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Abstract. Despite the importance of a linkage between hydro-meteorological drought hazards and their socio-economic 

impact, the linkage at a sub-national level has yet to be evaluated due to the lack of precise sub-national information on 

disaster locations. Using the newly developed Geocoded Disasters (GDIS) dataset, we examined whether the sub-national 

socio-economic drought impact information in GDIS could be represented by hydro-meteorological hazards quantified from 

soil moisture in ERA5-Land during 1964–2018. We found that the socio-economic drought impacts shown in GDIS were 10 

generally represented by drought hazards quantified from ERA5-Land soil moisture. We found that ERA5-Land soil 

moisture accurately captured the socio-economic impacts of drought shown in GDIS. Our comparison between GDIS and 

ERA5-Land could benefit the quantification of can quantify vulnerability to drought, and we found that Sub-Saharan Africa 

and South Asia were vulnerable to drought while North America and Europe were less vulnerable robust to drought. Both 

GDIS and ERA5-Land indicated that the Horn of Africa, northern China, and western India were drought-prone areas. Since 15 

it is difficult for national-level analyses to accurately identify the locations of drought-prone areas especially in large 

countries such as China and India, our analysis clarifies the importance of the use of the sub-national disaster information. 

1 Introduction 

Drought is one of the costliest natural disasters with cascading impacts on multiple socio-economic sectors (Mishra and 

Singh, 2010). Wilhite and Glantz (1985) proposed a conceptual model of drought propagation, from natural hydro-20 

meteorological hazards defined by physical characteristics (e.g., precipitation, soil moisture, or streamflow) to socio-

economic drought impacts (e.g., crop yield loss, water shortage, or health problem). The propagation from the natural hydro-

meteorological hazards to the socio-economic impact can be affected by many regional vulnerability factors, such as 

infrastructure, economic, social, or cultural assets (e.g., Fuchs et al., 2019; Lavell et al., 2012; UNDP, 2004; Wilhite and 

Glantz, 1985). To understand this drought propagation, a sub-national level disaster analysis is necessary, rather than 25 

aggregated national level disaster analyses (Rosvold and Buhaug, 2021). How historical drought events evolved from natural 

hydro-meteorological hazards to socio-economic drought impacts at a sub-national level needs to be analyzed to improve 

regional drought mitigation measures. 
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Several studies have analyzed the linkage between natural hydro-meteorological hazards and socio-economic drought 30 

impacts to quantify the regional characteristics of historical drought events. Disaster databases such as the Emergency 

Events Database (EM-DAT) (Guha-Sapir et al., 2022), the European Drought Impact report Inventory (EDII) (Stahl et al., 

2016), US Drought Impact Reporter (US DIR) (Wilhite et al., 2007), as well as newspaper information (de Brito et al., 2020) 

have been used as reference data of historical socio-economic impacts. Bachmair et al. (2016) used EDII to estimate the 

thresholds of hydro-meteorological drought indices at which socio-economic droughts occur in Germany and UK at a sub-35 

national level. Noel et al. (2020) compared the U.S. Drought Monitor (USDM) (Svoboda et al. 2002), a weekly map 

depicting severity and spatial extent of drought, with US DIR at the state level. Although EDII and US DIR contain detailed 

disaster impact information at a sub-national level and are useful to quantify the linkage between hydro-meteorological 

hazards and socio-economic impacts, they do not cover the entire globe. EM-DAT is a global database and has been 

extensively used for the international comparison of disaster risks and vulnerability (e.g., Jägermeyr et al., 2018; Shen and 40 

Hwang, 2019; Tschumi and Zscheischler, 2020). Although some studies used text-based disaster locations (i.e., names of 

affected provinces, districts, and towns) in EM-DAT to perform the sub-national scale analyses, they simply evaluated the 

applicability of a drought index for the specific regional events (e.g., Bayissa et al., 2018; Lu et al., 2019) and for global 

events in a short period of time (2010–2015) (Sánchez et al., 2018). The sub-national impact information of the disaster 

database has not been fully used to quantify the linkage between hydro-meteorological drought hazards and socio-economic 45 

impacts in a global scale. In addition, regional vulnerability against drought events has not been quantified by using such 

database in a global scale. 

