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Abstract   

The transport of solutes in river networks is controlled by the interplay of processes such as in-stream solute 

transport and the exchange of water between the stream channel and dead zones, in-stream sediments, and the 

hyporheic zone.adjacent groundwater bodies. Transient storage models (TSMs) are a powerful tool for testing 

hypotheses related to solute transport in streams. However, TSMmodel parameters are often do not show a 15 

univocal increase of model performances in a certain parameter range (i.e. are non-identifiable) leading to an 

unclear understanding of the processes controlling solute transport in streams. In this study, we increased 

parameter identifiability in a set of tracer breakthrough experiments by combining global identifiability analysis 

and dynamic identifiability analysis. in an iterative approach. We compared our results to inverse modelling 

approaches (OTIS-P) and the commonly used random sampling approach for TSMs (OTIS-MCAT). Compared 20 

to OTIS-P, our results informed about sensitivity and identifiability of TSMmodel parameters on the entire 

feasible parameter spacerange. Our resultsapproach clearly improved parameter identifiability compared to the 

standard OTIS-MCAT that often indicated non-identifiabilityapplication, due to the progressive reduction of TSM 

parameters.the investigated parameter range with model iteration. Non-identifiable results led to wrong solute 

retention times in the storage zone and the exchange flow with the storage zone, with a difference respectivelyof 25 

up to four and two orders of magnitude compared to results with identifiable TSMmodel parameters, respectively. 

The severeclear differences in the transport metrics between results obtained from our proposed approach and 

results from OTIS-MCAT modelthe classic random sampling approach also resulted in contrasting interpretation 

of the hydrologic processes controlling solute transport at the study site.in a headwater stream in western 

Luxembourg. Thus, our outcomes point to the risks of interpreting TSM results when even one of the TSMmodel 30 

parameters is non-identifiable. Our results showed that there is clear potential for increasingcoupling global 

identifiability analysis with dynamic identifiability analysis in iterative approach clearly increased parameter 

identifiability in random sampling approaches for TSMs. Compared to the commonly used random sampling 

approach and forinverse modelling results, our analysis was effective in obtaining higher accuracy of the evaluated 

solute transport metrics, which is advancing our understanding of hydrological processes controllingthat control 35 

in-stream solute transport. 
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1 Introduction 

Modelling of stream water movementIt is pivotal for understandingof crucial importance to understand how 

nutrients, solutes, and pollutants are transported downstream and ultimatelyin streams, since this process can 

drastically affect stream water quality along river networks (Smith, 2005; (Krause et al., 2011; Rathfelder, 2016; 40 

Smith, 2005)). A widely used technique to capture and study the processes controlling water . Experimental studies 

of water flow and solute transport downstream is via in the -stream channel commonly rely on the observation of 

tracer breakthrough curves (BTC, i.e., theinjections. The measurement of the concentration over time of a tracer 

released in an upstream section). Such a BTC (i.e. the breakthrough curve, BTC) reflects stream discharge (Beven 

et al., 1979; Butterworth et al., 2000) and longitudinal tracer advection and dispersion (Gooseff et al., 2008). A 45 

milestone in the study of solute transport was that in-stream solutes and water are exchanged with slowly-moving 

channel waters, the dead zones (Hays, 1966), and with the saturated area that is physically influenced by water 

and solutes exchange between the stream channel and the adjacent groundwater (i.e., the hyporheic zone, Triska 

et al., 1989; White, 1993); Cardenas and Wilson, 2007).. This hydrologic exchange results in a skewed non-

Fickian BTC with a pronounced tail, which makes the advection-dispersion equation (ADE) unable to correctly 50 

describe the observed tracer transport in stream channels (Bencala &and Walters, 1983; Castro &and Hornberger, 

1991). Despite the large amount of studies, the results of TSM offer numerous contradictory model interpretation 

outcomes (Ward &and Packman, 2019), and, coupled with uncertainties of the model parameters are often non-

identifiable, meaning that several parameter combination return same model performances (Ward et al., 2017), . 

These outcomes raise the question about how informative such modelling results are (Knapp &and Kelleher, 55 

2020). 

Considerable potential in reducing uncertainty of the processes controlling solute transport in streams lies in 

modelling the tail of the BTC, since it contains information on the transient storage insideof the stream channels 

(Bencala et al., 2011). For simulating the retentive effect of dead zones on solute transport, Hays (1966) modelled 

the tail of the BTC by introducing a second differential equation in addition to the ADE. Following a similar 60 

approach, (Bencala &and Walters (1983) described the solute transport in streams as a pure advection-dispersion 

transport, coupled with a hydrologic exchange term between the stream channel and a single, homogeneously 

mixed volume that delays the solute movement downstream (Transient Storage Model - TSM). The estimation of 

TSMmodel parameters often relyrelies on the use of inverse modelling approaches via nonlinear regression 

algorithmalgorithms that can return precisean estimation of TSMmodel parameters with a narrow 95% confidence 65 

interval (OTIS-P; Runkel, 1998). While this approach found extensive applicationwas widely applied in past 

decades, it does not allow a comprehensive assessment about theof parameter identifiability of the TSM 

parameters (Ward et al., 2017; Knapp &and Kelleher, 2020). This is becauseThe term “identifiability” describes 

whenever good model performances are constrained in a relatively narrow parameter range (identifiable 

parameter) or spread (non-identifiable parameter) across the entire distribution of the possible parameter values 70 

(Ward et al., 2017). Yet, a good fit to observed data through inverse modelling approach dodoes not provide 

information on performances and parameter identifiability onover the entire feasible parameter spacerange (Ward 

et al., 2017). Also, thecalibrated parameter sets obtained aftervia inverse modelling approach doare not necessarily 

indicate meaningful results, as non-identifiable parameters can provide good BTC fitting despite being uncertain 

and non-identifiable a good inverse model fit (Kelleher et al., 2019). These considerations, coupled with the lack 75 

of knowledge of the modeller over the distribution of parameters and theirThese modelling uncertainties have led 
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to a progressive abandonment of the search for a single best set of parameters and advocated the identification of 

“behavioural” parameter populations (i.e. parameter sets satisfying certain performance after OTIS-P results, led 

to a progressive increase of studies addressing identifiability in TSMsthresholds) via random sampling of 

parameters and global identifiability analysis (OTIS-MCAT modelapproaches in transient storage modelling 80 

(Wlostowski et al., 2013; Ward et al., 2017; Knapp & Kelleher, 2020Ward et al., 2018; Kelleher et al., 2019; 

Rathore et al., 2021).  

Random sampling approaches provide information on parameter identifiability and accuracy on the feasible 

parameter spacerange, however they rarely show identifiability for all the TSMmodel parameters (Knapp &and 

Kelleher, 2020). Kelleher et al. (2013) found that the parameters associated with the transient storage process are 85 

not identifiable for a large variety of the stream reaches and experiments that they investigated. Other studies have 

shown that TSMmodel parameters are often not-independent and poorly identifiable (Camacho &and González, 

2008; Wlostowski et al., 2013; Ward et al., 2017; Kelleher et al., 2019; Knapp &and Kelleher, 2020); Wagener et 

al., 2002; Ward et al., 2017; Wlostowski et al., 2013). Despite these findings and the crucial need for parameter 

identifiability, only few studies have explored the reliability of TSM results obtained via inverse modelling 90 

approach, and model interpretation is often based on a single set of highly interactive, meaning that different 

parameters without testing their robustness (Knapp & Kelleher, 2020).  

Addressing the identifiability of TSM parameters is a pressing issue, since we are still unable to link specific 

physical processes with the parameters derived from BTC studies (Ward & Packman, 2019).can produce similar 

modelled BTCs (Kelleher et al., 2013). This problem is commonly related to the over-simplistic approach of TSM, 95 

which is unable, in turn, hampers the ability to distinguish the role of a specific parameter on the shape of the 

simulated BTC (Wagener et al., 2002; Ward et al., between the effects of eddies, pools, and the hyporheic zone 

(Gooseff et al., 2008; Zaramella et al., 2006). To overcome this limitation, the TSM has been modified to include 

multiple storage zones (Choi et al., 2000), sorption kinetics for reactive tracers (Gooseff et al., 2005; Kelleher et 

al., 2019), and changes of residence time distributions in the storage zone (Haggerty et al., 2002). While these 100 

changes increased the quality of the model fit, they also came at the cost of increased dimensionality with a further 

reduction of parameter identifiability and certainty, leaving the open question what physical processes exactly are 

associated with the transient storage modelling (Kelleher et al., 2019; Knapp & Kelleher, 2020).2017).  

The observed strong non-identifiability for TSMof model parameters in random- sampling studies may have three 

causes. First, the parameters there is no common strategy for selecting parameter ranges and the number of 105 

parameter sets in TSM simulations. To obtain reliable results, Ward et al. (2017) indicated that modelling studies 

need to apply TSM on a large number of parameter sets (between 10,000 and 100,000) over a parameter range 

spanning at least two orders of magnitude. While for some studies, the non-identifiability of parameters might be 

explained by the low number of parameter sets (less than 10,000) and the relatively narrow selected parameter 

range (Camacho & González, 2008; Wagener et al., 2002; Wlostowski et al., 2013), non-identifiability was also 110 

found when a rather large number of parameter sets and wide range were used (Kelleher et al., 2013; Kelleher et 

al., 2019; Ward et al., 2017). This is bringing up the question if and when TSM parameters are actually meaningful 

(Knapp & Kelleher, 2020).  

A second cause related to uncertain results in the random-sampling approach for TSM parameters relates to the 

selected parameters chosen for TSM simulations. The parameters describing the advection-dispersion process 115 

(streamstreamflow velocity, cross-sectional area of the stream channel, and the longitudinal dispersion) are known 
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to be the best identifiable in the TSM (Ward et al., 2017) and once they are kept constant in). However, due to the 

random sampling of theknown high interactivity among model parameters, they can drive strong changes in the 

parameters describing the transient storage process (Knapp & Kelleher, 2020). This dependency indicates that 

theit is generally not recommended to use of a constantfixed value for ana rather identifiable parameter, since this 120 

strategy may result in a mis-estimation of the other TSM parameters. While it is not recommended to keep constant 

a rather identifiable parameter in random-sampling approaches for TSMsmodel parameters (Knapp and Kelleher, 

2020). Constraining the values of the stream area and longitudinal dispersion proved to have a role on the 

identifiability of transient storage parameters (Lees et al., 2000; Kelleher et al., 2013; Ward et al., 2017). However, 

no study investigatedso far evaluated the role that a variableof flow velocity has on identifiability of TSM 125 

parameters.the identifiability of model parameters despite the velocity parameter was often considered to be 

known and thus fixed to equal the velocity of the arrival time of the BTC peak (i.e. vpeak, Ward et al., 2013; 

Kelleher et al., 2013; Wlostowski et al., 2017; Ward et al., 2017; Ward et al., 2018). This leads to the question on 

how meaningful, sensitive, and uncertainidentifiable the transient storage parameters are when streamstreamflow 

velocity variesis considered as a calibration parameter or is kept fixed in identifiability analysis. A thirdsecond 130 

cause for non-identifiable TSMmodel parameters relates to the selected approach for addressing parameter 

identifiability. The identifiability analysis used in most studies is based on the Generalized Likelihood Uncertainty 

Estimation that assesses parameter certainty acrossby evaluating model performance on the entire observed BTC 

(GLUE, Beven &and Binley, 1992; Camacho &and González, 2008; Kelleher et al., 2013; Ward et al., 2017; 

Kelleher et al., 2019; Ward et al., 2017)).. However, such global identifiability analysis is unable to find 135 

informative sections of the simulated BTC with respect toassess if a certain parameter is more or less identifiable 

in certain sections of the BTC and to unequivocally link a given parameter to a specific process (Wagener et al., 

2002; Wagener et al., 2003; Wagener et al., 2002; Wagener &and Kollat, 2007). This information is particularly 

important for BTC modelling, since advection-dispersion parameters are physically responsible for the bulk solute 

transport in the stream and they are therefore expected to act on the rising limb and peak of the BTC (Gooseff et 140 

al., 2008). Contrary, the parameters describing the exchange between the stream channel and the transient storage 

zone are responsible for delaying solute transport compared to the advective-dispersive transport, most likely 

acting on the falling limb and tail of the BTC (Runkel, 2002). By investigating parameter sensitivity and 

identifiability across the entire BTC, global identifiability analysis is unable to capture an increase in parameter 

identifiability towards the tail of the BTC. However, studies addressing the identifiability of TSMmodel 145 

parameters over time in different sections of the BTC reported an increase ofincreased identifiability for transient 

storage parameters on the tail of the BTC (Wagener et al., 2002; Scott et al., 2003; Wlostowski et al., 2013; 

Kelleher et al., 2013). Third, there is no common strategy for selecting parameter ranges and the number of 

parameter sets in TSM simulations. To obtain reliable results, Ward et al. (2017) suggested that modelling studies 

need to apply TSM on a large number of parameter sets (between 10,000 and 100,000) over a parameter range 150 

spanning at least two orders of magnitude. While for some studies the non-identifiability of parameters might be 

explained by the low number of parameter sets (less than 10,000) and the relatively narrow selected parameter 

range (Wagener et al., 2002; Camacho and González, 2008; Wlostowski et al., 2013), non-identifiability was also 

found when a rather large number of parameter sets and wide parameter range were used (Kelleher et al., 2013; 

Ward et al., 2017; Kelleher et al., 2019). This is bringing up the question if and when model parameters are actually 155 

meaningful (Knapp & Kelleher, 2020).2013; Kelleher et al., 2013). We hypothesise that this information is key 
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in designing a successive parameter sampling in a constrained parameter space – ultimately reducing the 

uncertainty affecting parameters describing solute retention in streams.  

