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Abstract. Despite the importance of a linkage between hydro-meteorological drought hazards and their socio-economic 

impact, the linkage at a sub-national level has yet to be evaluated due to the lack of precise sub-national information on 

disaster locations. Using the newly developed Geocoded Disasters (GDIS) dataset, we examined whether the sub-national 

socio-economic drought information could be represented by hydro-meteorological hazards quantified from soil moisture in 

ERA5-Land during 1964–2018. We found that ERA5-Land soil moisture accurately captured the socio-economic impacts of 10 

drought shown in GDIS. Our comparison between GDIS and ERA5-Land can quantify vulnerability to drought, and we 

found that Sub-Saharan Africa and South Asia were vulnerable to drought while North America and Europe were robust to 

drought. Both GDIS and ERA5-Land indicated that the Horn of Africa, northern China, and western India were drought-

prone areas. Since it is difficult for national-level analyses to accurately identify the locations of drought-prone areas 

especially in large countries such as China and India, our analysis clarifies the importance of the use of the sub-national 15 

disaster information. 

1 Introduction 

Drought is one of the costliest natural disasters with cascading impacts on multiple socio-economic sectors (Mishra and 

Singh, 2010). Wilhite and Glantz (1985) proposed a conceptual model of drought propagation, from natural hydro-

meteorological hazards defined by physical characteristics (e.g., precipitation, soil moisture, or streamflow) to socio-20 

economic drought impacts (e.g., crop yield loss, water shortage, or health problem). The propagation from the natural hydro-

meteorological hazards to the socio-economic impact can be affected by many regional vulnerability factors, such as 

infrastructure, economic, social, or cultural assets (e.g., Fuchs et al., 2019; Lavell et al., 2012; UNDP, 2004; Wilhite and 

Glantz, 1985). To understand this drought propagation, a sub-national level disaster analysis is necessary, rather than 

aggregated national level disaster analyses (Rosvold and Buhaug, 2021). How historical drought events evolved from natural 25 

hydro-meteorological hazards to socio-economic drought impacts at a sub-national level needs to be analyzed to improve 

regional drought mitigation measures. 
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Several studies have analyzed the linkage between natural hydro-meteorological hazards and socio-economic drought 

impacts to quantify the regional characteristics of historical drought events. Disaster databases such as the Emergency 30 

Events Database EM-DAT (Guha-Sapir et al., 2022), the European Drought Impact report Inventory (EDII) (Stahl et al., 

2016), US Drought Impact Reporter (US DIR) (Wilhite et al., 2007), as well as newspaper information (de Brito et al., 2020) 

have been used as reference data of historical socio-economic impacts. Bachmair et al. (2016) used EDII to estimate the 

thresholds of hydro-meteorological drought indices at which socio-economic droughts occur in Germany and UK at a sub-

national level. Noel et al. (2020) compared the U.S. Drought Monitor (USDM) (Svoboda et al. 2002), a weekly map 35 

depicting severity and spatial extent of drought, with US DIR at the state level. Although EDII and US DIR contain detailed 

disaster information at a sub-national level and are useful to quantify the linkage between hydro-meteorological hazards and 

socio-economic impacts, they do not cover the entire globe. EM-DAT is a global database and has been extensively used for 

the international comparison of disaster risks and vulnerability (e.g., Jägermeyr et al., 2018; Shen and Hwang, 2019; 

Tschumi and Zscheischler, 2020). Although some studies used text-based disaster locations (i.e., names of affected provinces, 40 

districts, and towns) in EM-DAT to perform the sub-national scale analyses, they simply evaluated the applicability of a 

drought index for the specific regional events (e.g., Bayissa et al., 2018; Lu et al., 2019) and for global events in a short 

period of time (2010–2015) (Sánchez et al., 2018). The sub-national information of the disaster database has not been fully 

used to quantify the linkage between hydro-meteorological drought hazards and socio-economic impacts in a global scale. In 

addition, regional vulnerability against drought events has not been quantified by using such database in a global scale. 45 

 

Instead of the disaster databases, agricultural production or remotely sensed vegetation dynamics have also been used to 

assess the impact of drought on society. Udmale et al. (2020) compared cereal production with drought indices such as 

Standardized Precipitation Index (SPI) (McKee et al., 1993) and Standardized Precipitation Evaporation Index (SPEI) 

