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Abstract. Seasonal snow is an essential component of re-
gional and global water and energy cycles, particularly in
snow-dominant regions that rely on snowmelt for water re-
sources. Land surface models (LSMs) are a common ap-
proach for developing spatially and temporally complete esti-
mates of snow water equivalent (SWE) and hydrologic vari-
ables at a large scale. However, the accuracy of the LSM-
based SWE outputs is limited and unclear by mixed fac-
tors such as uncertainties in the meteorological boundary
conditions and the model physics. In this study, we assess
the SWE, snowfall, precipitation, and air temperature prod-
ucts from a 12-member ensemble – with four LSMs and
three meteorological forcings – using automated SWE, pre-
cipitation, and temperature observations from 809 Snowpack
Telemetry stations over the western US. Results show that
the mean annual maximum LSM SWE is underestimated by
268 mm. The timing of peak SWE from the LSMs is on av-
erage 36 d earlier than that of the observations. By the date
of peak SWE, winter accumulated precipitation is underes-
timated (forcings mean: 485 mm vs. stations: 690 mm). In
addition, the precipitation partitioning physics generates dif-
ferent snowfall estimates by an average of 113 mm with the
same forcing data. Even though there are widespread cold bi-
ases (up to 3 ◦C) in the temperature forcings, larger ablations
and lower ratios of SWE to total precipitation are found even
in the accumulation period, indicating that melting physics in
LSMs drives some SWE uncertainties. Based on the principal

component analysis, we find that precipitation bias and par-
titioning methods have a large contribution to the first prin-
cipal component, which accounts for about half of the total
variance. The results provide insights into prioritizing strate-
gies to improve SWE estimates from LSMs for hydrologic
applications.

1 Introduction

Seasonal snow plays a critical role in hydrologic and clima-
tologic processes globally (Sturm et al., 2017). It benefits
1.2 billion of the world’s population via its seasonal cycle,
which retains water for release during warm and dry periods
(Barnett et al., 2005; Viviroli et al., 2007). Also, the impact
of seasonal snowpack on extreme events such as snowmelt
and rain-on-snow floods (Davenport et al., 2020; Li et al.,
2019; Musselman et al., 2018), drought (Huning and AghaK-
ouchak, 2020), and wildfires (Westerling et al., 2006) are
of considerable interest to the water resources planners and
decision-makers. Despite being a vital component of water
balances and extreme events, estimating the spatiotempo-
ral change in snow water storage referred to as snow wa-
ter equivalent (SWE), remains a significant challenge for the
snow hydrology community (Cho et al., 2021b; Dozier et al.,
2016; Kim et al., 2021).
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Land surface models (LSM) are commonly used to quan-
tify distributed estimates of SWE and other hydrologic vari-
ables with high spatiotemporal resolution over large spatial
extents. Because LSMs enable the simulation of the physi-
cal interactions between water, energy, and carbon cycle pro-
cesses on the land surface, they are widely used for hydro-
logic and climate research, as well as operational applica-
tions related to river flow forecasting and weather prediction
(Mitchell et al., 2004), among others. However, recent stud-
ies revealed that there are large uncertainties in SWE esti-
mates from LSMs (Broxton et al., 2016; Kim et al., 2021;
Pan et al., 2003), which lead to uncertainties in other relevant
variables and processes such as snowmelt runoff, spring soil
moisture, and groundwater recharge. Broxton et al. (2016)
found that the LSM-based reanalysis SWE products were
largely underestimated as compared to the high-resolution
reference SWE data sets and suggested that more rapid snow
ablation in LSMs especially at near-freezing temperatures is
the primary source of the SWE underestimates. In contrast,
some studies found that biases in atmospheric forcing data,
particularly precipitation, were a major driver of SWE er-
ror (Pan et al., 2003; Raleigh et al., 2015), and reanalysis
products, often used as meteorological forcing for LSMs, un-
derestimated precipitation, particularly in mountainous areas
(Enzminger et al., 2019; Wrzesien et al., 2017). Typically,
reanalysis products are limited in capturing the orographic
effects near mountainous areas, subsequently resulting in un-
derestimates of precipitation (Wrzesien et al., 2017).

Several snow model intercomparison exercises provided
a series of valuable findings according to their objectives.
Phases 1 and 2 of the Snow Model Intercomparison Project
(SnowMIP) focused on snow energy-budget simulations
(Etchevers et al., 2004) and forest snow processes (Essery
et al., 2009; Rutter et al., 2009), respectively, based on site-
scale reference simulations. SnowMIP1 found that, while
the complex snow models were better able to simulate net
longwave radiation, the model complexity had relatively lit-
tle impact on albedo simulation based on two mountainous
alpine sites (Etchevers et al., 2004). In SnowMIP2, Essery
et al. (2009) found that the snow models generally captured
the large differences in albedo and surface temperature quite
well between snow-covered and snow-free surfaces and be-
tween forested and open sites at three open and forested site
pairs. They also concluded that there was little consistency
in model performance among sites and years, so no “best”
model was identified. Recently, the Land Surface, Snow
and Soil moisture MIP (LS3MIP v1.0; van den Hurk et al.,
2016) and Earth system models-SnowMIP (ESM-SnowMIP;
Krinner et al., 2018 and Menard et al., 2021), an extension
of LS3MIP, focused on assessing snow models and snow–
climate interactions at local and global scales. Krinner et
al. (2018) found that albedo simulation was a major source
of uncertainty in the context of snow-related climate feed-
back based on ten site experiments for a local-scale assess-
ment. However, these model intercomparison projects did not

evaluate SWE at the macro-scales needed for operational wa-
ter resources management. Krinner et al. (2018) and these
project exercises suggest that longer periods and larger study
domains (and more sites over various snow environments)
would improve our understanding of snow models and land
surface schemes in Earth system models and reduce the un-
certainties associated with snow processes and feedback on
the climate.

