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Abstract. Climate change may systematically impact hydro-meteorological processes and their interactions, resulting in 

changes in flooding mechanisms. Identifying such changes is important for flood forecasting and projection. Currently, there 

is a lack of observational evidence regarding trends in flooding mechanisms in Europe, which requires reliable methods to 10 

disentangle emerging patterns from the complex interactions between flood drivers. By using a novel explainable machine 

learningRecently, numerous studies have demonstrated the skill of machine learning (ML) for predictions in hydrology, e.g., 

for predicting river discharge based on its relationship with meteorological drivers. The relationship, if explained properly, 

may provide us with new insights into hydrological processes. Here, by using a novel explainable ML framework, combined 

with cluster analysis, we identify three primary patterns that drive 55,828 annual maximum discharge events in over a thousand 15 

European catchments. The patterns can be associated with three catchment-wide river flooding mechanisms: recent 

precipitation, antecedent precipitation (i.e., excessive soil moisture), and snowmelt. The results indicate that over half of the 

studied catchments are controlled by a combination of the above mechanisms, especially recent precipitation in combination 

with excessive soil moisture, which is the dominant mechanism in one-third of the catchments. Over the past 70 years, 

significant changes in the dominant flooding mechanisms have been detected within a number of European catchments. 20 

Generally, the number of snowmelt-induced floods has decreased significantly whereas floods driven by recent precipitation 

have increased. The detected changes in flooding mechanisms are consistent with the expected climate change responses, and 

we highlight the risks associated with the resulting impact on flooding seasonality and magnitude. Overall, the study 

demonstrates the important role of explainable machine learning in uncovering complex and possibly non-linearoffers a new 

perspective on understanding changes in weather and climate extremesextreme events and their drivers under climate changeby 25 

using explainable ML and demonstrates the prospect of future scientific discoveries supported by artificial intelligence. 

1 Introduction 

River flooding is a pervasive natural hazard that regularly causes substantial economic, societal, and environmental damages 

worldwide (Merz et al., 2021; Tellman et al., 2021). With a warming atmosphere, flooding risk is projected to increase due to 

an intensification of the water cycle over large areas (Hirabayashi et al., 2013; Alfieri et al., 2017). For Europe, large-scale 30 

studies have revealed changes in flooding frequency, seasonality, and magnitude over the past decades, with considerable 
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variations across catchments (Alfieri et al., 2015; Blöschl et al., 2017; Hall and Blöschl, 2018; Blöschl et al., 2019; Bertola et 

al., 2020). The spatial inconsistency in these trends reflects differences in flood generating processes across the continent, 

which underscores the need for a better understanding of flood drivers (Keller et al., 2018). 

 35 

In recent years, numerous studies have investigated river flooding mechanisms and some of them have provided European-

scale assessments (e.g., Berghuijs et al., 2016; Berghuijs et al., 2019; Kemter et al., 2020; Bertola et al., 2021; Stein et al., 

2021). Catchment-level floods can typically be attributed to the interaction of hydro-meteorological processes, such as extreme 

precipitation, soil moisture excess, and snowmelt (Merz and Blöschl, 2003; Tarasova et al., 2019). The dominant controlling 

processes in catchments were usually identified either qualitatively by comparing the observed flood trends with the 40 

contemporaneous changes in flooding drivers (e.g., Blöschl et al., 2017; Blöschl et al., 2019) or quantitatively by calculating 

the seasonal similarities between flood events and potential drivers (e.g., Berghuijs et al., 2016; Berghuijs et al., 2019). Such 

analyses revealed the dominant flood generating processes at a catchment level, improving the understanding of climate change 

effects on flooding magnitude and timing. However, the methods eitheroften implicitly assumedassume temporally consistent 

flood processes within a catchment (Merz et al., 2012), or were limited in the little interannual variability of seasonality 45 

statistics , making it difficult to detect possible changes in flooding mechanisms themselves in a warming climate. 

 

Flooding mechanisms that dominate one catchment are not always immutable but might shift over time, particularly in light 

of climate change (Hall et al., 2014). For example, increasing temperatures can affect snow dynamics in cold regions and result 

in more rainfall extremes, which could make snowmelt-dominated catchments more susceptible to extreme rainfall and thereby 50 

alter the regional flood seasonality and magnitudes (Vormoor et al., 2016; Davenport et al., 2020; Rottler et al., 2021). 

Therefore, a systematic investigation of the changes in flooding mechanisms is necessary. Yet few studies have been able to 

quantify how the mechanisms evolved over time on a continental scale in Europe. The identification of specific trends in 

flooding mechanisms requires a comprehensive understanding of hydrological processes underlying individual events (Stein 

et al., 2020).  Currently available studies that attempted to classify river flooding processes on an event basis typically rely on 55 

multicriteria approaches, which require predefining thresholds for a variety of hydrometeorological indicators, such as the 

storm duration and snowmelt amount (e.g., Nied et al., 2014; Stein et al., 2021). Using a multicriteria approach, Kemter et al. 

(2020) identified the flooding mechanisms in Europe by classifying approximately 174,000 flood peaks and revealed their 

trends over the past 50 years. Likewise, Stein et al. (2020) analyzed flood events over 4,155 catchments worldwide and 

classified them into five flood-generating processes. Despite the computational efficiency of using multicriteria approaches, 60 

the obtained insights are often dependent on the careful choice of indicators and thresholds. For example, in some cases, a 

small change in a threshold value modifies the classification, potentially compromising the robustness of the results (Sikorska 

et al., 2015). Alternatively, some studies grouped flood events by inductive analyses, which adopted clustering methods to 

obtain flood types from hydrometeorological indicators (e.g., Turkington et al., 2016; Keller et al., 2018). However, the chosen 

indicators (e.g., snow-covered area, day of occurrence, and 95th percentile of spatial precipitation distribution) did not 65 
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unambiguously indicate flooding mechanisms since they were not indicative of the causal contribution of flood drivers to peak 

discharges (Tarasova et al., 2019). 

 

An effective way to identify flooding mechanisms for individual flood events is to quantify the contribution of possible drivers 

to its occurrence, which involves uncovering the implicit connections that may exist between flood events and meteorological 70 

observations. This can be achieved by machine learning (ML), which has been receiving increasing attention in Earth and 

climate sciences for its remarkable ability to identify and generalize predictive relations with a high-level abstract 

representation (Reichstein et al., 2019; Yu and Ma, 2021). In hydrology particularly, one excellent example is the prevalence 

of long short-term memory (LSTM) neural networks (Kratzert et al., 2018; Shen, 2018), which have been demonstrated to 

learn patterns conceptually consistent with qualitative understandings of how hydrological systems work as opposed to simply 75 

trivial coincidences (Kratzert et al., 2019a). Extraction of captured patterns from “black-box” ML models with feature 

attribution techniques (i.e., ML interpretations) may lead to theoretical advances and can assist in making new scientific 

discoveries, as recently demonstrated for climate, ocean, and weather applications (e.g., Barnes et al., 2020; Toms et al., 2020; 

Labe and Barnes, 2021), including the identification of flooding mechanisms (Jiang et al., 2022). 

 80 

In this study, we will revisit flooding mechanisms in Europe over the period 1950–2020 by using an improved framework 

based on the explainable ML methods developed by Jiang et al. (2022) and compare the results with existing studies. We base 

the analysis on over 1,000 catchments and the only dynamic information necessary for the analysis is precipitation, 

temperature, and streamflow. These three variables can be readily measured, thereby reducing the reliance on possibly 

uncertain estimations of fluxes and state variables (such as soil moisture). The combination of supervised learning-based 85 

feature attribution and unsupervised learning-based cluster analysis reduces subjectivity and uncertainty for the selection of 

appropriate indicators and thresholds in the categorization of flood drivers. Moreover, taking an event-level perspective, we 

quantify the changes that occurred in these mechanisms in the past seven decades, and discuss the possible reasons and 

implications of the detected changes. Overall, the study contributes to a better understanding of river flood risk and how it is 

affected by climate change and illustrates how explainable ML can advance knowledge about the Earth system. 90 

2 Data and methodologies 

2.1 Data 

The study considers 1,077 catchments in the domain of Europe (Fig. 11a) based on the data availability of daily river discharge 

observations from the Global Runoff Data Centre (GRDC) dataset (https://www.bafg.de/GRDC). We restricted our analysis 

to catchments having an area of 10,000 km2 or less to exclude overly large catchments and having a minimum of 20 years of 95 

discharge records within 1950–2020 to ensure sufficient samples to train the ML models. The catchment areas range between 