(Vicente-Serrano et al., 2010) in India. Kim et al. (2019) examined the vulnerability of cereal production to drought in a 50 

country scale using a global crop model. Chen et al. (2020) quantified the impact of droughts on vegetation growth for 

different biome types and climate regimes by comparing SPEI and a vegetation index. Although agricultural production and 

vegetation dynamics are available globally and easy to be quantified, there are some problems to use them as reference data 

of socio-economic drought impacts. Agricultural production can be affected by factors other than drought and it can capture 

aggregated information on large events (Bachmair et al., 2016). It is unclear whether socio-economic drought impacts are 55 

associated with declined vegetation growth. It is ideal to treat the socio-economic drought impact in terms of whether this is 

socially perceived as drought. 

 

The linkage between natural hydro-meteorological hazards and socio-economic drought impact at a sub-national level has 

yet to be globally evaluated. The major obstacle is a lack of accurate information of socio-economic drought impacts in sub-60 

national scales (Bachmair et al., 2016). Recently, a global dataset of geocoded disaster locations, the Geocoded DISasters 

(GDIS), has been developed (Rosvold and Buhaug, 2021). Although EM-DAT contains information about the location of 
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disasters, they are text-based information and some events have incomplete information about their locations, which is not 

suitable for comprehensive geospatial analyses. GDIS is the geocoded database based on the EM-DAT’s location 

information with some manual validations and provides GIS polygons of affected administrative units. GDIS can be a useful 65 

tool to globally assess the linkage between natural hydro-meteorological hazards and socio-economic drought impact with 

precise locations at a sub-national level. 

 

This study aims to examine the linkage between natural hydro-meteorological hazards and the sub-national socio-economic 

drought impact shown in GDIS. As a natural hydro-meteorological hazard, we used drought indices generated from soil 70 

moisture simulated by land reanalysis, ERA5-Land (Muñoz-Sabater, 2019; Muñoz-Sabater, 2021). First, we examined 

whether the reanalysis product could capture the socio-economic impacts in GDIS. Then, we quantified the vulnerability to 

drought in different geographical regions. Finally, we compared the global spatial distribution of drought-prone areas in 

GDIS with those quantified from ERA5-Land. 

2 Data 75 

2.1 ERA5-Land 

To calculate drought indices, ERA5-Land soil moisture data were used. Wilhite and Glanz (1985) mentioned that soil 

moisture plays an important role in the drought propagation since it affects both agricultural and hydrological aspects of 

drought (see also Sawada (2018)). Many drought monitoring systems have also used soil moisture as one of the most 

important variables (e.g., USDM, Svoboda et al., 2002; The German drought monitor, Zink et al., 2016; InterSucho in Czech 80 

Republic and Slovakia, Trnka et al., 2020). 

 

We used monthly averaged data from 1950 to 2020. The original spatial resolution of 0.1° was upscaled to 0.25° to reduce 

the data volume, by using a remap function of the Climate Data Operators (CDO) version 2.0.0 (Schulzweida, 2021). This 

spatial resolution is relatively high compared to the previous global-scale drought studies (e.g., Hanel et al., 2018; Herrera-85 

Estrada et al., 2017; Mocko et al., 2021; Sawada, 2018). 

 

We used the first (0–7 cm), second (7–28 cm), and third (28–100 cm) layers’ soil moisture in ERA5-Land to generate 

drought indices. Since previous works used soil moisture from the top to 1–2 m soil depths as root zone soil moisture (e.g., 

Almendra-Martín et al., 2021; Hanel et al., 2018; Herrera-Estrada et al., 2017; Mocko et al., 2021), we also used the top 1 m 90 

(0–100 cm) soil moisture data. For the top 1 m soil moisture, we calculated the weighting average of soil moisture in the first, 

second, and third layers according to their thicknesses. 
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2.2 GDIS 

GDIS (Rosvold and Buhaug, 2021) can be downloaded from https://cmr.earthdata.nasa.gov/search/concepts/C2022273992-

SEDAC.html (data downloaded for this study: October 2021). GDIS is the geocoded disaster locations database based on 95 

EM-DAT. A natural disaster is recorded into EM-DAT if at least one of the following criteria is fulfilled: 10 or more people 

dead; 100 or more people affected; the declaration of a state of emergency, and a call for international assistance (Guha-

Sapir et al., 2022). 

