitation, the largest daily soil moisture excess,
and the largest daily snowmelt. Bertola et al. (2021) attributed changes in the magnitude of flood quantiles to changes in
possible drivers by using regression analysis and determined their contributions to flood changes accordingly. In contrast to
these analyses conducted at catchment or coarser levels, Kemter et al. (2020) and Stein et al. (2020) performed event-based
classifications to determine flooding mechanisms in respective regions or catchments, both using manualpredefined criteria
but with different indicators and thresholds. Table 1 summarizes the main findings in these studies regarding the major flooding

mechanisms per geographic subregion of Europe and compares them with those identified in this study.

Table 1. Comparisons of identified flooding mechanisms in Europe by different methods.

Methods Research Catchment sizes  Northern ~ Western Central Southern  Alpine
used scales (km?) Europe Europe Europe Europe
This Machine Event- 8 —10.000 Snowmelt  Antecedent Antecedent Lackof  Recent
study learning based precipitationt+  precipitationt  samples ~ precipitation,
recent recent snowmelt
precipitation precipitation,
snowmelt
Berghuijs  Seasonality ~Catchment- ~10-—~100.000 Snowmelt Soil moisture  Soil moisture,  Soil Extreme
et al. analysis based snowmelt moisture  precipitation,
(2019) snowmelt
Bertolaet  Changes 200 km 5 —100,000 Snowmelt Extreme Extreme Soil Extreme
al. (2021) attribution ~ x 200 km precipitation precipitation, moisture  precipitation,
snowmelt snowmelt
Kemter et  Multi- Event- 1 — 800,000 Snowmelt  Soil moisture  Rain-on-snow,  Soil Stratiform
al. (2020)  criteria based soil moisture moisture  rainfall
Stein et Multi- Event- 1 —~2,000.000" Snowmelt Excess Snow/rain, Excess Short rainfall
al. (2020)  criteria based rainfall Excess rainfall  rainfall

Note: The summaries above were compiled from relevant figures or qualitative descriptions in the respective studies, and the
subregions of Europe were not strictly defined. The definitions of various flooding mechanisms were not identical between the

studies. " The catchment size range was not stated in the paper, and we calculated it from the original results provided by the

authors.

18



435

440

445

450

455

460

As indicated in Table 1, despite the different definitions, methods, and standards in recognizing flooding mechanisms, the five
studies present some consistency, especially in Northern Europe and the Alps, which are dominated by snowmelt or by
snowmelt combined with extreme precipitation. Among the four previous studies, this study shows the largest consistency
with Berghuijs et al. (2019), especially when it comes to the contribution of meteorological drivers to flood generation in
individual catchments. However, Berghuijs et al. (2019) and Kemter et al. (2020) regarded floods in regions from northern
France to northern Germany as a consequence of soil moisture excess almost exclusively. In contrast, Bertola et al. (2021) and
this study included extreme precipitation also as a crucial factor, and we have demonstrated that floods in those regions are
y precipitation and saturated soil moisture. Compared-te-analysesat-catchmentoreoarser

driven by a combination of both heav
. o o

In addition to methodological differences, diserepaneies—in-the-estimation-ofsot-meisture-might-the inconsistent catchment

samples are also eentributetoresponsible for the divergent attribution results in different studies. As shown in Table 1, the

catchments examined in this study are generally smaller, which tend to be more susceptible to rainfall with high intensity.

Moreover, discrepancies in the estimation of soil moisture might be an additional reason. In the absence of direct observations,

soil moisture in the four previous studies was explicitly estimated by using simple water balance models (Berghuijs et al.,
2019; Stein et al., 2020), reanalysis data (Kemter et al., 2020), and a proxy based on antecedent precipitation (Bertola et al.,
2021). The uncertainty associated with soil moisture estimates may, however, make a difference in determining whether floods

are triggered by extreme precipitation or soil moisture excess. Tarasova et al. (2020)ka—eentrast conducted a rigorous

uncertainty analysis of input data for a runoff event classification framework, emphasizing the importance of developing novel

indicators to reduce these uncertainties. Here, profiting from the memory property of LSTM models, the present study

identified flooding mechanisms based on long-term predictive relationships between precipitation, temperature, day length
and discharge. The method has reduced the need for accurate catchment wetness estimates, yet such uncertainty is not
eliminated completely, particularly since we chose a 7-day window to separate between antecedent and recent precipitation.