8 km2 and 10,000 km2 — very large catchments, where the effect of spatial heterogeneity of flood drivers tends to be 
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substantial, were not considered. For those catchments, the sample size of daily discharge records ranges from 7,300 to 25,753, 

with a median of 20,455. Overall, the selected catchments encompass a variety of geographical and climatic conditions, as 

illustrated by the catchment distributions in terms of average elevation, average slope, catchment size, aridity index, snowfall 100 

fraction, and flood mean date (FigureFig. 1). The elevation, slope, and size were derived from the Global Streamflow Indices 

and Metadata Archive (GSIM) (Do et al., 2018), the aridity index and snowfall fraction were calculated from the catchment-

averaged precipitation and temperature described later. In the study, floods are defined as the annual maxima (peaks) of river 

discharge time series in line with common practices (e.g., Blöschl et al., 2017; Blöschl et al., 2019). The above properties will 

also be used to discuss their relevance to the catchment-level dominant flood mechanisms. 105 

 

We considered precipitation, temperature, and day length as input variables of the ML models. Using the 0.1° daily gridded 

precipitation and mean surface temperature data from the E‐OBS dataset (version 23.1e) (Haylock et al., 2008), we calculated 

the catchment-averaged time series of these variables based on area-weighted averages of the data pixels within the catchment 

boundary. The weight of each pixel was determined by the fraction of its area covered by the relevant catchment, where the. 110 

The catchment boundaries were obtained from readily available GRDC (Lehner, 2012) and GSIM (Do et al., 2018) databases., 

with GRDC being prioritized when the boundary of a catchment was available in both databases. Note that for smaller 

catchments under 100 km2 (approximately 0.1° × 0.1°), uncertainties may exist due to the relatively coarser spatial resolution 

of the meteorological data. Nonetheless, those catchments with large uncertainties will not be considered for the subsequent 

attribution analysis if ML models cannot capture the relationship between inputs and outputs effectively. Day length was 115 

included in the study since it was shown to improve model accuracy in a series of preliminary tests. It, including the cases 

where only precipitation and temperature were used and day length was additionally incorporated. Catchments where day 

length largely improves accuracy are mainly located in northern Europe. Day length was calculated based on the day of the 

year and the latitude of the catchment center by the Brock model following Forsythe et al. (1995). 
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Figure 1: An overview of the 1,077 catchments and their properties, including average (a) elevation and slope of the catchments, (b) 
the catchment size, (c) the aridity index, expressed by the ratio between mean annual potential evapotranspiration (PET) over mean 
annual precipitation, (d) the fraction of precipitation falling as snowfall (i.e., precipitation falling with temperature below 0 °C), and 
(e) the seasonality of annual maximum discharges. PET was estimated via Hamon’s formulation (Hamon, 1961).  

2.2 Attribution framework and ML model 125 

Figure 2 illustrates the framework of using explainable ML methods for flooding attribution in the present study, which was 

originally developed by Jiang et al. (2022) and involves three main steps. First, we built ML models for individual catchments 

to establish the nonlinear predictive maps from meteorological factors (i.e., precipitation, temperature, and day length) to daily 

discharges (Fig. 2a). Secondly, an ML interpretation technique was applied to interpret the trained models to quantify the 

contributions of the three input variables at each time step (i.e., time-wise feature importance) to the generation of respective 130 

flood events (Fig. 2b). The time-wise feature importance was further aggregated into contributions of specific features. Finally, 

cluster analysis was used to group the specific feature contributions from multiple flood events that had similar patterns into 

several categories, from which we then identified different flood mechanisms (Fig. 2c).. Detailed explanations of the methods 

are given below. 
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Figure 2: The workflow of using explainable ML methods for attributing flood peaks (annual maxima of river discharge) to their 
drivers. (a) Diagrammatic representation of the used LSTM models, where the windows. The window in the time series of discharge 
highlights the target output (which is a point) and the window in the inputs and output highlightindicates the input features and 140 
target output in predictingused to predict the illustrated peak discharge sample. (b) The feature importance extractedof the inputs 
for predicting the peak discharge shown in (a), which was obtained by using the ML interpretation technique (namely integrated 
gradient (IG) technique for the flood event shown in (a).). The vertical dashed lines in the windows separate the feature importance 
into a recent 7-day period and an earlier period to calculate the aggregated feature contributions (see main text). (c) A subset of 
peak discharges visualized by using t-Distributed Stochastic Neighbor Embedding (t-SNE), where each dot represents one peak 145 
discharge event and the clusters are obtained based on the results. 

 

In the study, we used the classical LSTM network (Hochreiter and Schmidhuber, 1997) as the ML model. The LSTM is one 

of the most popular ML architectures for modeling dynamic hydrological variables (e.g., Kratzert et al., 2018; Lees et al., 

2021), which can effectively capture nonlinear and temporal dependencies between variables owing to its recurrent structure 150 

and unique gating mechanism (Gers et al., 1999). The effectiveness of the LSTM is partially due to the comparability of its 

formulation to the hydrological behavior of a catchment. Specifically, the backbone of the LSTM network is composed of 

recurrent cells that can store previous information from input sequences, which is conceptually similar to the way 

meteorological information (e.g., precipitation) is stored in the form of soil moisture or snowpack (Lees et al., 2022). The 

physically realistic mapping from inputs to outputs facilitates gaining hydrologically meaningful insights from subsequent 155 

model interpretations. Figure 2a illustrates the data flow of one sample in the LSTM model, with the dashed windows 

highlighting the predictors and the target variable. The input layer of the model brings in precipitation (𝑃), temperature (𝑇), 
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and day length (𝐷) over the past 180 days (i.e., [𝑋!", 𝑋#",…, 𝑋!$%" ; 𝑋!&, 𝑋#&,…, 𝑋!$%& ; 𝑋!', 𝑋#',…, 𝑋!$%' ]) and the output layer 

produces the discharge of the following day (i.e., 𝑦%). The hidden layers consist of a single LSTM layer and a dense layer with 

32 units. The number of time steps and hidden units were determined by considering both the model performance and 160 

efficiency, which had been evaluated in preliminary experiments. Preliminary experiments also suggest using fewer time steps 

(e.g., 90 days) would not impair the later conclusions of the study about flooding mechanisms, because contributions from 

inputs at very early time steps to output are limited in LSTM models (i.e., memory decay) (Su and Kuo, 2019). Here, we skip 

the technical details of the LSTM architecture and refer to Sherstinsky (2020) for a comprehensive explanation of the 

fundamentals of LSTM networks.  165 

 

Given a catchment, To improve the robustness of model evaluation and analysis, we fitted 10 independent LSTM models for 

each of the 1,077 catchments. Each independent model was trained and tested based on samples that were randomly split in a 

7-to-3 proportion, where the random sampling strategy enables capturing the overall hydrometeorological variability observed 

across various periods. In the training process,. During the training process, a portion of the training data (70%) was repeatedly 170 

used to update the model parameters every epoch until no further decrease in the loss function was observed on the remaining 

30% (also known as validation data). The trained models were independently evaluated on the testing datasets. Note that here 

we adopted a random sampling strategy instead of the time-series splitting strategy with fixed time intervals in order to enable 

capturing the overall hydrometeorological variability observed across various periods. It should be emphasized that while the 

random sampling strategy is appropriate with respect to the purpose of this study, it might not be the best practice if the models 175 

were developed for prediction tasks, particularly if they were to be applied to new datasets. The initial learning rate and 

maximum training epoch number were configured to 0.01 and 200, respectively, with the adaptive moments estimation (Adam) 

algorithm (Kingma and Ba, 2015) was adopted to optimize the parameters of neural networks. The initial learning rate and 

maximum training epoch number were configured to 0.01 and 200, with an early stopping strategy  to prevent overfitting.being 

used for training the models.  180 

2.3 Model interpretations and cluster analysis 

The integrated gradient (IG) technique developed by Sundararajan et al. (2017) was employed to interpret the trained models, 

which allows for obtaining the time-wise feature importance of the three input variables for each sample. of the output (i.e., 

daily discharges). The IG method is a gradient-based interpretation technique that exploits the gradient of the model’s output 

to its input features to trace back the specific contributions of the inputs. It aims to assign an importance score to each feature 185 

(e.g., to the precipitation at each time step prior to the flooding). A large positive score indicates that the feature substantially 

increases the network output (e.g., that the precipitation at a certain time step contributes to increasing the flooding), a large 

negative score indicates a decrease in the network output, and a score close to zero indicates little influence on the output. The 

IG score for the input feature 𝑥 (e.g., precipitation at the 𝑖-th time step) is formulated as: 
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𝜙((𝑥) = (𝑥( − 𝑥()) ∫
*+,-!./0-1-!23

*-"
d𝛼!