While the previous studies of continental (or global) scale
SWE evaluations outline sources of the SWE errors (Brox-
ton et al., 2016; Cho et al., 2020; Kim et al., 2021; Pan et
al., 2003; Mortimer et al., 2020), comprehensive quantifica-
tion of the relative contribution of these error sources is still
required. Furthermore, most of the prior studies used a sin-
gle or multiple LSMs with one meteorological forcing and
either simulated or reanalysis SWE with relatively coarse
spatial resolutions (e.g., 12.5 to 50 km), which impedes the
quantification of the contributions by producing additional
uncertainties. To overcome this, we examine data from a
multi-LSM, multi-forcing ensemble at 5 km spatial resolu-
tion (called the Snow Ensemble Uncertainty Project; SEUP)
developed by Kim et al. (2021), which includes 12 combi-
nations of 5 km resolution gridded SWE products from four
LSMs and three meteorological forcings. Kim et al. (2021)
quantified the spatial and temporal uncertainties in SWE and
total snow storage uncertainty across North America (they
referred to “uncertainty” as the range of SWE estimates
across the 12 ensemble members). The largest uncertainty in
the modeled SWE was found in mountainous regions. They
speculated that this was due to the relative deep snow, me-
teorological forcing uncertainties, and variability among the
different snow physics in the LSMs over complex terrain.
Also, they demonstrated that SWE uncertainty drives runoff
uncertainty, suggesting that improved SWE observations are
required to reduce the SWE and runoff uncertainty, partic-
ularly during the melt season in high-latitude regions (e.g.,
northern Canada) and the western mountain regions.

This study seeks to identify the primary sources of the er-
rors and to quantify their contributions to the modeled SWE
uncertainty (forcing errors vs. snow-related physics) during
the accumulation periods for 8 years (2010 to 2017) against
the 809 Snowpack Telemetry (SNOTEL) stations. We ac-
knowledge that some SNOTEL stations are not spatially rep-
resentative of the surrounding areas (Meromy et al., 2013;
Molotch and Bales, 2006), potentially leading to uncertain-
ties in the comparison. Nevertheless, we assume that more
than 800 SNOTEL sites across the western US would be suf-
ficient to quantify macroscale LSM SWE uncertainties. This
study focuses on the snow accumulation period, which is de-
fined as 1 October to the date of the annual maximum SWE
of each station. For the winter temperature comparison only,
a period from 1 October to 31 May is used by assuming a
typical winter period (Trujillo and Molotch, 2014). Previous
studies have investigated LSM uncertainty during the melt-
ing season, such as too rapid snowmelt (e.g., Broxton et al.,
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2016), although less work has considered the accumulation
season. We aim to answer the following questions. (1) How
large is the LSM SWE uncertainty as compared to SNOTEL
measurements? (2) How much does underestimation in pre-
cipitation forcing contribute to snow uncertainty? (3) Do pre-
cipitation partitioning methods contribute to the SWE under-
estimation? (4) How much does LSM melt physics contribute
to the SWE underestimation? (5) What are the relative con-
tributions among the sources of the error?

2 Data and methods

2.1 Snow Ensemble Uncertainty Project (SEUP)

The SEUP ensemble developed by Kim et al. (2021) is com-
prised of 12 ensemble members, created by the combination
of four different LSMs – Noah with Multi-Parameterization
version 3.6 (hereafter Noah-MP; Niu et al., 2011), Catchment
version 2.5 (hereafter Catchment; Koster et al., 2000), Joint
UK Land Environment Simulator (JULES; Best et al., 2011),
and Noah version 2.7.1 (hereafter Noah; Ek et al., 2003) –
and three different forcing data sets – European Centre for
Medium-Range Weather Forecasts (ECMWF; Molteni et al.,
1996), Global Data Assimilation System (GDAS; Derber et
al., 1991), and Modern-Era Retrospective Analysis for Re-
search and Applications, version 2 (MERRA2; Gelaro et al.,
2017). These models are selected to provide a baseline of op-
erational LSM capabilities for SWE estimation because they
are used for operational purposes at major modeling centers,
such as the US National Centers for Environmental Predic-
tion, NASA Global Modeling and Assimilation Office, and
the United Kingdom Met Office (note that the model versions
and detailed configurations used in this study could differ
from what the centers are currently using). In the SEUP anal-
ysis, 3-hourly SWE estimates were generated for the 12 com-
binations using the NASA Land Information System (LIS;
Kumar et al., 2006). All models were run at a 5 km resolu-
tion from 2000 to 2017 at 15 min time steps. To achieve ini-
tial hydraulic and thermal equilibrium states for each run, the
first 10 water years from 2000 to 2009 were used as a model
spin-up period and the remaining 8 water years from 2010 to
2017 were used for the evaluation in this study. Noah LSM
uses a one-layer snow model to simulate SWE by calculating
snowfall minus the sum of sublimation and snowmelt. More
detailed descriptions of Noah’s physics and development are
presented by Ek et al. (2003) and Koren et al. (1999). Noah-
MP LSM is the advanced Noah model with new multiple
options for selected processes (Niu et al., 2011). Noah-MP
includes up to three layers of snowpack, depending on snow
depth. The snow scheme calculates snow compaction from
the weight of overlying snow layers and melting metamor-
phism. The Catchment LSM includes a three-layer snow-
pack model that incorporates snow physics, including den-
sification, snowmelt, refreeze, and snow insulating proper-

