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Abstract. A long-term high-resolution national dataset of precipitation (P), soil moisture (SM), and snow water equivalent 10 

(SWE) is necessary for predicting floods and droughts and assessing the impacts of climate change on streamflow in China. 

Current long-term daily or sub-daily datasets of P, SM, and SWE are limited by a coarse spatial resolution or the lack of local 

correction. Although SM and SWE data derived from hydrological simulations at the national scale have fine spatial resolutions 

and take advantage of local forcing data,  hydrological models are not directly calibrated with SM and SWE data. In this study, 

we produced a daily 0.1° dataset of P, SM, and SWE in 1981-2017 across China using global background data and local onsite 15 

data as forcing input and satellite-based data as reconstruction benchmarks. Global 0.1° and local 0.25° P data in 1981-2017 

are merged to reconstruct the historical P of the 0.1° China Merged Precipitation Analysis (CMPA) available in 2008-2017 

using a stacking machine learning model. The reconstructed P data are used to drive HBV hydrological model to simulate SM 

and SWE data in 1981-2017. The SM simulation is calibrated by Soil Moisture Active Passive Level 4 (SMAP-L4) data. The 

SWE simulation is calibrated by the national satellite-based snow depth dataset in China (Che and Dai, 2015) and the Moderate 20 

Resolution Imaging Spectroradiometer (MODIS) snow cover data. Cross-validated by the spatial and temporal splitting of 

CMPA data, the median Kling-Gupta Efficiency (KGE) of the reconstructed P is 0.68 for all grids at a daily scale. The median 

KGE of SM in calibration is 0.61 for all grids at the daily scale. For grids in two snow-rich regions, the median KGEs of SWE 

in calibration are 0.55 and -2.41 in the Songhua and Liaohe Basin and the Continental Basin respectively at the daily scale. 

Generally, the reconstruction dataset performs better in southern and eastern China than in northern and western China for P 25 

and SM, and performs better in northeast China than other regions for SWE. As the first long-term 0.1° daily dataset of P, SM, 

and SWE that combines information from local observations and satellite-based data benchmarks, this reconstruction product 

is valuable for future national investigations of hydrological processes. 

1 Introduction 

A long-term national terrestrial hydrological dataset with high spatial-temporal resolutions can be used in many hydrological 30 

applications such as: exploring the controls of rainfall-runoff events (Tarasova et al., 2020; Yang et al., 2020; Stein et al., 

2021), predicting floods and droughts (Van Steenbergen and Willems, 2013; Reager et al., 2014; Abelen et al., 2015), and 
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assessing the impacts of climate change on streamflow and floods (Sharma and Wasko, 2018; Blöschl et al., 2019; Li et al, 

2019). As key variables in the hydrological cycle, precipitation (P), soil moisture (SM), and snow water equivalent (SWE) 

generate riverine runoff and determine the wetness states of the basins. Although long-term (at least 30 years) daily P, SM, 35 

and SWE can be obtained from many data products in China, these products suffer from a coarse spatial resolution and a lack 

of local information. 

1.1 Limitations of long-term daily or sub-daily precipitation data in China 

There are many long-term global precipitation data with a temporal resolution within one day and a spatial resolution within 

0.1°. For example, two popular datasets are the Multi-Source Weighted-Ensemble Precipitation (MSWEP; Beck et al., 2019) 40 

and the hourly 0.1° dataset ERA5-land (Muñoz-Sabater et al., 2021). MSWEP is a 3-hourly 0.1° dataset that begins in 1979 

and merges multiple sources including gauge stations, remote sensing observations, and reanalysis data. ERA5-land is an 

hourly 0.1° reanalysis dataset that begins in 1981. Those global datasets have insufficient information on data from rain gauge 

stations in China, which leads to limited performance. Two local precipitation datasets are widely used in China. The first one 

is the China Gauge-based Daily Precipitation Analysis (CGDPA; Shen and Xiong, 2016), which is interpolated from the daily 45 

data back to 1960 in approximately 2400 ground stations. The key limitation of CGDPA is its coarse spatial resolution of 0.25°. 

The second one is the China Meteorological Forcing Dataset (CMFD; He et al., 2020), which is a 3-hourly 0.1° dataset in 1979-

2018 using approximately 700 ground stations to correct the Global Land Data Assimilation System (GLDAS; Rodell et al., 

2004) and Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2007) precipitation background data. CMFD does 

not take full advantage of available precipitation information since better background data (e.g., MSWEP and ERA5-land) and 50 

more ground station data are available. 

1.2 Limitations of long-term daily or sub-daily soil moisture data in China 

Remote sensing and reanalysis data are two common types of global soil moisture data. The European Space Agency's Climate 

Change Initiative (ESA-CCI; Dorigo et al., 2017) for soil moisture is a global satellite-monitored dataset that begins in 1979. 