 

The 282 drought events from 1964 to 2018 were analyzed. Each drought event is distinguished based on the EM-DAT 100 

database’s event identifier (disasterno). In EM-DAT, disaster events are uniquely distinguished by the combination of an 8-

digit disaster code and a 3-digit country code. In contrast, GDIS uses only the 8-digit disaster code, which is common with 

EM-DAT, and assigns the same identifier to a disaster event even if it spreads over multiple countries. In the case of 

extensive drought events, such as ones induced by El Niño, it is not reasonable to treat distant countries with the same event 

identifier. In this study, the event classification of the original EM-DAT was adopted, so that events with the same disaster 105 

code that spread over multiple countries in GDIS were analyzed as a separate event for each country. Drought events in 

GDIS that met the following criteria were used in this study: (1) The drought period is longer than or equal to two months 

and (2) The GDIS event area is larger than or equal to 50 grid cells in the upscaled ERA5-Land. We did not analyze flash 

drought, which occurred in shorter than two months. The effective resolution of the phenomena that can be represented by a 

numerical simulation model is several times as large as the original size of computational grids (Skamarock, 2004), so that 110 

the events with the small extent relative to the grid spacing were neglected in this study. GDIS itself does not have drought 

period information, namely when the event starts and ends. The drought period information was added to GDIS via EM-

DAT database’s event identifiers. EM-DAT shows only the event year and provides no information on the start and/or end 

month for some drought events. In such cases, we applied January for the start and December for the end of the event. GDIS 

provides affected spatial geometry in the form of GIS polygons of administrative units. Administrative units with the same 115 

event identifier (disasterno) were treated as one “GDIS event area” (see Fig. 2 as an example). Sánchez et al. (2018) treated 

one drought event per one administrative unit. However, this event classification depends on the fineness of the division of 

administrative units (e.g., Thailand, where administrative units are very finely divided, has more than 50 events during 

2010–2015 in Sánchez et al. (2018)), which affects the results of drought detection skill. Therefore, we treated administrative 

units with the same event identifier as one drought event, following EM-DAT classification. 120 

2.3 Other supporting data 

To show the drought vulnerability by geographical regions, we used the classification of the world bank geographical 

regions.  
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As land cover data, we used the MODIS land cover climate modeling grid (MCD12C1) version 6 data product (Friedl and 125 

Sulla-Menashe, 2015). This land cover product has 17 classes. The temporal resolution is yearly, and we used the latest, 

2020 data. The original spatial resolution is 0.05° and we resampled it to 0.25° by the nearest neighbour approach. 

3 Methodology 

3.1 Drought indices 

We used two drought indices, the Drought Area Percentage (DAP) and the Standardized Deficit Index (SDI), to evaluate the 130 

severity of the hydro-meteorological drought hazard in ERA5-Land. For the soil moisture data in each grid cell, percentiles 

were first calculated for each calendar month separately during 1950–2020. After the percentiles were calculated, only data 

during the period with the GDIS drought events (1964–2018) was used in all subsequent steps of this study. The 20th 

percentile was taken as a threshold for defining a drought at each grid cell (Sheffield and Wood, 2011; Hanel et al., 2018). 

DAP is the maximum percentage of the area where soil moisture is below the 20th percentile threshold within the GDIS 135 

event area during the GDIS drought period. The higher the percentage means the severer the hydro-meteorological hazard is. 

DAP has been used as a drought index in many studies (e.g., Sánchez et al. 2018; Udmale et al. 2020). 

 

DAP is a snapshot of the long-lasting drought phenomenon and does not include the cumulative effects of the long-lasting 

drought. The other limitation of DAP is that it could be affected by the size of the GDIS event area; DAP tends to be small in 140 

large event areas. In addition to DAP, we developed a new drought indicator, called SDI, which accounts for the cumulative 

effects of drought and is less influenced by the size of the GDIS event area. First, a deficit volume, a cumulative deviation 

below the 20th percentile threshold, was calculated for each grid cell. Then, we summed up the maximum annual deficit 

volume per grid cell in each GDIS event area, which is defined as the annual maximum deficit volume in the GDIS event 

area. The cumulative effect of the movement of drought areas can be considered by calculating the annual maximum value 145 

for each grid before averaging the values within the GDIS event area. Finally, the annual maximum deficit volume in the 

GDIS event area was standardized, dividing each year's annual maximum deficit volume by the mean of the annual 

maximum deficit volume over the period (1964–2018). The higher SDI means the severer hydro-meteorological hazard, and 

the value of 1 is the standard annual maximum drought event. The standardization makes it possible to compare the different 

events across space and time, even if the size of the GDIS event area is quite different. Hanel et al. (2018) calculated SDI for 150 

each grid cell. We extended this methodology to evaluate the drought index representative in the GDIS event area. 