ties (Lynch-Stieglitz, 1994). The prognostic state variables
for each layer include snow depth, snow cold content, and
SWE. JULES LSM is run in stand-alone mode with a multi-
layer snow scheme driven by forcing data (Best et al., 2011).
In the multi-layer snow scheme, three layers of snowpack are
set. For each layer, snow density is dynamically calculated
by snow temperature over time, and thermal conductivity is
calculated by using snow density. For further details, refer
to Sect. 3 in the JULES model description paper (Best et
al., 2011). To improve the spatial representativeness of the
coarse resolution forcing inputs, the precipitation forcings
were downscaled with the WorldClim monthly precipitation
climatology (Fick and Hijmans, 2017). Other forcing vari-
ables including near-surface temperature were downscaled to
5 km by applying a constant lapse rate of 6.5 K km−1, hypso-
metric adjustments using the Shuttle Radar Topography Mis-
sion (5 km; SRTM) and the USGS Global 30 arcse Elevation
(GTOPO30) data sets (Kim et al., 2021).

In the SEUP ensemble, two different methods are used
for partitioning precipitation into rain or snow: (1) a sin-
gle threshold method is used in the Catchment, JULES, and
Noah, and (2) Jordan’s fractioning method, which is used in
Noah-MP (Jordan, 1991). A single threshold approach sim-
ply uses Tair to determine the precipitation phase (Motoyama,
1990). Snowfall occurs whenever there is nonzero precipita-
tion, and the near-surface air temperature is less than 0 ◦C.
Jordan’s method assumes that any precipitation is rainfall
when Tair > 2.5 ◦C, snowfall when Tair < 0.5 ◦C, a snowfall
fraction (Fsnow) of 0.6 when 2.0 ◦C < Tair ≤ 2.5 ◦C, and a lin-
ear equation (i.e., Fsnow = 1–0.2 · Tair) from rainfall to snow-
fall between 0.5 ◦C < Tair < 2.0 ◦C. Schematic diagrams of
each method are provided in the Supplement (Fig. S1). A de-
tailed explanation of the SEUP framework can be found in
Kim et al. (2021). For the comparison with daily SNOTEL
observations in this study, we used the 3-hourly averaged
SWE output at 00:00 Coordinated Universal Time (UTC).
The air temperature (Tair) outputs from 00:00 and 12:00 UTC
are averaged into a single daily average.

2.2 Snow telemetry (SNOTEL)

For reference data sets, we use daily SWE observations
measured at the 809 SNOTEL stations across the western
US operated by the Natural Resources Conservation Ser-
vice (NRCS). These stations include accumulated precipi-
tation and daily mean temperature observations co-located
with the snow pillows and were used to evaluate the forc-
ing precipitation and temperature data sets. Previous studies
have identified a warm bias ranging from +0.5 to 2.0 ◦C at
cold temperatures (less than 10 ◦C) in the SNOTEL temper-
ature data (Fig. S4 in Oyler et al., 2015). This bias is found
to be temperature-dependent, such that positive biases occur
at colder temperatures (less than 12 ◦C), and negative biases
occur at warmer temperatures (above 12 ◦C). In winter, the
median biases for daily maximum and minimum observa-
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tions were +1.25 and +1.75 ◦C. For this work, we used a
bias-corrected temperature applied by a linear equation used
in previous studies (Currier et al., 2017; Sun et al., 2019).

Tcorr = 1.03 · Tori− 0.9, (1)

where Tcorr is the bias-corrected temperature (◦C) and Tori
the originally observed temperature (◦C). While we acknowl-
edge that the difference in spatial representativeness (point
vs. grid) may lead to some uncertainties in the comparison,
this topic is out of the scope of this study. We assume that
more than 800 SNOTEL sites across the western US would
be sufficient to quantify macroscale LSM SWE uncertainties.

2.3 Principal component analysis

Principal component analysis (PCA) is a multi-variate tech-
nique that is widely used to analyze a data table contain-
ing several variables that are generally dependent and inter-
correlated (Abdi and Williams, 2010). It extracts important
information about relationships among the variables and ex-
presses them as a set of new orthogonal variables, called prin-
cipal components (PCs). The PC loading measures the cor-
relation between the PC and variables. Therefore, variables
with similar loadings for a given PC can be dependent on the
same common factor and are positively correlated. The goal
of using PCA in this study is to identify the spatial similar-
ity of the SWE difference between LSMs and observations to
that of the potential error sources. In our case, the data matrix
arranges the SWE errors, SWE_bias, and four potential er-
ror sources, including winter total precipitation bias, P_bias,
precipitation difference between two precipitation partition-
ing methods, P_phase, snow ablation difference for the accu-
mulation period as a proxy of melting physics, Ablation, and
mean bias in winter air temperature, T_bias, in columns and
the 809 SNOTEL sites in rows. The “SWE_bias” is calcu-
lated by the ensemble mean SWE subtracted from the cor-
responding SNOTEL SWE for each station. The potential
sources of the error are obtained from the comparison be-
tween SEUP and SNOTEL observations. Data in the matrix
was standardized (so-called “scaling”) such that the mean
and standard deviation of each variable is 0 and 1, respec-
tively.