However, ESA-CCI only measures surface soil moisture up to 5 cm depth in a coarse spatial resolution of 25 km. Global 55 

reanalysis data, e.g., ERA5-land, can provide soil moisture data in deeper soil layers in a high spatial resolution. However, 

global reanalysis data miss observational information on soil moisture, and they simulate soil moisture using global forcing 

data which lack local corrections. Many hydrologic fluxes and states datasets provide simulated soil moisture data at a national 

scale. For example, the 3-hourly 0.25° dataset based on the VIC model created by Zhang et al. (2014), the daily 0.25° dataset 

based on the VIC model created by Miao and Wang (2020), and the daily 0.0625° dataset based on the VIC model created by 60 

Zhu et al. (2021). However, all these national-scale soil moisture data are simulated by a hydrological model calibrated by 

only observed streamflow data. Therefore, the lack of direct calibration in soil moisture causes uncertain accuracy. 
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1.3 Limitations of long-term daily or sub-daily snow water equivalent data in China 

Similar to soil moisture, remote sensing data and reanalysis data are two common types of global data products for snow water 

equivalent. GlobSnow (Luojus et al., 2021) is a global daily snow water equivalent dataset that assimilates satellite radiometer 65 

data and ground snow depth observations. To promote local applications, Che and Dai (2015) developed a national satellite-

based snow depth dataset in China (abbreviated as SD-CN hereafter). Both GlobSnow and SD-CN begin in 1979 with a coarse 

spatial resolution of 25 km. Global reanalysis data such as ERA5-land, as we stated before, use global forcing input with 

limited local information. The snow water equivalent data from the national hydrologic fluxes and states datasets (Zhang et 

al., 2014; Miao and Wang, 2020) have the same problem as soil moisture data, i.e., they are not directly calibrated using any 70 

snow data. 

1.4 Objectives 

We aim to use both global and local forcing data as input and satellite-based data as model training or calibration targets to 

reconstruct historical hydrological variables. This kind of reconstruction is promising in producing long-term high-resolution 

datasets with the following advantages. First, many satellite-based data have high spatial resolutions. For example, the 0.1° 75 

China Merged Precipitation Analysis (CMPA; Shen et al., 2014; Shen et al., 2018) from 2008 for precipitation, the 9 km Soil 

Moisture Active Passive level 4 data (SMAP-L4; Reichle et al., 2019) from 2015 for root zone soil moisture, and the 500 m 

Moderate Resolution Imaging Spectroradiometer (MODIS; Hall et al., 2002) from 2000 for snow cover. Second, combining 

global and local forcing data as input not only increases local reconstruction accuracy, but also produces a physically consistent 

dataset of the combination of P, SM, and SWE, since they are the hydrological fluxes and states from the same modeling 80 

system during the reconstructions. 

In this study, we produced a daily 0.1° dataset of P, SM, and SWE in 1981-2017 in China. We merged CGDPA and MSWEP 

to reconstruct the P benchmarked by CMPA using machine learning techniques. We used the reconstructed P to drive a 

hydrological model to reconstruct SM calibrated by SMAP level 4.  We also used the reconstructed P to drive a hydrological 

model calibrated by SD-CN and MODIS snow cover data to reconstruct multiple snow-related variables, e.g., snowfall, 85 

snowmelt, and SWE. This is the first long-term (at least 30 years) 0.1° daily dataset of P, SM, and SWE that combines local 

information and satellite-based data.  

2 Data 

This study used two categories of data. The first category includes the forcing and auxiliary data, which are the input of the 

reconstruction methods. The second category includes the validation data of P, SM, and SWE, which are reconstruction targets 90 

and evaluation benchmarks of the reconstruction methods. 
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2.1 Forcing and auxiliary data 

Information about the forcing data and auxiliary data are listed in Table 1. These data are the input of the reconstruction 

methods, i.e., machine learning modeling and hydrological modeling. Precipitation data include the China Gauge-based Daily 

Precipitation Analysis (CGDPA; Shen and Xiong, 2016) and the Multi-Source Weighted-Ensemble Precipitation (MSWEP 95 

version 2.2; Beck et al., 2019). The daily 0.25° CGDPA data are produced using a spatial interpolation of observations from 

approximately 2400 ground rain gauge stations. The 3-hourly 0.1° MSWEP data are produced by optimally merging a range 

of gauge station, satellite, and reanalysis datasets. In addition to precipitation data, hydrological modeling requires air 

temperature (T) and net radiation data (Rn) as forcing data.  Air temperature data include the observations from approximately 

2400 ground stations provided by the Chinese Meteorological Administration and ERA5-land 2 m temperature (Muñoz-100 

Sabater et al., 2021). Note that the number of available ground stations for T is around 800 before 1988. Net radiation data are 

from ERA5-land (Muñoz-Sabater et al., 2021). Elevation (Elev) data are from MERIT-Hydro (Yamazaki et al., 2019). Leaf 

area index (LAI) data are from the Global Land Surface Satellite (GLASS; Liang et al., 2021) dataset. 

 

Table 1. Sources of forcing and auxiliary data. 105 

Variable Dataset 
Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 
Reference 

Precipitation CGDPA 0.25° daily 1960-2020 Shen and Xiong, 2016 

Precipitation MSWEP 0.1° 3-hourly 1979-2017 Beck et al., 2019 

Air temperature Stations — daily 1960-2019 Chinese Meteorological Administration 

Air temperature ERA5-land 0.1° hourly 1981-now Muñoz-Sabater et al., 2021 

Net radiation ERA5-land 0.1° hourly 1981-now Muñoz-Sabater et al., 2021 

Elevation MERIT-Hydro 90 m — — Yamazaki et al., 2019 

Leaf area index GLASS 0.05° 8-day 1981-2017 Liang et al., 2021 

 

2.2 Validation data 

Information about the validation data is listed in Table 2. The validation data are the reconstruction targets of the study, and 

therefore, they are also used for model training (for precipitation) and calibration (for soil moisture and snow water equivalent). 