3.2 Evaluation of the drought indices by GDIS 

To evaluate whether the drought indices can accurately identify the drought events shown in GDIS, we tested whether the 

drought indices during the GDIS drought period were distinguishable from those during the whole period (1964–2018). We 

applied a bootstrap random resampling method to show the distributions of drought indices for the whole period. For DAP, 155 
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we set a 12-month moving window, which is approximately the mean of the drought duration in GDIS, and extracted the 

maximum percentage in each window for each GDIS event. From this assemblies, we extracted DAP randomly with 1000 

replications. For SDI, we extracted SDI randomly with 1000 replications from the whole study period. We used two-sample 

Kolmogorov–Smirnov (K–S) test (Massey, 1951) to quantify the difference of the distributions of drought indices during the 

GDIS drought period and the whole period. If the p-value of K–S test is smaller than 0.01, the hypothesis that two 160 

distributions follow the same distribution is rejected at 1% significance level. Due to the difference of the sample size (i.e., 

Drought period: 282; Whole period by a bootstrap random resampling method: 1000), the distributions were normalized, 

namely the densities sum to 1, prior to the comparison. We recognized that the drought indices successfully capture the 

GDIS drought events if the two distributions are not statistically the same. 

3.3 Regional vulnerability to drought 165 

The levels of hydro-meteorological drought indices associated with socio-economic drought events identified in GDIS are 

different in different regions due to a wide variety of vulnerability to drought. Following Bachmair et al. (2016), the levels of 

SDI which are associated with socio-economic drought events in GDIS were quantified and analyzed. The levels of SDI 

were stratified by geographical regions to understand the distribution of vulnerability in each region. 

3.4 Global drought frequency analysis by drought clustering 170 

We analyzed whether drought-prone areas identified by drought indices are globally consistent with those found in GDIS. 

We applied the drought clustering method (Andreadis et al., 2005) to search for the spatially contiguous areas (or clusters) 

under drought at each timestep. In this drought clustering, we assume that drought occurs over a reasonably large spatial area 

driven by a large-scale climate process (Sheffield and Wood, 2011). We used the processing code developed by Herrera-

Estrada and Diffenbaugh (2020). 175 

 

After the percentiles are calculated in each grid cell, a 2-D median filter is applied to each monthly global data to smooth out 

small-scale noise. Contiguous areas under drought (soil moisture below the 20th percentile in this study) are aggregated into 

clusters at each timestep. Following Herrera-Estrada and Diffenbaugh (2020), we analyzed clusters that reach a maximum 

area of at least 100,000 km2 (approximately 120 grid cells in the upscaled ERA5-Land) to focus on large-scale droughts.  180 

The location of the cluster centroid is detected at each time step using the weighting average of the cluster’s location with the 

intensity values of the cluster grid cells. Droughts whose centroids fell within the barren or sparsely vegetated areas based on 

MODIS land cover were masked out from the cluster analysis, due to the little or no exposure (i.e., population, assets) (e.g., 

Carrão et al., 2016; Herrera-Estrada et al., 2017). We confirmed that there were no drought events in GDIS which were fully 

included within the barren or sparsely vegetated areas. Figure 1 demonstrates this drought clustering. The cluster centroid 185 

shows the area that experiences higher drought displacement, and we made an upscaled map of cluster centroids from the 
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original spatial resolution of 0.25° to 2.5°. For a sensitivity analysis of this upscale resolution, see Fig. S1. See Andreadis et 

al. (2005) for details about the clustering method.  

 

We visualized the socio-economic drought-prone areas by overlaying all polygons of the GDIS. We compared the regional 190 

drought frequencies in GDIS with the number of drought cluster centroids by ERA5-Land. We examined whether hydro-

meteorological drought-prone areas are consistent with GDIS. 