Compared to analyses at catchment or coarser levels, event-based investigations of flooding mechanisms have the advantage

of allowing for the detection of stronger signals about their potential changes over time, since averaged information tends to

obscure information about individual event processes and thus makes the trends imperceptible. For example, Berghuijs et al.

(2019) found no discernible change in the relative importance of flood drivers for most regions in Europe, while some regional

studies (e.g., Beniston and Stoffel, 2016; Vormoor et al., 2016) and event-based studies (e.g., Kemter et al., 2020)_have

indicated such changes.
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3.45 Temporal evolutions of flooding mechanisms

To test whether the dominant mechanism has changed over the period 1950-2020, we first compared the catchment-level
dominant mechanisms separately for 1950—1985 and 1985-2020 by applying the procedure deseribedimplemented in Section
3.23. Only the 846 catchments with at least 15 years of records in each period were considered. Figure 7a summarizes the
proportions of the single dominant mechanisms (represented by colorful blocks) and their combinations (represented by grey
blocks) during each period along with shifts between them. The Sankey plot indicates that a majority of catchments (81.9%)
retain their dominant mechanisms, and there has not been a shift from one dominant mechanism to another (see the absence
of data flow between two different blocks from left to right). However, some catchments with single mechanisms have become
dominated by mixeda mixture of mechanisms (i.e., flowing from colorful blocks to grey ones, which accounts for 6.4% of the
total), while some behave in the opposite way (7.4%). In a few catchments with mixeda mixture of mechanisms (4.3%), the

dominant mechanisms have also changed, though they remain mixed.

Despite only a few fractions of catchments presenting a change in their dominant flooding mechanisms, Fig. 7b reveals

tendencies for specific mechanisms at event levels as-shewsn-when considering all annual maximum peak discharges in the

846 catchments over the past seven decades. Fhe-eelorful-linesrepresentIn particular, the annual evelation-eftheprepertions

mechanisme i e chadoc denotine the 950/ canfidanaq

peak discharges driven by snowmelt have been declining by 0.7% per decade, while recent precipitation has become more

dominant in causing floods, increasing by 1.0% per decade. Both frequency changes are probably associated with the warming
atmosphere, which causes decreased snowpack (Fontrodona-Bach et al., 2018). Also, because of the rising temperatures, the
atmosphere has a higher moisture holding capacity, leading to an increase in precipitation extremes on average (Trenberth,
2011; Fischer and Knutti, 2016). These factors make it more likely that the annual floods are driven by recent precipitation
and less frequently by snowmelt. Additionally, we observe an overall slight decrease in soil moisture excess-driven floods as
a result of counterbalancing the other two trends, though the trend is not statistically significant when considering the entire
period. Nete-that The above eonelusionisnetaffected-evenconclusions hold when considering a smaller subset of catchments

(481 in the case) with at least 25 years of records in each period.
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Figure 7: (a) Sankey plot indicating the proportions of single dominant flood generating mechanisms and their combinations during
two time periods, with the flow lines indicating shifts between them. The proportions were calculated based on the 846 catchments
that have at least 15 vears of records available in each period. (b) The evolution of the proportions of annual maximum peak
discharges with the three flooding mechanisms, with the shades denoting the 95% confidence interval of the proportions. The dashed
black lines indicate the slope of their trends estimated by Theil-Sen’s Estimator:, with their significance being assessed by the
modified Mann-Kendall test. (c), (d), and (e) The spatial trends in different event-based flooding mechanisms, where the trends
indicated by the colorful dots were calculated using a 20-year moving window. Markers with black edges denote catchments with
significant trends (¢=0.05). The black boxes highlighted five hotspot regions that are discussed in the main text.