 

Instead of the disaster databases, agricultural production or remotely sensed vegetation dynamics have also been used to 

assess the impact of drought on society. Udmale et al. (2020) compared cereal production with drought indices such as 50 

Standardized Precipitation Index (SPI) (McKee et al., 1993) and Standardized Precipitation Evaporation Index (SPEI) 

(Vicente-Serrano et al., 2010) in India. Kim et al. (2019) examined the vulnerability of cereal production to drought in a 

country scale using a global crop model. Chen et al. (2020) quantified the impact of droughts on vegetation growth for 

different biome types and climate regimes by comparing SPEI and a vegetation index. Although agricultural production and 

vegetation dynamics are available globally and easy to be quantified, there are some problems to use them as reference data 55 

of socio-economic drought impacts. Agricultural production can be affected by factors other than drought and it can capture 

aggregated information on large events (Bachmair et al., 2016). It is unclear whether socio-economic drought impacts are 

associated with declined vegetation growth. It is ideal to treat the socio-economic drought impact based on a disaster 

database since it directly shows events in which the society has actually suffered from drought. in terms of whether this is 

socially perceived as drought.                                                    60 

 

The linkage between natural hydro-meteorological hazards and socio-economic drought impact at a sub-national level has 

yet to be globally evaluated. The major obstacle is a lack of accurate information of socio-economic drought impacts in sub-
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national scales (Bachmair et al., 2016). Recently, a global dataset of geocoded disaster locations, the Geocoded DISasters 

(GDIS), has been developed (Rosvold and Buhaug, 2021). Although EM-DAT contains information about the location of 65 

disasters, they are text-based information and some events have incomplete information about their locations, which is not 

suitable for comprehensive geospatial analyses. GDIS is the geocoded database based on the EM-DAT’s location 

information with some manual validations and provides GIS polygons of affected administrative units. GDIS can be a useful 

tool to globally assess the linkage between natural hydro-meteorological hazards and socio-economic drought impact with 

precise locations at a sub-national level. 70 

 

This study aims to examine the linkage between natural hydro-meteorological hazards and the sub-national socio-economic 

drought impact shown in GDIS. As a natural hydro-meteorological hazard, we used drought indices generated from soil 

moisture simulated by land reanalysis, ERA5-Land (Muñoz-Sabater, 2019; Muñoz-Sabater, 2021). First, we examined 

whether the GDIS drought events were generally represented by the drought indices quantified from ERA5-Land the 75 

reanalysis product could capture the socio-economic impacts in GDIS. Then, we quantified the levels of drought indices 

associated with GDIS drought events in different geographical regions, which could benefit the quantification of 

vulnerability to drought. the vulnerability to drought in different geographical regions. Finally, we compared the global 

spatial distribution of drought-prone areas in GDIS with those quantified from ERA5-Land. 

2 Data 80 

2.1 ERA5-Land 

To calculate drought indices, ERA5-Land soil moisture data were used. Wilhite and Glanz (1985) mentioned that soil 

moisture plays an important role in the drought propagation since it affects both agricultural and hydrological aspects of 

drought (see also Sawada (2018)). Many drought monitoring systems have also used soil moisture as one of the most 

important variables (e.g., USDM, Svoboda et al., 2002; The German drought monitor, Zink et al., 2016; InterSucho in Czech 85 

Republic and Slovakia, Trnka et al., 2020). 

 

We used monthly averaged data from 1950 to 2020. The original spatial resolution of 0.1° was upscaled to 0.25° to reduce 

the data volume, by using a remap function of the Climate Data Operators (CDO) version 2.0.0 (Schulzweida, 2021). This 

spatial resolution is relatively high compared to the previous global-scale drought studies (e.g., Hanel et al., 2018; Herrera-90 

Estrada et al., 2017; Mocko et al., 2021; Sawada, 2018). 