3 Results

3.1 How large is the LSM’s SWE uncertainty?

To quantify differences between LSM SWE estimates and
ground observations, the mean magnitude and timing of
annual maximum SWE estimates for the four LSMs are
compared to the corresponding SNOTEL SWE observations
across the western US from October 2009 to May 2017
(Fig. 1). The actual magnitude and dates of the four LSMs
are provided in Fig. S2 (the same maps but for annual mean,

instead of annual maximum, and 1 April SWE difference are
also provided in Fig. S3). There is a widespread underes-
timation of the annual maximum SWE for all LSMs with
averages of −198, −311, −273, and −288 mm for Noah-
MP, Catchment, JULES, and Noah, respectively. The amount
of the underestimation is regionally dependent on elevation
ranges. Larger underestimates of the maximum SWE occur
in mountainous areas with higher elevation ranges, such as
the Pacific Northwest, the Sierra Nevada, and the Rockies,
where larger SWE generally occurs (see the elevation map of
Fig. S4). The mean timings of the annual maximum LSM’s
SWE are on average 36 d earlier than the observation (21, 45,
38, and 42 d for Noah-MP, Catchment, JULES, and Noah,
respectively). The patterns of the earlier timings of the max-
imum SWE are more apparent in areas with higher elevation
ranges than with lower elevation. Generally, Noah-MP pro-
vides relatively smaller differences as compared to the other
three LSMs, although in some Pacific Northwest stations
where there is more winter precipitation, Noah-MP SWE
exceeds the SNOTEL SWE. Of the four LSMs, the snow-
related physics in Noah-MP generates SWE values the most
similar to observations.

3.2 Is precipitation forcing data underestimated?

As compared to the SNOTEL observations, ECMWF,
GDAS, and MERRA2 forcings have widespread underesti-
mates of winter accumulated precipitation (which is from
1 October to the date of the maximum SWE of each ensemble
member for each station) in 98 %, 77 %, and 85 % of the total
stations, respectively. Of the stations, average biases (forc-
ing minus SNOTEL) are −356, −262, and −292 mm (max-
imum biases: −1432, −1523, and −1466 mm) for ECMWF,
GDAS, and MERRA2, respectively (Fig. 2). The largest un-
derestimates were found in the Pacific Northwest, the Sierra
Nevada, and the Southern Rockies, particularly areas with
higher elevation ranges (> 3000 m a.s.l.; Fig. 2b). Among the
three forcing data sets, GDAS provides a relatively lower
overall difference as compared to ECMWF and MERRA2. In
some stations in Washington and Wyoming, GDAS precipi-
tation exceeds the SNOTEL observations. In stations with
lower elevation ranges (0–1000 m a.s.l.), dominantly located
in the Pacific Northwest regions, there is a wider range of the
precipitation difference between the forcings and SNOTEL
as compared to higher elevation ranges (Fig. 2b).

3.3 Does precipitation partitioning (rain vs. snowfall)
contribute to the SWE underestimation?

The two different precipitation partitioning methods used in
the LSMs generate different amounts of snowfall by region.
Figure 3 provides mean annual total snowfall maps of Jor-
dan’s fractioning method (Jordan, 1991; used in Noah-MP)
and a single threshold method (other three LSMs) and the
difference map between the two. The annual mean differ-
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Figure 1. (a) Mean annual maximum SWE map of SNOTEL observations and SWE difference maps of the four land surface model (LSM)’s
annual maximum values from the SNOTEL observations with density plots of the SWE difference for each LSM by four elevation ranges of
SNOTEL sites (a solid, vertical, black line in the density plots represents median value) and (b) mean annual maximum SWE date map of
SNOTEL and date difference maps along density plots when the annual maximum SWE for each LSM occurs from 2010 to 2017 across the
western US. Each LSM result is averaged over the three different forcings. Elevation map with the four ranges is provided in Fig. S4.

ence between the two partitioning methods from 2010 to
2017 is about 113 mm for the 809 stations (24 % of the win-
ter accumulated precipitation from 1 October to the max
SWE dates [472 mm]). The differences are regionally depen-
dent on elevation. The spatial patterns of the three differ-
ence maps are similar regardless of meteorological forcing
sources (Fig. S5). This is not surprising because the fraction-
ing method partitions precipitation amounts with air temper-
atures ranging from 0 to 2.5 ◦C as snowfall, which would be
classified as liquid rainfall with a single threshold method
that uses 0 ◦C as the rain-snow threshold. The patterns of the
larger snowfall are apparent in the Pacific Northwest, where
more precipitation occurs, and temperatures are frequently
close to 0 ◦C in winter, as compared to other regions.

The sensitivity of snowfall amounts due to the partitioning
methods draws our attention to the role of air temperature
differences among the three meteorological forcing data sets
and the SNOTEL observations. In Fig. 4, the mean annual
temperatures from three forcing data sets are compared to
the bias-corrected SNOTEL air temperature for the study pe-
riod. In 68 %, 86 %, and 53 % of stations, air temperatures
from ECMWF, GDAS, and MERRA2 forcings exhibit nega-
tive (cold) biases as compared to the bias-corrected SNOTEL
temperatures, respectively. Larger cold biases of ECMWF
and GDAS are found in the continental regions with higher
elevation ranges (e.g.,−1.3 and−2.8 ◦C of the median biases
for stations with > 3000 m a.s.l., respectively). MERRA2 has
small biases for all elevation ranges even though there ex-
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Figure 2. (a) Mean difference maps (three forcings ensembled by four LSMs minus SNOTEL) in winter accumulated precipitation by the
date of the maximum SWE of each ensemble member from 2010 to 2017 across the western US and (b) density plots of the precipitation
difference by four elevation ranges of SNOTEL sites.