FEigure7e-eNote that Fig. 7b only presents the overall trends in flooding mechanisms at the continental scale, while disparate

trends may exist in different regions that could cancel each other out. Therefore, we further examinesexamined the trends in

different event-based mechanisms in the 846 catchments; (Figs. 7c—e), with the color representing the Theil-Sen slopes
computed on the time series of respective proportions in individual catchments.-Fhe-propertionseries-were-calenlatedusinga
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the Alps, which are typically dominated by snowmelt, have experienced significant decreases in snowmelt-driven floods, while

similar cases have occurred in Scandinavia as well (Fig. 7c). In contrast, extreme precipitation has become a more frequent
cause of annual maximum discharges in the Massif Central, North European Plain, and the Alps, while decreased trends are
observed in some regions of Western Europe and especially southeast England (Fig. 7d). As for soil moisture-induced floods,

their proportion generally shows opposing trends relative to those of extreme precipitation (Fig. 7e).

The decreasing trend in snowmelt-driven floods was also detected by Kemter et al. (2020), with 1.65% per decade, mainly
occurring in eastern Europe, which was outside of our study area. In addition, they detected an increase in stratiform rainfall-
driven floods (0.49% per decade) mainly along the Mediterranean coast and an increase in soil moisture excess-driven floods
(1.55% per decade) in the British Isles and central and northern Europe. The difference between Kemter et al. (2020) and this
study probably arises from the varying study areas (the former additionally includes a large number of eastern and southern
European catchments), as well as the definition of flood types. For example, their study defined soil moisture excess-driven
floods as non-snowmelt floods when the mean soil water content was above 70% before a time window, and the remainder
were stratiform rainfall-driven floods. In contrast, this study used cluster analysis for the actual contributions of precipitation

events before floods, and soil moisture-induced floods were related to annual maximum peak discharges where the contribution

from antecedent precipitation is more important than recent precipitation.

3.56 Possible causes and implications of the trends

To gain insights into the causes of the identified trends, we analyze five selected regions highlighted in Figs. 7c—e (see region
numbers in panel c), which feature consistent trends in certain mechanisms. For region 1 (the Alps) and region 3 (northeast
Scandinavia), catchments with significant decreasing trends in snowmelt-driven events were considered. For region 2
(southeast France) and region 4 (northern Germany), we considered catchments with significant increasing trends in extreme
precipitation-driven events, as well as those presenting significant decreases for region 5 (southeast England). Figure 8 shows
the temporal regional evolution of the event-level mechanisms within the considered catchments, along with the change in
magnitude of the annual maximum 7-day tetal-precipitation and mean spring temperatures January-to-Aprib-over the past 70
years. For the two regions with significant soil moisture effect on flooding (i.e., regions 4 and 5), we additionally added the

averaged trends of

window-forbettervisualization-of their trendsantecedent soil moisture conditions prior to flooding for analysis.
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Figure 8: The temporal changes of the event-level mechanisms in relevant catchments within the five selected regions (see Fig. 7¢),
as well as the changes in average extreme precipitation (represented by annual maximum 7-day total precipitation), mean spring
temperatures (represented by average temperature between January and April), and antecedent soil moisture conditions prior to
flooding (represented by the 30-day total precipitation preceding the 7-day window of recent precipitation). The numbers in panel
titles indicate the number of catchments considered. The proportions were calculated by a 20-year moving window, while

precipitation and temperature were smoothed by using a 20-year moving average window-, with their values at central positions in
time windows. The dashed black lines indicate the slope of relevant trends estimated-byTheil-Sen’s Estimator; with their significance

being-assessed-byv-the-modified-Mann-Icendall-test.

Mean spring temperatures have increased significantly in all five regions (Fig. 8), confirming the previous explanations for
the reduced influence of snowmelt on river discharge annual maxima in snowy areas (regions 1-3) (Beniston and Stoffel, 2016;
Vormoor et al., 2016). Furthermore, in regions 14, the increased magnitude of maximum 7-day precipitation can explain the

rise in proportions of annual maximum peak discharges driven by extreme precipitation events. In contrast, the maximum 7-

day precipitation in seuthernsoutheast England (region 5) remained almost unchanged (Fig. 8e). Nonetheless, soil moisture
conditions before discharges might have increased in seuthernsoutheast England, as indicated by the increasing antecedent

precipitation accumulations, which causes annual maximum discharge there to be more likely driven by soil moisture excesses
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than by recent precipitation. Bloschl et al. (2017) stated that the region has a large subsurface water storage capacity, which is
capable of storing a large amount of water that continuously increases until flooding occurs. In comparison, in northern

Germany (region 4), the antecedent precipitation before annual maximum peak discharges has increased more slightly (Fig.