Details about validation methods are introduced in Section 3. All following satellite-based data provide direct or indirect 110 

measurements of the variables to be reconstructed over a large spatial extent. P data include the China Merged Precipitation 

Analysis (CMPA; Shen et al., 2014) and its successor, CMPA_1km (Shen et al., 2018). CMPA merge more than 30000 

automatic weather stations with the Climate Precipitation Center Morphing (CMORPH; Joyce et al., 2004) product to produce 

an hourly 0.1° dataset from 2008. Starting from 2015, CMPA_1km upgrades CMPA by using more than 40000 automatic 
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weather stations and adding radar P estimations in the merging procedure, which increases the spatial resolution to 1 km. In 115 

this study, CMPA_1km was spatially aggregated into 0.1° to extend the time span of the CMPA data. CMPA refers to the 

combination of CMPA and CMPA_1km in the following part of the paper. Note that precipitation data during the cold season 

(from October to April) in northern and western China are mainly derived from remote sensing data since automatic weather 

stations do not operate under low temperatures (Shen et al., 2014; Shen et al., 2018). SM data are obtained from the Soil 

Moisture Active Passive mission level 4 (SMAP-L4; Reichle et al., 2019) data. SMAP-L4 assimilates SMAP radiometer 120 

brightness temperature into the NASA Catchment land surface model to produce a 3-hourly 9 km volumetric SM dataset in 

the root zone (0–100 cm). Since there is no direct measurement of SWE, we use snow cover areas and snow depths as surrogates. 

Snow cover area (SCA) data are obtained from MOD10C1 (Hall and Higgs, 2021b) and MYD10C1 (Hall and Higgs, 2021a), 

which collect snow extent information by the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors from Terra 

and Aqua platforms respectively. Compiled at daily and 0.05° scales, MOD10C1 and MYD10C1 provide snow cover 125 

percentage and cloud cover percentage at each grid. Snow depth data are obtained from the long-term series of daily snow 

depth dataset in China (SD-CN; Che and Dai, 2015). The 25 km daily snow depth of SD-CN is derived from the passive 

microwave brightness temperature from SMMR, SSM/I, and SSMI/S sensors. Although SD-CN is long enough for many 

hydrological studies, it is limited by a coarse spatial resolution. 

 130 

Table 2. Sources of validation data. 

Variable Dataset 
Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 
Reference 

Precipitation CMPA 0.1° hourly 2008-2014 Shen et al., 2014 

Precipitation CMPA_1km 1 km hourly 2015-2017 Shen et al., 2018 

Soil moisture SMAP-L4 9 km 3-hourly 2015-now Reichle et al., 2019 

Snow cover area MOD10C1 0.05° daily 2000-now Hall and Higgs, 2021b 

Snow cover area MYD10C1 0.05° daily 2000-now Hall and Higgs, 2021a 

Snow depth SD-CN 25 km daily 1979-2019 Che and Dai, 2015 

 

3 Methods 

The workflow of the study is presented in Fig. 1. Firstly, we reconstruct the precipitation data, and then, we use the 

reconstructed precipitation as forcing input to reconstruct soil moisture and snow water equivalent. 135 
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Figure 1. Workflow of the study. P: precipitation, Elev: elevation, LAI: leaf area index, T: air temperature, Rn: net radiation, PET: 
potential evaporation, SWE: snow water equivalent, SCA: snow cover area, SM: soil moisture, Rain: liquid rainfall, Snow: snowfall, 
Melt: snowmelt, RF: random forest, LR: linear regression. 140 

 

3.1 Reconstruction of precipitation 

We applied machine learning to predict CMPA precipitation grid by grid using grid coordinates, P from CGDPA and MSWEP, 

Elev, and LAI as input. All data were pre-processed to be daily and 0.1° under the WGS 84 latitude/longitude coordinate system 

(EPSG:4326). MSWEP P and CMPA P were aggregated to be daily. GLASS LAI was set to be the same within the 8 days of 145 

an 8-day composite. The MERIT-Hydro Elev data were spatially aggregated into 0.1°. The CGDPA P data were resampled 

into 0.1° using bilinear interpolation. The difference between the ground-truth 0.1° P and the resampled 0.1° P from CGDPA 

is spatially correlated with the sub-grid distribution of Elev and LAI in a 0.25° grid. Therefore, we created two new input 

features, Elevdiff and LAIdiff, to account for the differences between the true 0.1° value and the value resampled from a 0.25° 

resolution for Elev and LAI. Specifically, Elev and LAI were aggregated into 0.25°, resampled into 0.1° using bilinear 150 

interpolation, and then subtracted by the original 0.1° layer. 

The training strategy is presented in Fig. 2. We divided the model training into two parts, a binary classification problem that 

predicted whether the grid was rainy (P>0 mm) and a regression problem which predicted the value of P in rainy grids. We 

proposed a tile-by-tile training strategy that fit a machine learning model with all samples of one hundred 0.1° grids in a 1° tile. 

To be specific, although the target PCMPA in a 0.1° grid was predicted by grid coordinates, PCGDPA, PMSWEP, Elev, Elevdiff, LAI, 155 

and LAIdiff in the same grid, all grids in the same 1° tile shared a common prediction model. This tile-by-tile training strategy 

increased the size of samples and made use of the spatial information of Elev and LAI. Since the CMPA data were not reliable 

during the cold season in northern and western China because of lacking ground-based observations, we discarded training 

samples from October to April in two regions (Shen et al., 2018): (1) latitude>40° N; (2) 40° N>latitude>27° N and 

longitude<100° E. 160 
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Figure 2. Model training strategies of precipitation reconstruction. P: precipitation, Elev: elevation, LAI: leaf area index.  