Figure 3. (a) Mean annual total snowfall maps during the accumulation period (1 October to the date of the maximum SWE of each ensemble
member) from 2010 to 2017 using Jordan’s (1991) fractioning method in Noah-MP and a single threshold method (0 ◦C) in the other three
LSMs, as well as the difference map across the western US and (b) density plots of the precipitation difference by four elevation ranges of
SNOTEL sites. The snowfall maps are ensembled by three forcings
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ist contrasting biases between continental (cold) versus mar-
itime (warm) regions.

3.4 Does melting physics in LSMs contribute to the
SWE underestimation?

To examine the contribution of melting physics in LSMs to
the SWE underestimation, the mean annual snow ablations
during the accumulation period, i.e., from 1 October to the
date of the maximum SWE for each year for each SEUP
member, are compared to the corresponding amount of snow
ablation from SNOTEL (Fig. 5). The reason why the spring
melt ablation period was excluded in the analysis is that it
would include the impact of precipitation underestimation
(i.e., the LSM ablation would always be lower than the SNO-
TEL ablation simply because there was less total snowfall to
begin with). The same maps but for the accumulated snow
ablation from 1 October to 1 April are provided in Fig. S6.
Even though the LSMs underestimate the SWE, and the peak
SWE dates are generally earlier than the observations, there
are larger ablations from all LSMs as compared to the ob-
servations at 68 % to 87 % of the total stations by up to
188 mm (Noah-MP; mean difference: 6.5 mm) to 314 mm
(Catchment; mean difference: 52 mm), except for regions
with lower elevation ranges (< 1000 m a.s.l.). The magnitude
of the ablations is highly region-specific. While larger abla-
tions are found in mountainous regions with higher elevation
ranges (> 2000 m a.s.l.)m such as the Middle and Southern
Rockies and the Sierra Nevada, there is a tendency toward
smaller ablations than the observations in the Pacific North-
west. In fact, this is because there was lower SWE accumu-
lation from LSMs than observed, resulting in less snow abla-
tion.

The ratios of SWE to total precipitation (fSWE,precip) for
each LSM and SNOTEL are also compared to examine the
proportion of early snow ablation to precipitation (Fig. 6).
For the ratio map from SNOTEL, about 80 % to 90 % of the
precipitation is accumulated as snowpack in the continen-
tal regions including the Sierra Nevada. Whereas SNOTEL
has about 20 % to 40 % precipitation accumulated as SWE
during the accumulation period in the Pacific Northwest and
southern regions, including Arizona and New Mexico. Re-
sults show that most LSMs underestimate the fSWE,precip,
and melting losses occur too frequently in LSMs during the
accumulation period. Among the LSMs, the spatial distribu-
tion of the Noah-MP’s ratio closely follows the SNOTEL ob-
servations, followed by Catchment, JULES, and Noah. How-
ever, Noah-MP still has lower ratios, particularly in the Mid-
dle and Northern Rockies, as well as Arizona and New Mex-
ico Mountains.

3.5 What is the relative contribution of potential causes
on SWE uncertainties?

To quantify the relative contributions of the error sources
on the SWE uncertainties, a principal component analysis
(PCA) is conducted with the SWE biases (SWE_bias) and
four identified error sources (P_ bias, P_phase, T_bias, and
Ablation) for the 809 stations (Fig. 7). The standardized
maps for the variables are provided in Fig. S7. The PC load-
ings for the four prominent PCs jointly account for about
95 % of the total spatial variance in the PCA data. With re-
spect to the PCA with SWE_bias in Fig. 1a, the spatial vari-
ability in the SWE errors is prominently featured in the first
three PCs that account for 86.8 % of the total variance. In
the first PC (PC1; 46.1 % explained), SWE_bias has posi-
tive correlations with P_ bias but negative correlation with
P_phase. That is, areas of larger P_bias and smaller P_phase
are associated with larger SWE_bias, and these areas cor-
respond to the continental regions (e.g., Middle and South-
ern Rocky Mountains). P_bias (−0.53) has a slightly larger
contribution to PC1 than P_phase (0.52). The second PC
(PC2; 24.3 % explained) describes the negative correlations
between SWE_bias (0.61) and Ablation (−0.59). PC2 indi-
cates that there are areas where the SWE errors and abla-
tion are negatively correlated, and these areas correspond to
the Pacific Northwest and some Northern Rocky Mountains
in Fig. 5. Next, the third PC (PC3; 16.4 % explained) shows
negative correlations between SWE_bias and T_bias. That is,
areas of larger T_bias are associated with the SWE underes-
timation (negative), and the areas correspond to Arizona and
New Mexico Mountains.

