
Dear Dr. Toth, 

we thank you and the referees for the constructive feedback! We updated our manuscript and uploaded
a revised version accordingly. We did rewrite Section 2.1.2 including your  concerns and the remarks
raised by Reviewer#3.
One main point that was raised by all reviewers was the issue of collinearity. This problem was tackled
by  using  (i)  a  nested  cross  validation  scheme,  where  only  variables  are  added  that  improve  the
prediction  performance  and  the  final  prediction  is  made  on  an  independent  test  set.  Further,  (ii)
boosting algorithm have an inherent variable selection as an ensemble of weak learners is combined.
Finally, (iii) the approach was tested in our previous study (Laimighofer et al. 2022). 

We  added  clarficiations  on  line  138,  150,  156  and  196  and  in  our  response  to  Reviewer#1  and
Reviewer#2. Additionally, in our answer to Reviewer#3, on page 4 we clarified the selection of the 5 %
error rule that was used in our model. 

We hope our changes will make the manuscript more clear. 

Best regards, 
Johannes Laimighofer (on behalf of all authors)



Dear Reviewer#1,

We want to thank for this valuable and positive feedback.

„My only concern is with the model fitting. The authors observed middling-to-high performance across
a range of methods, and they also note that the methods require something like 20-30 variables for
prediction. I would be interested in seeing some discussion on how the large quantity of variables may
or may not be indicative of overfitting. It seems, from my arm-chair analysis here, that overfitting could
explain the rapid loss in performance for extreme low flows. I’d be interested to hear what the authors
have to say.“

We are aware of potential overfitting of machine learning approaches. This is why we implemented a
nested cross validation procedure to reduce the possibility of overfitting the model. In our paper about
parsimonious models for low flow estimation (Laimighofer et al. 2022), we showed that tree models
use more variables than variable selection methods as GLM-boosting or Lasso.

It is inherent to tree models that variable selection is performed at each split individually, whereas
GLM variabe selection is performed globally, for the entire model. This systematically yields a higher
number of predictors in tree-based models than in linear models. From this perspective, we can safely
argue that the models are not overfitted (as assured by our nested CV scheme) and the large quantity of
variables may not be indicative of overfitting. 

To clarify this we changed the manuscript as follows:

On line 138 we added:

The method is beneficial when predictors are collinear and is robust to overfitting.

On line 150 we added:

The shrinkage parameter η is set to 0.1, where a small value of η minimizes the risk of overfitting and
the possibility of finding only local minima. 

On line 156 we added:

Finally,  we introduced an early stopping rule for the number of boosting iterations (K), where the
algorithm stops when the error does not decrease for 50 iterations. 

On line 196 we added:

Our method ensures that predictors are selected only when they increase the predictive performance of
the  model.  In  addition,  the  outer  loop  evaluates  the  predictive  performance  at  ungauged  sites
independently from model fitting.



Dear Reviewer#2,

We want to thank for this valuable and positive feedback.

My  only  concern  is  the  potential  existence  of  collinearity  of  temporal  predictors  as  the  authors
considered CWB, CWB_center, and CWB_SDI all together as potential predictors for finding the best
model. It would be good to see an analysis about if including collinear predictors yields a significant
increase in the model performance compared to when only not collinear predictors are considered for
the model fitting.

Thank you for this comment. Concerning our preselection of temporal predictors, we were aware that
not  all  temporal  variables  would  be  necessary  in  the  sense  that  they  will  improve  the  predictive
performance of the model, in the light of collinearity. However, the XGBoost model (Chen et al. 2016),
and boosting in general (Friedmann 2001, Hastie et al. 2009, especially when used in a nested CV-
approach) is known to handle collinearity of predictors through regularization parameters in a highly
sophisticated way. In our approach, the inner CV loop further assures that predictors are only selected if
they increase the predictive performance of the model, and the outer loop, additionally, evaluates the
predictive performance at ungauged sites independently from model fitting. We have further checked
that only using the CWB and the different lags yield similar performance to the presented model. For
these reasons we can safely argue that collinearity is explicitly handled in our approach.

