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Abstract. Accurate predictions of seasonal low flows are critical for a number of water management tasks that require infer-

ences about water quality and the ecological status of water bodies. This paper proposes an extreme gradient tree boosting

model (XGBoost) for predicting monthly low flow in ungauged catchments. Particular emphasis is placed on the lowest values

(in the magnitude of annual low flows and below) by implementing the expectile loss function to the XGBoost model. For

this purpose, we test expectile loss functions based on decreasing expectiles (from τ = 0.5 to 0.01) that give increasing weight5

to lower values. These are compared to common loss functions such as mean and median absolute loss. Model optimization

and evaluation is conducted using a nested cross validation approach that includes recursive feature elimination to promote

parsimonious models. The methods are tested on a comprehensive dataset of 260 stream gauges in Austria covering a wide

range of low flow regimes. Our results demonstrate that the expectile loss function can yield high prediction accuracy, but the

performance drops sharply for low expectile models. With a median R2 of 0.67, the 0.5 expectile yields the best performing10

model. The 0.3 and 0.2 perform slightly worse, but still outperform the common median and mean absolute loss functions. All

expectile models include some stations with moderate and poor performance that can be attributed to some systematic error,

while the seasonal and annual variability is well covered by the models. Results for the prediction of low extremes show an

increasing performance in terms of R2 for smaller expectiles (0.01,0.025,0.05), though leading to the disadvantage of classify-

ing too many extremes for each station. We found that the application of different expectiles leads to a trade-off between overall15

performance, prediction performance for extremes, and misclassification of extreme low flow events. Our results show that the

0.1 or 0.2 expectiles perform best with respect to all three criteria. The resulting extreme gradient tree boosting model covers

seasonal and annual variability nicely and provides a viable approach for spatio-temporal modelling of a range of hydrological

variables representing average conditions and extreme events.

1 Introduction20

Prediction of low flow in ungauged basins is a basic requirement for many water management tasks (Smakhtin, 2001). Current

estimation procedures aim to estimate some long-term average low flow characteristic, such as the low flow quantile Q95 or

the 7-day minimum flow, often calculated for a return period of 10 years (Q7,10) (Salinas et al., 2013). These signatures are

either predicted by physically based-models (Euser et al., 2013) or statistical methods, such as geostatistical methods (e.g.
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Castiglioni et al., 2009, 2011; Laaha et al., 2014) and regression-based models (e.g. Laaha and Blöschl, 2006, 2007; Tyralis25

et al., 2021b; Worland et al., 2018; Ferreira et al., 2021; Laimighofer et al., 2022). Recently, the prediction of seasonal low flow

characteristics has gained increasing interest. Knowing the seasonal (e.g. monthly) distribution of low flows is necessary, for

example, when assessing the water quality or ecological status of water bodies, as low discharges combined with temperature

can yield to a cascade of hydrochemical processes that vary with the season. Such temporal low flow characteristics require a

new class of models that take temporal signals of predictors into account. Assessment of low flow on a temporal scale is mostly30

based on empirical characteristics of the modeled hydrograph (e.g. Shrestha et al., 2014; Huang et al., 2017; Lees et al., 2021),

with some exceptions where the accuracy of observations below a specific threshold are considered (e.g. Onyutha, 2016). All

these approaches show a much higher bias for low flows than for high flows. This is often a consequence of a loss function that

emphasizes high flows while giving too little weight to the low flow events (Staudinger and Seibert, 2014; Staudinger et al.,

2011). Although there exist several approaches for modelling monthly or annual streamflow records (e.g. Vandewiele and Elias,35

1995; Steinschneider et al., 2015; Yang et al., 2017; Ossandón et al., 2022; Pumo et al., 2016; Vicente-Guillén et al., 2012;

Cutore et al., 2007; Lima and Lall, 2010; Roksvåg et al., 2020), we noticed a significant research gap in modelling monthly

low flow, which to our knowledge has not been investigated to date.

Recently, data-driven models have gained interest for prediction of daily discharge in ungauged basins because of their fast

implementation and good prediction performance. These approaches consider a wide range of models, e.g. long short term40

memories (LSTM, Kratzert et al., 2019a, b; Lees et al., 2021) or artificial neural networks (ANN, Solomatine and Ostfeld,

2008; Dawson and Wilby, 2001; Abrahart et al., 2012). Similar methods are applied to lower temporal resolutions (monthly

or annual) of streamflow data, where either parameters of hydrological models are interpolated in space (Yang et al., 2017;

Vandewiele and Elias, 1995; Steinschneider et al., 2015), or different statistical methods are applied. Considering the data-

driven models a common approach is to fit independent models to each station (e.g. Shortridge et al., 2016; Parisouj et al.,45

2020; Chang and Chen, 2018). Such an approach seems not efficient, as spatial correlations of time series at neighboring

stations are not considered in parameter estimation. This may lead to spatially inconsistent predictions that also have lower

accuracy. Few approaches have been proposed that treat spatio-temporal flow indices in a single, spatio-temporal framework

(e.g. Ossandón et al., 2022; Vicente-Guillén et al., 2012; Lima and Lall, 2010; Roksvåg et al., 2020; Pumo et al., 2016; Cutore

et al., 2007). These studies either used a combination of deterministic models with kriging (Vicente-Guillén et al., 2012), time50

series models (Pumo et al., 2016), or Bayesian hierachical models (Ossandón et al., 2022; Lima and Lall, 2010; Roksvåg et al.,

2020). Surprisingly little efforts have been undertaken to use statistical learning models for spatio-temporal flow patterns. One

exception is Cutore et al. (2007), which tested an artificial neural network (ANN) model for mean monthly flow and compared

it against various regression approaches. They found that a single ANN outperforms methods where regression parameters are

interpolated in space, or single multivariable regression.55

In this study we propose to use the extreme gradient boosting model (XGBoost Chen and He, 2015; Chen and Guestrin, 2016)

for modeling space-time patterns of monthly low flows. XGBoost is an ensemble of boosted regression trees and a common

model in hydrology (Zounemat-Kermani et al., 2021). Applications range from e.g. modeling water quality (e.g. Lu and Ma,