4 Discussion and future perspectives

The results that the LSMs driven by meteorological forcing
data from global models and observations systematically un-
derestimate SWE are consistent with and complement the
findings of related studies (Pan et al., 2003; Broxton et al.,
2016). Pan et al. (2003) evaluated SWE products from four
LSMs with a single forcing data from the North American
Land Data Assimilation System (NLDAS) at approximately
12.5 km spatial resolution. They found that LSMs show sys-
tematic bias in the annual maximum SWE when compared
to 110 SNOTEL stations with larger differences in the Pa-
cific Northwest and the Sierra Nevada regions. The NLDAS
forcing precipitation was consistently lower than the obser-
vations by up to 2000 mm annually at certain stations. Brown
et al. (2018) also demonstrated insufficient solid precipitation
from gridded reanalysis, and model products led to system-
atic errors in SWE estimations in southern Québec, indicat-
ing the need for improving estimates of snowfall. These re-
sults correspond to the widespread underestimates of precip-
itation up to more than 1500 mm for all meteorological forc-
ings from this study, particularly for the mountainous areas
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Figure 4. Mean differences in daily mean air temperature for the winter period (1 October to 31 May) between three forcings (ECMWF,
GDAS, and MERRA2) and bias-corrected SNOTEL data sets for 8 water years from 2010 to 2017.

Figure 5. (a) Mean difference maps (four LSMs ensembled by three forcings minus SNOTEL) in the accumulated snow ablation during the
snow accumulation periods from 1 October to the date of the maximum SWE of each ensemble member for each year from 2010 to 2017
across the western US and (b) density plots of the snow ablation difference by four elevation ranges of SNOTEL sites.
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Figure 6. Maps of the mean ratio of the annual maximum SWE to total accumulated precipitation for the SNOTEL and four LSMs by the
date of the maximum SWE of each ensemble member from 2010 to 2017. Each LSM result was ensembled by three forcings.

Figure 7. Principal component analysis (PCA) on the relations between the SWE uncertainty (SWE_bias; values of LSM SWE differences
from the observations from Fig. 1b) and the four potential causes (P_bias: precipitation bias in Fig. 2; P_phase: precipitation difference
between two partitioning methods in Fig. 3; T_bias: mean bias in winter air temperature in Fig. 4; and Ablation: snow ablation difference
during the accumulation period as a proxy of melting physics in Fig. 5).

with complex terrains. Previous studies discussed the uncer-
tainty and challenges in estimating precipitation in gridded
data sets over complex terrain (Gutmann et al., 2012; Livneh
et al., 2014; Lundquist et al., 2015). Because topography in-
formation (e.g., elevation) is used to interpolate gauge-based
precipitation and/or disaggregate course resolution precipita-
tion data sets to generate higher resolution gridded products,
precipitation uncertainties are larger over complex terrain at

higher elevations (Henn et al., 2018). Our results provide
similar findings that ECMWF and GDAS precipitation bi-
ases in Fig. 2 are dependent on elevations (larger differences
at higher elevations), except for MERRA2. The PCA results
reveal that the larger precipitation bias is a major contribu-
tor in the first PC (> 46 % of the total explained variance) to
the SWE uncertainties, TS1 which is consistent with previous
studies (e.g., Raleigh et al., 2015).
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In this study, the temperature biases depend on elevation,
and the level of the dependence differs by forcing sources
(see Fig. 3). While MERRA2 biases are relatively constant
with elevation, GDAS has colder biases with increasing el-
evation. The results differ from previous findings of Pan et
al. (2003), who concluded that the winter NLDAS temper-
ature bias was generally constant by elevation. They stated
that the constant lapse rate (6.5 ◦C km−1) used to downscale
the coarse meteorological fields to a 12.5 km grid is suit-
able (Cosgrove et al., 2003). However, applying the con-
stant lapse rate (6.5 ◦C km−1) for temperature downscaling
may introduce temperature uncertainty. The surface temper-
ature lapse rate varies differently in time and space by region
(Blandford et al., 2008). For example, Minder et al. (2010)
revealed that in the Cascade Mountains annual mean lapse
rates were 3.9–5.2 ◦C km−1, which is substantially smaller
than the 6.5 ◦C km−1 used in this study with substantial geo-
graphic differences in lapse rates. Although sensitivity stud-
ies with dynamic or static lapse rates were not conducted in
this study, it is reasonable to assume that the cold biases
in higher elevations found in this study could be partially
corrected by applying more appropriate lapse rates region-
ally. This can result in corrected proportions of precipita-
tion phases as well as the magnitude and timing of SWE and
snowmelt (Lute and Abatzoglou, 2021).

As shown earlier, the underestimation of SWE is smaller
in Noah-MP compared to the other LSMs despite the un-
derestimated forcing precipitation (e.g., ECMWF) in the re-
gions. The smaller underestimates may be partially attributed
to the Jordan fractioning method compensating for precipita-
tion error by allowing for snowfall when the air temperature
is above 0 ◦C. The result is that while Noah-MP still under-
estimates SWE as compared to the SNOTEL observations,
it performs better in this region than the other three LSMs.
For other LSMs, a single threshold method for precipitation
partitioning largely contributes to the SWE underestimation.
This is also supported by examples of time series of accumu-
lated snowfall from LSMs (Fig. S8). Snowfall estimates of
Catchment, JULES, and Noah LSMs with the GDAS forc-
ing are much less than that of Noah-MP with the same forc-
ing (see the snowfall time series in Fig. S8). In this study,
the two precipitation partitioning methods generated differ-
ences in annual snowfall by up to 847 mm with an average of
117 mm across the SNOTEL sites in the western US, particu-
larly larger in the Pacific Northwest. However, in the eastern
US, Jordan’s method generated too much snowfall and sub-
sequently overestimated SWE as compared to observations
from the New York State Mesonet (Letcher et al., 2022). This
suggests that applying a certain partitioning method across
larger areas (at least the continental US) can generate spa-
tially different errors. Jennings et al. (2018) found that air
temperature partitioning rain and snowfall varies across the
Northern Hemisphere, ranging from−0.4 to 2.4 ◦C (average:
1.0 ◦C) for 95 % of the study’s observations. This implies that

the higher air temperature threshold (∼ 2.5 ◦C) of Jordan’s
fractional method may overestimate snowfall.