A robust assessment of transient storage parameters would not only improve the model fit of tracer transport and 

decreaseincrease parameter uncertaintyidentifiability, but it might also lead to strongera more robust interpretation 160 

onof the physical processes controlling solute transport in streams. TSMModel parameters are often used to 

calculate metrics on the solute exchange between the stream channel and the transient storage zone and the 

residence time of solutes in the coupled system (Thackston and Schnelle, 1970; Hart et al., 1999; Morrice et al., 

1997; Hart et al., 1999; Runkel, 2002). These metrics are pivotal to address the potential for nutrient cycling, 

microbial activity, and the development of hot-spots in river ecosystems (Triska et al., 1989; (Mulholland et al., 165 

1997; Smith, 2005; Triska et al., 1989; Krause et al., 2017). However, no study so far indicated and evaluated if 

and how much the interpretation of hydrologic processes changes when TSMmodel parameters are identifiable 

and when they are not, due to the enunciated challenges in TSMs. 

To address theseDespite the increasing need for achieving parameter identifiability in TSMs, only few studies 

have explored the reliability of results obtained from inverse modelling, and model interpretation is often based 170 

on a single set of parameters without testing their robustness (Knapp and Kelleher, 2020). We hypothesise that 

addressing the identifiability of model parameters in different sections of the BTC is key in increasing the 

identifiability of the parameters describing solute retention in streams. To address the enunciated TSM challenges, 

we have organised this contribution around three questions related to the key challenges of parameter 

identifiability in transient storage modelling: 175 

1) How does the identifiability and the information content of model parameters associated with transient 

storage processes change by using fixed and varying velocity in the random- sampling of TSM 

parameterswhen velocity is considered as a calibration parameter and when it is assumed fixed and equal 

to vpeak? 

2) Does the identifiability analysis on specific sections of the BTC reduce the parameter uncertaintynon-180 

identifiability in random- sampling of TSM?  

3) How much does the identifiability of model parameters in random sampling approaches depend to the 

used parameter range and on the number of parameter sets? 

With the outcomes of these questions we will address: 

3) How does the residence time of solute in the transient storage zone and hydrologic process interpretation 185 

of TSM results vary when TSMmodel parameters are identifiable and when they are not?  

2 Study site and methods 

2.1 Study site and tracer data 

The studied stream reach (49o49'38''N, 5o47'44''E) is located in western Luxembourg, downstream of the 

Weierbach experimental catchment (Hissler et al., 2021); Fabiani et al., 2021).. The stream channel is unvegetated 190 

with a slope of ≃6 % and consists of deposited colluvium material and fragmented schists (up to 50 cm depth) 

with local outcrops of fractured slate bedrock in the streambed.  The flow regime is governed by the interplay of 

seasonality between precipitation and evapotranspiration (Rodriguez and Klaus, 2019; Rodriguez et al., 2021; 

Rodriguez & Klaus, 2019)) with a persistent discharge between autumn and spring, and little to no discharge 

during summer months (discharge arithmetic mean equal to 6.5 l/s, median of 1.7 l/s, St.Dev. of 11.52 l/s between 195 
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Aug 2018 and Feb 2020; Bonanno et al., 2021). To testanswer our objectivesresearch questions, we have carried 

oututilise three tracer experiments with an instantaneous tracer injection at three different flow (Q) conditions: 6th 

December 2018, Q = 2.52 l/s (E1); 23rd January 2019, Q = 9.05 l/s (E2); 28th January 2019, Q = 22.79 l/s (E3). 

For each experiment, we prepared ana NaCl solution using 2 l of stream water and 100 g of reagent-grade NaCl. 

We injected the solution ininto a turbulent pool at the beginning of the stream reach to assure complete mixing in 200 

the stream water. Electric conductivity (EC) was measured via a portable conductivity meter (WTW) 55 m 

downstream of the injection point and converted into Cl- concentration via an EC-Cl- regression line (R2 = 0.9999). 

. Automatic compensation of stream temperature occurred (nLF, according to EN 27 888). EC-Cl- conversion was 

obtained using a known-volume sample of stream water taken before tracer injection at the measurement location 

and adding known quantities of a solution with a known concentration of Na-Cl. Conversion into Cl- concentration 205 

was obtained via an EC-Cl- regression line (R2 = 0.9999). Discharge was calculated for every slug injection via 

the dilution gauging method using the Cl- concentration obtained for each BTC (Beven et al., 1979; Butterworth 

et al., 2000). 

2.2 Advection-Dispersiondispersion equation and Transient Storage Model formulation 

The one-dimensional Fickian-type advection and dispersion equation describes the jointcombined effect of flow 210 

velocity and turbulent diffusion on solute transport (Beltaos &and Day, 1978; Taylor, 1921, 1954). The 

differential form of ADE reads: 

𝜕𝐶

𝜕𝑡
= −𝑣

𝜕𝐶

𝜕𝑥
+

1

𝐴

𝜕

𝜕𝑥
(𝐴𝐷

𝜕𝐶

𝜕𝑥
)        Eq.1 

Where t is time [T], x is the distance from the injection point along the stream reach [L], A [L2] is the cross-

sectional area of flow, v [L/T] is the average flow velocity, D [L2/T] is the longitudinal dispersion coefficient, and 215 

C is the concentration of the observed tracer above background levels [M/L3]. The solution of the differential form 

of ADE for an instantaneous solute injection at x = 0 [L] reads: 

𝐶(𝑡) =
𝑀

𝐴(4𝜋𝐷𝑡)1/2
𝑒𝑥𝑝 [−

(𝐿−𝑣𝑡)2

4𝐷𝑡
]        Eq. 2 

Where M is the injected solute mass [M], t is time [T], and L is the length of the investigated reach [L]. 

The TSM describes the solute transport in streams by combining the advection-dispersion process in the stream 220 

channel through a hydrologic exchange with an external storage zone. The model equations read (Bencala &and 

Walters, 1983): 

{
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1
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= −𝛼

𝐴

𝐴𝑇𝑆
(𝐶𝑇𝑆 − 𝐶)

 

      Eq.3 

where the hydrologic exchange with the transient-storage zone is driven by the exchange coefficient α [1/T] and 225 

the area of the transient storage zone, ATS [L2]. Here, we will refer to A, v, and D as “advection-dispersion 

parameters” and to ATS and α as “transient storage parameters”; the five parameters are referred to as “TSM 

parameters”.”. The solute concentrationconcentrations in the main channel and the transient storage zone are C 

and CS [M/L3], respectively. The performances of both ADE and TSM results are evaluated using the Root Mean 

Squared Error objective function (RMSE), which is the most commonly used objective function in solute-transport 230 
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studies (Ward et al., 2018; Wlostowski et al., 2017; Zaramella et al., 2016).). RMSE is an equivalent form of 

Residual Sum of Squares (RSS) and Mean Absolute Error (MAE) objective functions that are used in OTIS-P (the 

most frequently adopted inverse modelling approach for TSM, Runkel, 1998) and by the dynamic identifiability 

analysis (Wagener et al., 2002). RMSE allowed us a comparison of our TSM results with OTIS-P and with 

dynamic identifiability analysis consistently to previous studies (Wlostowski et al., 2013; Ward et al., 2017). 235 

2.3 Iterative modelling approach to obtain TSM parameters 

2.3 Random sampling and global identifiability analysis 

Several sampling approaches were previously used to estimate parameter uncertaintyidentifiability in TSMs, such 

as Monte Carlo sampling (Wagner and Harvey, 1997; (Wagener et al., 2002; Wagner & Harvey, 1997; Ward et 

al., 2013), Latin hypercube sampling (LHS, Ward et al., 2018; Kelleher et al., 2019), and Monte Carlo coupled 240 

with a behavioural threshold (Kelleher et al., 2013; Ward et al., 2017). Here, we use LHS to sample from the 

selected parameter spacerange, due to LHSLHS’s higher efficiency compared to the classic Monte Carlo approach 

(Yin et al., 2011). A single combination of model parameters (A, v, and D for ADE and A, v, D, ATS, and α for 

TSM) obtained from the random sampling approach is herein referred to as “parameter set”.  

We simulated our tracer experiments with the ADE by sampling advection-dispersion parameters via LHS to 245 

avoid initial assumptions that could impact the parameter estimates (Figure 1). The RMSE value of the best-

performing ADE parameter set was indicated as RMSEADE. Similar to the Monte Carlo approach coupled with 

behavioural threshold (Kelleher et al., 2013; Ward et al., 2017), we simulated the three tracer experiments with 

the TSM through a step-wise approach with n TSM iterations (n is number of iterations, Figure 1). To obtain 

reliable TSM results, Ward et al. (2017) suggested a minimum amount of parameter sets between 10,000 and 250 

100,000. Thus, in each TSM iteration we simulated 115,000 parameter sets. Results of each TSM iteration include 

RMSE values for the 115,000 parameter sets, and results of global identifiability analysis of TSMthe model 

parameters. GlobalThe identifiability analysis was conducted throughincludes parameter vs RMSE plots (Wagener 

et al., 2003), parameter distribution plots (Ward et al., 2017), regional sensitivity analysis (Wagener and Kollat, 

2007; (Kelleher et al., 2019; Wagener & Kollat, 2007)), and parameter distribution plots (Wagener et al., 2002; 255 

Ward et al., 2017). Since the above-mentioned identifiability analysis refers to model performance (RMSE) 

evaluated on the entire BTC, we refer to it as “global identifiability analysis.” Globally identifiable parameters 

satisfy the following criteria: a univocal peak of performance in parameter vs RMSE plots and in parameter 

distribution plots (Ward et al., 2017) and cumulative distribution function (CDF) corresponding to the best 0.1 % 

of the results deviating from the 1:1 line and from parameter CDF corresponding to the best 10 % of the results 260 

(Kelleher et al., 2019). To evaluateWe selected these behavioural thresholds (top 0.1% and top 10%) to assure 

consistency with previous work (Wagener et al., 2002; Wlostowski, 2013; Ward 2013; Ward 2017; Kelleher 

2019). Parameter identifiability is usually evaluated via visual inspection of the plots from the global identifiability 

analysis (Wagener et al., 2002; Wlostowski et al., 2013; Ward et al., 2017; Ward et al. 2018; Kelleher et al., 2019). 