/4%        (1) 190 

where 
*+,-!./0-1-!23

*-"
 denotes the local gradient of the network 𝑓 at a point interpolated from a baseline input (𝑥), when 𝛼 =

0), which is meant to represent the “absence” of feature input, to the target input (𝑥, when 𝛼 = 1). An important property of 

the IG is completeness, which states that the IG scores add up to the difference between the output of 𝑓 at the target input 𝑥 

and the baseline input 𝑥), i.e., ∑ 𝜙((𝑥)( = 𝑓(𝑥) − 𝑓(𝑥)). Therefore, the model output can be decomposed into the sum of 

features’ individual contributions, and it enables us to examine the contribution of a group of features by summing up their 195 

individual IG scores. 

 

In the study, we focus specifically on the IG scores for annual maximum peak discharge events to gain insights into flooding 

mechanisms. Given that we trained 10 independent models, 10 sequences of time-wise feature importance were generated for 

each peak discharge, with each sequence having the same dimensions as the input variables (i.e., [𝜙!", 𝜙#",…, 𝜙!$%" ; 𝜙!&, 𝜙#&,…, 200 

𝜙!$%& ; 𝜙!', 𝜙#',…, 𝜙!$%' ]). Then, the 10 sequences were averaged into one sequence (i.e., [𝜙4!", 𝜙4#",…, 𝜙4!$%" ;	𝜙4!&, 𝜙4#&,…, 𝜙4!$%& ;	

𝜙4!', 𝜙4#',…, 𝜙4!$%' ], which is simplified as {𝜙4(∙} hereafter) to reduce the impact of the stochasticity associated with training the 

different LSTMs. Figure 2b exemplifies the averaged IG scores corresponding to the sample shown in Fig. 2a, i.e., it shows 

the contribution of the three input variables to the selected annual maxima of river discharge. The warm or cool colors in the 

heatmap denoting the input variable at the particular time step has increased or decreased the network output, while white 205 

indicates little effect. Note that the averaged IG scores for an individual peak were computed by averaging the scores obtained 

from all the independent 10 models, regardless of whether the peak was part of the training data or the testing data in the 

models. Overall, the IG scores extracted from the 10 models for each target peak discharge generally follow a similar pattern, 

though with inevitable differences due to randomness and uncertainties in training processes (see Figs. S1–S3 in the 

Supplementary Material for examples). 210 

 

In the following step, the sequences of averaged IG scores {𝜙4(∙} can be clustered directly using time series clustering techniques 

based on their similar shapes, such as using the K-means method with the dynamic time warping algorithm (DTW) as the 

distance metric (Tavenard et al., 2020). However, the main drawback of clustering time series is the heavy computational 

burden. The DTW distance between any two samples has a quadratic time complexity with respect to the sequence length, 215 

which would make clustering long feature importance sequences a time-consuming process, and it would be especially 

challenging when dealing with tens of thousands of sequences (Salvador and Chan, 2007). Moreover, for this large-sample 

study that aims to understand flood mechanisms at a continental scale, it might not be necessary to distinguish the daily 

contributions of meteorological drivers in detail. Therefore, before carrying out the cluster analysis, we aggregated each 

sequence of averaged IG scores {𝜙4(∙} intoby using a 7-day separating window, which generate a low-dimensional contribution 220 

vector with only six elements [∑ 𝜙4("6
! , 	∑ 𝜙4("!$%

$ ,	∑ 𝜙4(&6
! , 	∑ 𝜙4(&!$%

$ ,	∑ 𝜙4('6
! , 	∑ 𝜙4('!$%

$ ], where]. Here ∑ 𝜙4(∙6
!  and 	∑ 𝜙4(∙!$%

$  represent 
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contributions of a variable in recent 7 days and an earlier antecedent period, respectively. The separating window size should 

cover the period of precipitation and snowmelt events leading to each peak discharge, which depends highly on the local 

characteristics. After examining the relationship between catchment area and mean event response time, Stein et al. (2020)The 

selection of 7 days accounts for the entire flood-generation and routing processes for catchments investigated in the study  and 225 

is also consistent with the majority of suggested a synoptic window of 7 days should be sufficient to guarantee the response 

time for large catchments. As a result, this study used a 7-day period, similar to the practice in most studies that examined 

flooding causes (e.g., Blöschl et al., 2017; Berghuijs et al., 2019).. However, using a shorter period (e.g., 5 days) does not 

affect the conclusions about dominant flooding mechanisms and their trends (see discussion in Section 3.7). Figure 2b 

demonstrates the values of the aggregated feature contributions based on respective daily IG scores represented by the heatmap.  230 

 

To obtain an overall picture from the individual aggregated feature contributions, we used the K-means method to cluster the 

results for multipleall annual maximum peak discharges pooled from all considered catchments, we used the K-means method 

to cluster aggregated feature contributions into groups with similar patterns (as illustrated in Fig. 2c).. Considering that the 

feature importance values are correlated to the magnitude of the predicted peak discharge due to the completeness property, 235 

we normalized each accumulated vector by its Manhattan norm (i.e., dividing each element by the sum of its absolute values 

while keeping its sign) to make the contributions comparable across different floods. To determine the optimal cluster number 

for the K-means algorithm, we evaluated the cluster characteristics for candidate cluster numbers ranging from 2 to 8 using 

the silhouette coefficient (Rousseeuw, 1987), which reflects the separation distance between the resulting clusters. The 

silhouette coefficient for an individual sample is calculated as (𝑏 − 𝑎)/max(𝑏 − 𝑎), where 𝑎 represents the mean distance 240 

between the sample to all other points within the same cluster, and 𝑏 represents the mean distance between the sample and all 

other points in the next nearest cluster. The average silhouette coefficient over all samples is an indicator of the goodness of a 

clustering result, which ranges from -1 to 1, with a higher score generally indicating a better cluster number choice. 

2.4 Trend analysis of flooding mechanisms 

Based on the clustering results, we can identify the mechanism responsible for each annual maximum peak discharge and 245 

calculate the proportions of different flooding mechanisms at either the continental or catchment scale. The trend magnitude 

in these proportions was then analyzed by the Theil-Sen’s Estimator, with the modified Mann-Kendall test (Hamed and Rao, 

1998) being used to determine the significance of the trend. Specifically, at the continental scale, we estimated the overall 

trends of various flooding mechanisms based on their respective proportions within all the annual maximum peak discharges 

per year. At the catchment scale, to capture the variations of flooding mechanisms over different periods, we calculated the 250 

proportion series using a 20-year moving window in each catchment. The 20-year time frame was used to ensure an adequate 

sample size for reliably estimating the intra-period proportions and also to guarantee enough periods to observe decadal 

variability (Pagano and Garen, 2005). Only proportions that were calculated with at least 10 years of peak discharge data in 

each window were used to estimate the trend slope. 
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Moreover, in order to analyze the possible causes of trends, we selected some catchments exhibiting significant changes in 

flooding mechanisms and compared the temporal regional changes in flooding mechanisms with changes in potential flooding 

drivers. The time series of proportions in regions were calculated by applying the previously described 20-year moving window 

to peak discharge classifications for the considered catchments. The flooding drivers considered include annual maximum 7-

day total precipitation, mean spring temperatures (January to April), and 30-day precipitation preceding the 7-day window of 260 

recent precipitation, which is a common proxy for soil moisture prior to flooding (e.g., Bertola et al., 2021). All the drivers 

were averaged across the catchments and then smoothed by using a 20-year moving average window as well. 