The two precipitation partitioning approaches used in this
study may have limitations. A new precipitation partition-
ing method incorporating humidity performed better than air
temperature-only methods (Jennings et al., 2018). Also, solid
precipitation simulations were improved when the wet-bulb
temperature, defined as the temperature to which air can be
cooled to saturation by the evaporation of water into the air,
was used, particularly in the drier, higher elevation continen-
tal regions in the western US. This was because, as compared
to air temperature, the wet-bulb temperature was closer to
the actual temperature of a falling hydrometeor (Sims and
Liu, 2015; Wang et al., 2019). Considering that the wet-bulb
temperature is affected by surface skin temperature and verti-
cal lapse rate (Sims and Liu, 2015), future comparison stud-
ies with multiple precipitation partitioning methods should
consider humidity, wet-bulb temperature, and/or other mete-
orological variables in various environments in developing
the best partitioning approach for the land surface and hy-
drological modeling communities. Since there are many dif-
ferences among the LSMs beyond the partitioning scheme,
further studies are also required to consider the single and
combined impacts of other model physics on the SWE esti-
mates (i.e., albedo and snow–soil interactions).

The SWE underestimates will likely increase if the cold
biases in temperature forcings are corrected. This indicates
that even though the cold biases may be fortuitously help-
ing to generate larger snowfall instead of rainfall, contribu-
tions of the precipitation underestimation as well as melting
physics to the SWE underestimates are still too large to simu-
late enough SWE. Note that the Colorado Snow Survey Pro-
gram with the USDA Natural Resources Conservation Ser-
vice has ongoing work to correct the air temperature for the
entire SNOTEL network, beyond the linear equation correc-
tion used here and in other studies (Currier et al., 2017; Sun
et al., 2019).

It is likely that early-season melting losses are mainly due
to melting physics in LSMs (Broxton et al., 2016). In general,
simplified snow layering schemes with a single snow density
(e.g., a single snow layer) may cause rapid snowmelt (Suzuki
and Zupanski, 2018) because the snow layering schemes in-
fluence thermodynamics in the snowpack and the subsequent
timing and presence of melt (Dutra et al., 2011). Consid-
ering the layering schemes (a single-layer scheme in Noah
vs. three-layer schemes in both Noah-MP, Catchment, and
JULES), it is perhaps expected that Noah showed relatively
poor spatial agreements with the SNOTEL SWE/total pre-
cipitation ratio (Fig. 6).

A future study investigating other melting physics in
LSMs by comparing energy balance components (e.g., net
radiation, snow albedo changes, and heat transfer with the
ground) might provide a better understanding of the SWE
uncertainty issues. Typically, errors in modeled winter albedo
were linked to errors in snow cover fraction (SCF; Roesch,
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2006) and tree cover fraction (TCF; Wang et al., 2016). Bet-
ter quantification of the SCF and/or TCF in LSMs could
improve the albedo and, consequently, snowmelt and SWE
simulations. Recent snow model intercomparison exercise
results (e.g., ESM-SnowMIP) provide insights into rela-
tionships between surface temperature and SWE estima-
tions (Krinner e al., 2018; Menard et al., 2021). Menard et
al. (2021) found clear differences in model ranking between
SWE and snow surface temperature (e.g., four of the best
models for SWE estimation were among the worst for snow
surface temperature). They stated that underestimating sur-
face temperature leads to a colder snowpack that remains on
the ground for longer and results in less snowmelt (Conway
et al., 2018). While the current results may not be addressed
by the surface temperature issue, because our modeled SWE
outputs were generally underestimated despite cold biases in
air temperature (Fig. 5), it is worth exploring snow and soil
temperature variations along with the SWE changes in mod-
els with various environments to explicitly understand inter-
nal snow processes (Gouttevin et al., 2012).

While the wind-driven processes are typically considered
as smaller-scale issues, we acknowledge that this may par-
tially influence the current results because the station obser-
vations may be affected by wind redistributions and their
impact on the sublimation of snow (Groot Zwaaftink et
al., 2013; Hood et al., 1999). This may cause increased
biases, particularly at higher elevations because regions
with higher elevations generally have more complex terrains
where blowing/drifting snow frequently occurs due to wind
and avalanches (Mott et al., 2018). Most LSMs, including
those used in this study, do not have physical processes to
simulate preferential deposition and snow redistribution that
are crucial in mountain environments (Dadic et al., 2010;
Mott et al., 2018; Lehning et al., 2008); further investigations
are required to quantify uncertainties driven by these “miss-
ing” physics, along with the continuous efforts to include rel-
evant model physics into LSMs for better SWE simulations.

Because this study relies on the use of point-based SNO-
TEL measurements, different spatial representativeness be-
tween the 5 km gridded outputs and in situ measurements is
an inevitable issue preventing a definitive evaluation of the
SWE, precipitation, and temperature simulations. In terms of
the physiographic characteristics of SNOTEL sites, the sta-
tions tend to be located on flat and sheltered terrain in small
forest gaps due to logistical difficulties in steep and densely
forested areas (Meromy et al., 2013; Molotch and Bales,
2006), potentially leading to relatively large snow accumula-
tion as compared to surrounding areas. However, Meromy et
al. (2013), using more than 30 000 field observations, found
that there were no consistent biases in SNOTEL snow depth
values relative to the surrounding mean observed values in
California, Colorado, Wyoming, Idaho, and Oregon. Consid-
ering that SNOTEL observations have been widely used for
snow research, further investigations for quantifying the spa-

tial representativeness of each station with surrounding areas
will be helpful.