To couple visual inspection with a numerical measure able to express the degree of identifiability of a certain 265 

parameter, we also evaluated the two-sample Kolmogorov-Smirnov (K-S) test whichthat calculates the maximum 

distance K and the corresponding p-value between two cumulative distribution functions, F(P0.1) and F(P10), by: 

[𝐾, 𝑝] = 𝑚𝑎𝑥|𝐹(𝑃0.1) − 𝐹(𝑃10)|        Eq. 4 
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Where F(P0.1) and F(P10) are the cumulative distribution function of a parameter P respectively for the best 0.1% 

and the best 10% of the results. Following the approach of Ouyang et al. (2014), we grouped parameter 270 

identifiability in four categories: highly identifiable (K > 0.25, p ≤ 0.05), moderately identifiable (0.1 ≤ K ≤ 0.25, 

p ≤ 0.05), poorly identifiable (K < 0.1, p ≤ 0.05), and non-identifiable (p > 0.05).  

2.4 Identifiability analysis on specific sections of the BTC 

100 best -performing parameter sets for each iteration were analysed with the DYNamic Identifiability Analysis 

(DYNIA, Wagener et al., 2002) to address the role of TSMmodel parameters on different sections of the BTC. 275 

Compared to the global identifiability analysis, the dynamic identifiability analysis evaluates the identifiability of 

a parameter on a moving window along the BTC. Following the approach of Wagener et al. (2002), we used a 

window size of three-time steps (~1 min for E1 and the change of information content.E2, and ~15 secs for E3). 

The dynamic identifiability analysis identifies regions of the observed data that are sensitiveidentifiable (or not) 

to the investigated model parameter, and it can be used to test model structure, to design specific experiments, 280 

and to relate the model parameters to a specific simulated model response (Wagener et al., 2004). The dynamic 

identifiability analysis yields the distribution of the likelihood as a function of the parameter values and the 

information content of the parameters over time. The information content is expressed as one minus the width of 

the 90 % confidence interval over the entire parameter range (Wagener et al., 2002). A wide 90 % confidence 

interval indicates that various parameter values are associated to equally good performances resulting in a low 285 

information content. Conversely, narrow 90% confidence intervals and corresponding high information content 

values suggestssuggest that the best -performing parameters are contained in a relatively narrow range compared 

to the feasible range. To evaluate the degree of identifiability of a certain parameter on specific sections of the 

BTC, we grouped parameter identifiability in three categories: highly identifiable (information content ≥ 0.66), 

moderately identifiable (0.33 ≤ information content < 0.66), and poorly identifiable (information content < 0.33). 290 

We also specified sections of the BTC as follows: “peak” of the BTC is the section of the BTC corresponding to 

a neighbourhood interval of three time steps (± ~1 min for E1 and E2, and ± ~15 secs for E3) around the maximum 

observed concentration; “rising limb” and the “tail” are respectively the BTC sections before and after the peak. 

A detailed description onof how to read the plots used to address the global identifiability analysis and the 

description of the dynamic identifiability analysis algorithm are reported in Appendix A. 295 

The first TSM iteration investigated2.5 Iterative approach to achieve model performance over 

identifiability 

We simulated our tracer experiments with the ADE to avoid initial assumptions on advection-dispersion 

parameters that could affect the identifiability of transient storage parameters (Figure 1). The RMSE value of the 

best-performing ADE parameter rangesset is referred to as RMSEADE. After obtaining identifiable advection-300 

dispersion parameters, we simulated the observed BTC with the TSM by sampling advection-dispersion 

parameters from a parameter range defined frombased on the ADE results and, while the transient storage 

parameters were based on literature values (Table 1). This first TSM simulation over 115,000 parameter sets is 

referred as to first TSM iteration. 

Similar to the Monte Carlo approach coupled with behavioural thresholds (Kelleher et al., 2013; Ward et al., 2017) 305 

starting from the result of the first TSM iteration, we simulated the three tracer experiments through a step-wise 

approach with n TSM iterations (n is the number of iterations, Figure 1).  The followingn TSM iterations sampled 
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115,000 parameter sets via LHS over parameter ranges defined by the results of the previous TSM iteration. 

Namely, if the global identifiability analysis from the previous TSM iteration indicated that the investigated 

parameter is identifiable, the best 1 10% of the results were used to define its parameter spacerange in the 310 

successive TSM iteration. (Figure 1). When the identifiability criteria were not met, the parameter spacerange 

investigated in the successive TSM iteration was increased or, for the case of ATS and α, it was constrainedreduced 

based on the dynamic identifiability analysis result (information content above 0.66 on the BTC tail). This 

condition was chosen by the evidence that transient storage parameters ATS and α are often non-identifiable via 

global identifiability analysis (Camacho &and González, 2008; Ward et al., 2013; Ward et al., 2017; Kelleher et 315 

al., 2019), but they are identifiable on the BTC tail (of the BTC (Wagener et al., 2002; Kelleher et al., 2013; 

Wagener et al., 2002; Wlostowski et al., 2013). 

While the first TSM iteration was conducted to investigate the identifiability of all the possible combinations in 

the feasible parameter spacerange reported in the literature and from the results of ADE (Table 1), the successive 

iterations excluded pairs of v and A whose product was outside the value of the discharge evaluated via dilution 320 

gauging ±10 %. This condition was chosen to respect results from Schmadel et al. (2010), who reported that the 

discharge error from the dilution gauging method is ≃8 %. The same approach reported in (Figure 1 for TSM) 

was used also in the case where v was assumed fixed and equal to vpeak. = L/tpeak, where tpeak is the arrival time of 

the concentration peak. This choice was motivated by the fact that vpeak is commonly adopted as a value for 

velocity in many transient storage studies (Ward et al., 2013; Kelleher et al., 2013; Wlostowski et al., 2017; Ward 325 

et al., 2017; Ward et al., 2018). The modelling was finalized once every TSMmodel parameter indicated global 

identifiability via the enunciated criteria and the Kolmogorov-Smirnov test resulted in K > 0.1 and p ≤ 0.05 for 

each TSMmodel parameter. 

2.6 Number of parameter sets, parameter range, and identifiability of model parameters 

For each TSM iteration, we randomly extracted N parameter sets and their corresponding results. We then 330 

computed the mean and standard deviation of the top 10% of model results considering only the extracted subset 

of parameters N instead of the total 115,000. N increased from 1,000 to 115,000 with intervals of 1,000 parameter 

sets. We then evaluated the change in model performance with the changing number of sampled parameter sets 

for the different TSM iterations for the three experiments. A continuous decrease of the mean and the standard 

deviation of the top 10% results with increasing N shows that the number of chosen parameter sets clearly affect 335 

the performances of the random sampling approach for the investigated parameter range. On the contrary, constant 

mean and standard deviation of the top 10% results over increasing N point to the inability of the model and 

modelling procedure to increase the performances with an increasing number of parameter sets for that 

investigated parameter range (Pianosi et al., 2015). 

2.7 Comparison with an inverse modelling scheme and a Monte Carlo random sampling approach 340 

We compared our results with both inverse modelling results (OTIS-P),) and the most-common random sampling 

approach infor TSMs (OTIS-MCAT). OTIS-P is an inverse- modelling scheme that minimiseminimises the 

residual sum of squares between the modelled BTC and the observed BTC. OTIS-P model estimates the best-

fitting TSMmodel parameter values and their identifiability via the 95 % confidence interval. As indicated in 

Runkel (1998), we We carried out multiple OTIS-P iterations starting from different initial parameter values to 345 
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avoid a local minimum and interrupted themthe iterations when parameter values calibrated via OTIS-P changed 

less than 0.1 % between subsequent runs. (Runkel, 1998). OTIS-MCAT solves the TSM for the selected number 

of parameter sets and addresses their identifiability with a global identifiability analysis (Ward et al., 2017). 

Compared to our approach, OTIS-MCAT considers Monte Carlo parameter sampling instead of LHS, velocity 

equal to vpeak and it does not foresee iterative parameter sampling from results of dynamic identifiability analysis. 350 

Thus, we here indicate as “OTIS-MCAT results” the results we obtained after the first TSM iteration when v was 

assumed fixed and equal to vpeak. 

2.4 Hydrologic8 Metrics and hydrologic interpretation of TSM results  

The TSMmodel parameter sets obtained afterfrom OTIS-P, OTIS-MCAT, and the proposed iterative TSM 

approach were used to compute some hydrologic metrics relate to interpret solute transport in streams. We 355 

hereHere we computed the average distance a molecule travels in the stream channel before entering the transient 

storage zone (Ls [L], Mulholland et al., 1997): 

𝐿𝑠 =
𝑣

𝛼
           Eq.5 

The average time spent by a molecule in the transient storage zone (Tsto [T]) is evaluated as (Thackston and 

Schnelle, 1970): 360 

𝑇𝑠𝑡𝑜 =
𝐴𝑇𝑆

𝛼𝐴
          Eq.6 

We computed the average water flux through the storage zone per unit length of the stream channel to interpret 

the magnitude of flux between the stream channel and the transient storage zone. Then we multiplied the obtained 

value by the reach length L to obtain the total water flux through the storage zone for the entire stream reach (qs 

[L2L3/T], modified from Harvey et al., 1996): 365 

𝑞𝑠 = 𝛼𝐴𝛼𝐴𝐿          Eq.7 

However, the metrics Ls, Tsto, and qs metrics aredo not able to encompass both the role of advective transport and 

of the transient storage. Thus, we also evaluatedcalculated FMED [-] that accounts for the median travel time due 

to advection-dispersion and transient storage and for the travel time only due to advection-dispersion (Runkel, 

2002): 370 

𝐹𝑀𝐸𝐷 ≅ (1 − 𝑒(−𝐿
𝛼

𝑣
)
)

𝐴𝑇𝑆

𝐴𝑇𝑆+𝐴
         Eq.8  

Increasing values of FMED have to be interpreted as increasing the relative importance of the storage zone in the 

solute transport downstream (Runkel, 2002; (Gooseff et al., 2013; Runkel, 2002)). 

3. Results 

3.1 Identifiability of TSMADE parameters and comparison with OTIS-P and OTIS-MCAT results 375 

The global identifiability analysis showed a clear peak of TSM parameters was studiedperformance toward 

univocal values for thev, A, and D for all three tracer experiments injections (indicated as (E1, E2, E3, cfr. 

paragraph 2.1) for two distinct cases: stream, plots not shown). The model performances varied between RMSEADE 

equal to 0.9894 mg/l (E3, Q = 22.79 l/s) and RMSEADE equal to 1.9423 mg/l (E1, Q = 2.52 l/s). 
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3.2 TSM parameters  380 

3.2.1 Identifiability of model parameters when velocity is considered as a variablecalibration parameter, and 

velocity considered equal to vpeak (v = vpeak). Global Identifiability analysis results are here reported via only 

parameter values plotted against the corresponding RMSE values. 

3.1.1 Transient storage modelling with stream velocity as varying model parameter  

After the first TSM iteration, the global identifiability analysis indicated that v, D, and α parameters are 385 

sensitiveidentifiable with a unique and identifiable performance peak (K of K-S test always > 0.22 and p < 0.05 

for each tracer experiment). However, A and ATS appeared non- or poorly- identifiable for the three investigated 

BTCs (Figure 2, green dots, p-value of the K-S test for ATS > 0.05 for each tracer experiment). The dynamic 

identifiability analysis provided clearer insights into the effect of the TSM parameters on the BTC and their 

identifiability ranges compared to the global identifiability analysis. v and α were confirmed to be the most 390 

identifiable and informative parameters in the rising limb, the peak and the tail of the BTC (information content 

> 0.66; Figure 3b, h). A and D were mostly identifiable and informative during the rising limb and the tail of the 

BTC (information content > 0.50; Figure 3c-f). ATS was uncertain and non-informative in most sections of the 

BTC (information content < 0.33; Figure 3i, j). However, the identifiability of ATS increased in the tail of the BTC, 

where the information content was above 0.66 for ATS below 5.356 m2 for E1 (Figure 3i, j), and for ATS below 395 

5.4315 m2 and 4.6404 m2 respectively for the BTCs of E2 and E3 (results not shown). 