 

We used the first (0–7 cm), second (7–28 cm), and third (28–100 cm) layers’ soil moisture in ERA5-Land to generate 

drought indices. Since previous works used soil moisture from the top to 1–2 m soil depths as root zone soil moisture (e.g., 

Almendra-Martín et al., 2021; Hanel et al., 2018; Herrera-Estrada et al., 2017; Mocko et al., 2021), we also used the top 1 m 95 
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(0–100 cm) soil moisture data. For the top 1 m soil moisture, we calculated the weighting average of soil moisture in the first, 

second, and third layers according to their thicknesses. 

2.2 GDIS 

GDIS (Rosvold and Buhaug, 2021) can be downloaded from https://cmr.earthdata.nasa.gov/search/concepts/C2022273992-

SEDAC.html (data downloaded for this study: October 2021). GDIS is generated based on EM-DAT. GDIS is the geocoded 100 

disaster locations database based on EM-DAT. A natural disaster is recorded into EM-DAT if at least one of the following 

criteria is fulfilled: 10 or more people dead; 100 or more people affected; the declaration of a state of emergency, and a call 

for international assistance (Guha-Sapir et al., 2022). 

 

The 282 drought events from 1964 to 2018 were analyzed. Each drought event is distinguished based on the EM-DAT 105 

database’s event identifier (disasterno). In EM-DAT, disaster events are uniquely distinguished by the combination of an 8-

digit disaster code and a 3-digit country code. In contrast, GDIS uses only the 8-digit disaster code, which is common with 

EM-DAT, and assigns the same identifier to a disaster event even if it spreads over multiple countries. In the case of 

extensive drought events, such as ones induced by El Niño, it is not reasonable to treat distant countries with the same event 

identifier. In this study, the event classification of the original EM-DAT was adopted, so that events with the same disaster 110 

code that spread over multiple countries in GDIS were analyzed as a separate event for each country. Originally, there are 

433 drought events in GDIS and Drought 282 events in GDIS that met the following criteria were used in this study: (1) The 

drought period is longer than or equal to two months and (2) The GDIS event area is larger than or equal to 50 grid cells in 

the upscaled ERA5-Land. We did not analyze flash drought, which occurred in shorter than two months. The effective 

resolution of the phenomena that can be represented by a numerical simulation model is several times as large as the original 115 

size of computational grids (Skamarock, 2004), so that the events with the small extent relative to the grid spacing were 

neglected in this study. GDIS itself does not have drought period information, namely when the event starts and ends. The 

drought period information was added to GDIS via EM-DAT database’s event identifiers. EM-DAT shows only the event 

year and provides no information on the start and/or end month for some drought events. In such cases, we applied January 

for the start and December for the end of the event. GDIS provides affected spatial geometry in the form of GIS polygons of 120 

administrative units. Administrative units with the same event identifier (disasterno) were treated as one “GDIS event area” 

(see Fig. 2 as an example). Sánchez et al. (2018) treated one drought event per one administrative unit. However, this event 

classification depends on the fineness of the division of administrative units (e.g., Thailand, where administrative units are 

very finely divided, has more than 50 events during 2010–2015 in Sánchez et al. (2018)), which affects the results of drought 

detection skill. Therefore, we treated administrative units with the same event identifier as one drought event, following EM-125 

DAT classification. 
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2.3 Other supporting data 

To show the levels of drought indices associated with GDIS drought eventsTo show the drought vulnerability by 

geographical regions, we used the classification of the world bank geographical regions.  

 130 

As a proxy of exposure dataAs land cover data, we used the MODIS land cover climate modeling grid (MCD12C1) version 

6 data product (Friedl and Sulla-Menashe, 2015). This land cover product has 17 classes. The temporal resolution is yearly, 

and we used the latest, 2020 data. The original spatial resolution is 0.05° and we resampled it to 0.25° by the nearest 

neighbour approach. 