2020) to estimate groundwater salinity (Sahour et al., 2020). Additionally, XGBoost has shown to be a suitable model for
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streamflow forecasting (e.g. Yu et al., 2020; Tyralis et al., 2021a; Ni et al., 2020) and its fast implementation is beneficial in60

our spatio-temporal context. We further explore the use of the expectile loss function as a fitting criterion to give more weights

on extremer flows. Expectile regression (Aigner et al., 1976; Newey and Powell, 1987; Kneib, 2013; Kneib et al., 2021) has

rarely been applied in hydrology (Tyralis et al., 2022), but the use of asymmetric weights appear well suited for estimating flow

quantiles beyond the mean (e.g. Toth, 2016). Our model shall also incorporate a variable selection procedure to obtain models

that are more parsimonious and easier to interpret.65

The objective of our study is to develop such a spatio-temporal low flow model and to evaluate its performance when predicting

at ungauged sites. The following research questions will be addressed: (i) To what extend can spatio-temporal monthly low

flow be modelled by one single gradient boosting model? (ii) How does expectile regression perform compared to traditional

loss functions (mean absolute error, median absolute error)? (iii) How accurate are low extremes modeled by different expec-

tiles? (iv) Which spatial and spatio-temporal variables are used for different expectiles? Our analysis will be performed on a70

comprehensive Austrian streamflow dataset representing a range of seasonal low flow regimes.

2 Data and Methods

2.1 Data

2.1.1 Hydrological Data75

Our study area covers 260 gauging stations in Austria with different low flow seasonality. The data set was already used in a

wide range of studies (e.g. Laaha and Blöschl, 2006, 2007; Laaha et al., 2014; Laimighofer et al., 2022). Some stations included

in previous studies had to be discarded as the gauging stations were removed, relocated or the data included too many missing

values. The hydrological data is available from the Hydrological Service of Austria (HZB) and all stations have a continuous

daily streamflow record from 1982 to 2018. From these data we calculated the monthly low flow index series for each station,80

using the monthly Q95 (P (Q>Q95) = 0.95) to characterize the low flow regime (Fig. 1). The index is very similar to the

monthly 7-day minimum flow MM(7), which has been used in an earlier study to assess the timing of low flow events on a pan-

European scale (Laaha et al., 2017). For one station, a monthly value had to be inserted using smoothed empirical orthogonal

functions (Lindström et al., 2014) to preserve the station despite single missing values in the daily discharge record. The

monthly Q95 was standardized by the catchment area, resulting in the monthly specific low flow (q95) time series (ls−1km−2)85

for each station, which constitutes the target variable of our study. The monthly q95 series were further transformed by the

square root to give less weight to the high low flows, according to preliminary evaluations. Finally, model evaluation was

performed using the predictions after transforming back to the original scale.

Additionally we used specific discharge quantiles with 0.95, 0.98 and 0.99 exceedance probability from the daily discharge

series (q95d, q98d, q99d) to identify extreme events in our monthly series. This threshold selection procedure classifies about90
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Figure 1. Example of the calculation of the monthly q95 time series for the gauging station Hollenstein in Lower Austria. Panel (a) shows

the daily discharge in July 2015, (b) the monthly q95 and daily discharge for the full year of 2015, and (c) displays the full monthly q95 time

series for the station.

11 % (q95d), 5 % (q98d) and 3 % (q99d) of observations at each station as extreme low flow events.

2.1.2 Predictor variables

Spatio-temporal modeling requires predictor variables, of which two types can be distinguished. The first type consists of

climate and catchment characteristics representing the long-term average hydrological conditions. This type corresponds to95

typical predictors in low flow regionalisation models such as regional regression approaches (Laaha et al., 2013). The second

type of predictors consists of spatio-temporal covariates that capture the climate drivers of low flow generation. These dynamic

predictors are needed to extend the regional model with a temporal dimension so that space-time patterns of low flow can

be represented. The former type will be referred as static predictors, the latter as spatio-temporal covariates throughout the

manuscript.100

For the static predictors we used a set of climate and catchment characteristics of precedent rationalisation studies in Austria

(e.g. Laaha and Blöschl, 2006; Laimighofer et al., 2022). They consist of topological and landuse variables, geological classes,
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and long-term average meteorological characteristics such as precipitation (P), climatic water balance (MCWB), and others

(Table 1). All these variables are aggregated on an annual basis (no subscript: e.g. P, MCWB), for the summer half-year from

April to September (e.g. Psum, MCWBsum), and for the winter half-year from October to March (e.g. Pwin, MCWPwin). For105

more details about their calculation see Laimighofer et al. (2022) and Laaha and Blöschl (2006).

For spatio-temporal covariates the initial choice of the variables is also important, as it can affect model performance and inter-

pretability of results. In a preliminary assessment (not shown in this paper) we tested several combinations of spatio-temporal

covariates, including monthly precipitation, climatic water balance, temperature, snowmelt, solid precipitation or soil moisture

characteristics. All these combinations were tested by a nested 10-fold cross validation (CV, see Sect. 2.2.3 for more detail)110

and compared by a range of error metrics (Sect. 2.2.4). The results showed that the monthly climatic water balance (CWB)

calculated as the difference between monthly precipitation and potential evapotranspiration performs equivalently to the com-

bination of its components provided as individual model terms. As our study focuses more on a methodological assessment we

decided to include only CWB as a spatio-temporal predictor for the sake of simplicity. Note that the CWB enters the model as

a static variable (MCWB) and as a spatio-temporal covariate on a monthly basis (CWB). The first serves as an intercept in the115

model, the second as a temporal signal that determines the monthly low flow series.

The monthly CWB series are further coded as time lags (l) from 1 to 12 month (CWBl) before each value in the tar-

get series. These lags are assumed to represent antecedent conditions in low flow generation. In addition to using "raw"

CWB values, the CWB was additionally transformed in order to test whether standardization has an effect on the perfor-

mance of the predictor. First, each spatio-temporal variable (CWB, CWBl) is centered by month (m) and station (s) via120

CWBcenter,s,m = CWBs,m −CWBs,m, where CWBs,m is the monthly climatic water balance at a station, and CWBs,m its

monthly mean. Second, we transform the climatic water balance (CWB, CWBl) to a non-parametric standardized drought

index (SDI), similar to the SPEI (Beguería et al., 2014). Instead of fitting a parametric distribution, we estimate the empirical

probability of the CWBs,m. The empirical probabilities are then transformed to quantiles of a standard normal distribution. A

visualization of these two transformations is given in Fig. 2 and a short overview of the variables in Table 2. These two trans-125

formations are highly correlated to the initial CWB, but can provide additional information for our model. All these lags and

transformations are used simultaneously as input variables for our model, resulting in 39 spatio-temporal predictor variables.