The global identifiability of TSMmodel parameters increased throughwith increasing iterations. In the iterative 

model approach and whenTSM iterations where ATS or α were poorly or non-identifiable (p-value of the K-S test 

for ATS > 0.05)), TSM performances approached at best RMSEADE (Figure 2, green, yellow and blue dots). After 

four (for E1 and E2) or five (for E3) TSM iterations, the parameter values plotted against the corresponding RMSE 400 

values showed a univocal increase ofin performance toward unique values for v, A, D, α, and ATS (Figure 2, orange 

dots), and the RMSE of the best -performing parameter sets decreased below RMSEADE (Figure 2, black horizontal 

line). Also, the CDF corresponding to the best 0.1 % of the results deviated both from the 1:1 line and from the 

parameter CDF corresponding to the best 10 % of the results (results not shown). These conditions, coupled with 

the K of K-S test always larger than 0.1 (average K for all the TSMmodel parameters equal to 0.36, and p-value 405 

< 0.05) indicated parameter identifiability and the finalization of the iterative TSM approach. 

The dynamic identifiability analysis for the last TSM iteration showed that the advection-dispersion parameters 

were important in controlling the rising limb and the tail of the BTC (results reported only for E1, Figure 4a-f), 

while α was particularly important for controlling the tail (Figure 4g, h) and ATS for controlling the rising limb and 

the tail of the BTC (Figure4i, j). 410 

3.1.2 Transient storage modelling with stream velocity set equal to vpeak 

The OTIS-MCAT results produced low p-values for each TSM parameter after the K-S test (p < 0.05, K > 

0.12) indicating parameter identifiability. However, 3.2.2 Identifiability of model parameters when velocity 

is set equal to vpeak 

The global identifiability analysis showed that the distribution of TSM parameters did not converge towards 415 

univocal and optimal parameter values suggesting that identifiability of TSM parameters was rather uncertain 

with TSM outcomes performing worse than the ADE (Figure 5, green dots). The global identifiability of TSMof 
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model parameters increased considerably through the iterative model approach. also when velocity was not 

considered a calibration parameter. After the third TSM iteration, the best -performing parameter sets approached 

unique parameter values (Figure 53, blue dots) and the CDF corresponding to the best 0.1% of the results deviated 420 

from 1:1 line and from the CDF of the best 10% of the results (results not shown). These conditions, together with 

K of K-S test always > 0.25 and p-value < 0.05 for each TSMmodel parameter and tracer experiment, showed a 

clear increase ofin identifiability compared to the initial OTIS-MCAT results. after the first iteration (Figure 3, 

green dots). The increase ofin parameter identifiability was followed by a sharp increase ofin model performance, 

with the best -performing parameter sets at the end of the iterative approach having RMSE values below RMSEADE 425 

for all the investigated BTCs (Figure 5, blue dots and black line). Dynamic identifiability analysis for the last 

TSM iteration indicated that A and D control respectively the falling limb and the rising limb of the BTC (Figure 

6a-d, results of E1). α controlled both on the rising limb, falling limb and tail of the BTC (Figure 6e-f) and ATS 

controlled both the falling limb and the tail of the BTC (Figure 6g, h3, blue dots and black line).  

3.3 Dynamic identifiability analysis  430 

3.3.1 Dynamic identifiability analysis when velocity is considered as a calibration parameter 

The dynamic identifiability analysis provided clearer insights into the identifiability of the model parameters for 

different sections of the BTC compared to the global identifiability analysis (plots shown only for E1). After the 

first TSM iteration, v and α proved to be the most identifiable and informative parameters on the rising limb, the 

peak, and the tail of the BTC (information content > 0.66; Figure 4a, b, g, h). A and D were mostly identifiable 435 

and informative during the rising limb and the tail of the BTC (Figure 4c-f). ATS was non-identifiable and poorly 

informative in most sections of the BTC (information content < 0.33; Figure 4i, j). However, the identifiability of 

ATS increased on the tail of the BTC, where the information content was above 0.66 for ATS between 0.77 m2 and 

5.35 m2 (Figure 4i, j). Results from OTIS-PE2 and E3 showed parameter identifiability withthat α and ATS were 

highly identifiable (information content > 0.66) for smaller sections of the tail of the BTC when the experiments 440 

were conducted at higher discharge stages (information content of ATS > 0.66 for 51% of the tail of the BTC for 

E1, for 23% for E2, and for 19% for E3, results not shown). 

The dynamic identifiability analysis for the last TSM iteration showed that the advection-dispersion parameters 

were important in controlling the rising limb and the tail of the BTC (Figure 3k-p), while α was particularly 

important for controlling the tail (Figure 3q, r) and ATS for controlling the rising limb and the tail of the BTC 445 

(Figure 3s, t). Dynamic identifiability analysis after the last TSM iteration for E2 and E3 showed comparable 

results (not shown).  

3.3.2 Dynamic identifiability analysis when velocity is set equal to vpeak 

After the first TSM iteration, the dynamic identifiability analysis indicated that A was poorly identifiable on the 

entire BTC (results reported only for E1, Figure 5a, b), while D was moderately identifiable (information content 450 

between 0.66 and 0.33) on the rising limb and on the tail of the BTC (Figure 5c, d). ATS displayed high information 

content on the entire BTC (Figure 5g, h), with a narrow confidence interval on the tail of the BTC for values 

between 0.0014 m2 and 0.43 m2. α was non-identifiable on the majority of the BTC (Figure 5e), however, it 

showed high information content for values between 7.06-05 1/s and 0.0074 1/s at the tail of the BTC (Figure 5f). 

The dynamic identifiability analysis for the BTC of E2 and E3 yielded similar results, with narrow confidence 455 
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intervals for both ATS and α on the tail of the BTC and no clear trend between information content and discharge 

(results not shown). 

The dynamic identifiability analysis for the last TSM iteration of E1 indicated that A and D control the tail and 

the rising limb of the BTC (Figure 5i-l). α acted both the rising limb and the tail of the BTC (Figure 5m-n) and 

ATS controlled mostly the tail of the BTC (Figure 5o, p). For E2 and E3, results after the last TSM iteration showed 460 

lower information content of ATS on the tail of BTC for increasing discharge stages compared to E1, while the 

information content of α was above 0.33 on the entire BTC (results not shown). 

3.4 Role of the used parameter range and the number of parameter sets for the identifiability of model 

parameters 

When a rather wide parameter range was used (first TSM iteration, green dots Figure 2), the performance of the 465 

global identifiability analysis was strongly dependent on the chosen number of sampled parameter sets. This can 

be derived from the strong decrease of the mean and the standard deviation of the top model results with the 

number of sampled parameter sets N (results reported only for E1, Figure 6a). Also, for less than 97,000 parameter 

sets, the error between model performance using N parameter sets and using 115,000 parameter sets was always 

above 5% (vertical black lines, Figure 6a). 470 

Our results showed that TSM results were poorly dependent by the sampled number of parameter sets when the 

model performance was studied for narrow parameter range around the peak of performance (last TSM iteration, 

orange dots Figure 2). This was derived by the rather constant mean and standard deviation of the top model 

results with the number of subset N. Also, for a number of parameter sets N above 11,000 the error between model 

performance using N parameter sets and using 115,000 parameter sets was always below 2% (vertical black line, 475 

Figure 6b). 

3.5 Comparison with OTIS-P and OTIS-MCAT results 

Compared to results from our identifiability analysis, outcomes of OTIS-P were consistent with the best parameter 

sets obtained at the end of the iterative modelling approach (Table 2). Results from OTIS-P showed parameter 

identifiability with a narrow 95% confidence range for the ATS and A, while D and α parameters were estimated 480 

with higher uncertaintylower identifiability due to a larger 95% confidence range (Figure 2, 43). The parameter 

sets obtained via OTIS-P (Figure 2, 43, red vertical dashed line) were close to approach approaching the best 

fitting results obtained at the end of the used iterative approach, regardless the fact theof whether flow velocity 

was considered as a variable parameter (Figure 2), or was it considered as a calibration parameter (Figure 2) or 

was considered equal to vpeak (Figure 53, Table 2).  485 

3.2The results of OTIS-MCAT showed low p-values for each model parameter after the K-S test (p < 0.05, K > 

0.12) indicating parameter identifiability. However, compared to our results at the end of the iterative modelling 

approach, the global identifiability analysis of the OTIS-MCAT showed that the distribution of model parameters 

did not converge towards univocal and optimal parameter values suggesting that model parameters were rather 

non-identifiable with the TSM performing less than the ADE (Figure 3, green dots).   490 
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3.6 Variation of transport metrics with increasing identifiability of TSMmodel parameters  

The investigatedevaluated transport metrics showed high uncertainty as long TSMthe model parameters were 

poorly or non-identifiable (Figure 2, 53, green and yellow dots). This was particularly evident after the first and 

second TSM iterations, when the 100 best -performing parameter sets showed Tsto values spanning over nine 

orders of magnitude (Figure 7d-f), while both Ls and qs spanned over three orders of magnitude (Figure 7a-c, g-495 

i). When TSMthe model parameters were poorly identifiable, the values of the transport metrics showed clear 

differences between simulations that were obtained when streamwith streamflow velocity was considered as a 

variablecalibration parameter (Figure 7, blue boxplots, first TSM iteration) and when streambetween simulations 

with streamflow velocity was consideredset equal to vpeak (OTIS-MCAT, Figure 7, orange boxplots, first TSM 

iteration) showed relevant differences.). When v was considered variable together with the others TSM 500 

parametersas a calibration parameter, the best -performing parameter setsets after the first TSM iteration showed 

a non-negligeablenegligible role of transient storage in solute transport for the investigated discharge 

conditions.tracer experiments. This was indicated by the high values of Ls (from ~2 km for E1 to ~69 m for E3), 

by the rather lowsimulated exchange flux qs (from 0.06 l/s for E1 to 8.8 l/s for E3), and by the long solute residence 

time in the storage zone Tsto (ranging from ~ 140 days for E1 to ~ 15 hrs for E3). Conversely, veryClearly different 505 

values were obtained for the transport metrics were obtained when v was fixedset equal to vpeak. TheIn this case, 

the results from OTIS-MCATafter the first TSM iteration showed a rather fastnon-negligible exchange flux of the 

active stream with the transient storage zone (qs ranged from ~23 l/s for E1 to ~121 l/s for E3), a rather similar Ls 

for the three tracer experiments (~10 m), and Tsto increasedthat Tsto decreased between the experiments with 

increasing discharge (from ~12 sec for E1 to ~3 sec for E3). 510 

However, oncewhen the TSMmodel parameters were identifiable all, the transport metrics converged toward 

constrained values and were consistent with OTIS-P results (Figure 7). This was achieved whether stream velocity 

was keptwith a calibrated and a fixed or was variable(as in the modelling procedureOTIS-MCAT model) 

streamflow velocity. Results of the last TSM iteration showed that the investigated transport metrics have low 

dispersion around the median, and that the median almost coincides with the result of the best -performing 515 

parameter set (Figure 7, red dots). When all TSMmodel parameters were identifiable for each of the three tracer 

experiments, the transport metrics showed increasing qs (from ~2.7 l/s for E1 to ~23 l/s for E3), increasing LS 

(from ~50 m for E1 to ~100 m for E3), and decreasing Tsto (from ~150 s for E1 to ~33 s for E3) with increasing 

mean discharge conditionsof the experiments (from E1 to E3). Fmed did not change widely between the TSM 

iterations since the median of the best -performing 100 parameter sets varied always between 0.04 and 0.2 (Figure 520 

7j-l). However, together with the other investigatedqs, LS, and Tsto transport metrics , the dispersion of Fmed values 

around the median decreased with increasing identifiability of TSMmodel parameters.  