3 Results and discussionsdiscussion 

3.1 Model predictive performance and interpretations 

Before moving to the analysis of annual maximum peak discharges, we used the Nash-Sutcliffe efficiency (NSE) (Nash and 265 

Sutcliffe, 1970) to assess model accuracy in predicting discharges. The NSE value ranges from negative infinite to 1.0, and 

NSE > 0.5 is generally deemed satisfactory for discharge simulations (Moriasi et al., 2015). Based on the NSE value computed 

in the testing period for each independent model, we acquired the average and standard deviation of NSE values for each of 

the 1,077 catchments, as shown in FigureFig. 3. The overall warm colors in the map (Fig. 3a) indicate that the model performed 

satisfactorily for most catchments, with the median of NSE averages reaching 0.81 (Fig. 3b). The low standard deviations of 270 

NSE values (Fig. 3c) further indicate robust model performance in most cases. Accordingly, the models have effectively 

captured the generalizable predictive relationship between meteorological factors and discharges. As an accurate and robust 

predictive relation is essential for deriving meaningful information from ML models (Murdoch et al., 2019), the subsequent 

analyses focus specifically on the 1,009 catchments (out of 1,077; 94%) with average NSE values above 0.5 and coefficients 

of variation below 0.1. In the following, we move to the analysis of annual maximum peak discharges. 275 
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Figure 3: (a) Nash-Sutcliffe efficiency (NSE) values in the evaluation period averaged over the 10 independent LSTM models. (b) 
The cumulative frequency of the averaged NSE values. (c) The distribution of the standard deviation values for the NSE values 
across the 10 independent models. The NSE values were calculated using all samples in respective testing datasets. 280 

 

A total of 55,828 annual maximum discharges were identified from the 1,009 catchments (20–70 peaks per catchment). By 

using the IG method, we can obtain 55,828 feature importance sequences averaged across the 10 independent models. In the 

case shown in Fig. 2c2b, precipitation is the dominant driver behind the annual maximum peak discharge occurrence, showing 

consistently non-negative feature importance with the precipitation peaks that occur closer to the target flood peak having a 285 

greater influence (see pronounced positive contributions in red). Nevertheless, the total contribution from antecedent 

precipitation is more important in predicting the peak compared with the contribution from recent precipitation, as indicated 

by the aggregated scores ∑ 𝜙4("6
!  and	∑ 𝜙4(".!$%

$  The temperature, on the other hand, has an overall negative impact, which may 

be related to evapotranspiration that could decrease the discharge magnitude, while the influence of the day length is relatively 

negligible. Additionally, Fig. 4 further illustrates two other typical cases of feature importance patterns, where the contribution 290 

from recent precipitation (i.e., ∑ 𝜙4("6
! ) and temperature (i.e., ∑ 𝜙4(&6

! ), respectively, is dominant in predicting target peak 

discharges. The distinct patterns of predictor contribution to annual maximum peak discharge predictions suggest that these 

flood events were triggered by different mechanisms. 
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 295 
Figure 4: Additional examples to the case shown in Fig. 2, which illustrate the importance pattern of temperature, precipitation, and 
day length in predicting two discharge peaks from other catchments. (a) Recent precipitation contributes most to the discharge 
peak. (b) Recent temperature contributes most strongly to the discharge peak.  

3.2 Flooding types revealed by cluster analysis 

To separate the 55,828 annual maximum peak discharges into discrete groups characterized by distinct patterns of predictor 300 

contributions, we performed K-means clustering on the normalized contribution vectors. The results of the silhouette analysis 

suggest that clustering into three main groups would lead to the best clustering quality, because it achieves the highest average 

silhouette coefficient and silhouette coefficients for individual samples are reasonably distributed within each cluster (see Fig. 

A1 in Appendix A for more details). It should be noted that the clustering results here only reveal major patterns widespread 

in data, with certain local and specific mechanisms unlikely to be detected. 305 

 

Figures 5a–c show the distinct patterns of the three identified clusters, with cluster 1 featuring high importance of recent 

temperature (Fig. 5a, a positive contribution in line with high temperature favoring snowmelt), cluster 2 featuring the dominant 

contributions from recent precipitation (Fig. 5b), and cluster 3 featuring the importance of antecedent precipitation events (Fig. 

5c). Compared to cluster 1, clusters 2 and 3 show a generally negative effect of antecedent temperature, in line with drying 310 

favored by evapotranspiration. Moreover, annual maximum peak discharges in cluster 1 are characterized by higher 

contributions from day length (Fig. 5a) when compared to the other two clusters. The role of day length implies that the 

magnitude of these peak discharges can be partially explained by the seasonality presented by day length, which peaks around 
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the June solstice. In contrast, the main differences between clusters 2 and 3 are due to the fractions of ∑ 𝜙4("6
!  and ∑ 𝜙4("!$%

$ . 

Overall, each cluster accounts for 15.2%, 48.3%, and 36.5% of all the identified annual maximum peak discharges, respectively. 315 

 

 
Figure 5: The cluster centroids and variance for the three clusters and their respective proportions of all peak discharge events in 
each catchment. The bars and error bars in (a), (b), and (c) represent the cluster centroids and standard deviations of the six 
aggregated feature contributions. The proportions in (d), (e), and (f) correspond to clusters 1–3, respectively. 320 

 

Figures 5d–f illustrate the distributions in terms of the proportion of annual maximum peak discharges associated with each 

cluster within a catchment. Annual maximum peak discharges associated with high contributions from temperature (cluster 1) 

mainly occur in northern Europe and in mountainous regions such as the Alps (Fig. 5d), i.e., in snowy regions with high 

snowfall fractions (Fig. 1c1d) where rising air temperature can lead to snowmelt. The spatial distribution together with the 325 

feature pattern shown in Fig. 5a indicates that these floods were probably driven by snowmelt events. In contrast, catchments 

with cluster 2, where recent precipitation played a decisive role in causing most floods (Fig. 5b), are primarily located in 

regions that have a west-facing or north-west-facing coast or mountain range, such as Ireland, Scotland, Wales, the Norwegian 

coast, north-west of the Iberian Peninsula, as well as the area extending from the Alps, the Massif Central and the Pyrenees 

(Figs. 5e and 1a). These regions are characterized by a generally humid climate (Schiemann et al., 2018), as also indicated by 330 

Fig. 1c, and are strongly affected by the Northern Atlantic polar front and the associated storm tracks (Bengtsson et al., 2006) 

and/or by the presence of mountain barriers perpendicular to the prevailing flow direction, which force moist air to lift and 
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condense (Isotta et al., 2014). Previous studies indicate that flooding in the regions could be largely explained by individual 

heavy precipitation events (Gobiet et al., 2014; Blanchet and Creutin, 2017; Whan et al., 2020), some of which are associated 

with atmospheric rivers (Lavers and Villarini, 2013).  335 

 

Catchments involvedassociated with cluster 3 are mostly located over the North European Plain, South Scandinavia, and parts 

of the British Isles (Fig. 5f). Here, information from antecedent precipitation has an overall higher weight than that from recent 

precipitation or other predictors (Fig. 5c), suggesting that recent precipitation alone would not suffice to explain annual 

maximum peak discharges. Therefore, flooding in these areas presents additionally heavy reliance on antecedent precipitation 340 

that is stored in the form of soil moisture. For example, Nied et al. (2014) revealed that in the Elbe River basin some weather 

patterns only cause flooding in case of preceding soil saturation. Also, Ledingham et al. (2019) found that in southeast England 

fewer than 15% of daily flood events correspond to extreme precipitation events, lower than in the rest of Britain, which was 

attributed to the relevant contribution of soil moisture storage to flooding. 

 345 

It should be noted that the three kinds of flooding mechanisms (i.e., snowmelt-driven, recent precipitation-driven, and 

antecedent precipitation-driven) identified from the cluster analysis using the optimal cluster number only indicate which 

features carry greater weights for peak discharge predictions, and they are not necessarily mutually exclusive. Particularly, the 

peak discharge events near the decision boundaries between the three clusters, such as those with similar Euclidean distances 

to at least two different “closest” centroids, are likely affected by two or more flooding processes simultaneously.  For example, 350 

the events categorized as snowmelt-driven floods are probably impacted additionally by saturated soils or extreme precipitation, 

such as rain-on-snow events (Cohen et al., 2015). Likewise, soil can be saturated before recent precipitation-driven floods, and 

flooding primarily driven by excessive soil moisture can be exacerbated by heavy rain . These events generally represent 

compound flood events that arise from several drivers occurring concurrently (Zscheischler et al., 2018; Bevacqua et al., 2021). 

Recently, compound events have received increasing attention (Zscheischler et al., 2020), however, this study will only focus 355 

on the main flooding types obtained from the clustering results, regardless of whether compound effects were involved. 

3.3 Dominant flooding mechanisms in Europe 

The result of event-based flooding classification allows us to identify the dominant flooding mechanisms (among clusters 1–

3, Fig. 5) for each catchment (Fig. 6a). A mechanism is considered dominant in a catchment if the proportion of the annual 

maximum peak discharges exceeded the maximum proportion of the other annual maximum peak discharges by more than 360 

70%. Otherwise, the catchment was regarded as being dominated by a mixmixture of flooding mechanisms. The mixedmixture 

of mechanisms could be further classified into specific combinations based on which clusters were present in the catchment. 