Apart from the static predictions and the spatio-temporal covariates, some variables were added to capture the temporal period-

icity. The numeric variable of the month (m= 1,2, . . . ,12), was converted to a categorical variable and additionally transformed

to a sine and cosine curve so that their two-dimensional overlay gives a representation of the annual circle. In addition, the130

year was added as a numeric variable, and finally a cumulative sum of months (mcum = 1,2, . . .444) was added in order to

represent long-term trends of low flows. In total, this results in an initial set of 116 predictor variables that are used for the

variable selection procedure.
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Table 1. Descriptions of static predictors used in the study, structured in topological, landuse, geological and meterological characteristics.

Abbreviations are further used in plots. Precipitation, climatic water balance, potential evapotranspiration, aridity index, snowmelt and

temperature variables are used on an annual and a summer/winter half-year basis. These different accumulation periods are indicated in the

subscript: no subscript for annual characteristics (e.g. P), win for winter (e.g. Pwin), sum for summer (e.g. Psum).

Variable Description Unit

A catchment area km2

Lat, Lon Latitude and longitude of gauging station decimal degrees

H+, H0, HM , HR Maximum, minimum, mean and range of catchment altitude m

E Altitude of gauging station m

SM Mean catchment slope %

SSL, SMO , SST

Fraction of slight (< 5 %), moderate (5 to 20 %) and steep slope (> 20

%) in the catchment
%

MS Major class of fraction of slope (slight, moderate or steep) -

LU , LA, LC , LF , LG, LR, LW ,

LWA, LGL

Fraction of urban areas, agricultural areas, permanent crop, forest,

grassland, wasteland, wetlands, water surfaces, glacier in catchment
%

ML Major landuse class in the catchment -

GB , GG, GT , GF , GL, GC , GGS ,

GGD , GSO

Fraction of bohemian massif, quaternary sediments, tertiary sediments,

flysch, limestone, crystalline rock, shallow and deep groundwater table,

source region in catchment

%

MG Major geological class in the catchment -

D Stream network density 102 m km−2

P Precipitation mm

ETP Potential Evapotranspiration mm

AI Aridity index -

AImin Half year with lower AI -

MCWB Mean climatic water balance mm

S Snowmelt mm

T+, T0, TM , TR Maximum, minimum, mean and range of temperature °C

P0 Average number of days without precipitation (< 1 mm) days

PH Average number of days with precipitation > 5 times the mean days
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Table 2. Description of the different lags and transformations for the CWB. Center means centering per station and month. SDI is transform-

ing the CWB to a standardized drought index (SDI) per station and month.

Variable Description Unit

CWB Monthly climatic water balance mm

CWBl Monthly climatic water balance at time lag l mm

CWBl,center Centered CWBl with respect to station and month mm

CWBl,SDI

Standardized drought index of the CWBl with respect to station and

month
-
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Figure 2. Example of the transformations of the CWB with no lag at station Hollenstein. Panel (a) shows the absolute values of the climatic

water balance. (b) is the CWB centered for each month and (c) is a computation of a non-parametric SDI for each month.

2.2 Methods135

2.2.1 Extreme gradient tree boosting

Extreme gradient tree boosting (Chen and He, 2015; Chen and Guestrin, 2016) is a fast implementation of gradient tree

boosting (Friedman, 2001) and based on the general boosting algorithm (Friedman et al., 2000). The method is beneficial when

predictors are collinear and is robust to overfitting. Gradient tree boosting consists of an ensemble of additive trees that are
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each fitted by a greedy algorithm to minimize a predefined loss function. Let y be a vector of our response variable (monthly140

specific low flow q95) of length n= s · t, where s is the number of stations and t the length of each individual time series per

station, and index i referring to its i-th element. Let further X be our predictor matrix with n× p elements, wherein p is the

number of predictor variables. We can then write the regression equation as

ŷi =

K∑
k=1

fk(Xi),fk ∈ F, (1)

where fk (k = 1, . . . ,K) is the ensemble of regression trees, and K the number of trees used. The regression trees are fitted in145

an additive manner, where an objective function Lk is minimized:

Lk =

n∑
i=1

L(yi, ŷi
k−1 + ηfk(xi))+Ω(fk). (2)

Lk is the k-th iteration loss, ŷik−1 is the prediction of the regression tree in the previous iteration, fk is the tree that most

improves our model considering the predefined loss function, Ω(fk) is an additional penalization parameter for the complexity

of the model and η is a shrinkage parameter. The shrinkage parameter η is set to 0.1, where a small value of η minimizes150

the risk of overfitting and the possibility of finding only local minima. To reduce the computational burden we tuned only the

following hyperparameters for the final predictions: the maximum depth (the final XGBoost was optimized for a sequence

from 6 - 8) of each additive tree, subsampling of predictor columns (0.25 - 1), which equivalently to Random Forests only

uses a fraction of all predictors to search for the optimal split and subsampling of the observations (0.5 - 1). Subsampling of

the observations and the predictor variables is used to decorrelate the trees. The maximum depth can be described as the order155

of interaction used in the model. Finally, we introduced an early stopping rule for the boosting iterations, where the algorithm

stops when the error does not decrease for K=50 iterations. The range of hyperparameters was set based on experience with

the XGBoost model and our individual dataset. The final XGBoost model was optimized in a 10-fold cross validation (CV) by

using all parameter combinations and tuning the number of boosting iterations (number of trees). A detailed description of our

validation scheme is given in Sect. 2.2.3).160

2.2.2 Loss function

One crucial point in our study is the application of a suitable loss function. The loss function has to be a twice differentiable

convex function. Since our main aim is to model the low flows in the range of annual minima corresponding to the lower tail

of the monthly q95 series, we propose to use the expectile loss (Lτ
EL) for model fitting. Expectile regression (Aigner et al.,

1976; Newey and Powell, 1987) is a squared variant of quantile regression (Koenker and Bassett, 1978), where the absolute165

deviations are substituted by the squared deviations (Kneib, 2013). Expectile regression was already implemented in a boosting

framework (Sobotka and Kneib, 2012) and the resulting expectile loss can be defined by:

Lτ
EL,i =

 τ · (yi − ŷi)
2, (yi − ŷi)≥ 0

(1− τ) · (yi − ŷi)
2, (yi − ŷi)< 0

(3)
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Figure 3. Comparison of different loss functions. Shown are expectile loss functions for various τ parameters and the absolute loss function.

