Supplement S1

March 2, 2022

1 Budyko Equations

$$E = E_p P \left(E_p^n + P^n \right)^{-\frac{1}{n}}$$

To express E/E_p as a function of P/E_p , we will divide both sides by E_p , then again divide the nominator and denominator of the right band side by E_p and substitute P/E_p for P/E_p to obtain:

$$E/E_p = P/E_p \left(P/E_p^n + 1 \right)^{-\frac{1}{n}}$$

Proof that multiplication of eq_EEp_Rod1 by E_p recovers eq_E_Rod1:

True

Similarly, to express E/P as a function of E_p/P , we will divide both sides of eq_E_Rod1 by P, then again divide the nominator and denominator of the right hand side by P and substitute E_p/P for E_p/P to obtain:

$$E/P = E_p/P (E_p/P^n + 1)^{-\frac{1}{n}}$$

True

$$E = E_p + P - \left(E_p^{\omega} + P^{\omega}\right)^{\frac{1}{\omega}}$$
$$E/P = E_p/P - \left(E_p/P^{\omega} + 1\right)^{\frac{1}{\omega}} + 1$$

True

$$E/E_p = P/E_p - (P/E_p^{\omega} + 1)^{\frac{1}{\omega}} + 1$$

True