Regarding the uncertainty in complex terrain, the spatial
resolution of the model simulation can add uncertainty to
SWE outputs. Despite the relatively high resolution, the 5 km
grid of the SEUP ensemble is still too coarse to fully repre-
sent local heterogeneity for microphysical features and snow
processes in mountainous regions. Within a few square kilo-
meters, many physical controls, including terrain, vegetation,
and soils, play a role in forming spatial heterogeneity in the
snowpack (Currier and Lundquist, 2018; Cho et al., 2021a;
Meromy et al., 2013; Neumann et al., 2006). Lettenmaier et
al. (2015) stated that spatial resolution of snowpack is ide-
ally required to be no coarser than 100 m to characterize
mountain snowpack. Also, in regional climate model exper-
iments, high-resolution simulations (4 km or lower) enable
microphysical features such as orographic updrafts generat-
ing clouds and precipitation to be captured (e.g., Ikeda et al.,
2021). This has relevance to multi-resolution snow modeling
studies (e.g., Pavelsky et al., 2011; Wrzesien et al., 2017),
which showed better agreement between model and point (or
reference) SWE when the model was run at a finer resolution
(9 and 3 km). Although the relatively high-resolution simu-
lations (5 km) in this study may partially alleviate the issue,
we cannot fully address the issue. Future studies may focus
on accounting for the impact of spatial representativeness on
the errors identified in the gridded SWE.

Overall, the primary value of this study is to provide a
big picture of LSM-based SWE and error sources of the un-
certainty derived from meteorological forcings and limited
physical processes of the LSMs using a large ensemble with
four LSMs and three meteorological forcings. As compared
to previous studies, this work not only identified primary
sources of uncertainty but also quantified the relative contri-
butions of the error sources on the uncertainty of macroscale
modeled SWE. Thus, this study helps us to comprehensively
understand current state of SWE performances from well-
known LSMs and reanalysis products and provides insights
into future improvement of snow modeling in LSMs.

5 Conclusions

This study identifies the dominant sources and relative con-
tributions of SWE errors using the SEUP ensemble recently
developed by Kim et al. (2021), including four LSMs, Noah-
MP, Catchment, JULES, and Noah, with three different mete-
orological forcings, ECMWF, GDAS, and MERRA2, across
western US. There is a widespread underestimation of SWE
from all LSMs up to more than 1000 mm, although the uncer-
tainty is regionally dependent. Substantial underestimations
of precipitation for all meteorological forcings are found to
be a primary source of the SWE underestimation, particu-
larly in the Pacific Northwest and Southern Rockies with
higher elevation ranges (> 3000 m). The precipitation parti-
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tioning approach generates different snowfall estimates by up
to 800 mm with the same forcing data. In most LSMs, there
are large melting losses during the accumulation period, con-
tributing to the underestimation of SWE. Lastly, there are
regionally different biases of air temperature from the forc-
ings up to −3.5 ◦C in areas with high elevation. Considering
that the temperature biases contribute to determining the pre-
cipitation phase and subsequent uncertainty in snowfall and
SWE, particularly in maritime regions, reducing the temper-
ature bias from meteorological forcings and/or an improved
temperature downscaling approach (e.g., a time or spatially
varying lapse rate) is required to improve the SWE estima-
tion. Among these LSMs, Noah-MP shows the best perfor-
mance in simulating SWE (less underestimation), likely due
to larger snowfall amounts from Jordan’s method and better
melting physics, even though there are several limitations in
the current physics. The results from this study provide in-
sights needed to guide the improvement of LSM’s SWE for
snow science and climate research. Further studies with sen-
sitivity analysis for each process with relevant parameters in
LSMs might be helpful to explicitly quantify their contribu-
tions and to ensure that improvements to LSMs in one region
do not adversely impact another region.

Code and data availability. To reproduce results including fig-
ures, R codes and processed data are openly available at
https://doi.org/10.5281/zenodo.7158404 (Cho et al., 2022). The
SNOTEL SWE and accumulated precipitation data are available
from the U.S. Department of Agriculture Natural Resources Con-
servation Service National and Climate Center (https://wcc.sc.egov.
usda.gov/reportGenerator/, Serreze et al., 1999). The bias-corrected
air temperature data for the SNOTEL sites are available from
Pacific Northwest National Laboratory at https://www.pnnl.gov/
data-products (Sun et al., 2019). While the SEUP simulation out-
puts are too large to be publicly archived with available resources,
data are available from the corresponding author upon request.
To replicate the model simulation, users can freely access the
NASA Land Information System at https://github.com/NASA-LIS/
LISF (Kumar et al., 2006). The MERRA2 forcing data set is dis-
tributed by the NASA Goddard Global Modeling and Assimi-
lation Office (GMAO; https://disc.gsfc.nasa.gov/datasets?project=
MERRA-2, Gelaro et al., 2017). The GDAS forcing data are pub-
licly available from the US National Centers for Environmental Pre-
diction (NCEP; https://nomads.ncep.noaa.gov/pub/data/nccf/com/
gfs/prod, Derber et al., 1991). The ECMWF forcing data are not
publicly available but made available under license (https://www.
ecmwf.int/en/forecasts/datasets, Molteni et al., 1996).
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