Accordingly, for the catchments investigated in the study, 52.8% were dominated by mixeda mixture of mechanisms, while 

snowmelt, recent precipitation, and antecedent precipitation solely accounted for 25.6%, 12.3%, and 9.3% of catchments, 

respectively. Among the mixedmixtures of mechanisms, the combination of recent precipitation and antecedent precipitation 365 
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accounted for 33.2% of all the catchments, followed by the combination of all three mechanisms (16.5%), the combination of 

recent precipitation and snowmelt (1.9%), and the combination of antecedent precipitation and snowmelt (1.2%). 

 

 

 370 
Figure 6: The dominant flooding mechanisms and their relevance to catchment attributes and seasonality. Each dot in (b), (c), (d), 
and (e) represents one catchment. Mixture means the associated catchments are dominated by two or more flooding mechanisms. 
For example, mixture (r+s) indicates either recent precipitation (r) or snowmelt (s) is the primary cause of the annual maximum 
discharges for the associated catchments, and the difference between the two proportions is less than 70%. 

 375 
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It is worth noting again that the presence of mixeda mixture of flooding mechanisms in a catchment only indicates that annual 

maximum discharges in the catchment are not uniformly caused by the same mechanism, rather than signifying whether 

individual annual maximum peak discharge events are driven by multiple processes (i.e., compound events). Despite this, 

floods in catchments with mixeda mixture of flooding mechanisms, in general, are more likely to be affected by two or more 

flooding processes, since the classification of floods in these catchments can be ambiguous (e.g., the events near the decision 380 

boundaries between clusters).  For example, floods caused by both heavy precipitation and excessive soil moisture tend to 

present high reliance on both recent precipitation and antecedent precipitation, which results in the catchment presenting 

mixeda mixture of flooding mechanisms, depending on which feature importance is superior. Using 0.10 as a distance 

threshold to define events near the cluster decision boundaries (i.e., the difference between the distance from one point to its 

closest centroids and to its second-closest centroids is less than 0.10), 77.1% of such events were found in catchments 385 

dominated by mixeda mixture of mechanisms, whereas only 22.9% were found in catchments dominated by single mechanisms. 

 

In Figs. 6b–e, we further examine the relevance of dominant mechanisms to catchment physiographic and hydroclimatic 

characteristics demonstrated in Fig. 1. Unsurprisingly, snowmelt dominates flooding in regions with high snowfall fractions 

and obvious characteristics in latitude and altitude, where floods usually occur from May to July. The catchments dominated 390 

by antecedent precipitation are within plain terrains, where flooding occurs mainly during the winter and spring. Catchments 

with a gentle slope generally tend to have thicker soil, slower transmission, and therefore more potential to store antecedent 

precipitation (Hallema et al., 2016). In contrast, recent precipitation-dominated catchments have a broader spectrum of slopes 

and elevations and experience also summer floods. The distribution of catchment attributes from catchments dominated by 

mixeda mixture of mechanisms areis consistent with what we found based on catchments dominated by a single mechanism. 395 

For example, catchments dominated by snowmelt mixed with recent precipitation (pinkpurple in Fig. 6) or antecedent 

precipitation (orangeyellow in Fig. 6) have relatively high snowfall fractions, with the former mainly occurring on areas with 

steep slopes (mainly in the Alps and Scandinavian mountains) and the latter mainly occurring on gentle slopes (such as parts 

of Finland). The catchments controlled by both recent and antecedent precipitation (light blue in Fig. 6) are located mostly in 

western Europe, suggesting that floods there were likely to be affected by the interaction between extreme precipitation and 400 

antecedent soil moisture, and their respective relative importance has varied between events. In addition, some catchments in 

the Alps, Germany, and Poland are impacted by all three mechanisms (slate grey in Fig. 6). In summary, these findings indicate 

that dominant flooding mechanisms differ substantially across catchments and are related to their geographic and climatic 

characteristics. In addition to elevation, slope, and snow fraction, the study by Stein et al. (2021) on catchments in the United 

States demonstrated that other catchment characteristics (e.g., aridity, precipitation seasonality, and mean precipitation) also 405 

significantly influence flood generating processes. An in-depth investigation of how geographic and climatic characteristics 

affect flood mechanisms in European catchments can be expected in future studies. 
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3.34 Comparative analysis with other studies 

A better understanding of the generating processes of river flooding is crucial for interpreting past flood changes and improving 

future flood-risk predictions. In recent years, large-scale quantitative investigations of flooding mechanisms specifically for 410 

Europe have been undertaken in several studies, with different methodologies and scales applied. For example, by using 

circular statistics analysis, Berghuijs et al. (2019) examined the relative importance of three flooding mechanisms based on 

the seasonality of floods and three potential drivers such as the largest daily precipitation, the largest daily soil moisture excess, 

and the largest daily snowmelt. Bertola et al. (2021) attributed changes in the magnitude of flood quantiles to changes in 

possible drivers by using regression analysis and determined their contributions to flood changes accordingly. In contrast to 415 

these analyses conducted at catchment or coarser levels, Kemter et al. (2020) and Stein et al. (2020) performed event-based 

classifications to determine flooding mechanisms in respective regions or catchments, both using manualpredefined criteria 

but with different indicators and thresholds. Table 1 summarizes the main findings in these studies regarding the major flooding 

mechanisms per geographic subregion of Europe and compares them with those identified in this study. 

 420 

 

 

 

 

 425 
Table 1. Comparisons of identified flooding mechanisms in Europe by different methods. 

 Methods 
used 

Research 
scales 

Catchment sizes 
(km2) 

Northern 
Europe 

Western 
Europe 

Central 
Europe 

Southern 
Europe 

Alpine 

This 
study 

Machine 
learning 

Event-
based 

8 – 10,000 Snowmelt Antecedent 
precipitation+ 
recent 
precipitation 

Antecedent 
precipitation+ 
recent 
precipitation, 
snowmelt 

Lack of 
samples 

Recent 
precipitation, 
snowmelt 

Berghuijs 
et al. 
(2019) 

Seasonality 
analysis 

Catchment-
based 

~10 – ~100,000 Snowmelt Soil moisture Soil moisture, 
snowmelt 

Soil 
moisture 

Extreme 
precipitation, 
snowmelt 

Bertola et 
al. (2021) 

Changes 
attribution 

200 km 
× 200 km 

5 – 100,000 Snowmelt Extreme 
precipitation 

Extreme 
precipitation, 
snowmelt 

Soil 
moisture 

Extreme 
precipitation, 
snowmelt 

Kemter et 
al. (2020) 

Multi- 
criteria 

Event-
based 

1 – 800,000 Snowmelt Soil moisture Rain-on-snow, 
soil moisture 

Soil 
moisture 

Stratiform 
rainfall 

Stein et 
al. (2020) 

Multi- 
criteria 

Event-
based 

1 – ~2,000,000* Snowmelt Excess 
rainfall 

Snow/rain, 
Excess rainfall 

Excess 
rainfall 

Short rainfall 

Note: The summaries above were compiled from relevant figures or qualitative descriptions in the respective studies, and the 

subregions of Europe were not strictly defined. The definitions of various flooding mechanisms were not identical between the 

studies. * The catchment size range was not stated in the paper, and we calculated it from the original results provided by the 

authors. 430 
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As indicated in Table 1, despite the different definitions, methods, and standards in recognizing flooding mechanisms, the five 

studies present some consistency, especially in Northern Europe and the Alps, which are dominated by snowmelt or by 

snowmelt combined with extreme precipitation. Among the four previous studies, this study shows the largest consistency 

with Berghuijs et al. (2019), especially when it comes to the contribution of meteorological drivers to flood generation in 435 

individual catchments. However, Berghuijs et al. (2019) and Kemter et al. (2020) regarded floods in regions from northern 

France to northern Germany as a consequence of soil moisture excess almost exclusively. In contrast, Bertola et al. (2021) and 

this study included extreme precipitation also as a crucial factor, and we have demonstrated that floods in those regions are 

driven by a combination of both heavy precipitation and saturated soil moisture. Compared to analyses at catchment or coarser 

levels, event-based investigations of flooding mechanisms have the advantage of allowing for the detection of stronger signals 440 

about their potential changes over time, since averaged information tends to obscure information about individual event 

processes and thus makes the trends imperceptible. For example,  found no discernible change in the relative importance of 

flood drivers for most regions in Europe, while some regional studies have indicated such changes .  

 

In addition to methodological differences, discrepancies in the estimation of soil moisture might the inconsistent catchment 445 

samples are also contribute toresponsible for the divergent attribution results in different studies. As shown in Table 1, the 

catchments examined in this study are generally smaller, which tend to be more susceptible to rainfall with high intensity. 