 

The machine learning model for the rain/no rain classification is the random forest (Breiman, 2001). The model for the P 165 

regression is a neural network (Foresee and Hagan, 1997) that stacks a linear regression model and a random forest model, as 

shown in Fig. 3. Stacking (Wolpert, 1992) is a model ensemble method that optimally combines multiple base machine learning 

models for predictions. In the stacking process, all base models are first trained to get out-of-bag predictions in the cross-

validation, and then a stacking model is trained using the out-of-bag predictions of the base models as input. The random forest 

model can deal with non-linear relationships and complex interactions among input features. The linear model can extrapolate 170 

the predictions that are out of the range of training samples. A stacking model leveraged the advantages of these two base 

models. We chose 5-fold cross-validation for hyper-parameter tuning and performance evaluation in both the classification 

and regression problems. All folds were created by the spatial and temporal mixed splitting of the data samples. Specifically, 

we put the data of one hundred 0.1° grids in a 1° tile on all days together to form a training dataset and then split it into 5 folds 

randomly. Each sample corresponded to the data of one 0.1° grid on one day. After the model training, we used the data of 175 

PCGDPA and PMSWEP in 1981-2017 combined with grid coordinates, Elev, Elevdiff, LAI, and LAIdiff to predict PCMPA in the same 

period, which produced a consistent long-term reconstructed dataset PRec, as shown in Fig. 1. Note that we only predicted P 

values on rainy days according to the classification model during the reconstruction. 
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 180 

Figure 3. Illustration of a stacking machine learning model for precipitation reconstruction. 

 

Validation metrics include two classification metrics, i.e., probability of detection (POD) and false alarm rate (FAR), and two 

regression metrics, i.e., Kling-Gupta Efficiency (KGE) and normalized root mean square error (NRMSE). Equations of the 

metrics are listed in Eq. 1 to 4: 185 

POD ൌ
భభ

భభାబభ
 ,            (1) 

FAR ൌ
భబ

భభାభబ
  ,            (2) 

KGE ൌ 1െටሺ𝑟 െ 1ሻଶ  ቀ
ఓೄ
ఓೀ
െ 1ቁ

ଶ
 ቀ

ఙೄ ఓೄ⁄

ఙೀ ఓೀ⁄
െ 1ቁ

ଶ
 ,          (3) 

NRMSE ൌ
ටభ

∑ ሺௌିைሻమ

సభ

ఙೀ
 ,           (4) 

where 𝑛ଵଵ is the number of actual rainy days that are predicted to be rainy, 𝑛ଵ is the number of actual rainy days that are 190 

predicted to have no rain, 𝑛ଵ is the opposite of 𝑛ଵ, 𝑟 is the correlation between predicted and target P, 𝜇ை and 𝜇ௌ are the 

mean values of target and predicted P respectively, 𝜎ை and 𝜎ௌ are the standard deviations of target and predicted P respectively, 

𝑆 is the predicted value of P on the ith rainy day, 𝑂 is the target value of P on the ith rainy day. The perfect values are 1 for 

POD and KGE and 0 for FAR and NRMSE. Note that the predictions are validated in 5-fold cross-validation of the model. 

For grids in northern (latitude>40° N) and western (40° N>latitude>27° N and longitude<100° E) China, only predictions in 195 

May-September are validated. 

 

3.2 Reconstruction of soil moisture and snow water equivalent 

We used the modified HBV hydrological model (Bergström, 1992; Parajka et al., 2007) calibrated by satellite-based data grid 

by grid to reconstruct SWE and SM. The HBV model has low computational complexity and general applicability in various 200 
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climate conditions (Beck et al., 2020; Seibert and Bergström, 2022) and show high capability in simulating soil moisture in 

various regions of the world (Beck et al., 2021). Note that we added a canopy interception module (Mao and Liu, 2019) to the 

traditional HBV model, as presented in Fig. 4. The HBV model is calibrated at a 0.1° resolution under the WGS 84 

latitude/longitude coordinate system (EPSG:4326). The forcing input of the model includes P, T, and potential evaporation 

(PET). The reconstructed P was regarded as the precipitation input. The 0.1° T was created by the interpolation of observations 205 

from ground stations using Co-Kriging (Myers, 1982) with Elev and the daily-aggregated ERA5-land T as covariates. PET 

was calculated using Priestley-Taylor equation (Priestley and Taylor, 1972) with interpolated T and daily-aggregated ERA5-

land Rn. 

The calibration targets SCA, SWE, and SM were pre-processed from the raw data in Table 2. The 0.05° SCA data from 

MOD10C1 or MYD10C1 were first aggregated to be 0.1°. Then, for each grid, we extracted all days in November-April when 210 

the cloud cover percentages were smaller than 40% and calculated the percentage of snow extent in the no cloud fraction of 

the grid to get the final SCA. The calibration of SCA was converted to a binary classification problem where the SCA from 

MOD10C1 or MYD10C1  was set to 1 if SCA>10% otherwise 0. In the HBV model, SCA was calculated by the binarization 

of SWE, which meant SCA=1 if SWE exceeded a snowpack threshold Tcover otherwise SCA=0. For SWE, we first resampled 

the 25 km snow depth from SD-CN into 0.1° using bilinear interpolation. Then, the SWE was calculated by multiplying snow 215 

depth and snow density. We used a fixed value of snow density at a national scale, 0.18 g cm-3, which was reasonable for a 

range part of China (Yang et al., 2019; Gao et al., 2020; Yang et al., 2020). For SM, the 1 m root zone SM from SMAP-L4 

was resampled from 9 km to 0.1° using bilinear interpolation and aggregated from 3 hours to 1 day. 