Lτ
EL,i is summed up to Lτ

EL (Lτ
EL =

∑n
i=1L

τ
EL,i) for minimizing the error over all observations. If τ = 0.5, the expectile loss

is a scaled variant of a squared loss function (Lsquared =
∑n

i=1(yi−ŷi)
2) resulting in a least squares regression. Figure 3 shows170

that altering τ leads to an asymmetric weighting of the squared loss, where smaller τ give more emphasis on negative residuals.

Expectiles can not directly be interpreted as a flow quantile, as this would be possible for quantile regression, but studies show

that using transfer functions can do this very accurately (Waltrup et al., 2015) and differences mainly arise in the tail of the

distribution. Estimating a full distribution of τ values is not a very practical approach for our large dataset. Therefore, we will

assess a sequence of τ values (τ = 0.01,0.025,0.05,0.1,0.2,0.3) and the special case of a least squares regression (τ = 0.5).175

Within this sequence, the τ values of 0.1,0.05 and 0.025 give good approximations of our three thresholds: q95d, q98d and

q99d. Finally, we will compare the expectile loss function to the absolute loss (Fig. 3):

Labs,i = |yi − ŷi|. (4)

In case of the absolute loss, the mean absolute error will be minimized by the mean (MAE =
∑n

i=1Labs,i

n ), and in case of the

median absolute loss by the median (MDAE =median(Labs,i)). In both cases the second derivative is approximated by a180

vector of 1s.
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2.2.3 Variable selection and validation scheme

Model evaluation is performed by a nested 10-fold CV (Varmuza and Filzmoser, 2016). A nested CV contains two loops, an

inner loop which is used for tuning of hyperparameters and variable selection and an outer loop for evaluating the predictive185

performance of the models (Laimighofer et al., 2022). In each inner loop, we include a variable selection by recursive feature

elimination (RFE, Granitto et al., 2006). The RFE algorithm consists of an initial variable ranking and a backward variable

selection. The initial variable ranking is computed by using the XGBoost algorithm with 500 boosting iterations and default

hyperparameters (maximum depth = 8, subsample = 1, fraction of p = 0.5). The variables are ranked after their additive gain in

minimizing the loss function over the 500 boosting steps. For a more robust approach, the initial variable ranking is averaged190

over 25 bootstrap samples. The gain of each variable for the final variable ranking is the ratio of the individual additive gain

to the total gain over all variables. In a next step, we are fitting a XGBoost model to a sequence from 5 to the maximum

number of variables (p), but only with a step length of 5 to reduce the computational burden. For each number of variable the

error is calculated and averaged over all 10-fold CV runs of the inner loop. The number of variables are then determined by

using a threshold of 1.05 times the minimum error to produce parsimonious models. This approach yields models with fewer195

variables at only a small loss in predictive accuracy. Our method ensures that predictors are selected only when they increase

the predictive performance of the model. In addition, the outer loop evaluates the predictive performance at ungauged sites

independently from model fitting. The applied method is fully described in Laimighofer et al. (2022) and to increase clarity we

added a visual explanation of the full cross validation procedure (Fig. 4).

2.2.4 Model evaluation200

Model evaluation is performed by several error metrics. First, we quantify the overall performance of the model by means of

four error metrics, the median absolute error (MDAE), the mean absolute error (MAE), the root mean squared error (RMSE):

RMSE =

√√√√1/N

N∑
i=1

(yi − ŷi)2, (5)

and the coefficient of determination R2, which - by our definition - is the same as the Nash-Sutcliffe-Efficiency (NSE) (Blöschl

et al., 2013):205

R2 = 1−
∑N

i=1(yi − ŷ)2∑N
i=1(yi − y)2

. (6)

All measures are based on cross-validation and therefore indicators of the predictive performance when estimating at ungauged

sites.

Second, we assess the predictive performance for individual stations, by calculating the R2 for each station separately. The

station-by-station performance is summarized by the distribution and the median R2 over all stations, which will be referred210

as R2
med throughout the manuscript.

For a more comprehensive evaluation of the performance, we perform a decomposition of the station-wise prediction errors on
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Figure 4. The nested CV procedure as adapted from the double CV-scheme of Varmuza and Filzmoser (2016).

different time scales. The purpose is to assess to what extend the model errors occur at the annual, seasonal, and monthly level,

and which part of the error is due to a systematic error (i.e. bias). This will allow us to get insight in structural strength and

weaknesses of the models. This decomposition is done by a three-way ANOVA, which was applied, for example, by Parajka215

et al. (2016) for assessing uncertainty contributions of climate projections. The basic linear model for our ANOVA can be

defined as:

ym,yr − ŷm,yr = µ+αm +βyr + ϵm,yr, (7)

where the left-hand side (predictand) are the prediction errors of a model at a single station. These are decomposed into

the terms µ representing the mean error (i.e. bias), αm the seasonal effects (m= 1,2, . . . ,12), βyr the mean annual effects220
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(yr = 1,2, . . . ,37), and the residual term ϵm,yr corresponding to the model errors at the monthly level. Note that µ is not a

classical intercept but enters as constant factor (coded as a vector of 1s) which allows the bias to be considered as a separate

effect in the error decomposition. In the ANOVA framework, the total variance of the prediction errors is characterised by the

total sum of squares SST , and is decomposed into additive variance components of individual effects:

SST = SSbias +SSseason +SSyear +SSE . (8)225

The variance contributions of each term are estimated by the measure ω2, which is an analogue to the coefficient of determi-

nation. The measure ω2 of, e.g., the seasonal effect is defined as:

ω2
season =

SSseason − dfseason ·MSE

SST −MSE
. (9)

where dfseason are the degrees of freedom (i.e. number of factor levels - 1), and MSE = SSE/dfE the residual mean squared

error, which can be seen from the ANOVA table. The contribution of the mean annual effect (ω2
year) and the fraction of the230

bias (ω2
bias) can be determined analogously and a more detailed description can be found in (Parajka et al., 2016). Finally, the

residual term ω2
E can be calculated as:

ω2
E = 1−ω2

season −ω2
year −ω2

bias. (10)

The last part of our model evaluation gives a specific emphasis on the extreme low flows. This is assessed by three perfor-

mance metrics. First, we filter the observations at each station by a specific quantile and calculate the overall R2 based on the235

residuals of the filtered cases. Second, we calculate the relative expectile error (ELτ ) at each station:

ELτ = 1− Lτ
EL(yi, ŷi)

Lτ
EL(yi, q(y,τ))

. (11)

The error metric is defined in analogy to the expectile loss function to give more weight to the fraction of τ lowest values. The

denominator is the (Lτ
EL) of a naive estimate for each station. For this purpose, we are using the τ -quantile of the observations

(q(y,τ)) as simple prediction at the specific station, assuming that quantiles and expectiles give similar estimates. The numera-240

tor, on the other hand, is the expectile error (Lτ
EL) for the predictions of our model. Similar to the R2, the ELτ is bounded at a

maximum of 1, representing perfect model fit. Values below 0 indicate that the naive prediction of the τ -quantile would result

in a better prediction than our model. One advantage of this metric is that it is based on the full data, but gives more weight to

the values below our selected τ .