4. Discussion 

4.12 The role of velocity in random sampling approaches for TSM Challenges associated to parameter 

identifiability in TSMs 4.1 The importance of the identifiability of TSM parameter for correct 525 

interpretation of hydrological processes 

We showed that non-identifiability of α and ATS in TSM can result from the assumption v = vpeak, the selected 

number of parameter sets, and the parameter space used for the random sampling. Our results indicatedOur results 

showed that v interacts with α and ATS in transient storage models. This was particularly evident when v was 
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variable together with the other TSM parametersconsidered as a calibration parameter, and the non-identifiability 530 

of ATS was coupled with identifiability ofidentifiable v and α (Figure 2, green and yellow dots). On the contrary, 

ATS was found to be identifiable and α to be non-identifiable when v was fixed equal to vpeak (Figure 53, yellow 

dots). It is known that a separate evaluation of the advection-dispersion parameters from the transient storage 

parameters can result in misevaluationmisestimation of transient storage parameters due to the high parameter 

interaction (Knapp &and Kelleher, 2020). Several studies addressed the identifiability of model parameters, yet. 535 

However, no study so far investigated the role of the assumption v equals vpeakflow velocity on the non-

identifiability of α or ATS, and studies rely on a flow velocity equal to vpeak in random sampling approachapproaches 

for TSMs. Despite the observed interaction between v, α and ATS, our study also showed (Ward et al., 2013; 

Kelleher et al., 2013; Wlostowski et al., 2017; Ward et al., 2017; Ward et al., 2018). The practice of setting v equal 

to vpeak in past studies was justified by the notion that when all TSM parameters are identifiable the best performing 540 

parameter sets showed similar values no matter ifvpeak can be considered as a reasonable good approximation for 

the advection process in the stream velocity was fixed equal to vpeak,channel (Ward et al., 2013; Wlostowski et al., 

2017) and by the modelling advantage that assuming v equals vpeak would reduce model dimensionality (Knapp 

and Kelleher, 2020). While reducing the number of model parameters is advantageous for reduced model 

dimensionality, considering v as a calibration parameter is a needed testing strategy in TSMs. This is because 545 

measurement uncertainty is inevitable in determining discharge or was considered a variableflow velocity, thus 

we don’t know how big the effect of measurement uncertainty is on model performance, especially considering 

parameter (Table 2).interaction. Also, constraining the advection-dispersion parameters A and D already proved 

to affect the identifiability of the other model parameters (Lees et al., 2000; Kelleher et al., 2013; Ward et al., 

2017), but no study assessed the role of velocity on parameter identifiability. 550 

Our results showed that non-provide valuable guidance for future studies addressing parameter identifiability of 

transient storage parameters might indicate inaccurate in TSM results. This was evident from TSM iterations 

showing non-identifiability of α and ATS, with the best model performances approaching the RMSEADE (Figure 2, 

5, black line). This outcome indicated that non-identifiability of α or ATS is linked to an underestimation of 

transient storage process with the optimal modelled BTCs mimicking the ADE. Similar to. Specifically, our 555 

results, many authors showed non-identifiability of TSM parameters in random-sampling approach. Previous  

support the current praxis of considering velocity fixed and equal to vpeak, especially when research aims at 

evaluating the distribution of “behavioural ” parameter sets in TSMs (i.e. parameter sets satisfying certain 

performance thresholds). found identifiable ATS coupled with non-identifiable α (Camacho & González, 2008; 

Kelleher et al., 2013; Wagener et al., 2002; Wlostowski et al., 2013), while other TSM applications found α to be 560 

identifiable coupled with non-identifiability for ATS (Kelleher et al., 2019), or α or ATS to be both non-sensitive 

and non-identifiable (Camacho & González, 2008; Ward et al., 2013; Ward et al., 2017). Random-sampling 

approach are generally considered more informative than inverse-modelling approach (Ward et al., 2017; Knapp 

and Kelleher, 2020), however our results indicate that model outcomes showing non-identifiability of transient 

storage parameters should be used with particular caution for model interpretation due to the rather different 565 

parameter estimation when TSM parameters were identifiable and non-identifiable (Figure 2, 5). 

Identifiability of TSM is commonly studied via random sampling approaches using between 800 and 100,000 

parameter sets sampled from a parameter space spanning several orders of magnitude (Table 1). Our study 

demonstrated that it is unlikely to reach parameter identifiability via random-sampling approach using less than 
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100,000 parameter sets when investigating a rather large parameter space of TSM parameters (Table 1). Our 570 

results showed identifiability only after the third TSM iteration, between 230,000 and 345,000 parameter sets and 

by narrowing the investigated parameter range twice (Figure 2, 5, blue dots). While the range and the order of 

magnitude of advection-dispersion parameter can be estimating by using the ADE, the ranges where α and ATS are 

identifiable are never known a-priori and random sampling approaches need to target a parameter space large 

enough to capture transient storage parameters on their entire feasible space. Thus, the peak of performance for 575 

the transient storage parameters can be so narrow that it can be missed by the random sampling approach or by 

only a low number of selections.(2017), who found by using the OTIS-MCAT model via 100’000 parameter sets 

that the TSM parameters were identifiable only for one of the three investigated BTCs. This is due to the fact that 

using velocity as calibration parameter leads to the same parameter identifiability compared to the case when 

velocity is considered fixed (Figure 2, 3, Table 2). Yet, setting velocity equal to vpeak, requires a considerably 580 

lower amount of computational power due to the lower degrees of freedom of the TSM. However, when research 

aims to evaluate the control of the model parameters on the shape of the BTC, our results suggest that increasing 

the model complexity by considering velocity as a varying model parameter can offer more detailed insights into 

the role of advection-dispersion processes(Kelleher et al., 2013; Ward et al., 2017). The high information content 

(> 0.66, eg. Figure 3j) of α and ATS on the tail of the BTC provided valuable information to constrain the parameter 585 

space in successive TSM iterations. This approach eventually allowed us to identify TSM parameters. and of the 

transient storage parameters on the rising limb and peak of the BTC (Figure 4, 5). Indeed, our results highlighted 

how assuming v equals vpeak led to a stronger influence of α and weaker influence of ATS on the BTC compared to 

the case when v is considered as a calibration parameter. Also, our dynamic identifiability analysis underestimated 

the role of A and ATS on the rising limb and peak of the BTC and overestimated the role of D and α on the rising 590 

limb of the BTC for the case v equals vpeak compared to the case when v was a calibration parameter (Figures 4, 

5). 

Our work demonstrated that the The assumption v equals vpeak might not be representative of the advection role 

on solute transport in streams. The assumption of streamused in previous work of streamflow velocity equalling 

vpeak implies that vpeak canshould encompass the effect of advection on the entire BTC or at least in the rising- limb 595 

and peak of the BTC. (Ward et al., 2013; Kelleher et al., 2013; Wlostowski et al., 2017; Ward 2018). However, 

when v was used as a calibration parameter, our results showed that v is one of the least meaningful parameters 

for simulating the peak of the BTC at low discharge (Figure 4a, b; 8a4k, i), while higher information content for 

v is obtained at higher discharge rates for values larger than vpeak at the peak of the BTC (Figure 8c, e, dynamic 

identifiability plots not shown). Our results also highlighted how assuming v equals vpeak caused a stronger 600 

influence of α and weaker influence of ATS on the BTC compared to the case when v is variable. Indeed, the 

dynamic identifiability analysis for the case v equals vpeak underestimated the role of A and ATS on the rising limb 

and peak of the BTC and overestimated the role of D and α on the rising limb of the BTC compared to the case 

when v was considered variable together with the other TSM parameters (Figures 4, 6).dynamic identifiability 

plots not shown).  605 

4.2 Control of TSM parameters on the rising limb, the peak, and the tail of the BTC How TSM parameters 

control the rising limb, the peak, and the falling limb of the BTC  

The relative high information content of transient storage parameters on the rising limb and the peak of the BTC, 

coupled with the high information content of advection-dispersion parameters on the falling limb and tail of the 
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BTC (Figure 4, 6 8a, c, e) The results of our dynamic identifiability analysis showed that both the advection-610 

dispersion and the transient storage parameters control solute arrival-time and solute retention in stream channels. 

This outcome is in contradiction with the common interpretation of model parameters, where it is assumed that 

the advection-dispersion parameters control the solute arrival time, while transient-storage parameters are 

assumed to control the tail of the BTC (Bencala, 1983; Bencala and Walters, 1983; Runkel, 2002; Smith, 2005; 

Bencala et al., 2011). Following this common interpretation of the role of model parameters on the BTC, some 615 

authors decomposed the BTC into an advective part and a transient storage part (Wlostowski et al., 2017; Ward 

et al., 2019). This decomposition allowed them to quantify the role of advection-dispersion and transient storage 

embedded in the BTC. However, it this modelling strategy also implicitly assumes a negligible role of advection-

dispersion parameters on the tail of the BTC and of transient-storage parameters on the rising limb and peak of 

the BTC, which is in not consistent with our findings (Figures 4, 5, 8). 620 

Our work demonstrated that the assumption v equals vpeak might not be representative of the advection role on 

solute transport in streams. The assumption of stream velocity equalling vpeak implies that vpeak can encompass 

the effect of advection on the entire BTC or at least in the rising-limb and peak of the BTC.  However, when v 

was used as calibration parameter, our results showed that v is one of the least meaningful parameters for 

simulating the peak of the BTC at low discharge (Figure 4a, b; 8a), while higher information content for v is 625 

obtained at higher discharge rates for values larger than vpeak at the peak of the BTC (Figure 8c, e, dynamic 

identifiability plots not shown). Our results also highlighted how assuming v equals vpeak caused a stronger 

influence of α and weaker influence of ATS on the BTC compared to the case when v is considered as a calibration 

parameter. Indeed, the dynamic identifiability analysis for the case v equals vpeak underestimated the role of A 

and ATS on the rising limb and peak of the BTC and overestimated the role of D and α on the rising limb of the 630 

BTC compared to the case when v was the objective of the random sampling together with the other TSM 

parameters (Figures 4, 6).  

Several studies addressed how different model parameters affect the shape of the BTC and showed partly similar 

andbut also contrasting outcomes to our findings (Figure 8g-l, Wagner &and Harvey, 1997; Wagener et al., 2002; 

Scott et al., 2003; Wlostowski et al., 2013; Kelleher et al., 2013). The sensitivity ofPast studies found that the 635 

rising limb of the BTC was controlled by the stream channel area A alone (Wagener et al., 2002), by the 

combination of A and the longitudinal dispersion coefficient D (Wagner and Harvey, 1997; Wlostowski et al., 

2013; Kelleher et al., 2013), or by A, D, and ATS (Scott et al., 2003). The peak of the BTC was found to be 

controlled by advection-dispersion parameters in most past TSM applications (Wagener et al., 2002; Wlostowski 

et al., 2013; Scott et al., 2003; Kelleher et al., 2013). However, Wagner and Harvey (1997) reported a non-640 

negligible role of the transient storage parameters α and ATS in controlling the arrival time of the peak concentration 

(Figure 8g). Eventually, while the majority of the studies found the transient storage parameters α and ATS to 

control the tail of the BTC (Wagner and Harvey, 1997; Scott et al., 2003; Wlostowski et al., 2013), results reported 

by Wagener et al., (2002) and by Kelleher et al. (2013) highlight the role of the stream channel area A on 

controlling a large portion of the tail of the BTC.  645 

The observed identifiability of model parameters in different sections of the BTC in past work and the differences 

compared to our findings (Figure 8a, c, e) might be driven by different physical settings or discharge 

conditionconditions of the study sites., by the methods used to account for parameters identifiability, by the 

parameter sampling procedure, or by the strategy used to obtain the best-fitting parameter sets (Wagner and 
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Harvey; 1997; Scott et al., 2003; Kelleher et al., 2013). For example, the sensitivityidentifiability of the TSM to 650 

α and ATS is expected to increase for dispersive streams and alluvial stream channels, compared to mountain 

reaches with low or null hydrologic exchange with the hyporheic zone ((Gooseff et al., 2005; Kelleher et al., 

2013). However, our analysis also suggests that the different results on the importance of TSMmodel parameters 

for certain sections of the BTC reported in (Figure 8) could be driven by the selected random sampling approach 

and the non-identifiability of TSMmodel parameters.  655 

Results from Wagner & Harvey (1997) and Scott et al. (2003) are in partial agreement with our results for the 

case v equals vpeak (Figure 8b, d, f, g, h) suggesting a non-negligeable influence of D on the rising and the falling 

limb of the BTC and a significant role of α and ATS on controlling the peak, the falling limb, and the tail of the 

BTC. However, our results also highlight a non-relevant role of A on the rising limb and the peak of the BTC in 

our experiments (Figure 8b, f). Our results also show the role of α on controlling the rising limb of the BTC 660 

(Figure 8b, d, f), a result that was not found by other studies (Scott et al., 2003; Wagner & Harvey, 1997). This 

difference might be driven by different hydrologic conditions and physical settings of the study sites, by the 

methodologies used for accounting parameters sensitivity, by the parameter sampling procedure, or the strategy 

used to obtain the best-fitting parameter set.  