 

 220 

Figure 4. Illustration of the HBV model used for the reconstruction of soil moisture and snow water equivalent. The dashed box 
illustrates the snow module. 
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For each grid, we first calibrated the parameters of the snow module and then calibrated the soil water module with the optimal 

snow module parameters. This two-step calibration strategy alleviated parameter equifinality since two modules were 225 

calibrated separately. The snow module was only calibrated in grids where at least 5% days with T<0°C. All parameters to be 

calibrated are presented in Table 3. After calibration, we used the historical PRec, PET, T, and LAI to drive the HBV model to 

simulate long-term rainfall (RainRec), snowfall (SnowRec), snow water equivalent (SWERec), snowmelt (MeltRec), and soil 

moisture (SMRec), as shown in Fig. 1. 

 230 

Table 3. Parameters of the HBV model and their ranges for model calibration. 

Module Parameters Description Range 

Snow 

TP Critical temperature for rainfall and snowfall (°C) [-3, 3] 

TM Critical temperature for snowmelt and refreezing (°C) [-3, 3] 

SCF Correction factor for snowfall [0.9, 1.5] 

CFX Degree-day factor (mm °C-1 d-1) [0.5, 10] 

CWH Fraction of snowpack that can hold melt water [0, 0.2] 

Tcover Snowpack threshold for 10% snow cover areas (mm) [2, 10] 

Soil 

mc Coefficient for interception storage capacity per unit LAI (mm) [0.1, 0.5] 

FC Soil storage capacity (mm) [50, 800] 

beta Shape coefficient in runoff generation curve [0.1, 6] 

LP Soil moisture above which soil evaporation reaches potential evaporation [0.2, 1] 

 

The Validation metric for SCA is balanced accuracy (BACC): 

BACC ൌ ቀ
భభ

భభାబభ


బబ
బబାభబ

ቁ 2⁄  ,          (5) 

Where 𝑛ଵଵ is the number of snow cover days that are predicted to have snow cover, 𝑛 is the number of no snow cover days 235 

that are predicted to have no snow cover, 𝑛ଵ is the number of snow cover days that are predicted to have no snow cover, 𝑛ଵ 

is the opposite of 𝑛ଵ.  

The validation metric for SWE and SM is KGE in Eq. 3, where 𝑟 is the correlation between predicted and target SWE or SM, 

𝜎ை and 𝜎ௌ are the standard deviations of target and predicted SWE or SM respectively, 𝜇ை and 𝜇ௌ are the mean values of target 

and predicted SWE or SM respectively. During the calibration, the optimization target of the snow module was 1-1/4BACC-240 

3/4KGE, which optimized the simulation performances of SCA and SWE at the same time. With small numbers of model 

parameters, the parsimonious snow and soil water modules were unlikely to overfit the target data. Therefore, we validated the 

performance of the reconstruction using the performance of the calibration directly. 
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4 Results and discussion 

4.1 Validation of precipitation 245 

Table 4 summarises the performance of different P datasets in all grids benchmarked by PCMPA. For rain/no rain classification, 

the reconstructed P (PRec) achieves a balance of the POD and FAR. The median POD of PRec is 0.87, which is slightly worse 

than PCGDPA (POD=0.92) and far better than PMSWEP (POD=0.74). The median FAR of PRec is 0.19, which is better than PCGDPA 

(FAR=0.23) but slightly worse than PMSWEP (FAR=0.18). Since the 0.1° PCGDPA is resampled from the 0.25° dataset, it certainly 

overestimates the probability of rain and has a high POD and FAR at the same time naturally. On the opposite, with the finer 250 

spatial information from satellite data, PMSWEP is skilled in detecting no-rain days and thus, it tends to have better FAR 

performance. In summary, PRec improves the FAR of PCGDPA without scarifying too many POD. For P regression, PRec 

outperforms PCGDPA and PMSWEP significantly. The median KGEs of PRec, PCGDPA, and PMSWEP are 0.68, 0.51, and 0.53 

respectively and the median NRMSEs of PRec, PCGDPA, and PMSWEP are 0.63, 0.91, and 0.82 respectively. 

 255 

Table 4. Validation of the reconstructed precipitation in all grids at the national scale. The benchmark dataset is CMPA.  POD: 
probability of detection, FAR: false alarm rate, KGE: Kling-Gupta efficiency, NRMSE: normalized root mean squared error. In 
northern (latitude>40° N) and western (40° N>latitude>27° N and longitude<100° E) China, only data in May-September are used 
for validation. 

Metric Percentile CGDPA MSWEP Reconstruction 

POD 

Min. 0.18 0.03 0 

1st quartile 0.85 0.62 0.81 

Median 0.92 0.74 0.87 

3rd quartile 0.95 0.82 0.91 

Max. 1 0.96 1 

FAR 

Min. 0.01 0.01 0.01 

1st quartile 0.17 0.12 0.14 

Median 0.23 0.18 0.19 

3rd quartile 0.3 0.24 0.25 

Max. 0.94 0.95 1 

KGE 

Min. <-10 <-10 <-10 

1st quartile 0.11 0.17 0.44 

Median 0.51 0.53 0.68 

3rd quartile 0.74 0.71 0.83 

Max. 0.96 0.93 0.97 

NRMSE 
Min. 0.22 0.32 0.16 

1st quartile 0.6 0.67 0.48 
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Median 0.91 0.82 0.63 