Finally, we want to capture the model ability of classifying extreme low flow events. For this purpose, the specific low flow245

quantiles q95d, q98d and q99d are calculated from the daily discharge records and used as thresholds for identifying drought

events in the monthly low flow series. Based on these thresholds, the drought / no drought cases of observed and predicted

monthly time series are binary coded, and we calculate the hit score (HS) and the precision (Prec) for evaluating the perfor-

mance at each station. The hit score (also termed recall, sensitivity or true positive rate) is calculated by:

HS = ETpred/Eobs, (12)250
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where Eobs are the number of low flow events in the originally data and ETpred is the number of low flow events correctly

classified by the predictions. The precision is computed by:

Prec =
ETpred

ETpred +EFpred
, (13)

where EFpred is the number of low flows falsely predicted by each monthly time series.

The data analysis was performed in R (R Core Team, 2021) and we want to acknowledge the use of the following packages:255

XGBoost (Chen et al., 2021), dplyr (Wickham et al., 2021), purrr (Henry and Wickham, 2020), tidyr (Wickham, 2021), ggplot2

(Wickham, 2016), caret (Kuhn, 2021), glmnet (Friedman et al., 2010), tidyselect (Henry and Wickham, 2021), tibble (Müller

and Wickham, 2021), receipes (Kuhn and Wickham, 2021), ggthemes (Arnold, 2021), lubridate (Grolemund and Wickham,

2011), wesanderson (Ram and Wickham, 2018).

3 Results260

3.1 Global model performance

Table 3 presents the results for the overall performance of our spatio-temporal model. Generally, most loss functions show a

good overall performance. The 0.5 expectile yields the best R2 of 0.81, which is substantially higher than 0.73 for the median

absolute loss and 0.74 for the mean absolute loss. Regarding the MDAE, which gives more focus on low values, there is no

change in the overall ranking of methods, with a MDAE of 1.81 for the 0.5 expectile, 1.99 for the median absolute loss and265

2.01 for the mean absolute loss. Regarding the results of the expectiles with τ smaller than 0.5, we can identify a decreasing

performance towards smaller expectiles over all performance metrics. The R2 is stable until the 0.3 expectile and than suddenly

drops from 0.8 (0.3 expectile) to 0.2 for the 0.01 expectile. A similar loss in performance can also be observed with the MDAE,

MAE or RMSE. Expectiles below 0.05 show an insufficient performance on these global error metrics. For example the RMSE

of the 0.01 expectile is twice as high as the RMSE of the 0.5 expectile. Nevertheless, expectiles such as 0.2 and 0.3 show better270

overall metrics than the median absolute loss and the absolute loss and even the 0.1 expectile demonstrates only a somewhat

lower R2 of 0.7.

3.2 Station-by-station performance

A more detailed examination of our results is realized by analyzing the performance per station. Table 4 gives an overview of

the results and Fig. 5 shows the empirical cumulative distribution of the station-specific R2. From the graphs, the 0.5, 0.3 and275

0.2 expectiles outperform the other models across all stations. The 0.5 expectile has the highest R2
med (0.67) and shows a far

better performance than the median absolute loss (0.57) and the mean absolute loss (0.58). This generally good performance

is further underlined by the finding that only 26 % of the stations have a R2 below 0.5 for the 0.5 expectile. In contrast, for

the mean and median absolut loss about 40 % of the stations yield a R2 below 0.5. For the expectiles lower than 0.5 we

can identify a decrease of the R2
med, from 0.65 for the 0.3 expectile to 0.14 for the 0.05 expectile. Generally, low expectiles280

(0.01,0.025,0.05) yield a high number of inadequate models, where almost 90 % of the stations obtain a R2 below 0.5 for
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Table 3. Overview of the error metrics for all loss functions. Shown are the MDAE, MAE, RMSE and R2, all representing the overall

predictive performance of the model for the study area.

Loss function MDAE MAE RMSE R2

Absolute 2.01 3.95 8.28 0.74

Median absolute 1.99 3.95 8.42 0.73

Expectile 0.5 1.81 3.50 6.98 0.81

Expectile 0.3 1.85 3.58 7.20 0.80

Expectile 0.2 1.90 3.80 7.72 0.77

Expectile 0.1 2.09 4.26 8.77 0.70

Expectile 0.05 2.72 5.61 11.21 0.52

Expectile 0.025 3.36 6.63 12.87 0.36

Expectile 0.01 4.21 7.79 14.45 0.20

Table 4. Performance per station summarised by the median R2 over all stations (R2
med) and the fractions of stations with an R2 below 0.5.

Loss function R2
med R2 < 0.5

Absolute 0.58 0.39

Median absolute 0.57 0.40

Expectile 0.5 0.67 0.26

Expectile 0.3 0.65 0.32

Expectile 0.2 0.60 0.36

Expectile 0.1 0.48 0.54

Expectile 0.05 0.14 0.89

Expectile 0.025 -0.13 0.98

Expectile 0.01 -0.50 1.00

the 0.05 expectile. In case of the 0.01 expectile no station has a R2 greater than 0.5. However, the 0.2 and 0.3 expectile

still yield a higher R2
med of 0.65 and 0.6, compared to the mean absolute (0.58) and median absolute loss (0.57). Further,

the fraction of stations with a weak performance (R2 < 0.5) is also lower for the 0.2 and 0.3 expectile as shown in Table 4.