4 Results 

4.1 The performance of drought indices to detect the drought 

Figure 2 demonstrates DAP and SDI for the drought events in Ethiopia and Argentina in 2009. For both drought indices, 195 

higher values indicate severer drought. Figures 2 (a) and 2 (e) show that DAPs in the first and second soil layers respond to 

rainfall deficit more quickly than the deep soil layers. During the GDIS drought period, all layers show high DAPs, and the 

third layer has been experiencing a high DAP for a long time. DAPs in the first and second layer are sometimes high outside 

of the GDIS drought period. Root-zone (0–100 cm) layer generally follows the third layer’s fluctuations, though the root-

zone positions between the second and third layers during the GDIS drought period in Ethiopia case. Figures 2 (c) and 2 (g) 200 

show that SDIs fluctuate less compared with DAPs. This is because SDI considers the cumulative effect. During the GDIS 

drought period, all layers show high SDIs, and the differences between the GDIS drought period and the non-drought period 

stand out more prominently compared with DAP. The third layer shows the highest SDI during the GDIS drought period, 

especially in Argentina case, reflecting the consistently high DAP during the GDIS drought period. Root-zone (0–100 cm) 

layer generally follows the third layer’s fluctuations. 205 

 

Figures 3 and 4 reveal that ERA5-Land based drought indices can distinguish the GDIS drought period from the whole 

period. In Fig. 3, DAP during the GDIS drought periods is significantly higher than that of the whole period in all soil layers. 

Please note that the samples in whole period shown in Fig. 3 include those during the GDIS drought period. In addition, 

severe drought events unreported in GDIS may also be included. The difference of the median values of DAP in the GDIS 210 

drought period and the whole period is largest in the third layer (28–100 cm) case. In Fig. 4, SDI during the GDIS drought 

period is significantly higher than that of the whole period in all soil layers, as we found in DAP. Although the second, third 

and root-zone soil layers show the similar distributions, the difference of the median values of SDI in the GDIS drought 

period and the whole period is largest in the root-zone (0–100 cm) case. Both of drought indices based on ERA5-Land can 

capture the GDIS drought events. We will use SDI for the regional comparison shown below, because SDI is a standardized 215 

indicator, which allows the comparison between the different events across space and time, even if the size of the GDIS 

event area is substantially different. 
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4.2 Regional vulnerability to drought 

Figure 5 shows the distribution of the root-zone layer’s soil moisture-based SDI stratified by geographical regions. Sub-220 

Saharan Africa and South Asia have a large number of small SDI events associated with the GDIS identified drought, while 

North America and Europe have a large number of large SDI events. A large number of small SDI events indicates that less 

severe hydro-meteorological droughts have caused serious socio-economic impacts, meaning that the regions are vulnerable 

to drought. On the other hand, the regions with a large number of large SDI events can be recognized as robust regions to 

drought. Thus, Sub-Saharan Africa and South Asia are vulnerable to drought, while North America and Europe are robust to 225 

drought. This regional characteristic of vulnerability to drought can be found when SDI is generated by soil moisture in 

different soil layers (not shown). Note that Middle East & North Africa were excluded from the analysis because the sample 

size was too small (n = 4). 

4.3 Global drought frequency analysis by drought clustering 

Figure 6 shows the number of drought events at a sub-national level during 1964–2018 based on GDIS. It shows that the 230 

Horn of Africa, Mozambique, northern China, and western India are socio-economic drought-prone areas. Each region is 

shown enlarged in Figs. 6 (b) to (e). Figure 7 shows the number of drought events on the aggregated national level during the 

same period based on EM-DAT. Although we can see that the number of drought events is high in China, there is little 

information about the regional differences in drought-prone areas. 

 235 

This distribution of drought-prone areas in GDIS can be reproduced by ERA5-Land. Figure 8 shows the number of the 

drought cluster centroids upscaled to 2.5° based on drought clusters from ERA5-Land third layer’s soil moisture. Drought-

prone areas quantified from ERA5-Land soil moisture (Fig. 8) are consistent to those listed in GDIS (Fig. 6). The Horn of 

Africa, northern China, and western India can also be recognized as drought-prone areas by ERA5-Land-based drought 

clusters. Mozambique cannot be identified as a drought-prone area in ERA5-Land. Please note that the number of the 240 

drought cluster centroids (Fig. 8) would be larger than the number of drought events in GDIS (Fig. 6). The number of 

drought events in GDIS is counted as one event even if a GDIS event lasts several months. On the other hand, the number of 

drought cluster centroids is counted in every monthly time step. Several clusters may be contained simultaneously in a large 