Moreover, discrepancies in the estimation of soil moisture might be an additional reason. In the absence of direct observations, 

soil moisture in the four previous studies was explicitly estimated by using simple water balance models (Berghuijs et al., 

2019; Stein et al., 2020), reanalysis data (Kemter et al., 2020), and a proxy based on antecedent precipitation (Bertola et al., 450 

2021). The uncertainty associated with soil moisture estimates may, however, make a difference in determining whether floods 

are triggered by extreme precipitation or soil moisture excess. Tarasova et al. (2020)In contrast conducted a rigorous 

uncertainty analysis of input data for a runoff event classification framework, emphasizing the importance of developing novel 

indicators to reduce these uncertainties. Here, profiting from the memory property of LSTM models, the present study 

identified flooding mechanisms based on long-term predictive relationships between precipitation, temperature, day length 455 

and discharge. The method has reduced the need for accurate catchment wetness estimates, yet such uncertainty is not 

eliminated completely, particularly since we chose a 7-day window to separate between antecedent and recent precipitation. 

Compared to analyses at catchment or coarser levels, event-based investigations of flooding mechanisms have the advantage 

of allowing for the detection of stronger signals about their potential changes over time, since averaged information tends to 

obscure information about individual event processes and thus makes the trends imperceptible. For example, Berghuijs et al. 460 

(2019) found no discernible change in the relative importance of flood drivers for most regions in Europe, while some regional 

studies (e.g., Beniston and Stoffel, 2016; Vormoor et al., 2016) and event-based studies (e.g., Kemter et al., 2020) have 

indicated such changes.  
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3.45 Temporal evolutions of flooding mechanisms 465 

To test whether the dominant mechanism has changed over the period 1950–2020, we first compared the catchment-level 

dominant mechanisms separately for 1950–1985 and 1985–2020 by applying the procedure describedimplemented in Section 

3.23. Only the 846 catchments with at least 15 years of records in each period were considered. Figure 7a summarizes the 

proportions of the single dominant mechanisms (represented by colorful blocks) and their combinations (represented by grey 

blocks) during each period along with shifts between them. The Sankey plot indicates that a majority of catchments (81.9%) 470 

retain their dominant mechanisms, and there has not been a shift from one dominant mechanism to another (see the absence 

of data flow between two different blocks from left to right). However, some catchments with single mechanisms have become 

dominated by mixeda mixture of mechanisms (i.e., flowing from colorful blocks to grey ones, which accounts for 6.4% of the 

total), while some behave in the opposite way (7.4%). In a few catchments with mixeda mixture of mechanisms (4.3%), the 

dominant mechanisms have also changed, though they remain mixed. 475 

 

Despite only a few fractions of catchments presenting a change in their dominant flooding mechanisms, Fig. 7b reveals 

tendencies for specific mechanisms at event levels as shown when considering all annual maximum peak discharges in the 

846 catchments over the past seven decades. The colorful lines representIn particular, the annual evolution of the proportions 

of peak discharges that are associated with different flooding mechanisms, with the shades denoting the 95% confidence 480 

interval of the proportions. The magnitude of the monotonic trend was estimated by the Theil-Sen’s Estimator as illustrated 

by the dashed lines, with the modified Mann-Kendall test  being used to determine the significance of the trend. Themaximum 

peak discharges driven by snowmelt have been declining by 0.7% per decade, while recent precipitation has become more 

dominant in causing floods, increasing by 1.0% per decade. Both frequency changes are probably associated with the warming 

atmosphere, which causes decreased snowpack (Fontrodona-Bach et al., 2018). Also, because of the rising temperatures, the 485 

atmosphere has a higher moisture holding capacity, leading to an increase in precipitation extremes on average (Trenberth, 

2011; Fischer and Knutti, 2016). These factors make it more likely that the annual floods are driven by recent precipitation 

and less frequently by snowmelt. Additionally, we observe an overall slight decrease in soil moisture excess-driven floods as 

a result of counterbalancing the other two trends, though the trend is not statistically significant when considering the entire 

period. Note that The above conclusion is not affected evenconclusions hold when considering a smaller subset of catchments 490 

(481 in the case) with at least 25 years of records in each period. 
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Figure 7: (a) Sankey plot indicating the proportions of single dominant flood generating mechanisms and their combinations during 495 
two time periods, with the flow lines indicating shifts between them. The proportions were calculated based on the 846 catchments 
that have at least 15 years of records available in each period. (b) The evolution of the proportions of annual maximum peak 
discharges with the three flooding mechanisms, with the shades denoting the 95% confidence interval of the proportions. The dashed 
black lines indicate the slope of their trends estimated by Theil-Sen’s Estimator., with their significance being assessed by the 
modified Mann-Kendall test. (c), (d), and (e) The spatial trends in different event-based flooding mechanisms, where the trends 500 
indicated by the colorful dots were calculated using a 20-year moving window. Markers with black edges denote catchments with 
significant trends (α=0.05).  The black boxes highlighted five hotspot regions that are discussed in the main text. 

 

Figure 7c-eNote that Fig. 7b only presents the overall trends in flooding mechanisms at the continental scale, while disparate 

trends may exist in different regions that could cancel each other out. Therefore, we further examinesexamined the trends in 505 

different event-based mechanisms in the 846 catchments, (Figs. 7c–e), with the color representing the Theil-Sen slopes 

computed on the time series of respective proportions in individual catchments. The proportion series were calculated using a 

20-year moving window, where the 20-year time frame was used to ensure an adequate sample size for reliably estimating the 

intra-period proportions and also to guarantee enough periods to observe decadal variability . Only proportions that were 
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calculated with at least 10 years of peak discharge data in each window were used to estimate the slope. The circular markers 510 

with black edges in the maps denote catchments with significant trends (α=0.05). The results indicate that most catchments in 

the Alps, which are typically dominated by snowmelt, have experienced significant decreases in snowmelt-driven floods, while 

similar cases have occurred in Scandinavia as well (Fig. 7c). In contrast, extreme precipitation has become a more frequent 

cause of annual maximum discharges in the Massif Central, North European Plain, and the Alps, while decreased trends are 

observed in some regions of Western Europe and especially southeast England (Fig. 7d). As for soil moisture-induced floods, 515 

their proportion generally shows opposing trends relative to those of extreme precipitation (Fig. 7e). 

 

The decreasing trend in snowmelt-driven floods was also detected by Kemter et al. (2020), with 1.65% per decade, mainly 

occurring in eastern Europe, which was outside of our study area. In addition, they detected an increase in stratiform rainfall-

driven floods (0.49% per decade) mainly along the Mediterranean coast and an increase in soil moisture excess-driven floods 520 

(1.55% per decade) in the British Isles and central and northern Europe. The difference between Kemter et al. (2020) and this 

study probably arises from the varying study areas (the former additionally includes a large number of eastern and southern 

European catchments), as well as the definition of flood types. For example, their study defined soil moisture excess-driven 

floods as non-snowmelt floods when the mean soil water content was above 70% before a time window, and the remainder 

were stratiform rainfall-driven floods. In contrast, this study used cluster analysis for the actual contributions of precipitation 525 

events before floods, and soil moisture-induced floods were related to annual maximum peak discharges where the contribution 

from antecedent precipitation is more important than recent precipitation. 

3.56 Possible causes and implications of the trends 

To gain insights into the causes of the identified trends, we analyze five selected regions highlighted in Figs. 7c–e (see region 

numbers in panel c), which feature consistent trends in certain mechanisms. For region 1 (the Alps) and region 3 (northeast 530 

Scandinavia), catchments with significant decreasing trends in snowmelt-driven events were considered. For region 2 

(southeast France) and region 4 (northern Germany), we considered catchments with significant increasing trends in extreme 

precipitation-driven events, as well as those presenting significant decreases for region 5 (southeast England). Figure 8 shows 

the temporal regional evolution of the event-level mechanisms within the considered catchments, along with the change in 

magnitude of the annual maximum 7-day total precipitation and mean spring temperatures (January to April) over the past 70 535 

years. For the two regions with significant soil moisture effect on flooding (i.e., regions 4 and 5), we additionally added the 

averaged trends of 30-day precipitation preceding the 7-day window of recent precipitation for analysis, which is a common 

proxy for soil moisture prior to flooding . The time series of proportions were calculated by applying the previously described 

20-year moving window to peak discharge classifications for the considered catchments. The annual precipitation extremes 

and mean spring temperatures were averaged across the catchments and then smoothed by using a 20-year moving average 540 

window for better visualization of their trendsantecedent soil moisture conditions prior to flooding for analysis. 
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 545 
Figure 8: The temporal changes of the event-level mechanisms in relevant catchments within the five selected regions (see Fig. 7c), 
as well as the changes in average extreme precipitation (represented by annual maximum 7-day total precipitation), mean spring 
temperatures (represented by average temperature between January and April), and antecedent soil moisture conditions prior to 
flooding (represented by the 30-day total precipitation preceding the 7-day window of recent precipitation). The numbers in panel 
titles indicate the number of catchments considered. The proportions were calculated by a 20-year moving window, while 550 
precipitation and temperature were smoothed by using a 20-year moving average window., with their values at central positions in 
time windows. The dashed black lines indicate the slope of relevant trends estimated by Theil-Sen’s Estimator, with their significance 
being assessed by the modified Mann-Kendall test. 