To clarify this, we changed the manuscript as follows:

On line 138 we added:

The method is beneficial when predictors are collinear and is robust to overfitting.

On line 150 we added:

The shrinkage parameter η is set to 0.1, where a small value of η minimizes the risk of overfitting and
the possibility of finding only local minima. 

On line 156 we added:

Finally,  we introduced an early stopping rule for the number of boosting iterations (K), where the
algorithm stops when the error does not decrease for 50 iterations. 

On line 196 we added:

Our method ensures that predictors are selected only when they increase the predictive performance of
the  model.  In  addition,  the  outer  loop  evaluates  the  predictive  performance  at  ungauged  sites
independently from model fitting.

Figure 2 is not described o presented in the main text.

This was a typo in our manuscript. The figure is now correctly referenced.



L151: Define CV.  I  understand that  CV means cross-validation,  but  that  could  not  be evident  for
general readers.

L151: A brief description of the 10-fold CV could be helpful for the reader.

We changed line 158f  from: 

The final XGBoost model was optimized in a 10-fold CV by using all parameter combinations and
tuning the number of boosting iterations (number of trees).

To:

The final XGBoost model was optimized in a 10-fold cross validation (CV) by using all parameter
combinations and tuning the number of boosting iterations (number of trees). A detailed description of
our validation scheme is given in Sect. 2.2.3.  
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Dear Reviewer#3,

We want to thank for this valuable and positive feedback.

Response to SPECIFIC COMMENTS

L.40 p.2 – “…need of less data…”
I respectfully disagree about this, since data-driven models always requires a large amount of data
(longer periods observations for the response variable compared to other approaches.

We agree, the phrase was removed from the manuscript.

L.76 p.3 …  These two sentences are rather unclear to me. How this information is relevant to this
study? Why refer to previous studies here? In my opinion, what is  important here is  to define the
dataset and the preliminary analyses considered for the present study.

We removed these two sentences from the manuscript. 

This  is  actually  my major  concern:  the  use  of  symbols  and  acronyms could  be  greatly  improved
throughout the manuscript, and, in truth, I found Sect. 2.1.2 rather confused. I would suggest carefully
reviewing the manuscript, renaming some symbols, defining ALL the adopted symbols at their first
appearance in the manuscript, providing description of some indexes if needed, and homogenizing all,
avoiding the use of different symbols for the same thing.

We have updated the manuscript, by adding explanation of the acronyms at first sight and homogenized
all symbols to a more coherent structure.

At L.103-104 p.5. Pwin and Psum should be defined; the acronym MCBW and the various subscripts
should be explained (what does the “M” mean? what do “in” and “um” mean?).

The M in MCWB stands for Mean climatic water balance. Here, we have to distinguish to the spatio-
temporal covariate CWB, which is on a monthly basis and not the average. PwIN and PsUM are typos
that have been changed. We additionally clarified this by adding the following on line 114f:

Note that the CWB enters the model as a static variable (MCWB) and as a spatio-temporal covariate on
a monthly basis (CWB). The first serves as an intercept in the model, the second as a temporal signal
that determines the monthly low flow series.
 

In the caption of table 1, the subscripts “win” and “sum” are explained (they should be defined also in
the text at their first appearance), but annual partitioning into two seasons has never been discussed.
“Summer” is not properly the summer, but it seems to be a six months period whose start and ending
times are unknown (they should be specified). The same for the “winter”. Why not use the terms “dry”
and “wet”? In my opinion they are better suited to the bi-seasonal division of the year.

We added a short explanation for the two seasons. A distinction into dry and wet may be misleading in
term of low flow in Austria,  where low flow can  either occur in the summer half-year  (April  to



September)  or  in  the winter  half-year  (October to  March).  Hence,  we like  to  keep the distinction
between summer and winter. We changed the paragraph from line 101f:

For  the  static  predictors  we  used  a  set  of  climate  and  catchment  characteristics  of  precedent
rationalisation studies in Austria (e.g. Laaha and Blöschl, 2006; Laimighofer et al., 2022). They consist
of  topological  and  landuse  variables,  geological  classes,  and  long-term  average  meteorological
characteristics such as precipitation (P), climatic water balance (MCWB), and others (Table 1). All
these variables are aggregated on an annual basis (no subscript: e.g. P, MCWB), for the summer half-
year from April to September (e.g. Psum, MCWBsum), and for the winter half-year from October to
March (e.g. Pwin, MCWPwin).