GDIS drought area. ERA5-Land identifies some drought-prone areas which are not included in GDIS, such as Namibia, 

Indonesia, and Spain. The locations of drought-prone areas are almost the same when drought clusters are generated by soil 245 

moisture in different soil layers (Fig. S2). The drought-prone areas are most distinguishable from their surroundings in the 

third layer case. 
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5 Discussion 

In previous studies, the verification of sub-national drought events by hydro-meteorological data has been insufficient. There 

are some works only on the specific regions (e.g., Bayissa et al., 2018; Lu et al., 2019) or in a short period of time (Sánchez 250 

et al., 2018), due to the lack of precise sub-national information on disaster locations. Using the latest sub-national disaster 

database, GDIS, this study was able to cover a large number of drought events compared to previous studies. In Sánchez et al. 

(2018), the criterion for the detection of drought events was that more than one-third of the area was under drought. However, 

the size of the drought event area could affect the criterion, and the threshold of one-third is rather subjective. By defining 

the standardized drought index, this study uniformly and objectively showed the accurate detection of sub-national drought 255 

information by ERA5-Land soil moisture, even if the size of the event differs. 

 

The vulnerability to drought was quantitatively assessed across regions by comparing SDI. We confirmed that Sub-Saharan 

Africa and South Asia were vulnerable to drought, while North America and Europe were robust to drought. Previous studies 

have shown that higher GDP per capita is associated with lower vulnerability to natural hazards (e.g., Kim et al., 2019; 260 

Tanoue et al., 2016), and our finding is consistent with these previous works. There are global vulnerability indices such as 

the WorldRiskIndex (Welle and Birkmann, 2015), INFORM index (Marin-Ferrer et al., 2017), and ND-GAIN (Chen et al. 

2015), which combine socio-economic factors such as economic level, infrastructure level, and education level. These 

indices have also indicated that Sub-Saharan Africa and South Asia are vulnerable, while North America, Europe, Australia, 

and Japan are robust to natural hazards (Birkmann et al., 2021; Birkmann et al., 2022; Garschagen et al., 2021). The reason 265 

why the low-income countries are vulnerable to drought could be the lack of drought mitigation measures (e.g., dams, 

irrigation system, early-warning system, etc.), as pointed out in previous studies (e.g., Lavell et al., 2012; Stringer et al., 

2020; UNEP, 2018). 

 

GDIS, a sub-national level disaster locations dataset, has enabled us to understand drought-prone areas on a finer scale than 270 

the previous global-scale analyses. EM-DAT is generally a national-level database with limited sub-national information. 

Shen and Hwang (2019) compared the frequency of disaster occurrence in EM-DAT at the national level and pointed out 

that frequent areas were large or populated countries. GDIS provides more detailed information about drought-prone areas, 

especially in large countries such as China and India. We successfully clarified that there was the considerable heterogeneity 

of the drought-prone areas within the country. 275 

 

There were some inconsistencies between hydro-meteorological drought-prone areas in ERA5-Land and socio-economic 

drought-prone areas in GDIS. Mozambique is a socio-economic drought-prone area, which cannot be identified as a drought-

prone area in ERA5-Land. Madagascar, which is geographically closer to Mozambique, is a drought-prone area in ERA5-

Land. The lack of the reproducibility of ERA5-Land might affect these inconsistencies. In contrast, there were some hydro-280 
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meteorological drought-prone areas in ERA5-Land, which were not included in socio-economic drought-prone areas in 

GDIS (e.g., Spain, Namibia, and Indonesia). Spain, a member of European countries, is robust to drought, as shown in Fig. 5. 

In Namibia, a lack of exposure makes socio-economic droughts less likely to occur. When assessing socio-economic impact, 

the presence of the exposure should also be considered (Visser et al., 2014). Namibia has extremely low population density 

throughout the country (under 1 person per km2 in 2020, Gridded Population of the World (GPW) version 4.11, Doxsey-285 

Whitfield et al., 2015). Similarly, western Australia, central and eastern Russia do not have socio-economic droughts in 

GDIS due to the low population density. In Indonesia, the absolute amount of rainfall is so high that the relatively small soil 

moisture may not cause socio-economic drought. Kim et al. (2019) reported that there was no clear correlation between 

drought severity and yields reduction in areas where average annual precipitation is more than 900 mm. Indonesia is one of 

the rainiest regions on the globe, with more than 2,700 mm annual precipitation (2017, FAO). Despite these individual 290 

circumstances, our results showed that socio-economic drought-prone areas in GDIS were generally consistent with hydro-

meteorological drought-prone areas in ERA5-Land (the Horn of Africa, northern China, and western India), indicating that 

the reanalysis product can be utilized to show a “potential” of socio-economic drought impact. 