These findings suggest, in response to our first research question, that a single model can provide very accurate results for285

most stations (0.5,0.3,0.2 expectile), but 26 % to 36 % of the stations have inadequate performance. The origin of these errors

will be analysed in more depth in the subsequent section. As the results of the mean and the median absolute loss could not

compete with the performance of the 0.2,0.3,0.5 expectiles, we will not further include these two loss functions in our analysis.
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Figure 5. Empirical cumulative distribution function of station-wise R2 by loss function across all stations. For improving visual clarity the

x-axis is bounded at -1.

3.2.1 Error decomposition290

For a better understanding of the error at the individual stations we decompose the model error at each station into monthly,

seasonal, annual fractions and a component representing the average error (prediction bias). Figure 6a gives an overview of

the error components. For all expectiles, ω2
bias and ω2

E are the most important components. For the expectiles from 0.1 to 0.5

the ω2
E is the main error contribution with median values between 52 % (0.1 expectile) and 59 % (0.2 expectile). The median

values of ω2
bias increases with decreasing τ , from 15 % to 19 % for the 0.5 to 0.2 expectiles, and 28 % for the 0.1 expectile.295

This trend continues for the smaller expectiles where the fraction of the mean error rises up to 56 % for the 0.01 expectile. At

the same time ω2
E decreases for smaller expectiles, showing that expectiles with small τ are better fitted to the monthly values

but predictions are generally less accurate. With median values around 10 % and between 3 and 6 %, respectively, the seasonal
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Figure 6. Error components of various expectile models. Panel (a) shows the relative error contributions for the season, year, month and the

bias part across all stations. Shown are the median (point) together with the 25 % quantile and the 75 % quantile (whiskers) of relative errors

for each expectile loss function. Panel (b) displays the error components for the 0.5 expectile in greater detail. The points are the stations

which have a R2 lower than 0.5.

and annual errors are much smaller than the mean error component and show a good performance of the models in predicting

annual and seasonal low flow variability.300

An additional perspective comes from analyzing the share of stations showing only moderate or weak performance, as indi-

cated by an R2 of less than 0.5. As an example, Fig. 6b shows such ill-performing stations for the case of the 0.5 expectile

model, with 67 stations (or 26 %) having an R2 below 0.5. The main error contribution for these stations is the ω2
bias with a

median value of 56 %, which is much higher than the ω2
bias of the well-performing stations (median value of 11 %). This again

underlines the earlier finding that the main shortcoming of our modeling approach is an error in the mean, which reduces the305

predictive accuracy of the models. Seasonal and monthly variability, though, is well covered by the models, which is a strength

of our spatio-temporal modeling approach.
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3.3 Prediction of extremes

One objective of this study was the application of different expectiles for improving predictions at low extremes. This section310

will consequently focus on their evaluation. In a first step we will filter our observations by considering only the observations

at each station below a specific quantile. The filtered observations are then used to calculate an overall R2, which is shown in

Fig. 7. We can identify a huge performance advantage for low expectiles for predicting low extremes. For example if we assess

the accuracy of our models for cases below the 1 % quantile, the 0.01 expectile is yielding at least a R2 of 0.42, where larger

expectiles (0.05 - 0.5) show inefficient models with R2 values below 0.1. What becomes apparent is that the performance315

is dropping at some point for the low expectiles (0.01,0.025,0.05), but is monotonically increasing for all other expectiles.

Considering the results at the 25 % quantile, the R2 of the 0.01 expectile decreased to 0.28, so that the best performance is at

the 0.1 (0.53) and 0.05 expectiles (0.51). Further we found that the 0.5 expectile has a lower performance than the 0.1,0.2 and

0.3 expectiles even for estimating the lower 50 % of the data.

As a second assessment of the predictive performance for low extremes, we compute the relative expectile error (ELτ ), a320

weighted error metric that distributes weights by expectile functions that have greatest weight around τ . We choose τ values

of 0.1,0.05 and 0.025, as these approximately correspond to the q95d, q98d and q99d thresholds used for drought identifica-

tion. Figure 8 shows the expectile errors ELτ calculated for every station. Generally, the 0.1 expectile demonstrates a good

performance by all ELτ metrics. Smaller expectiles (0.01,0.025,0.05) perform as good or better than the 0.1 expectile for the

ELτ=0.025 (which gives most weight to most extreme events), but not for the other ELτ metrics. Interestingly, the expectiles325

used for optimizing our loss functions do not perform best considering the respective ELτ metric. For example, we would

assume that the best performing expectile for the ELτ=0.025 would be the 0.025 expectile, but on median this expectile yields

a ELτ=0.025 of 0.39, which is somewhat lower than the 0.1 expectile (0.4) or the 0.025 expectile (0.44). Further, the smallest

expectile (0.01) only obtains a median ELτ=0.025 of 0.29, which is only slightly higher than the 0.2 expectile (0.28). Higher

expectiles (0.2,0.3,0.5) show an increasing performance with higher τ , but their performance varies more across all stations.330

This suggest that one should choose an expectile function that gives most weight to somewhat higher values than the drought

threshold of interest, and τ values around 0.1 appear most accurate for q95d, q98d drought events.

In a final assessment of the model performance, we analyse the skill of the models to classify extreme events. For this purpose

we focus on the hit score (HS) and the precision (Prec) at each station. Table 5 shows the median of these two metrics over

all stations and for all expectiles. Both skill scores decrease from less extreme (q95d) to more extreme (q99d) low flows for all335

expectiles. Concerning the effect of expectiles on Prec and HS , we see an opposite behaviour, with HS increasing towards the

lower expectiles, and Prec decreasing. For the lowest expectile (0.01), the HS reaches 0.98, 0.94 and 0.9 for the three low flow

thresholds, respectively, showing that almost every observed drought event is identified. On the other hand the Prec is 0.2 for

the q95d and only 0.07 on median for the q99d, which means that only 7 % of the predicted extreme events per station were

actually extreme events. This points to an underestimation of extreme low flows when using low expectiles for model fitting.340

In contrast, using the 0.5 expectile would lead to an increase in the precision rate, but to a very low hit score. Fig. 9 shows the

contrasting properties of a high and a low expectile model on low flow predictions. The low expectile shifts the predictions to
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Figure 7. Global R2 conditional to observations below a low flow thresholds. The thresholds are (station-wise) quantiles of the monthly time

series with 1 % to 100 % non-exceedance probability.