Consistent with our results, the dynamic identifiability analysis of TSM parameters by Wagener et al. (2002) and 665 

Wlostowski et al. (2013) indicated high identifiability of A on the rising limb of the BTC, while α and ATS 

controlled the falling limb and the tail of the BTC (Figure 8h, j). However, they also report lower information 

content for D, ATS and α on the BTC compared to our study. This difference may arise from the parameter range 

and number of simulations chosen by the authors that could affect the TSM results. Plots of the parameter values 

against the corresponding objective function in Wagener et al. (2002) and the regional sensitivity analysis in 670 

Wlostowski et al. (2013) do not indicate parameter identifiability for ATS, D and α. These results together with our 

identifiability plots when TSMmodel parameters were poorly identifiable (Figures 2, 53, green and yellow plots) 

suggest that the range and the number of the parameter sets chosen by the authorsin different studies could have 

been unsufficientinsufficient to obtain global sensitivity and identifiability of D, ATS, and α parameters. Similar to 

results by Wagener et al. (2002) and Wlostowski et al. (2013) results,), our dynamic identifiability analysis showed 675 

no influence of ATS on the majority of the BTC, when itATS was non-identifiable (Figure 34i, j).  

Eventually, results from Kelleher et al., (2013) emphasize the roles that A and D have on large sections of the 

BTC (Figure 8k, l). While this is consistent with our findings (Figure 8a, c, e), Kelleher et al., (2013) also indicate 

that transient storage parameters have a rather weak influence only on the tail of the BTC (Figure 8k, l). Different 

sensitivity of TSM to transient storage parametersCompared to our results, the different role of the model 680 

parameters on controlling the shape of the BTC in previous studies (e.g. Kelleher et al., 2013) could be driven by 

the different approach used for evaluating the sensitivity (i.e. Sobol’ sensitivity analysis). However, our results 

suggest that the number of parameter sets (42,000) selected by Kelleher et al. (2013) might be too smallnot have 

been sufficient to obtain identifiability of TSMthe model parameters compared towith the the rather largewide 

parameter range chosen for their Monte Carlo sampling (Table 1). Results by Kelleher et al., (2013) are very 685 

similar to our TSM iterations for cases where α was non-identifiable (v equals to vpeak, Figure 53 yellow dots, 

dynamic identifiability plots not shown). We also demonstrated that our results after the first and second TSM 

iterations are not usefulsufficient for interpreting the transient storage process, because of the non-identifiability 
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of the TSMmodel parameters and the low model performances (RMSE ≥ RMSEADE (Figure 5a-p3a-l, green and 

yellow dots).  690 

This study offers significant insights in understanding which model parameter influence the shape of the BTC, 

suggesting that only behavioural parameter sets should be considered in models aiming to understand the control 

of model parameters on the rising limb, peak, and tail of the BTC. Future work should address the interaction of 

model parameters on controlling different sections of the BTC for more complex model formulations (e.g. TSM 

with two or several transient storage zones, Choi et al., 2002; Bottacin-Busolin et al., 2011).  695 

4.3 On the importance of parameter range, parameter sets, and challenges associated to parameter 

identifiability in TSM 

The applied iterative approach was effective in drastically improving parameter identifiability with the increase 

of TSM iterations. Identifiability of parameters in TSMs is commonly studied via random sampling approaches 

using between 800 and 100,000 parameter sets sampled from a parameter range spanning several orders of 700 

magnitude (Table 1). Despite a large number of parameter sets used Similar to our results, many authors showed 

non-identifiability of TSM parameters in random-sampling approach. Previous research found in previous studies, 

model parameters were found identifiable only in a few studies (Ward et al., 2017, 2018), while at least one model 

parameter was found to be non-identifiable in the majority of current TSM studies. Many authors found 

identifiable ATS coupled with non-identifiable α (Camacho and González, 2008; Kelleher et al., 2013; Wagener et 705 

al., 2002; Wlostowski et al., 2013), while other TSM applications found α to be identifiable coupled with non-

identifiability for ATS (Kelleher et al., 2019), or α and ATS to be both non-identifiable (Camacho and González, 

2008; Ward et al., 2013; Ward et al., 2017). Our results offer a possible explanation for the observed non-

identifiability of model parameters in published work. Our study demonstrated that it is unlikely to reach 

parameter identifiability via a random sampling approach using less than 100,000 parameter sets when a rather 710 

wide range of model parameters is used (Table 1, Figure 6a). While the range and the order of magnitude of 

advection-dispersion parameters can be estimated by using the ADE, the ranges where α and ATS are identifiable 

are not known a-priori and random sampling approaches need to target a parameter range wide enough to capture 

the distribution of transient storage parameters on their entire feasible range (Ward et al., 2013; Kelleher et al., 

2013; Ward et al., 2017). We here proved that investigating the most identifiable parameter range is more effective 715 

for achieving parameter identifiability than just using a large number of parameter sets on a wide parameter range 

(Figure 6). The peak of performance for the transient storage parameters can be so narrow that it can be missed 

by the random sampling approach or by only a low number of selections when the sampled parameter range spans 

many orders of magnitude. Similar conclusions have been obtained by Ward et al. (2017), who found by using 

the OTIS-MCAT model via 100,000 parameter sets that the model parameters were identifiable only for one of 720 

the three investigated BTCs. Other studies coupled random sampling approaches with behavioural thresholds to 

reduce parameter non-identifiability, yet this was done to constrain only the range of A (Kelleher et al., 2013; 

Ward et al., 2017). Here, we demonstrated the importance of the parameter range over the number of parameter 

sets in random sampling approaches for TSMs (Figure 6). The adopted identifiability analysis was effective in 

finding behavioural parameter sets after a few iterations regardless of the modelling approach used (OTIS-MCAT 725 

as well as considering v as a calibration parameter). Of particular interest is our finding that high information 

content (> 0.66, e.g. Figure 4j. 5f) of α and ATS on the tail of the BTC after the dynamic identifiability analysis 

can can provided valuable information to constrain be be used to reduce the parameter range in successive TSM 
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iterations. This result is in agreement with recent findings of Rathore et al (2021), who found the tail of the BTC 

to contain fundamental information for transient storage processes and the parameters describing it.  730 

The adopted iterative approach allowed to achieve parameter identifiability and to obtain physically realistic 

transport metrics. However, this approach is based on the specific objective function used (RMSE) and on the 

subjective thresholds to control the refinement of the parameter range for successive iterations (top 10% results 

for the global identifiability analysis, and information content > 0.66 for the dynamic identifiability analysis). 

Future work should explore the impact of the selection of the thresholds and of different objective functions on 735 

the physical realism of the modelling results and of the identifiability of the parameters. 

The applied iterative approach is foremost a tool for achieving parameter identifiability by investigating the entire 

range of feasible parameter values via existing identifiability tools (global identifiability analysis and dynamic 

identifiability analysis). The larger amount of time and computational power required by the adopted 

identifiability analysis compared to the rather straightforward application of OTIS-P paid off in terms of 740 

completeness of results and granted a more comprehensive view of the possible modelling outcomes on the 

feasible parameter range. Also, compared to the standard random sampling approach, the identifiability analysis 

used in the present work proved effective in iteratively constraining the parameter range to reduce the 

dimensionality of the model, eventually providing both identifiable model parameters and optimal parameter sets 

with model performances approaching (or even outperforming) calibrated results via inverse modelling (Table 2).  745 

Our simulations with OTIS-P resulted in excellent model performances for the investigated BTCs, with low RMSE 

values and with calibrated model parameters comparable to the behavioural parameter populations obtained via 

our global identifiability analysis (Figure 2, 3). While the obtained performances of the OTIS-P calibration are 

certainly specific to the investigated BTCs, the use of OTIS-P alone would have not provided enough information 

to address the reliability of the obtained model parameters. This, in turn, would have raised concerns about the 750 

credibility of the transport metrics obtained, eventually compromising the robustness of the derived physical 

process involved at the study site. Compared to random sampling approaches coupled with global identifiability 

analysis, inverse modelling approaches are often considered not as meaningful for interpreting modelling 

outcomes (Ward et al., 2013; Knapp and Kelleher, 2020). This is because parameters calibrated via inverse 

modelling might be non-identifiable despite an overall good model performance (Kelleher et a., 2019) and because 755 

identifiability analysis informs on behavioural parameter set which is a preferable and more informative outcome 

for hydrological models than a single set of parameter values (Beven, 2001; Wagener et al., 2002). Thus, our 

identifiability analysis over different investigated parameter ranges can offer an explanation about why in past 

studies identifiability analysis over a probably too large parameter range indicated non-identifiability and lack of 

convergence with OTIS-P results (Ward et al., 2017).  760 

Eventually, even if rRandom sampling approaches are generally considered more informative than the inverse-

modelling approach (Ward et al., 2013; Ward et al., 2017; Ward et al., 2018; Knapp and Kelleher, 2020), our 

results indicate that random sampling outcomes that show non-identifiability of transient storage parameters 

should not be used for process interpretation in TSM. This was evident from TSM iterations showing non-

identifiability of α and ATS, with the best model performances approaching the RMSEADE (Figure 2, 3, black line) 765 

indicating an underestimation of the transient storage process with the optimal modelled BTCs mimicking the 

ADE.  
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4.4 Implications of identifiable model parameters for hydrologic interpretation of modelling results  

Our results demonstrated that poor or non-identifiability of model parameters can result in a wrong hydrological 

interpretation of the processes controlling solute transport in streams. Additionally, our results showed that with 770 

increasing discharge conditions Ls and qs increased, Tsto decreased, and Fmed was rather stable for simulations 

where the model parameters were identifiable (cfr. paragraph 3.2). The low uncertainty and the values of the 

investigated transport metrics suggested that the transient storage at the experimental site was most probably 

controlled by in-stream dead zones (Boano et al., 2014; Smettem et al., 2017). Our modelling outcomes are also 

in line with the physical understanding of the studied stream reach. The study site is equipped with a dense network 775 

of groundwater monitoring wells that showed that the stream channel is almost entirely in gaining conditions for 

the investigated tracer injections with the groundwater gradients pointing toward the stream channel (Bonanno et 

al., 2021). This is in line with the obtained TSM transport metrics that indicate a very limited or even a lack of 

hyporheic exchange. Other modelling and experimental studies also outlined that the stream above the study 

section is dominated by inflow of groundwater or surface water from wetlands (Antonelli et al. 2020; Glaser et 780 

al., 2016, 2020). The observed link of Ls, qs, and Tsto values with discharge (Figure 7) also suggested that the 

transient storage at our site became less important in controlling solute transport with increasing discharge. The 

decrease of ATS and Tsto with increasing discharge has been argued to indicate an increase of groundwater gradients 

toward the stream channel with a consequent decrease in the hyporheic zone at different study sites (Morrice et 

al., 1997; Fabian et al., 2011). However, the observed groundwater gradients at the study site exclude the presence 785 

of significant hyporheic exchange during the three simulated tracer experiments. The observed trend between 

modelling results with discharge might be interpreted by the fact that, as the discharge increases, the wetted profile 

at the study site incorporates into the advective part of the channel the dead zones and the low-flow areas that are 

responsible for in-stream transient storage at lower flow rates (Zarnetske et al., 2007; Gooseff et a., 2008). This 

would cause a progressive increase in piston-flow transport and a reduced role of in-stream solute retention with 790 

increasing flow and water level in the stream channel.  