 

Mean spring temperatures have increased significantly in all five regions (Fig. 8), confirming the previous explanations for 555 

the reduced influence of snowmelt on river discharge annual maxima in snowy areas (regions 1-3) (Beniston and Stoffel, 2016; 

Vormoor et al., 2016). Furthermore, in regions 1–4, the increased magnitude of maximum 7-day precipitation can explain the 

rise in proportions of annual maximum peak discharges driven by extreme precipitation events. In contrast, the maximum 7-

day precipitation in southernsoutheast England (region 5) remained almost unchanged (Fig. 8e). Nonetheless, soil moisture 

conditions before discharges might have increased in southernsoutheast England, as indicated by the increasing antecedent 560 

precipitation accumulations, which causes annual maximum discharge there to be more likely driven by soil moisture excesses 
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than by recent precipitation. Blöschl et al. (2017) stated that the region has a large subsurface water storage capacity, which is 

capable of storing a large amount of water that continuously increases until flooding occurs. In comparison, in northern 

Germany (region 4), the antecedent precipitation before annual maximum peak discharges has increased more slightly (Fig. 

8d), while the increase in precipitation extremes likely caused an increase in floods driven by recent heavy precipitation. Note 565 

that here we merely examined the monotonic trends within data over the 70 years, while the trends may vary piecewise (e.g., 

the changes in maximum weekly precipitation in the Alps and southeast France), the impact of which on flooding mechanisms 

deserves further research. 

 

A change in flooding mechanisms may affect the seasonality and magnitude of flooding, which might ultimately impair the 570 

current flood risk management measures. For example, in catchments previously dominated by snowmelt, the seasonal patterns 

of flooding could change due to increasing floods from extreme precipitation and soil moisture excess. The case can be 

illustrated by using the circular statistics of the flood dates in catchments with a significant reduction of snowmelt-driven 

floods, such as some catchments in the Alps (region 1 in Fig. 7c). For the 37 catchments in the region, the overall proportion 

of annual maximum discharges caused by snowmelt has decreased from 50.2% in 1950–1985 to 37.6% in 1985–2020. Figures 575 

9a and 9b compare changes in flood mean date and the corresponding mean resultant length at individual catchments, for 

snowmelt-driven floods and all floods irrespective of their cause, respectively. The resultant length is a measure between 0 

and 1 that reflects the spread of a circular variable, with 0 representing the spread of flood dates evenly distributed over the 

year and 1 representing the spread concentrated at one day. It can be deducted from Fig. 9a that following the temperature 

increase, snowmelt-driven floods generally occur earlier in the year during 1985–2020 compared to 1950–1985, with a median 580 

shift of -3.8 days. On the other hand, annual peak discharges occur later in more than half of the catchments due to the 

increasing presence of other types of floods. Furthermore, Fig. 9b shows that the seasonality of annual maximum discharges 

has become more diffuse (decreasing mean resultant length) in most catchments for the same reason, though snowmelt-driven 

floods remain relatively stable.increasing floods from extreme precipitation and soil moisture excess may lead to shifted flood 

mean dates and less concentrated seasonal patterns (as exemplified in Fig. B1 in Appendix B). By simulating daily discharge 585 

for a reference period (1961–1990) and a future period (2071–2099), Vormoor et al. (2015) predicted that floods in some 

Nordic catchments could even shift from spring to autumn as rain replaced snowmelt as the dominant flood-inducing process. 

These results suggest that, in a warmer climate, flood risk predictions in snowmelt-affected catchments should consider the 

interconnection between changes in flooding drivers and seasonality. 

 590 
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Figure 9: (a) Change in flooding mean dates (difference from 1985–2020 to 1950–1985) in catchments with a significant reduction of 
snowmelt-driven floods in the Alps (region 1 in Fig. 7c) for snowmelt-driven floods and all floods irrespective of their cause. (b) The 
differences in mean resultant length for the same cases as in (a). (c) The distribution of the correlations between annual maximum 
discharge and annual maximum 7-day precipitation at individual catchments (blue, recent precipitation-dominated catchments; 595 
green, antecedent precipitation-dominated catchments). 

 

AlthoughAs for the impact on flooding magnitude, while it is challenging to link observed changes in individual flooding 

drivers alone to changes in flooding magnitudes, a link may appear especially in light of climate change (Blöschl et al., 2019). 

For example, Fig. 9c shows the distribution of Spearman’s correlations between annual maximum discharge and annual 600 

maximum 7-day extreme precipitations for two groups of catchments, i.e., for recent precipitation-dominated catchments and 

antecedent precipitation-dominated catchments (based on Fig. 6a). Unsurprisingly, the catchments where floods are dominated 

by recent precipitation tend to have higher correlations than antecedent precipitation-dominated catchments, which indicates 

that the former might be more susceptible to changes in extreme 7-day precipitation. (Fig. B2 in Appendix B). Despite a lack 

of sufficient observational evidence that the magnitude of floods increases with more extreme precipitation (Sharma et al., 605 

2018), the trend of which is often determined jointly by both changes in rainfall and changes in antecedent soil moisture, some 

studies demonstrated the changed precipitation severity could vary the relationship between precipitation and streamflow 

(Bennett et al., 2018). When recent rainfall increases, changes in antecedent moisture conditions would become less important 

in modulating the response to rainfall (Wasko and Nathan, 2019). Brunner et al. (2021) indicated that it is possible to identify 

a catchment-specific extremeness threshold, above which precipitation increases clearly produce greater flood magnitudes, 610 

and below which flood magnitude is strongly modulated by soil moisture. Therefore, the persistent risk that recent extreme 

precipitation would have an increasingly decisive role in flood generation for a large proportion of catchments, as implied by 
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FigureFig. 7, cannot be disregarded. Recognizing the impact of such mechanism shifts in flooding mechanisms is crucial for 

understanding the link between changes in precipitation and flood risk in a warming climate. 

3.7 Limitations and outlooks 615 

In this study, we trained LSTM models individually for each catchment, while some studies have suggested that training a 

regional model for all catchments at once may be a better practice (e.g., Nearing et al., 2021). In the latter case, both 

meteorological time series and static catchment attributes are used as inputs to distinguish response behaviors across time and 

space, with the benefit that the ML model can learn more general relationships from a larger sample of hydrological variability 

(Kratzert et al., 2019b). However, introducing catchment attributes may prevent the identification of flood generation 620 

mechanisms based on distinguishable patterns of meteorological variables’ contributions, which is the main objective of this 

study. Interpreting flooding mechanisms with regional LSTM models may become more challenging than with local LSTM 

models that use only meteorological time series, since some catchment attributes would confound the interpretation. Therefore, 

here we employed local models. Nevertheless, we note that using regional models can provide insight into how flooding 

mechanisms vary spatially, particularly for how the spatial distribution is affected by the geographic and climatic 625 

characteristics of catchments, and it merits more exploration in future studies. 

 

Moreover, to strike the balance between model interpretability and accuracy, we only selected daily precipitation, temperature, 

and day length as meteorological inputs. The combination of inputs results in uncovering three well-known flooding 

mechanisms, which allows us to make a direct comparison with findings from other studies that used classical methods. 630 

However, with more input variables incorporated into the model, the methodology may be able to recognize more distinct 

patterns in terms of input contributions. In principle, this could allow identifying flooding mechanisms that are often 

overlooked and may not be easily explainable with well-known processes. However, it would likely be much more challenging 

to make sense of the flooding mechanisms from the likely much more complicated patterns in input feature importance, which 

we leave for future studies. 635 

 

In the clustering procedure, we chose to use a 7-day window to aggregate the daily IG scores into a low-dimensional 

contribution vector for the sake of efficiency in clustering lengthy time series, which could induce inevitable uncertainties and 

subjectivity. Despite this, additional tests indicate that our findings are similar when using a 5-day window, which is also a 

common interval to consider flooding drivers (e.g., Rottler et al., 2021). Specifically, based on the 5-day window, the events 640 

identified with snowmelt, recent precipitation, or antecedent precipitation as the primary causes account for 15.0%, 47.9%, 

and 37.1% of all the 55,828 annual maximum peak discharges, which is only slightly different from using a 7-day window. 