8d), while the increase in precipitation extremes likely caused an increase in floods driven by recent heavy precipitation. Note

that here we merely examined the monotonic trends within data over the 70 years, while the trends may vary piecewise (e.g.

the changes in maximum weekly precipitation in the Alps and southeast France), the impact of which on flooding mechanisms

deserves further research.

A change in flooding mechanisms may affect the seasonality and magnitude of flooding, which might ultimately impair the

current flood risk management measures. For example, in catchments previously dominated by snowmelt, the-seasenal-patterns

floodsremainrelativelystable-increasing floods from extreme precipitation and soil moisture excess may lead to shifted flood

mean dates and less concentrated seasonal patterns (as exemplified in Fig. B1 in Appendix B). By simulating daily discharge

for a reference period (1961-1990) and a future period (2071-2099), Vormoor et al. (2015) predicted that floods in some

Nordic catchments could even shift from spring to autumn as rain replaced snowmelt as the dominant flood-inducing process.
These results suggest that, in a warmer climate, flood risk predictions in snowmelt-affected catchments should consider the

interconnection between changes in flooding drivers and seasonality.
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AdtheughAs for the impact on flooding magnitude, while it is challenging to link observed changes in individual flooding

drivers alone to changes in flooding magnitudes, a link may appear especially in light of climate change (Bloschl et al., 2019).

>

For example, Fig—9¢-shows-the-distribution-of-Spearman’s—correlations-between—annual-maximum—discharge-and-annua

by recent precipitation tend to hav

that-the-former-might-be more susceptible to changes in extreme 7-day precipitation- (Fig. B2 in Appendix B). Despite a lack

of sufficient observational evidence that the magnitude of floods increases with more extreme precipitation (Sharma et al.,
2018), the trend of which is often determined jointly by both changes in rainfall and changes in antecedent soil moisture, some
studies demonstrated the changed precipitation severity could vary the relationship between precipitation and streamflow
(Bennett et al., 2018). When recent rainfall increases, changes in antecedent moisture conditions would become less important
in modulating the response to rainfall (Wasko and Nathan, 2019). Brunner et al. (2021) indicated that it is possible to identify
a catchment-specific extremeness threshold, above which precipitation increases clearly produce greater flood magnitudes,
and below which flood magnitude is strongly modulated by soil moisture. Therefore, the persistent risk that recent extreme

precipitation would have an increasingly decisive role in flood generation for a large proportion of catchments, as implied by
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Figurelig. 7, cannot be disregarded. Recognizing the impact of such mechanism shifts in flooding mechanisms is crucial for

understanding the link between changes in precipitation and flood risk in a warming climate.

3.7 Limitations and outlooks

In this study, we trained LSTM models individually for each catchment, while some studies have suggested that training a

regional model for all catchments at once may be a better practice (e.g., Nearing et al., 2021). In the latter case, both

meteorological time series and static catchment attributes are used as inputs to distinguish response behaviors across time and

space, with the benefit that the ML model can learn more general relationships from a larger sample of hydrological variability

(Kratzert et al., 2019b). However, introducing catchment attributes may prevent the identification of flood generation

mechanisms based on distinguishable patterns of meteorological variables’ contributions, which is the main objective of this

study. Interpreting flooding mechanisms with regional LSTM models may become more challenging than with local LSTM

models that use only meteorological time series, since some catchment attributes would confound the interpretation. Therefore,

here we employed local models. Nevertheless, we note that using regional models can provide insight into how flooding

mechanisms vary spatially, particularly for how the spatial distribution is affected by the geographic and climatic

characteristics of catchments, and it merits more exploration in future studies.

Moreover, to strike the balance between model interpretability and accuracy, we only selected daily precipitation, temperature,

and day length as meteorological inputs. The combination of inputs results in uncovering three well-known flooding

mechanisms, which allows us to make a direct comparison with findings from other studies that used classical methods.

However, with more input variables incorporated into the model, the methodology may be able to recognize more distinct

patterns in terms of input contributions. In principle, this could allow identifying flooding mechanisms that are often

overlooked and may not be easily explainable with well-known processes. However, it would likely be much more challenging

to make sense of the flooding mechanisms from the likely much more complicated patterns in input feature importance, which

we leave for future studies.