However, if we would have based the process interpretation on simulations before we reached identifiability of 

model parameters, the conclusions would have been different. The values for the transport metrics obtained when 

v and the other model parameters were considered as a calibration parameter, together with published results on 

solute residence time in the hyporheic zone and in the stream channel (Gooseff et al., 2005; Boano et al., 2014) 795 

could have been interpreted in a way that the transient storage was controlled by in-stream dead zones during 

high-discharge events and by a low rate hyporheic exchange at low flow conditions (Figure 7, blue boxplots and 

first TSM iteration). Conversely, results from first TSM simulation when v was considered fixed and equal to vpeak 

might have been interpreted in a way that transient storage of the studied stream channel was controlled by dead 

zones at the lowest flow conditions and by in-stream turbulences that caused solute retention in the transient 800 

storage zone to last ~3 seconds during high-flow events (Figure 7, orange boxplots and first TSM iteration). 

Our results also open developments for research seeking to increase the physical realism of the TSM and its 

results. Increased model complexity is both associated with a better analytical fitting to the observed BTC, but 

also with an increased degree of freedom of the model with a consequent reduction of parameter identifiability 

(Knapp and Kelleher, 2020). Our approach offers a promising flexible tool to target parameter identifiability and 805 

physical interpretation also in TSM formulation with increasing complexity, such as multiple storage zone models 

(Choi et al., 2002), or for TSMs considering sorption kinetics (Gooseff et al., 2005) or different residence time 
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distribution laws such as log‐normal distribution (Wörman et al., 2002), exponential plus pumping distribution 

(Bottacin-Busolin et al., 2011), and power law distribution (Haggerty et al., 2002). 

5 Conclusion 810 

There is a clear need in stream hydrology to better identify TSM parameters for simulating solute transport in 

streams. Here we address addressed the challenge of parameter identifiability in TSMs by combining global 

identifiability analysis with dynamic identifiability analysis in an iterative modelling approach to reduce 

parameter uncertainty in TSMs. Our results showshowed that v the value of stream velocity interacts with the 

transient storage parameters. Namely, when v was variable together with the other TSM parameters,stream 815 

velocity was a randomly sampled calibration parameter (within a physical reasonable range), we found non-

identifiable ATS coupled withand identifiable α. On the contrary, when vstream velocity was assumed to be equal 

to vpeak, ATS was found identifiable and α non-identifiable. We proved that such a non-identifiability of transient 

storage parameters can result in the modelled BTC mimickingapproaching the ADE. Non-Our work demonstrates 

that both transient storage and advection dispersion parameters control the shape of the BTC, when these model 820 

parameters are identifiable TSM simulations . This is contrary to previous studies that reported that advection-

dispersion parameters control the rising limb and the peak of the BTC and that the transient storage parameters 

control the tail of the BTC. We also showed that non-identifiable model parameters could severely 

misevaluatedmisestimate the solute retention time in the transient storage zone (Tsto) and the exchange flowflux 

between the stream channel with the transient storage zone, with a difference respectively  (qs). The differences 825 

of Tsto and qs between identifiable and non-identifiable parameters were up to four and two orders of magnitude 

compared to the results when the TSM parameters were identifiable, respectively.  

We here validated our initial hypothesis that the BTC tail contains critical information on transient storage 

parameters, since we clearly reduced The modelling approach in this study constrained the parameter uncertainty 

compared to the standard random-sampling approach coupled with the global identifiability analysis. Results 830 

obtained via inverse modelling approach are generally considered less informative about identifiability of TSM 

parameters compared to random-sampling approaches. However, random sampling approach rarely achieved 

identifiability in TSMs.range iteratively. This strategy successfully reduced model dimensionality and allowed us 

to obtain identifiable model parameters for the three tracer experiments. As a complement to the existing body of 

literature, our work shows that the non-identifiability of α or ATS occurringmodel parameters in prior TSMpast 835 

studies might be related to a lack of modelled transient storage exchange due to the narrow peak of performances 

that can be easily missed by the rather small number of simulations sampled parameter sets compared to the 

investigated parameter range. When allThe low uncertainty of the TSMmodel parameters were identifiable, the 

best performing parameter sets and the evaluatedderived transport metrics converged toward unique values, 

regardless the fact the velocity was considered as a variable parameter or equal to vpeak. This allowed us were 840 

pivotal for obtaining a robust assessment of the hydrological processes governingdriving the solute transport in 

the investigated site. 

Our work highlights how both parameter evaluation and at the study site. On the contrary, using non-identifiable 

model parameters, or relying on OTIS-P results alone, would have led to uncertain and rather different process 

interpretation in TSMs should be used with particular caution even if one parameter between α or ATS is found 845 

uncertain and non-identifiable. Stream hydrologists are currently unable to obtain univocal physical process 



 

23 

 

interpretation from modelling results due to contradictory interpretation of TSM parameters and lack of parameter 

identifiability in the published studies. Our work casts new lights on the opportunity to increase parameter 

identifiability and achieve stronger hydrologic interpretation of the processes governing solutes transport in 

streams. at the study site. 850 

Our study provides enhanced understanding on the relevance of identifiable parameters of TSM models. We also 

provide insights how parameter calibration without an assessment of their identifiability likely results an 

unrealistic conceptualization of processes and unrealistic values for different solute transport metrics. 
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Table 1. SummaryParameter names, abbreviations, and units together with a summary of publications that address 

identifiability of TSMmodel parameters with random sampling approachapproaches. We reported the used number 

of parameter sets and the parameter ranges, while in parenthesis it is reported the method used for the parameter 

sampling. “Double step” indicates that the sampling procedure was divided ininto two steps. In the first step, A varied 1085 

across a broad range and in the second step, it was varied across a narrowednarrower range to cover the most sensitive- 

range of the parameter domain. Each of the two steps hasinvestigated a number of simulationsparameter sets equal to 

half of the total number indicated in the table. 

Parameters Units Symbol 

Streamflow velocity 

Stream channel area 

Longitudinal dispersion coefficient 

Stream-storage zone exchange rate 

Transient storage area 

[m/s] 

[m2] 

[m2/s] 

[1/s] 

[m2] 

v 

A 

D 

α 

ATS 

Authors Number of parameter sets Range of TSM parameters 

Wagner &and Harvey, 1997 800 (Monte Carlo) A (m2) 0.02-0.6 

D (m2/s) 0.025-0.8 

ATS (m2) 0.01-2 

α (1/s) 0.000005-0.001 
 

Wagener et al., 2002 1,000 (Monte Carlo) A (m2) 0.3-1.05 

D (m2/s) 0.1-0.225 

ATS (m2) 0.1-0.5 

α (1/s) 0.00035-0.0025 
 

Wlostowski et al., 2013 2,000 (Monte Carlo) A (m2) 0.5-1.0 

D (m2/s) 0.5-1.5 

ATS (m2) 0.05-0.5 

α (1/s) 10-4-10-3 
 

Kelleher et al., 2013 42,000 (Double step Monte 

Carlo) 
A (m2) 0.001-1.0 (Inin the 

second step, min and 

max A valueslimits 

chosen fromvia the 

besttop 1,000 results 

of the first step) 

D (m2/s) 0.001-1.0 

ATS (m2) 0.001-0.01 

α (1/s) 10-5-10-3 
 

Ward et al., 2013 100,000 (Monte Carlo) 

 

 

 

A (m2) +-50% Apeak 

D (m2/s) 0.0001-5 

ATS (m2) 0.01-10 

α (1/s) 10-8-10-1 
 

Ward et al., 2017 100,000 (Double step Monte 

Carlo) 
A (m2) 0.1-1 (0.3-0.5 in the 

second step) 

D (m2/s) 0.01-10 

ATS (m2) 0.01-1 

α (1/s) 10-5-10-1 
 

Kelleher et al., 2019 27,000 (LHS) A (m2) 1.0 - 3.0 

D (m2/s) 0.001 - 10 

ATS (m2) 0.01 - 1 

α (1/s) 10-6 - 10-2 
 

This manuscript 

 

Second step ADE – 35,000 (LHS) v (m/s) vpeak · 0.8 - velocity of 

the first recorded 

increase of 

concentration in the 

BTC 

A (m2) +-20% Apeak 

D (m2/s) 0.0001 - Dbest · 1.2 
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This manuscript 

 

First TSM iteration – 115,000 

(LHS) 
v (m/s) +-50% vADE  

A (m2) +-50% AADE 

D (m2/s) 0.0001 - DADE · 2 

ATS (m2) 0.00001 - 20 

α (1/s) 0.00001 - 0.1 
 

 

 1090 

 

Table 2: Summary of the TSM results. OTIS-MCAT results refer to the case v = vpeak without any successive 

modification of the parameter space via dynamic identifiability analysis results. “Iterative TSM” indicate the best 

parameter sets obtained after the iterative TSM approach presented in Figure 1 and applied for the cases v = 

variableconsidered as a calibrated parameter (v = calib.) and v = when it was considered fixed and equal to vpeak. (v = 1095 

vpeak). The best TSM results are indicated within bold font. 

  v [m/s] A [m2] D [m2/s] α [1/s] ATS [m2] RMSE 

E
1

 

ADE 0.0681 0.0395 0.0965 / / 1.9423 

OTIS-P 0.0739 0.0364 0.0637 0.0006 0.0074 0.6159 

OTIS-MCAT 0.0739 0.0351 0.1339 0.0119 0.0051 2.7421 

Iterative 

TSM 

v = 

variablecalib. 

0.0728 0.0369 0.0522 0.0013 0.0073 0.7229 

v = vpeak 0.0739 0.0359 0.0534 0.0013 0.0077 0.7681 

E
2

 

ADE 0.1746 0.054 0.1599 / / 0.9982 

OTIS-P 0.1774 0.0509 0.1151 0.0016 0.0077 0.4152 

OTIS-MCAT 0.1774 0.0604 0.1271 0.0137 0.0033 1.4429 

Iterative 

TSM 

v = 

variablecalib. 

0.1790 0.0523 0.1131 0.0018 0.0067 0.3377 

v = vpeak 0.1774 0.0528 0.1154 0.0015 0.0065 0.3696 

E
3

 

ADE 0.262 0.0874 0.2525 / / 0.9894 

OTIS-P 0.275 0.081 0.1404 0.005 0.0144 0.2544 

OTIS-MCAT 0.275 0.0849 0.2441 0.0259 0.0073 1.2612 

Iterative 

TSM 

v = 

variablecalib. 

0.2861 0.0818 0.1286 0.0064 0.0145 0.2697 

v = vpeak 0.275 0.083 0.1603 0.0037 0.0123 0.3109 
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Figure 1: Conceptual modelling workflow. The parameters have the following unit of measurements: velocity v [m/s], 1110 

cross-sectional area A [m2], longitudinal dispersion coefficient D [m2/s], exchange coefficient α [1/s], area of the transient 

storage zone ATS [m2].  
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Figure 2. Parameter values plotted against the corresponding RMSE values for the TSM results conducted for the 

tracer injections (a-e) E1, (f-j) E2, and (k-o) E3. (a-j) Green, yellow, blue and orange dots indicate results respectively 1115 

for the first, second, third, and fourth TSM iterations. (k-lo) Green dots indicate results for the first and second TSM 

iterations, while yellow, blue and orange dots indicate results respectively for the, third, fourth, and fifth TSM 

iterations. Each TSM iteration was conducted via 115,000 parameter sets. The red dots indicate OTIS-MCAT results 

(best parameter set after the first TSM iteration for v equals vpeak) while the black dots indicate the best -performing 

parameter value after the used iterative TSM approach. The horizontal black line indicates the RMSEADE (Table 2). 1120 

Vertical dashed red line indicates OTIS-P results, while the 95% confidence range for OTIS-P results are indicated via 

vertical grey areas. 
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Figure 3. 