In table 1, the description of some variable should be expanded. For instance SSL, SMO and SST:
these three classes of slope should be defined. Have you considered some kind of slope threshold value
or something else to classify the slope? Please, specify.

We updated Table 1 and added the slope specification. 

At L.109 p.6, the symbol for the monthly climatic water balance becomes CWB. Is this different from
MCWB? If not, you should homogenize the use of symbols.

CWB referes to the monthly spatio-temporal covariate, where MCWB is the averaged climatic water
balance at each station. On line 114f we added the following for an additional explanation:

Note that the CWB enters the model as a static variable (MCWB) and as a spatio-temporal covariate on
a monthly basis (CWB). The first serves as an intercept in the model, the second as a temporal signal
that determines the monthly low flow series.

L.107-111 p.5-6. Here a preliminary assessment is mentioned. Please indicate how do you perform this
preliminary assessment and the metric adopted to evaluate the performances.

The preliminary assessment is based on the same validation procedure and error metrics as presented in
the paper. A comparison of these different variable inputs was not scope of this paper, thereof we just
added this as a side note in the methods section. As at this point of the manuscript we did not include
any error metrics, nor described the validation procedure of our study, we added the following sentence
on line 110:

All these combinations were tested by a nested 10-fold cross validation (CV, see Sect. 2.2.3 for more
detail) and compared by a range of error metrics (Sect. 2.2.4).

L.119 p.6. The standardized drought index should be defined. How is it computed?

We added the computation on line 123:

Instead of fitting a parametric distribution, we estimate the empirical probability of the CWBs,m. The
empirical probabilities are then transformed to quantiles of a standard normal distribution.



L.121 p.6. “Fig.1” should be Fig.2.

This was a typo in our manuscript, the Figure is now correctly referenced.

How were the range of variation of the hyperparameters (e.g. maximum depth, etc...reported between
L.146 and L.149, p.8), selected? Do they come from literature? Are they default or typical ranges?
What else? Please, specify.

The ranges of the hyperparameters are mainly based on our experience with the dataset and the xgboost
package.  The  selected  range  of  the  hyperparameters  were  not  very  sensitive  to  overall  model
performance.  Using  (only)  values  outside  this  range  could  have  led  to  a  decrease  in  model
performance.  In  case  of  maximum  depth,  which  can  be  described  as  a  parameter  for  modelling
interactions  -   a value of 1 – 3 would be insufficient.  To clarify the selected range we added the
following on line 157:

The range of hyperparameters were set by preliminary experience with the XGBoost model and our
individual dataset.

L.151. (p.8). Please, specify what you exactly mean with 10-fold CV. What does the symbol CV mean?
Cross-Validation? Please, add explanation to the manuscript.

We changed line 158 from: 

The final XGBoost model was optimized in a 10-fold CV by using all parameter combinations and
tuning the number of boosting iterations (number of trees).

To:

The final XGBoost model was optimized in a 10-fold cross validation (CV) by using all parameter
combinations and tuning the number of boosting iterations (number of trees). A detailed description of
our validation scheme is given in Sect. 2.2.3.

L.167 p.8. Double “of”

One „of“ removed.

L.185 p.9. Are “10 CV” and “10-fold CV” the same thing? If so, please homogenize the symbols,
otherwise, explain the differences.

These two terms are the same. We changed every occurrence to 10-fold CV throughout the manuscript. 

L.85-186 p.9. How was the threshold of 1.05 selected? Please, specify.