In the clustering procedure, we chose to use a 7-day window to ageregate the daily IG scores into a low-dimensional

contribution vector for the sake of efficiency in clustering lengthy time series, which could induce inevitable uncertainties and

subjectivity. Despite this, additional tests indicate that our findings are similar when using a 5-day window, which is also a

common interval to consider flooding drivers (e.g., Rottler et al., 2021). Specifically, based on the 5-day window, the events

identified with snowmelt, recent precipitation, or antecedent precipitation as the primary causes account for 15.0%, 47.9%.,

and 37.1% of all the 55,828 annual maximum peak discharges, which is only slightly different from using a 7-day window.

As for the three mechanisms in individual catchments, decreasing the window length has the least impact on identifying

snowmelt-driven floods, with the absolute changes in their proportions within 1% for 84.5% of catchments and within 5% for

98.7% of catchments. In comparison, the proportion changes for two other flooding types are more sensitive, with changes
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within 5% for 83.2% (82.7%) of catchments in terms of recent (antecedent) precipitation-driven flooding. However, this does

not affect the conclusion regarding the respective trends in flooding mechanisms (see Fig. S4 in the Supplementary Material)

indicating the robustness of the methodology. Despite this sensitivity analysis, we would like to emphasize that the selection

of the separating window remains somewhat subjective, and further exploration is needed to avoid a possible bias due to

arbitrary judgments in identifying flooding mechanisms.

4 Conclusions

Flooding in rivers is usually caused by complex interactions between heavy precipitation, high soil moisture, and melting snow.
Climate change has resulted in an overall decreased snowpack and more intense short-term precipitation extremes, which
might systematically alter the interaction between flood drivers at the catchment level. Nevertheless;fewstudieshave-been

ableto-To investigate whether flooding mechanisms have changed in European catchments, this study introduced a novel

explainable ML method to identify a

conventional classification appreachishighbyapproaches, where the results are usually dependent on appropriate flood process

definitions and sensitive to ehanges-in-thesubjeetively-designedthe selected indicators and threshold parameters—l&thrs&tudy—

a, the combination of explainable ML and cluster analysis ¥
Hfloodswith-similarpatteras-ef-is able to avoid such predefinitions and reduces subjectivities in identification processes. With

the ML-captured feature importance of precipitation, temperature, and day length for predicting annual maximum discharges

we aggregated driver contributions- in the recent 7 days and an earlier period (back to 180 days) and then applied cluster

analysis to group them based on similar patterns. As a result, the method identifies three major patterns that induce floods

across 1,009 European catchments, corresponding to three typical flooding mechanisms, including recent precipitation
(responsible for 48.3% of the annual maximum discharge events), antecedent precipitation (i.e., excessive soil moisture,
accounting for 36.5%), and snowmelt (15.2%). The results indicate that for 25.6% of catchments, recent precipitation is the
typical main contributor to floods, while floods are typically controlled by antecedent precipitation (linked to excessive soil
moisture) in 12.3% of catchments. In around one-third (33.2%) of catchments, floods are dominated by a combination of recent
heavy precipitation and antecedent precipitation events—-reans, meaning that some floods there were caused by recent rains,
and others were primarily driven by antecedent precipitation, although many of them were likely due to the compound effect
between the two drivers. The remaining catchments are dominated by snowmelt (9.3%), or by combinations of snowmelt with
the other two drivers. The spatial distribution of the dominant flooding mechanisms reflects the variation of the catchment’s
geographic and climatic characteristics and is generally consistent with results reported in earlier studies, some of which were

obtained-taking aperspeetive-on-eatehmentaveragesdid not perform event-based classifications but rather identified the overall

mechanisms within individual catchments.
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We further detected changes in dominant flooding mechanisms over the last 70 years in over 18% of European catchments,
especially some catchments that were previously dominated by single mechanisms became dominated by sixeda mixture of
mechanisms and some catchments show opposite shifts. Despite no regime shift from one single flooding mechanism to
another single one, tendencies in their mechanisms at event levels were found. Specifically, when taking all annual maximum
discharge events into account, those triggered by snowmelt have significantly decreased, with their proportion dropping by
0.7% per decade. Recent 7-day precipitation, on the other hand, has become increasingly important for flooding, with flooding
triggered by such recent heavy precipitation increasing by 1.0% per decade. The changes in flooding mechanisms present a

largely consistent pattern with climate change responses, and the-study-highlightswe discuss the potential risks associated with

the resulting effects on flooding seasonality and magnitude.