3rd quartile 1.22 1.02 0.8 

Max. >10 >10 >10 

 260 

Table 5 presents the median values of all metrics for PRec in nine major basins of China. Figure 5 presents the spatial distribution 

of validation metrics for PRec and the metric differences between PRec and PCGDPA as well as PRec and PMSWEP. For rain/no rain 

classification, PRec performs well since the median POD>0.83 and FAR<0.22 for all major basins except for the Southwest 

Basin, according to Table 5. According to Fig. 5 (a) and (d), the best performance occurs in the driest part of the Continental 

Basin where rain is rare, and the worst performance occurs in the plateau such as the upper stream areas of the Yangtze River 265 

Basin and the Southwest Basin. The balance of POD and FAR can be seen in Fig. 5 (b), (c), (e), and (f), where PRec trades 

POD for FAR compared with PCGDPA and trades FAR for POD compared with PMSWEP. For P regression, in addition to the 

Continental Basin and the upper stream of the Southwest Basin where the coverage of ground stations is low (Shen et al., 2014; 

Shen et al., 2018), all other major basins have median KGEs over 0.76 and NRMSEs under 0.55, which indicates good 

performance, according to Table 5. According to Fig. 5 (g) and (j), with KGE>0.8 and NRMSE<0.5 in a majority of grids, 270 

PRec is very accurate in a large part of the eastern region, probably because of the dense distribution of ground stations for 

CGDPA (Shen and Xiong, 2016). According to Fig 5 (h), (i), (k), and (l), PRec outperforms PCGDPA and PMSWEP almost in the 

whole country. PRec improves PCGDPA and PMSWEP the most in the Continental Basin and the upper stream of the Southwest 

Basin where the distribution of ground stations is sparse, even though the performance of PRec is still limited in this area.  

 275 

Table 5. Validation of the reconstructed precipitation in nine major basins of China. The benchmark dataset is CMPA. POD: 
probability of detection, FAR: false alarm rate, KGE: Kling-Gupta efficiency, NRMSE: normalized root mean squared error. In 
northern (latitude>40° N) and western (40° N>latitude>27° N and longitude<100° E) China, only data in May-September are used 
for validation. 

No. Basin 
Median 

POD 

Median 

FAR 

Median 

KGE 

Median 

NRMSE 

1 Continental Basin 0.9 0.17 0.43 0.8 

2 Yangtze River Basin 0.83 0.21 0.82 0.48 

3 Songhua and Liaohe River Basin 0.84 0.22 0.76 0.55 

4 Southwest Basin 0.75 0.27 0.43 0.8 

5 Yellow River Basin 0.89 0.17 0.81 0.5 

6 Huaihe River Basin 0.9 0.14 0.88 0.39 

7 Haihe River Basin 0.92 0.13 0.86 0.42 

8 Southeast Basin 0.86 0.17 0.88 0.39 

9 Pearl River Basin 0.85 0.17 0.82 0.49 

 280 
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Figure 5. Spatial validation of the reconstructed precipitation. The benchmark dataset is CMPA. POD: probability of detection, 
FAR: false alarm rate, KGE: Kling-Gupta efficiency, NRMSE: normalized root mean squared error. The second and third columns 
are the differences of validated metrics between the reconstructed dataset and the CGDPA and MSWEP datasets. The boundary 285 
lines delineate nine major river basins of China: 1. the Continental Basin, 2. the Yangtze River Basin, 3. the Songhua and Liaohe 
River Basin, 4. the Southwest Basin, 5. the Yellow River Basin, 6. the Huaihe River Basin, 7. the Haihe River Basin, 8. the Southeast 
Basin, 9. the Pearl River Basin. In northern (latitude>40° N) and western (40° N>latitude>27° N and longitude<100° E) China above 
the dashed lines, only data in May-September are validated. 
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 290 

Figure 6 presents the spatial distribution of annual average P and the time series of monthly P for PCMPA and PRec. PRec matches 

PCMPA well both spatially and temporally for nine major basins at a large temporal scale. According to Fig. 6 (a), PRec does not 

smooth the spatial distribution of P, which indicates that the tile-by-tile training strategy learns the local variations of P within 

the tile. Except for the Continental Basin and the Songhua and Liaohe River Basin where the cold season precipitation data 

are not reliable for CMPA, all other basins have KGE values larger than 0.91 for monthly time series, according to Fig. 6 (b). 295 
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Figure 6. (a) Map of the annual average precipitation (P) of CMPA and reconstruction in 2008-2017. (b) Time series of the monthly 
P of CMPA and reconstruction for nine major river basins in 2008-2017. Note that CMPA has missing values in 2015, we only choose 
the days when CMPA has available data in the temporal aggregation for both CMPA and reconstruction. Here the reconstructed P 300 
data are out-of-bag predictions in the cross-validation. 

 

4.2 Validation of soil moisture and snow water equivalent 

Table 6 summarises the performance of reconstructed SWERec, SCARec, and SMRec in all grids. The snow module of the HBV 

model performs poorly with the median KGE=-0.31 for SWERec at a national scale. While the snow module has certain skills 305 

in simulating snow cover with the median BACC=0.65 for SCARec. The soil water module of the HBV model performs well 

with the median KGE=0.61 for SMRec.  