match the most extreme events, but underestimates the moderate events. Clearly, such low expectiles result in strongly biased

models with little practical relevance. These findings suggest a trade-off between accurate prediction of extremes, overall pre-

diction accuracy and correct classification of extreme events, where the user needs to find some optimum.345

3.4 Variable selection

The implemented RFE algorithm leads to a substantially reduction of variables. On median, the different expectiles require

between 20 and 30 variables, except the 0.5 expectile has a median of 35 variables. A closer examination of the static predictors

(an overview of the selection of the static variables is given in Appendix A) shows that geological variables are never selected350

for any expectiles, and also from the landuse variables only the fraction of forest is selected frequently. However, a larger

number of meteorological variables were selected over all expectiles: aridity (AI , AIsum), annual climatic water balance

(MCWB), annual precipitation (P ) and days with zero precipitation in the summer months (P0,sum). Despite their frequent
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Table 5. The precision Prec and hit rate HS are computed per station and the median is shown in the table for q95d, q98d and q99d.

q95d q98d q99d

Loss function Prec HS Prec HS Prec HS

Expectile 0.5 0.61 0.50 0.37 0.33 0.21 0.18

Expectile 0.3 0.59 0.54 0.41 0.37 0.21 0.24

Expectile 0.2 0.53 0.59 0.35 0.44 0.21 0.29

Expectile 0.1 0.49 0.72 0.30 0.52 0.16 0.36

Expectile 0.05 0.32 0.84 0.19 0.65 0.10 0.45

Expectile 0.025 0.26 0.93 0.15 0.82 0.10 0.64

Expectile 0.01 0.20 0.98 0.11 0.94 0.07 0.90

appearance in models, the performance gain of using meteorological variables for predictions is low, with a typical variable

importance of less than 2 % for all models. In contrast, topological variables emerge as the dominant predictors in the model.355

The three topological variables yielding the largest performance gain in the models are the mean and maximum catchment

altitude (HM ,H+) and the mean catchment slope SM . The variable importance for HM is on average between 3.8 % and 4.4

% for all expectiles. A slightly increasing trend towards larger expectiles can be observed for SM , with a variable importance
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Figure 9. The predictions for the 0.01 and 0.5 expectile are shown for station Au/Bregenzerach. The y-axis is on a log-scale for better

visualization of the low extremes. Error metrics for the 0.5 expectile: R2 = 0.95, HS = 0.51, Prec = 0.79; 0.01 expectile: R2 =−0.07,

HS = 0.94, Prec = 0.25.

of 10 % for the 0.01 expectile and on average 11.6 % for the 0.5 expectile. An opposed effect can be observed for H+, where

the variable importance decreases from 7.2 % for the 0.01 expectile to 4.3 % for the 0.5 expectile. Other topological predictors360

whose inclusion had only a minor influence on model performance are catchment area, latitude, longitude and altitude of the

gauging station, stream network density, and the fractions of flat, moderate and steep slopes in the catchment.

Figure 10 shows an overview of the variable importance for the most relevant spatio-temporal predictors. The CWB is the

most important variable with more than 2 % performance gain over all expectiles. CWBcenter, CWB1, CWB1,center are

also included in all models, but their variable importance is only 1 to 1.5 %. Higher lags of the CWB are mainly included by365

the lower expectiles but their performance gain is somewhat smaller and decreases with the lag of the variable. Comparing raw

and standardized climate variables, the transformation of the absolute values to centered values seem to be beneficial in the

case of the climate water balance, but this is not the case for the standardized drought indices, which were rarely selected and

exhibited a low importance score in all cases.

370
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Figure 10. Selection of spatio-temporal variables that are used for different expectiles. For each expectile it is shown if the variable is used

for the final prediction of the fold or not.

4 Discussion

4.1 Value of expectile regression tree models for low flow estimation

In this paper we extended the extreme gradient boosting model XGBoost with the expectile loss function to develop a space-

time model for low flow predictions. We applied different τ values from 0.01 to 0.5 and evaluated their predictive quality

in terms of overall performance, accuracy at extremes and potential to classify extreme events in a time series. Our findings375

showed two contrasting behaviours. Larger expectiles as 0.2, 0.3 and 0.5 showed better performance in respect to R2 and

R2
med, whereas low expectiles (τ = 0.01,0.025,0.05) led to a sharp decline in R2

med but increasing prediction accuracy at

extreme low flows. However, optimization of the model can not be reduced to these two criteria, as was shown in the further
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med, plotted against every expectile. HS and Prec are computed in each panel

for the thresholds q95d, q98d and q99d. The ELτ is calculated for the τ values of 0.025 (q95d), 0.05 (q98d) and 0.1 (q99d).

assessments. Low expectiles lead to a reduced precision at extreme low flow events, as a result of too many events being pre-

dicted. This suggests an overfitting of the lower tail of the low flow distribution by low expectiles that reduces the predictive380

performance at the entire distribution. In contrast, the hit score drops sharply for higher expectiles, resulting in a low detec-

tion rate of extreme events. Therefore, the application of the expectile loss has to be considered carefully and adjusted to the

specific research question. Figure 11 gives a synopsis of key performance metrics with respect to predicting q95d, q98d and

q99d low flow events. The synoptic representation shows nicely the trade-off between different performance metrics and puts

the conclusions from their individual assessment into context. Depending on the low flow event a different optimum can be385

observed. When the focus of the study is on annual low flows in the order of q95d, we see that the 0.2 expectile yields the

optimal model fit, indicated by the crossing performance lines of the various metrics. However, when the purpose of the study

is on predicting more extreme events (q98d and q99d) the 0.1 expectile is the optimal choice. These optima take into account

the overall predictive performance (R2
med) and emphases the performance at the considered extreme, by the expectile loss, the

hit rate and precision at the event of interest. The optimized model shows a good performance in all metrics and appears well390

suited for spatio-temporal predictions of low flow events.