modulatingfloed-events—Overall-eurthis study highlights the usability of explainable ML in helping uncover complex and

possibly non-linear changes in weather and climate extreme events in the warming Earth system. With more large-sample

hydrometeorological datasets becoming readily accessible, one next step is to extend the research to a larger scale for a better

understanding of variations in flooding mechanisms globally. Still, many challenges remain for future work, providing

potential research opportunities. For example, the clustering procedure can be improved by developing algorithms to ageregate

daily feature importance adaptively, thereby avoiding the predefined separation window while maintaining high efficiency.

Moreover, regional LSTM models that incorporate static catchment attributes can be employed to capture the spatial variations

in flooding mechanisms and quantify the influence of catchments’ geographical and climatic conditions on flooding processes.

In addition to the integrated gradient method used in this study, other interpretation techniques might be explored further to

uncover potentially valuable information when more input variables are included.
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Figure Al: Determination of optimal cluster number. (a) The average silhouette coefficients and total within-cluster sum-of-squares
assessed for respective candidate cluster numbers. (b) The silhouette plots for various clusters when the cluster number being 2 or
3, where the x-axis represents the silhouette coefficient for individual samples, and they were ordered by the coefficients and grouped
by clusters in the y-axis. (a) suggests that clustering the samples into either two or three groups can achieve the similarly highest
average silhouette coefficients, while the silhouette plots for individual samples under the two candidate numbers in (b) further
suggest that clustering into three groups would be the best choice because a cluster with all below-average silhouette coefficients is
present when clustering into two groups. Therefore, we cluster annual maximum peak discharges into three main groups in the
main text.
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Figure Bl: (a) Change in flooding mean dates (difference from 1985-2020 to 1950-1985) in 37 catchments with a significant

reduction of snowmelt-driven floods in the Alps (region 1 in Fig. 7¢) for snowmelt-driven floods and all floods irrespective of their
cause. For these catchments, the overall proportion of annual maximum discharges caused by snowmelt has decreased from 50.2%
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in 1950-1985 to 37.6% in 1985-2020. (b) The differences in mean resultant length of flood dates for the same cases as in (a). The
mean _resultant length is a measure in circular statistics between 0 and 1 that reflects the spread of a circular variable, with 0
representing the spread of flood dates evenly distributed over the vear and 1 representing the spread concentrated at one day. It can
be deducted from (a) that following the temperature increase, snowmelt-driven floods generally occur earlier in the year during
1985-2020 compared to 1950-1985, with a median shift of -3.8 days. On the other hand, annual peak discharges occur later in more
than half of the catchments due to the increasing presence of other types of floods. Furthermore, (b) shows that the seasonality of
annual maximum discharges has become more diffuse (decreasing mean resultant length) in most catchments for the same reason,
though snowmelt-driven floods remain relatively stable.
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Figure B2: The distribution of Spearman’s correlations between annual maximum discharge and annual maximum 7-day
precipitation for two groups of catchments (blue, recent precipitation-dominated catchments; green, antecedent precipitation-

dominated catchments, based on Fig. 6a). It shows that the catchments where floods are dominated by recent precipitation tend to

have higher correlations than antecedent precipitation-dominated catchments, which implies that the former might be more
susceptible to changes in extreme 7-day precipitation.

Data and code availability

The river discharge data can be obtained from the GRDC dataset (https://www.bafg.de/GRDC). The E-OBS gridded
precipitation and temperature dataset is available at https://www.ecad.eu/download/ensembles/download.php(Haylock et al.,
2008). Catchment attributes and boundaries are available at https://doi.pangaea.de/10.1594/PANGAEA.887477 (Do et al.,
2018) and https://www.bafg.de/GRDC/EN/02 srvcs/22 gslrs/222 WSB/watershedBoundaries.html (Lehner, 2012). The 30
arc-second elevation data shown in Fig. la is accessible at http://doi.org/10.5066/F7DF6PQS. The code for the explainable
machine learning framework is available at https://doi.org/10.5281/zenodo.4686106.
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