Table 7 presents the median values of all metrics for SWERec, SCARec, and SMRec in nine major basins of China. Figure 7 

presents the spatial distribution of validation metrics for SWERec, SCARec, and SMRec. The performance of snow reconstruction 

varies spatially. There are three major snow cover areas in China: northeast China, northern Xinjiang, and the Tibetan Plateau. 310 

According to Fig. 7 (a) and (b), SWERec and SCARec perform well in both northeast China and northern Xinjiang with 

KGESWE>0.7 and BACCSCA>0.8 in many grids. While SWERec and SCARec perform poorly with KGESWE<0 and BACCSCA<0.5 

in a large part of the Tibetan Plateau, where snow-driven hydrological processes are complex (Gao et al., 2020). According to 

Table 7, SWERec and SCARec perform the best in the Songhua and Liaohe River Basin (i.e., northeast China) with KGESWE=0.55 

and BACCSCA=0.87, where snowmelt contributes a considerable amount of water to runoff and floods (Qi et al., 2021). The 315 

performance of soil moisture reconstruction also varies spatially. According to Fig. 7 (c), SMRec performs well in a large part 

of southern China. However, in the Continental Basin where the climate is dryer and the topography is more complex, SMRec 

performs relatively poorly with median KGESM=0.3. Generally, SMRec performs better in southern basins, e.g., the Yangtze 

River Basin, the Huaihe River Basin, the Southeast Basin, and the Pearl River Basin, where the values of median KGESM are 

at least 0.76, according to Table 7. Note that the accuracy of SWERec, SCARec, and SMRec in different areas may depend on the 320 

quality of the benchmark datasets and the ability of the HBV model to represent local hydrological processes.   

 

Table 6. Validation of the reconstructed snow water equivalent (SWE), snow cover area (SCA), and soil moisture (SM) in all grids 
at the national scale. The benchmark datasets are SD-CN for SWE, MOD10C1/MYD10C1 for SCA, and SMAP-L4 for SM. KGE: 
Kling-Gupta efficiency, BACC: balanced accuracy. 325 

Percentile KGESWE BACCSCA KGESM 

Min. <-10 0.22 -1.83 

1st quartile -4.76 0.54 0.33 

Median -0.31 0.65 0.61 

3rd quartile 0.36 0.82 0.80 

Max. 0.90 1.00 0.99 
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Table 7. Validation of the reconstructed snow water equivalent (SWE), snow cover area (SCA) in nine major basins of China. The 
benchmark datasets are SD-CN for SWE, MOD10C1/MYD10C1 for SCA, and SMAP-L4 for SM. KGE: Kling-Gupta efficiency, 
BACC: balanced accuracy. 

No. Basin Median 

KGESWE 

Median 

BACCSCA 

Median 

KGESM 

1 Continental Basin -2.41 0.64 0.3 

2 Yangtze River Basin -0.57 0.53 0.79 

3 Songhua and Liaohe River Basin 0.55 0.87 0.7 

4 Southwest Basin -0.85 0.6 0.59 

5 Yellow River Basin 0.16 0.57 0.65 

6 Huaihe River Basin 0.3 0.54 0.76 

7 Haihe River Basin 0.37 0.64 0.73 

8 Southeast Basin — — 0.8 

9 Pearl River Basin — — 0.88 

 330 

 

Figure 7. Spatial validation of the reconstructed snow water equivalent (SWE), snow cover area (SCA), and soil moisture (SM). The 
benchmark datasets are SD-CN for SWE, MOD10C1/MYD10C1 for SCA, and SMAP-L4 for SM. KGE: Kling-Gupta efficiency, 
BACC: balanced accuracy. The boundary lines delineate nine major river basins of China: 1. the Continental Basin, 2. the Yangtze 
River Basin, 3. the Songhua and Liaohe River Basin, 4. the Southwest Basin, 5. the Yellow River Basin, 6. the Huaihe River Basin, 335 
7. the Haihe River Basin, 8. the Southeast Basin, 9. the Pearl River Basin. 

 

Figure 8 presents the spatial distribution of daily average SWE and the time series of daily average SWE for SWESD-CN and 

SWERec in each month. Fig. 8 (a) shows that SWERec successfully detects areas with large SWE. Fig. 8 (b) shows that, although 

SWERec captures the temporal variations of SWE in all basins, it overestimates the magnitudes of SWE in the Continental 340 

Basin, the Yangtze River Basin, the Southwest Basin, and the Yellow River Basin. In the Songhua and Liaohe River Basin 

with KGE=0.68 and the Haihe River Basin with KGE=0.46, SWERec can accurately capture both the temporal variations and 

the magnitudes of SWE. The magnitudes of SWE are difficult to simulate for three reasons. First, SWESD-CN is an estimation 

of SWE from the multiplication of snow depth and a fixed snow density; second, the original spatial resolution of SWESD-CN 

is 25km, which may be too coarse to represent snow distribution, especially in mountain regions; third, the new reconstructed 345 
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precipitation dataset may not capture snowfall well. Figure 9 presents the spatial distribution of daily average SM and the time 

series of daily average SM for SMSMAP-L4 and SMRec in each month. SMRec captures the spatial and temporal variations of 

SMSMAP-L4 well except in the Continental Basin. Although the monthly KGE values in all basins are larger than 0.59 except 

for the Continental Basin, SMRec slightly underestimates SMSMAP-L4 at the monthly scale in all basins. 

 350 

 

Figure 8. (a) Map of daily average snow water equivalent (SWE) of SD-CN and reconstruction in 2000-2017. (b) Time series of the 
daily average SWE of SD-CN and reconstruction for nine major river basins in each month of 2000-2017. 
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 355 

Figure 9. (a) Map of daily average soil moisture (SM) of SMAP-L4 and reconstruction in 2015-2017. (b) Time series of the daily 
average SM of SMAP-L4 and reconstruction for nine major river basins in each month of 2015-2017. 