 

Although various reanalysis products have been developed and their reproducibility has been verified (e.g., Muñoz-Sabater 295 

et al., 2021; Reichle et al., 2017; Rodell et al., 2004), few studies have examined the reproducibility in terms of socio-

economic impact. Sawada (2018) compared the areas identified as drought quantified from a reanalysis product with the 

disaster records from EM-DAT, but only in a country-scale. As seen in Fig. 7, national-level information does not provide 

accurate pictures of disaster locations, which is insufficient for validation data. The use of sub-national disaster databases 

such as GDIS opens the door to evaluate reanalysis products in terms of the disaster occurrence.  300 

 

Although there are many variables to quantify hydro-meteorological droughts, we showed that soil moisture could clearly 

capture the GDIS drought events in time and space. In the comparison of the soil layers, deep layers (i.e., the third layer (28–

100 cm) and root-zone layer (0–100 cm)) were affected for a longer period, which made SDI tend to be higher than that of 

the first (0–7 cm) and second (7–28 cm) layers during drought. In drought clustering, the drought-prone areas were most 305 

distinguishable from their surroundings in the third layer case. Sawada and Koike (2016) used land reanalysis products to 

confirm that drought propagates from surface to root-zone (5–100 cm) soil moisture and then to vegetation, and showed that 

root-zone soil moisture and vegetation were good indices to capture the prolonged drought impact in the case of the Horn of 

Africa drought (2010–2011). In this study, we confirmed that many of the serious socio-economic events such as those listed 

in GDIS were the events that were associated with the soil moisture deficit not only on the surface layer but also down to the 310 

root. Many drought studies have used root-zone soil moisture and our study has reinforced its validity. Hao and Singh (2015) 

suggested that a single drought index is insufficient to capture different impact types of droughts (e.g., water shortage, 

famine. wildfire, etc.). Several studies have tried to develop a new combined drought index based on several hydro-

meteorological variables (e.g., precipitation and soil moisture) to express socio-economic impact by using Random Forest 
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models (e.g., Bachmair et al., 2016; Hobeichi et al., 2022). Further studies are needed for the variable selection and drought 315 

indices according to the type of drought, which leads to more accurate representation of socio-economic impact by hydro-

meteorological variables. 

 

The limitation of the vulnerability assessment of this study is that we only captured the static conditions over time. We do 

not reveal which factors (e.g., infrastructure, economic, social, or cultural assets) contribute to the vulnerability. 320 

Vulnerability to disasters is complex and dynamic. For example, people’s water demand could dynamically change after 

experiencing drought events (Gonzales and Ajami, 2017). Improved irrigation scheduling (Cao et al., 2019) and dam 

operation (Wu et al., 2018) based on forecasts could reduce the drought damage. Although we quantified the vulnerability to 

drought in different geographical regions, detailed analyses are needed to reveal the complex and dynamic nature of 

vulnerability based on the linkage between hydro-meteorological drought hazards and socio-economic impacts. 325 

 

The major limitation of this study is the incompleteness of the drought impact data. Although GDIS enables sub-national 

drought analysis, GDIS only covers about 60% of droughts in EM-DAT (Rosvold and Buhaug, 2021). Note that even EM-

DAT does not cover all disasters. Moreover, EM-DAT and GDIS have insufficient quantitative impact information. EM-

DAT provides no information about the amount of damage in multiple drought events. There is a lot of uncertainty in the 330 

amount of damage because it is difficult to quantify indirect damages of drought (e.g., Yokomatsu et al., 2020). Although 

GDIS is a pioneering work to achieve the detailed analysis of the relationship between hydro-meteorological drought hazards 

and socio-economic impact of drought in a global scale, which we performed in this paper, there is much room for 

improvement of the global disaster database such as including detailed and quantifiable damage information by following the 

approaches of EDII and US DIR. 335 

6 Conclusions 

We evaluated how the sub-national socio-economic drought events shown in GDIS could be reproduced by the natural 

hydrological drought indices generated by the reanalysis product, ERA5-Land. We confirmed that the reanalysis product 

captured the socio-economic impact at a statistically significant level. We also showed that Sub-Saharan Africa and South 