Model selection, hyperparameter tuning or variable selection in statistical learning/ machine learning is
often based on using the minimum error. Another approach is to use a one standard error rule (e.g.
Hastie et al. 2009, the standard error is added to the minimum error and the most parsimonious model
with an error not higher than the minimum error + 1 standard error is selected), which yields models
with less variables (in case of variable selection). Our nested CV procedure would lead to almost no
reduction in the number of variables if we use the minimum error (but yielding similar performance).
Using the one standard error rule yields a very low amount of variables, which impairs the prediction
performance significantly. This is due the high variation of each individual fold in our dataset. Thereof,
we introduced this 5 % error threshold, which basically allows the model to decrease the prediction
performance, but yields model that have a lower amount of variables. This was done in a study already
published in HESS (Laimighofer et al. 2022). We added the following on line 195:

This approach yields models with fewer variables at only a small loss in predictive accuracy.

L.190 p.10. LMDAE was already explained in Sect. 2.2.2. Why introducing another symbol (MDAE)
for the same thing? The same for LMAE. Consistently with the symbology adopted in the present study,
“RMSE” in eq.5 should be LRMSE, and the coefficient of determination in eq. 6 should be LR2. 

We are sorry for that confusion, but in early version of the manuscript we used the LMDAE/LMAE as
reference to the specific loss function. As this is not present in the current manuscript, we changed
LMAE to MAE, and LMDAE to MDAE. 

Here the authors focus almost entirely in the description of the results reported in Tab. 3. I would
suggest trying to expand the discussion, addressing some observed behaviors.

We highlighted the weak performance of low expectiles as also suggested in the next but one remark by
adding the following sentence on line 269:

Expectiles below 0.05 show an insufficient performance on these global error metrics. For example the
RMSE of the 0.01 expectile is twice as high as the RMSE of the 0.5 expectile. 

Please,  quantity  the  “better  performance” reporting  the  associated  values  of  R2med or  recalling
Figure 5 or Table 4 in the sentence. “Portion” at L.268 should be “fraction” or “percentage”. Avoid
the use of nested round brackets (..(..)..).

The sentence (Line 282) was changed to:

However, the 0.2 and 0.3 expectile still yield a higher R2med of 0.65 and 0.6, compared to the mean
absolute  (0.58)  and  median  absolute  loss  (0.57).  Further,  the  fraction  of  stations  with  a  weak
performance (R2 < 0.5) is also lower for the 0.2 and 0.3 expectile as shown in Table 3.



Looking at figure 5, Expectile 0.01, 0.025 and 0.05 should be discarded since they provided very few
(or none for Expectile 0.01) stations with acceptable values for R2. Also the other metrics in Tab 3, at
global level confirms their scarce suitability. This should be better highlighted.

We agree that the expectiles 0.01, 0.025 and 0.05 show a insufficient performance in terms of R2 or
other global error metrics. As we do not limit our study to global model performance, we prefer to keep
all expectiles in the figure, despite their weak performance to present a more holistic picture. To give
more emphasis on the low performance metrics of small tau values, we added the following text to the
manuscript:

On line 269: 

Expectiles below 0.05 show an insufficient performance on these global error metrics. For example the
RMSE of the 0.01 expectile is twice as high as the RMSE of the 0.5 expectile. 

On line 280:

Generally, low expectiles (0.01, 0.025, 0.05) yield a high number of inadequate models, where almost
90 % of the stations obtain a R2 below 0.5 for the 0.05 expectile. In case of the 0.01 expectile no
station has a R2 greater than 0.5. 

I found this analysis very interesting, and in my opinion the discussion should be expanded a little bit
trying to interpret and address the results. For example, looking at Figure 6, it seems that the main
difference among the various expectile models is the produced bias, while the prediction seasonal and
annual errors provide about the same relative contribution to the total error. Why? Was it expected? I
would suggest to discuss the main implications in considering models with different expectiles (i.e.
Expectile 0.5 instead of Expectile 0.01).

We partially expected that low expectiles produce a larger bias, as this is part of the penalization of the
expectile loss function. The issue was further discussed in Sect. 3.3 (Fig. 7, 8, 9), where we report on
the results for prediction of extremes, which we consider the main implications. Finally, we discussed
this in more detail in Sect. 4.1 (Fig. 11). 