 

4.3 Limitations of the reconstruction dataset 

Uncertainties of the reconstruction dataset come from the quality of the input data and the limitations of the reconstruction 360 

models. For precipitation, although the benchmarked dataset CMPA includes satellite information to produce P data, it still 
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has large errors in western China due to the small number of automatic weather stations for local corrections in this area. 

Another problem of CMPA data is the possible inconsistency between CMPA and its successor, CMPA_1km. Although the 

main observation sources and the deriving method are similar, the discrepancy between CMPA and CMPA_1km has not been 

investigated in previous studies. Combining CMPA and CMPA_1km trades consistency for more data samples in machine 365 

learning algorithms. In addition, the quality of MSWEP is not consistent over time since the available data sources to be 

merged are changing in different periods. Furthermore, although the stacking machine learning model can extrapolate, it may 

have problems in reconstructing extreme P values since the extrapolation relies on a linear regression model, which may fail 

to capture the complex relationship between the target P and input variables. For snow water equivalent, a unified snow density 

(0.18 g cm-3) may cause a large bias in estimating SWE in some regions. The coarse resolution of the benchmarked SWE is 370 

also a major concern: although the MODIS SCA data add sub-grid information to the 0.25° SD-CN data, we still do not have 

a benchmarked SWE dataset that is originally 0.1°. Another limitation is the unknown applicability of the HBV model at a 

national scale. HBV uses a temperature-based snow module without an energy balance component or a glacier module, which 

may fail in areas with more complex snow processes such as the Tibetan Plateau (Gao et al., 2020). For soil moisture, the 

benchmarked SMAP-L4 is an assimilated dataset without actual measurements of root zone SM. In addition, PET is calculated 375 

without local Rn data. The uncertainty of PET may propagate to SM. Moreover, it is unclear whether HBV is suitable for soil 

water simulation at a national scale in China. 

Reconstruction data do not have better accuracy than the satellite-based benchmark data we used. Instead, reconstruction aims 

to extend the state-of-the-art satellite-based data of P, SM, and SWE to the 1980s in China. Therefore, the value of the 

reconstruction data is to support hydrological studies focusing on a longer time span (e.g., 30 years) rather than recent years.  380 

5 Conclusions 

We created a long-term (1981-2017) 0.1° daily dataset of total precipitation (P), liquid rainfall (Rain), snowfall (Snow), snow 

water equivalent (SWE), snowmelt (Melt), and soil moisture (SM) in China by reconstructing high-resolution satellite-based 

data. P was reconstructed by predicting CMPA data from CGDPA and MSWEP data using a stacking machine learning model. 

Other variables were simulated by the HBV model with SWE calibrated by SD-CN, SCA calibrated by MOD10C1/MYD10C1, 385 

and SM calibrated by SMAP-L4. Evaluations of the reconstruction data are as follows. 

- Benchmarked by CMPA at a national scale, the median POD and FAR of the reconstructed P are 0.87 and 0.19 respectively 

for rain/no rain classification, and the median KGE and NRMSE of the reconstructed P are 0.68 and 0.63 respectively for 

P regression in rainy days. The reconstructed P improves the CGDPA and MSWEP data, whose median KGEs are 0.51 

and 0.53. The median KGEs are smaller than 0.43 in the Continental Basin and the Southwest Basin and larger than 0.76 390 

in other major basins. At the monthly scale, all basins have KGE values larger than 0.91 except for the Continental Basin 

and the Songhua and Liaohe River Basin, where the benchmarked precipitation data in cold seasons are not reliable. 
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- Benchmarked by SD-CN and MOD10C1/MYD10C1 at a national scale, the median KGE of the reconstructed SWE and 

the median BACC of the reconstructed SCA are -0.31 and 0.65 respectively. The reconstructed SWE performs the best in 

the Songhua and Liaohe Basin with KGE=0.55 but performs the worst in the Continental Basin where the median KGE 395 

is -2.41. At the monthly scale, the reconstructed SWE captures the monthly variability of the SWE derived from SD-CN 

in all basins. However, the reconstructed SWE only reproduces SWE magnitudes accurately in the Songhua and Liaohe 

Basin (monthly KGE=0.68) and the Haihe Basin (monthly KGE=0.46) but overestimates the SWE magnitudes in other 

basins. 

- Benchmarked by SMAP-L4 at a national scale, the median KGE of the reconstructed SM is 0.61. SMRec performs well in 400 

southern basins, e.g., the Yangtze River Basin, the Huaihe River Basin, the Southeast Basin, and the Pearl River Basin, 

where the values of median KGESM are at least 0.76. SMRec performs the worst in the Continental Basin where the median 

KGESM=0.3. At the monthly scale, the KGE values in all basins are larger than 0.59 except for the Continental Basin. 

This study is the first attempt to produce a long-term (at least 30 years) 0.1° daily dataset of P, SM, and SWE that combines 

high-accuracy local information and high-resolution satellite-based data via reconstruction. This dataset is especially suitable 405 

for exploring the relationship between riverine streamflow and hydrological drivers since the P, SM, and SWE are produced 

independently from streamflow data. Future improvements include extending the temporal length of the dataset and 

formulating a model strategy that handles the spatial variability of the hydrological processes at a national scale. 

 

Code availability 410 
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