 

Figure 3. Same as Figure 2, but reporting TSM results when velocity was considered equal to vpeak. 1130 
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Figure 4. Dynamic identifiability analysis of TSMmodel parameters for the first TSM iteration (E1, when v was 

considered as a varying model parameter).. Results report for the (a-j) first TSM iteration and the (k-t) last TSM 

iteration. (a), (c), (e), (g), (i), (k), (m), (o), (q), (s) likelihood distribution as function of parameter values at each time 

step. Black line indicateslines indicate the observed BTC, and dashed black lines indicate the 90% confidence limits. 1155 

(b), (d), (f), (h), (j), (l), (n), (p), (r), (t) indicate parameter information content (red bars) at each time step. Black line 

indicates while the black lines indicate the observed BTC. 
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Figure 4. 1165 

 

Figure 5.Same as Figure 3, but reporting dynamic identifiability results for the fourth and last TSM iteration (E1; v 

considered as a varying model parameter).  
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Figure 5. Same as Figure 2, but reporting TSM results when velocity was considered equal to vpeak. 
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Figure 6. Same as Figure 3 Same as Figure 4, but reporting dynamic identifiability results for the thirdE1 when v was 

set equal to vpeak. 
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Figure 6: Mean (red lines, left axes) and standard deviation (blue lines, right axes) for RMSE values relative to the top 

10% of the modelling results as a function of the number of parameter sets used in the TSM. The results are reported 

for the (a) first TSM iteration and the (b) last TSM iteration (E1, v = vpeak).). Vertical black lines indicate the number 

of parameter sets needed to have the shown percentage difference between the mean RMSE value calculated at the 1220 

indicated number of parameter sets and at 115,000 parameter sets. Eg: In plot (a) only using at least 50,000 parameter 

sets there is less than 25% difference in the top 10% RMSE values compared to results using 115,000 parameter sets. 
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Figure 7. BoxplotBoxplots of the investigated transport metrics for the best 100 parameter sets for the three simulated 

experiments. (a-c) Ls, (d-f) Tsto, (g,i) qs, (j-l) Fmed. Results are reported for (a, d, g, j, m) E1, (b, e, h, k, n) E2, and (c, f, i, 1240 

l ,o) E3. On the x axis, we indicated the n-th TSM iteration. Blue and redorange boxplots indicate results when velocity 

was respectively a varying model parameter and when it was kept fixed and equal to vpeak, respectively. Red dots 

indicate the transport metric values obtained via the parameter sets with lower RMSE. The red and the black horizontal 

dashed lines indicate respectively the transport metric obtained using the OTIS-P results and OTIS-MCAT results. 

(first TSM simulation when velocity it was kept fixed and equal to vpeak). 1245 
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 1255 

Figure 8. Qualitative plots of the TSM parameter influence on different sections of the BTC. (a) and (b) qualitative 

parameter information content on the BTC for E1, (c, d) E2, and (e, f) E3. (g) Wagner and Harvey, 1997; (h) Wagener 

et al., (2002); (i) Scott et al., (2003); (j) Wlostowski et al., 2013; (k) Kelleher et al., (2013) for the case of a dispersive 

mountain stream (Case 1) and (l) Kelleher et al., (2013) for the case of a small low-flow mountain stream (Case 2). In 

plots (a-f) solid lines indicate an information content above 0.66 while dashed lines indicate an information content 1260 

between 0.33 and 0.66. Plot (g(g) Wagner and Harvey, 1997; parameter influence described via sensitivity evaluation 

(cfr. p. 1733, Wagner and Harvey, 1997), therefore the parameter influence is described using only solid lines. (h) 

Wagener et al., (2002); Plot (h) has been modified from Figure 7 in Wagener et al., (2002) in order to fit our 0.66 and 

0.33 threshold classification in term of information content. (i) Scott et al., (2003); parameter influence described via 

dimensionless sensitivity (cfr. Table 1 in Scott et al., 2002), therefore the parameter influence is described using only 1265 

solid lines. (j) Wlostowski et al., 2013; Plot (j) describes the parameter influence after the dynamic identifiability 

analysis, however information content plots were not reported by the authors, therefore the solid lines indicate the 

areas for the best-performing parameters as indicated in Figure 2 of Wlostowski et al. (2013). (k) Kelleher et al., (2013) 

for the case of a dispersive mountain stream (Case 1) and (l) Kelleher et al., (2013) for the case of a small low-flow 

mountain stream (Case 2); Plots (k) and (l) indicate by solid and dashed lines if the parameters influence the model 1270 

output by itself or through interactions (cfr. Section 6.1 Kelleher et al., 2013). Plots (g) and (i) describe the parameter 

influence evaluated via sensitivity evaluation (cfr. p. 1733, Wagner and Harvey, 1997) and dimensionless scaled 

sensitivities (cfr. Table 1 Scott et al., 2002), therefore the parameter influence is here described only using solid line. 
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Plot (j) describes the parameter influence after DYNIA analysis, however information content plots were not reported 

by the authors, therefore the solid lines indicate the areas for the best performing parameters as indicated in Figure 2 1275 

of Wlostowski et al. (2013).  

 

Appendix A - Parameter sensitivity and identifiability 

The interpretation of the parameter range  is based on the sensitivity and identifiability of the i-th parameter on 

the chosen model (the TSM) via a selected objective function used to compare model results with the observation 1280 

(the BTC) (Kelleher et al., 2019; Wagener et al., 2003; Wagener and Kollat, 2007; Ward et al., 2017; Wlostowski 

et al., 2013). A parameter is called sensitive whenever a variation in the parameter value causes variations in the 

TSM performances (Kelleher et al., 2019). A parameter is identifiable whenever the best-fit value of that 

parameter is constrained on a relative narrow range across the entire distribution of the possible parameter values 

(Ward et al., 2017). To assess identifiability of parameters of TSM, we used parameter vs likelihood plots, 1285 

identifiability plots, regional sensitivity analysis plots and parameter distribution plots.  

Parameter vs likelihood plots visualize the distribution of the investigated values of a certain parameter plotted 

against the corresponding values of the objective function (Wagener et al., 2003; Wagener and Kollat, 2007). 

Identifiable parameters are described in parameter vs likelihood plots by a univocal increase of model 

performances approaching a certain optimum-value of the parameter (Figure A1a). Non-identifiable parameters 1290 

are described in parameter vs likelihood plots by a not-univocal increase of performances of the model in certain 

parameter range (Figure A1b). Parameter distribution plots show probability density function (PDF) divided by 

behavioural sets (from top 20% to top 0.1% of the results for the selected objective function) (Ward et al., 2017). 

Identifiable parameters are indicated by narrow range of the PDF relative to the smaller behavioural sets (top 

0.1%, 0.5% and 1% of the results) compared to a wider range of the PDF relative to the larger behavioural sets 1295 

(top 5%, 10% and 20% of the results) (Figure A1c). Non-identifiable parameters are defined by equally wide PDF 

for the different investigated behavioural sets (Figure A1d). Regional sensitivity analysis plots are obtained after 

dividing the population of the parameter by behavioural sets (from top 10% of the results to top 1% of the results 

with 1% step for the selected objective function, Ward et al., 2017; Kelleher et al., 2019). Each objective function 

population so obtained was transformed into cumulative distribution functions (CDFs) for equal size bins of the 1300 

parameter range space (Kelleher et al., 2019; Wagener and Kollat, 2007). Sensitive parameters are identified by 

CDF for the top 1% of the results deviating from the CDF for the top 10% of the results (Figure A1e). If the CDFs 

lay on the 1:1 line, then the objective function is uniformly distributed across the parameter range which indicates 

parameter unsensitivity (Figure A1f). Identifiability plots display the CDF of the objective function across the 

selected parameter range (Wagener et al., 2002; Ward et al., 2017). The slope of the CDF will be higher in the 1305 

parameter interval where the model is more sensitive to that parameter. The measure of the local gradient of the 

cumulative distribution will be represented by the height of the bar plot in each equally-sized bin across the 

parameter range. Higher bars and steeper gradients of the CDF line indicate greater model performances in that 

parameter range and, therefore, parameter sensitivity and identifiability (Figure A1g). On the contrary, equal eight 

of the bars and similar gradients of the CDF line indicate that the parameter is unsensitive and non-identifiable 1310 

(Figure A1h). 
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The plots used to address the global sensitivity analysis indicate parameter identifiability and sensitivity on the 

entire observed BTC, however they are unable to address if the i-th parameter describes the process it is meant to 

represent or if the role of the i-th parameter on the model is constant in time (Wagener & Kollat, 2007). To address 

identifiability and sensitivity of the i-th parameter on the different sections of the BTC we applied DYNIA 1315 

algorithmdynamic identifiability analysis which steps are reported in Figure A2 (Wagener et al., 2002).  

 

 

Figure A1: Examples of the four types of visualizations intended for parameter identifiability and sensitivity with the 

plots in the first column (a, c, e, and g) reporting an example of plots for sensitive and identifiable parameter and plots 1320 

in the second column (b, d, f, and h) reporting an example of plots for insensitive and non -identifiable parameter. (a) 
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and (b) parameter vs likelihood plots; (c) and (d) parameter distribution plots for the top 20, 10, 5, 1, and 0.1% of the 

results; (e) and (f) regional sensitivity analysis plots from the top 1% to the top 10% of the results; (g) and (h) 

identifiability plots for the top 1% of the model results. 

 1325 

 

Figure A2. Dynamic identifiability analysis algorithm flowchart. (a) The BTC is subdivided in moving windows (size 

equal to three times the BTC timestep, Wagener et al., 2002); (b) In each moving window the likelihood (efficiency) of 

every TSM simulation is evaluated via mean absolute error (Wagener and Kollat, 2007); (c) an efficiency-threshold is 

chosen (e.g. top 10%); (d) for the chosen model results, the cumulative distribution function is built for each 1330 

investigated parameter; (e) steps from (b) to (d) are repeated for each moving window and model likelihood for the 

investigated parameter is plotted over time (white: minimum likelihood; black: maximum likelihood). (f) cumulative 

distribution function of the parameter distribution is plot vs the observed BTC together with 90% confidence limits. 

Narrow limits indicate identifiable parameter while wide limits indicate unidentifiable parameter. (g) a second plot 

reports the metric of one minus the normalized distance between the 90% confidence limits. Small values of this metric 1335 
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indicate that the selected time window contain a narrow identifiability range for the investigated parameter and, 

therefore, that it is informative on that part of the BTC (Wagener et al., 2002).   

 

 

Appendix B – Observed vs simulated BTCs 1340 

The figure B shows the observed BTC for the three tracer experiments plotted against the top 100 simulated BTC 

obtained using the proposed iterative approach. The observed poor visual fit on the tail of the BTC obtained at the 

end of the iterative modelling approach (Figure B1d, e, f) is controlled by two factors: (i) the modelling structure 

of the TSM which assumes an exponential residence time distribution and (ii) the chosen objective function. By 

using alternative residence time distributions, TSM proved to have a more accurate fitting on the tail of the BTC 1345 

(Haggerty et al., 2002; Bottacin-Busolin et al., 2011). Also, the RMSE could not be the best objective function 

for addressing a model fit on the tail of BTC because it gives higher importance on the sections of the BTC with 

higher concentration values (peak of the BTC) compared to the sections of the BTC with low concentration values 

(at the tail of the BTC). As an example, the best-fitting BTC obtained at the end of the second TSM iteration (E1) 

shows a visually better fit on the BTC tail (Figure B2) despite the large RMSE (1.5197 mg/l). 1350 

 

Figure B1: Observed BTC (red line) together with the grey area comprised between the top 100 simulated BTCs 

and the best-fitting BTC (blue dashed line) for (a, d) E1, (b, e) E2, and (c, f) E3. Results reported for the first (a, 

b, c) and last (d, e, f) TSM iterations. 
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 1355 

Figure B2: Observed BTC (red line) together with the grey area comprised between the top 100 simulated BTCs 

and the best-fitting BTC (blue dashed line) for the second TSM iteration (E1). 