4.2 Performance compared to literature

Performance evaluation in light of the existing literature is not straightforward, as we are not aware of any studies evaluating

monthly low flow models. Nevertheless, some studies did model the mean monthly streamflow, which we will use for com-395

parison. Comparisons will be made on the Nash–Sutcliffe efficiency (NSE) reported in these studies, which is an analogue

measure to the R2 in our study (Blöschl et al., 2013; Parajka et al., 2013). To put our monthly q95 models into context, we
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run a XGBoost model on monthly mean flow using the mean expectile regression (0.5) for our dataset. This leads to a median

performance R2
med of 0.77 with only 15 % of the stations having an R2 below 0.5. As expected, modelling monthly low flow is

less performant than modeling the mean monthly streamflow. Nevertheless, our results for q95 are still in the range of published400

studies on mean monthly streamflow models. For example Cutore et al. (2007) found NSE values ranging from 0.57 to 0.78

by modelling 9 basins in Italy using artificial neural networks. A similar performance has been reported by Pumo et al. (2016)

for 59 stations in Sicily, Italy. They modeled monthly streamflow by interpolating regression parameters to ungauged basins

and their NSE values ranged from 0.7 to 0.8 for 6 selected validation stations. A comparative assessment of regionalization ap-

proaches for hydrological models for 22 stations in the USA (Steinschneider et al., 2015) showed NSE values ranging from 0.6405

to 0.85. Note that these results were obtained for relatively small datasets under quite homogenuous hydrological conditions.

In our study low flow predictions were evaluated on a larger, diverse hydrological dataset and we found similar performance

metrics to those in the aforementioned studies.

A more qualitative embedding to the scientific literature can be made by integrating our findings to the comparative evaluation

of regionalization procedures of Parajka et al. (2013). Parajka et al. (2013) evaluated the performance of runoff-hydrograph410

studies, mostly performed on a daily time step, as a function of aridity, elevation and catchment area to assess to what ex-

tent does performance depend on main climate and catchment characteristics. Figure 12 shows our finding in context of these

three catchment characteristics. Parajka et al. (2013) found a decreasing performance with higher aridity. In our study, the

aridity index is below 0.6 for all our catchments, but shows a similar decrease in performance. In our study the performance

increases with catchment elevation, with catchments below 450 m.a.s.l. having the lowest performance (R2
med of 0.5) and415

catchments above 1350 m.a.s.l the highest performance (R2
med of 0.8). The increase in performance with elevation points to a

higher performance for catchments with dominant winter low flow seasonality, which can be explained by their more regular

and thus better predictable regime. We can indeed observe a lower performance for stations with summer low flow regime

(R2
med = 0.63) than for stations with winter low flow regime (R2

med = 0.73). However, in a stratified assessment of summer

and winter months, we could not find any difference in performance, neither in the entire study area, nor for summer and winter420

dominated catchments separately. This is in contrast to Staudinger et al. (2011), who found a reduction in model performance

for summer months compared to winter months for a Norwegian study area with conditions comparable to the mountainous

catchments in our study. Finally, we also found more accurate model predictions for larger basins. These are not due to a simple

size effect of catchment area on discharges as we use specific low flows as target variable to make catchments of different size

more comparable. Many of our small catchments are located in a karstic environment or moors, which exhibit highly irregular425

regimes that are in particular hard to regionalize. Larger catchments, in contrast, have a more regular regime and show a high

prediction performance.
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Figure 12. Panels (a), (b) and (c) show R2 per station of the 0.5 expectile plotted against the aridity index, elevation and the area. In all plots

outliers are not included for a better visualization.

5 Conclusions

In this paper we analyzed the performance of a single spatio-temporal XGBoost model on the prediction of monthly low flow430

for a comprehensive dataset of 260 gauging stations in Austria. We paid particular attention to the estimation of low extremes,

by applying the expectile loss function as a fitting criterion. Our results show that the expectile loss yields a high prediction

accuracy, but the performance decreases strongly for small expectiles. The best performing model is the 0.5 expectile with a

R2
med of 0.67, but also the 0.2 and 0.3 expectile reach a higher R2

med than the mean and median absolute loss. Small expectiles

as 0.01 or 0.025 already yield a negative R2
med, resulting in a high number of poor-performing stations.435

Weak-performing stations can also be found for the 0.5 expectile, where 26 % of the stations have an R2 below 0.5. A de-

composition of the model error revealed that the the monthly error is the main error component for large expectiles, while

the seasonal and annual components are negligible for most stations. Considering the weak-performing stations of the 0.5

expectile the dominant error component is a systematic error, or bias. With a median value of 56 %, the bias is much larger

at these stations compared to well-performing stations with a median value of only 11 %. This underlines the finding that the440

main shortcoming of our approach is a systematic error, which impairs the predictive accuracy. However, the strength of our

spatio-temporal model is the good approximation of the seasonal and annual variability of monthly low flows, as shown by the

low seasonal and annual error component.

Despite the low global performance of small expectiles (τ = 0.05,0.025,0.01), they demonstrate an increasing accuracy when

focusing on low extremes. This improvement in predictive performance has the simultaneous disadvantage that extreme low445

flows are increasingly misclassified. We found that the application of the expectile loss results in a trade-off between global
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performance, prediction accuracy of extremes, and misclassification rate of extreme events. The implementation of the 0.1 or

0.2 expectiles, depending on whether we want to optimize predictions for annual or more extreme low flow, appears to be

optimal with respect to all criteria. The resulting extreme gradient tree boosting model covers seasonal and annual variability

nicely and provides a viable approach for spatio-temporal modelling of a range of hydrological variables representing average450

conditions and extreme events.

We demonstrate that the expectile loss is a suitable alternative to common loss functions in spatio-temporal low flow models.

However, its application is not limited to statistical learning models such as XGBoost, but can also be considered for hydrolog-

ical models when their focus is on predicting hydrological extremes. As with all models, there is a trade-off between overall

predictive performance, accuracy on the tails of the distribution, and identification of extreme events that should be considered455

in model applications.

Code and data availability. Data and code can be made available on personal request to johannes.laimighofer@boku.ac.at.
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Figure A1. Predictive power of static topological predictors obtained by the backward variable selection procedure (Sect. 2.2.3). Shown

are the performance gains of the 10 prediction folds per expectile model, with colors indicating whether the variable is used for the final

prediction of the fold or not. Variables that were never selected by our model are not shown.
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Figure A2. Predictive power of static meteorological predictors obtained by the backward variable selection procedure (Sect. 2.2.3). Shown

are the performance gains of the 10 prediction folds per expectile model, with colors indicating whether the variable is used for the final

prediction of the fold or not. Variables that were never selected by our model are not shown.
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Figure A3. Predictive power of static landuse predictors obtained by the backward variable selection procedure (Sect. 2.2.3). Shown are the

performance gains of the 10 prediction folds per expectile model, with colors indicating whether the variable is used for the final prediction

of the fold or not. Variables that were never selected by our model are not shown.
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