In my opinion also a value of R2 of 0.42 could denote inefficient models, and, indeed, values around 0
(both negative or positive) are all representative of inefficient models and should not be compared with
each other. For example, I am not sure that a model with R2 of 0.1 is better than a model providing a
negative value for R2, while I rather confident that both don’t work.

We agree that a R2 value of 0.42 can denote an inefficient model and a value of 0.1 as for the 0.05
expectile sure does. To make this more clear, we changed the sentence on Line 313 to:

For example if  we assess  the accuracy of  our  models for cases below the 1 % quantile,  the 0.01
expectile is yielding at least a R2 of 0.42, where larger expectiles (0.05 - 0.5) show inefficient models
with R2 values below 0.1.



I would suggest to provide a possible explanation that may justify the observed increasing trend for the
hit score and decreasing trend for the precision index with decreasing expectile (from 0.5 to 0.01) and
equal quantile. The authors should probably consider the definitions of the two metrics (see eqs. 12
and 13), their meaning and implications in terms of models prediction ability. Looking for an optimal
trade-off  solution,  which  model  should  be  preferred?  Which  metric  carries  the  highest  weight  in
describing models prediction ability considering the different target that the model may have?

In the last  sentence the authors state  “...the user needs  to find some optimum”(L.330),  but in my
opinion authors should provide here some practical indications to do so. This important aspect is
roughly mentioned only in the conclusion section.

We discussed the precision score on line 380-382 and added a sentence for the Hit score on line 381:

In contrast, the hit score drops sharply for higher expectiles, resulting in a low detection rate of extreme
events.

The optimal trade-off solution for our model is discussed on Line 385f. We also referenced, that the
optimal model solution may depend on the aim of the specific model. 

L.340 p.19. Please, explain what you exactly mean with “...variable importance of less than 2 %...”.
Which metric is considered in this analysis to assess the % gain?

The  gain  was  shortly  explained  in  Sect.  2.2.3  Line  189.  To  make  this  more  clear  we  added  the
following explanation to Line 189:

The variables are ranked after their additive gain in minimizing the loss function over the 500 boosting
steps. For a more robust approach, the initial variable ranking is averaged over 25 boostrap samples.
The gain of each variable for the final variable ranking is the ratio of the individual additive gain to the
total gain over all variables.

First paragraph (from L.379 to L.393. P.22). Here, it seems that the authors compare quantitatively
different metrics (i.e. coefficient of determination and Nash and Sutcliffe Efficiency). I think that the
comparison can be done quantitatively only using the same metric,  otherwise it  can be done only
qualitatively,  for  example  considering  some  performance  rating  able  to  classify  the  different
performances (e.g. “weak”, “good”, excellent”, etc.), which usually are specific for the variable under
consideration, the adopted metric and the time and space scale of analysis.

We  agree  that  if  the  coefficient  of  determination  is  defined  by  the  linear  relationship  between
predictions and observations, it only would be possible to compare the results qualitatively. Further,
using the linear relationship between predictions and observations would have led to larger R2 values,
the bias would not be included in our performance metric, and we would have no values below 0.
Hence, in Equ. 6, we introduced the R2 as cross-validated metric, which has the same definition as the
NSE. We are sorry if this has led to a misunderstanding and to add clarification we added the following
on line 204: 



… and the  coefficient  of  determination  R2,  which -  by our  definition  -  is  the same as  the Nash-
Sutcliffe-Efficiency (NSE) (Blöschl et al., 2013).

L.388 P.22. “Sicilia” should be “Sicily”.

Sicilia was changed to Sicily.

L.418-420 P.23. Given the high number of predictor variables considered, could overfitting partially
explain the overall performance drop for extreme low flow and for decreasing expectiles (e.g. 0.01 or
0.025)? Perhaps, the authors might add something about this “potential” problem and how they tried
to prevent overfitting.

This issue was already raised by Reviewer#1 and Reviewer#2. We added some explanations to the
manuscript  and  for  more  detailed  answers,  please  have  a  look  at  our  replies  to  Reviewer#1  and
Reviewer#2.
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