Asia were vulnerable to drought, while North America and Europe were robust to drought. We analyzed the global spatial 340 

distribution of drought frequency, and we found that socio-economic drought-prone areas in GDIS were generally consistent 

with hydro-meteorological drought-prone areas expressed by soil moisture deficit (the Horn of Africa, northern China, and 

western India). The use of sub-national information, such as GDIS, makes it possible to identify socio-economic drought-

prone areas on a finer scale and can contribute to validating reanalysis products. 
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Code and data availability 345 

The drought clustering python code can be downloaded at https://github.com/julherest/drought_clusters (last access: 31 

March 2022). The ERA5-Land dataset can be downloaded at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

era5-land?tab=form (last access: 31 March 2022). The GDIS dataset can be downloaded at 

https://cmr.earthdata.nasa.gov/search/concepts/C2022273992-SEDAC.html (last access: 31 March 2022). The EM-DAT 

database can be vied at https://www.emdat.be/ (last access: 31 March 2022). World bank's geographical regions can be vied 350 

at https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (last access: 31 

March 2022). The MODIS land cover data can be downloaded at https://lpdaac.usgs.gov/products/mcd12c1v006/ (last 

access: 31 March 2022). The gridded population of the world can be downloaded at 

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11 (last access: 31 March 2022). The global map of 

FAO’s annual average precipitation can be vied at World bank website 355 

https://data.worldbank.org/indicator/ag.lnd.prcp.mm?msclkid=215b9959b08711ec944832810373c8aa&view=map (last 

access: 31 March 2022). 
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Figure 1: Demonstration of drought clustering. (a) Global map of soil moisture percentile for the root-zone layer’s soil moisture in 

January 1964. (b) Drought clusters, spatially contiguous areas under drought (below 20th percentile) are extracted from (a). A 2-D 

median filter is applied prior to drought clustering, which makes slight differences compared with (a). 
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Figure 2: Demonstration of drought indices in different soil layers for the drought events in Ethiopia in 2009 (a–d) and Argentina 

in 2009 (e–h). (a, e) DAP; red band shows the GDIS drought period, and each coloured line shows the values in each soil layer 

(first (blue), second (green), third (orange), and root-zone (black)). (b, f) the enlarged view of DAP around the GDIS drought 

period. (c, g) SDI; the legends are the same as DAP (a, e), and grey dotted line shows the value of 1 (the mean of SDI over the 

study period).  (d, h) the GDIS drought area of this event; black line shows the country border, and light blue line shows the 

affected administrative units shown in GDIS. GDIS provides GIS polygons of administrative units, and administrative units with 

the same event identifier (disasterno) were treated as one “GDIS event area”, the assembles of each light-blued administrative 

unit. The soil moisture percentile is generated from the root-zone layer’s soil moisture as an example. 

 

https://doi.org/10.5194/hess-2022-124
Preprint. Discussion started: 1 April 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

  

Figure 3: Comparison of DAP between the GDIS drought 

period and the whole period. The red line shows the median 

value and grey dotted lines show the 25th and 75th percentile 

values of each distribution. 

Figure 4: Comparison of SDI between the GDIS drought 

period and the whole period. The red line shows the median 

value and grey dotted lines show the 25th and 75th percentile 

values of each distribution. 

 

 

Figure 5: Comparison of the root-zone SDI by geographical 

regions. The red line shows the median value and grey dotted 

lines show the 25th and 75th percentile values of each 

distribution. 
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Figure 6: The number of drought events based on GDIS. (a) Global map, enlarged view of (b) the Horn of Africa, (c) 

Mozambique, (d) China, and (e) India. 

 

 

Figure 7: The number of drought events based on EM-DAT. 

 

https://doi.org/10.5194/hess-2022-124
Preprint. Discussion started: 1 April 2022
c© Author(s) 2022. CC BY 4.0 License.



21 

 

 

Figure 8: The number of drought cluster centroids based on ERA5-Land. (a) Global map, enlarged view of (b) the Horn of Africa, 

(c) Mozambique, (d) China, and (e) India. 
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