As for the three mechanisms in individual catchments, decreasing the window length has the least impact on identifying 

snowmelt-driven floods, with the absolute changes in their proportions within 1% for 84.5% of catchments and within 5% for 

98.7% of catchments. In comparison, the proportion changes for two other flooding types are more sensitive, with changes 645 
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within 5% for 83.2% (82.7%) of catchments in terms of recent (antecedent) precipitation-driven flooding. However, this does 

not affect the conclusion regarding the respective trends in flooding mechanisms (see Fig. S4 in the Supplementary Material), 

indicating the robustness of the methodology. Despite this sensitivity analysis, we would like to emphasize that the selection 

of the separating window remains somewhat subjective, and further exploration is needed to avoid a possible bias due to 

arbitrary judgments in identifying flooding mechanisms. 650 

4 Conclusions 

Flooding in rivers is usually caused by complex interactions between heavy precipitation, high soil moisture, and melting snow. 

Climate change has resulted in an overall decreased snowpack and more intense short-term precipitation extremes, which 

might systematically alter the interaction between flood drivers at the catchment level. Nevertheless, few studies have been 

able to To investigate whether flooding mechanisms have changed in European catchments, this study introduced a novel 655 

explainable ML method to identify a consistent continental-scale climatic-change signal in flooding mechanisms in Europe. 

Identifying such trends often requires a robust event-based analysis, whereas the flooding mechanisms. Compared with 

conventional classification approach is highlyapproaches, where the results are usually dependent on appropriate flood process 

definitions and sensitive to changes in the subjectively designedthe selected indicators and threshold parameters. In this study, 

a, the combination of explainable ML and cluster analysis was used to identify different flooding mechanisms by grouping 660 

floods with similar patterns of is able to avoid such predefinitions and reduces subjectivities in identification processes. With 

the ML-captured feature importance of precipitation, temperature, and day length for predicting annual maximum discharges, 

we aggregated driver contributions. in the recent 7 days and an earlier period (back to 180 days) and then applied cluster 

analysis to group them based on similar patterns. As a result, the method identifies three major patterns that induce floods 

across 1,009 European catchments, corresponding to three typical flooding mechanisms, including recent precipitation 665 

(responsible for 48.3% of the annual maximum discharge events), antecedent precipitation (i.e., excessive soil moisture, 

accounting for 36.5%), and snowmelt (15.2%). The results indicate that for 25.6% of catchments, recent precipitation is the 

typical main contributor to floods, while floods are typically controlled by antecedent precipitation (linked to excessive soil 

moisture) in 12.3% of catchments. In around one-third (33.2%) of catchments, floods are dominated by a combination of recent 

heavy precipitation and antecedent precipitation events. It means, meaning that some floods there were caused by recent rains, 670 

and others were primarily driven by antecedent precipitation, although many of them were likely due to the compound effect 

between the two drivers. The remaining catchments are dominated by snowmelt (9.3%), or by combinations of snowmelt with 

the other two drivers. The spatial distribution of the dominant flooding mechanisms reflects the variation of the catchment’s 

geographic and climatic characteristics and is generally consistent with results reported in earlier studies, some of which were 

obtained taking a perspective on catchment averagesdid not perform event-based classifications but rather identified the overall 675 

mechanisms within individual catchments. 
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We further detected changes in dominant flooding mechanisms over the last 70 years in over 18% of European catchments, 

especially some catchments that were previously dominated by single mechanisms became dominated by mixeda mixture of 

mechanisms and some catchments show opposite shifts. Despite no regime shift from one single flooding mechanism to 680 

another single one, tendencies in their mechanisms at event levels were found. Specifically, when taking all annual maximum 

discharge events into account, those triggered by snowmelt have significantly decreased, with their proportion dropping by 

0.7% per decade. Recent 7-day precipitation, on the other hand, has become increasingly important for flooding, with flooding 

triggered by such recent heavy precipitation increasing by 1.0% per decade. The changes in flooding mechanisms present a 

largely consistent pattern with climate change responses, and the study highlightswe discuss the potential risks associated with 685 

the resulting effects on flooding seasonality and magnitude. 

 

Overall, the identified changes in flooding mechanisms can provide important insights into understanding the effects of climate 

changes in the Earth system on flood events. Due to the compounding effect of various flooding drivers, it is generally 

challenging to establish a direct link between increases in extreme precipitation and increases in flood magnitudes. However, 690 

we find that as a consequence of extreme precipitation increases, recent precipitation has been more frequently observed as 

the primary cause of annual river discharge extremes. More research is required to investigate whether continually increasing 

extreme precipitation produces increased flood magnitudes, in particular after it overwhelmed the role of soil moisture in 

modulating flood events. Overall, ourthis study highlights the usability of explainable ML in helping uncover complex and 

possibly non-linear changes in weather and climate extreme events in the warming Earth system. With more large-sample 695 

hydrometeorological datasets becoming readily accessible, one next step is to extend the research to a larger scale for a better 

understanding of variations in flooding mechanisms globally. Still, many challenges remain for future work, providing 

potential research opportunities. For example, the clustering procedure can be improved by developing algorithms to aggregate 

daily feature importance adaptively, thereby avoiding the predefined separation window while maintaining high efficiency. 

Moreover, regional LSTM models that incorporate static catchment attributes can be employed to capture the spatial variations 700 

in flooding mechanisms and quantify the influence of catchments’ geographical and climatic conditions on flooding processes. 

In addition to the integrated gradient method used in this study, other interpretation techniques might be explored further to 

uncover potentially valuable information when more input variables are included. 
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Appendix A 

 705 
Figure A1: Determination of optimal cluster number. (a) The average silhouette coefficients and total within-cluster sum-of-squares 
assessed for respective candidate cluster numbers. (b) The silhouette plots for various clusters when the cluster number being 2 or 
3, where the x-axis represents the silhouette coefficient for individual samples, and they were ordered by the coefficients and grouped 
by clusters in the y-axis. (a) suggests that clustering the samples into either two or three groups can achieve the similarly highest 
average silhouette coefficients, while the silhouette plots for individual samples under the two candidate numbers in (b) further 710 
suggest that clustering into three groups would be the best choice because a cluster with all below-average silhouette coefficients is 
present when clustering into two groups. Therefore, we cluster annual maximum peak discharges into three main groups in the 
main text. 

Appendix B 

 715 
Figure B1: (a) Change in flooding mean dates (difference from 1985–2020 to 1950–1985) in 37 catchments with a significant 
reduction of snowmelt-driven floods in the Alps (region 1 in Fig. 7c) for snowmelt-driven floods and all floods irrespective of their 
cause. For these catchments, the overall proportion of annual maximum discharges caused by snowmelt has decreased from 50.2% 
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in 1950–1985 to 37.6% in 1985–2020. (b) The differences in mean resultant length of flood dates for the same cases as in (a). The 
mean resultant length is a measure in circular statistics between 0 and 1 that reflects the spread of a circular variable, with 0 720 
representing the spread of flood dates evenly distributed over the year and 1 representing the spread concentrated at one day. It can 
be deducted from (a) that following the temperature increase, snowmelt-driven floods generally occur earlier in the year during 
1985–2020 compared to 1950–1985, with a median shift of -3.8 days. On the other hand, annual peak discharges occur later in more 
than half of the catchments due to the increasing presence of other types of floods. Furthermore, (b) shows that the seasonality of 
annual maximum discharges has become more diffuse (decreasing mean resultant length) in most catchments for the same reason, 725 
though snowmelt-driven floods remain relatively stable. 

 

Figure B2: The distribution of Spearman’s correlations between annual maximum discharge and annual maximum 7-day 
precipitation for two groups of catchments (blue, recent precipitation-dominated catchments; green, antecedent precipitation-
dominated catchments, based on Fig. 6a). It shows that the catchments where floods are dominated by recent precipitation tend to 730 
have higher correlations than antecedent precipitation-dominated catchments, which implies that the former might be more 
susceptible to changes in extreme 7-day precipitation. 
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