3 Methodology 135 

3.1 Drought indices 

We used two drought indices, the Drought Area Percentage (DAP) and the Standardized Deficit Index (SDI), to evaluate the 

severity of the hydro-meteorological drought hazard in ERA5-Land. For the soil moisture data in each grid cell, percentiles 

were first calculated for each calendar month separately during 1950–2020. After the percentiles were calculated, only data 

during the period with the GDIS drought events (1964–2018) was used in all subsequent steps of this study. We used the 140 

longer period of original ERA5-Land data (1950–2020) to calculate percentiles than the study period (1964–2018) to yield 

more robust percentile values. The 20th percentile was taken as a threshold for defining a drought at each grid cell (Sheffield 

and Wood, 2011; Hanel et al., 2018). DAP is the maximum percentage of the area where soil moisture is below the 20th 

percentile threshold within the GDIS event area during the GDIS drought period. The higher the percentage means the 

severer the hydro-meteorological hazard is. DAP has been used as a drought index in many studies (e.g., Sánchez et al. 2018; 145 

Udmale et al. 2020). 

 

DAP is a snapshot of the long-lasting drought phenomenon and does not include the cumulative effects of the long-lasting 

drought. The other limitation of DAP is that it could be affected by the size of the GDIS event area; DAP tends to be small in 

large event areas. In addition to DAP, we developed a new drought indicator, called SDI, which accounts for the cumulative 150 

effects of drought and is less influenced by the size of the GDIS event area. First, a deficit volume, a cumulative deviation 

below the 20th percentile threshold, was calculated for each grid cell. Then, we summed up the maximum annual deficit 

volume per grid cell in each GDIS event area, which is defined as the annual maximum deficit volume in the GDIS event 

area. The cumulative effect of the movement of drought areas can be considered by calculating the annual maximum value 

for each grid before averaging the values within the GDIS event area. Finally, the annual maximum deficit volume in the 155 

GDIS event area was standardized, dividing each year's annual maximum deficit volume by the mean of the annual 

maximum deficit volume over the period (1964–2018). The higher SDI means the severer hydro-meteorological hazard, and 
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the value of 1 is the standard annual maximum drought event. The standardization makes it possible to compare the different 

events across space and time, even if the size of the GDIS event area is quite different. Hanel et al. (2018) calculated SDI for 

each grid cell. We extended this methodology to evaluate the drought index representative in the GDIS event area. 160 

3.2 Evaluation of the drought indices by GDIS 

To evaluate whether the GDIS drought events are generally represented by the drought indices quantified from ERA5-

Landthe drought indices can accurately identify the drought events shown in GDIS, we tested whether the drought indices 

during the GDIS drought period were distinguishable from those during the whole period (1964–2018). We applied a 

bootstrap random resampling method to show the distributions of drought indices for the whole period. For DAP, we set a 165 

12-month moving window, which is approximately the mean of the drought duration in GDIS, and extracted the maximum 

percentage in each window for each GDIS event. From this assemblies, we extracted DAP randomly with 1000 replications. 

For SDI, we extracted SDI randomly with 1000 replications from the whole study period. We used two-sample 

Kolmogorov–Smirnov (K–S) test (Massey, 1951) to quantify the difference of the distributions of drought indices during the 

GDIS drought period and the whole period. If the p-value of K–S test is smaller than 0.01, the hypothesis that two 170 

distributions follow the same distribution is rejected at 1% significance level. Due to the difference of the sample size (i.e., 

Drought period: 282; Whole period by a bootstrap random resampling method: 1000), the distributions were normalized, 

namely the densities sum to 1, prior to the comparison. We recognized that the GDIS drought events are generally 

represented by the drought indices quantified from ERA5-Land if the median of the drought index during the GDIS drought 

periods is higher than that of the whole period and the two distributions of the drought index are not statistically the same the 175 

drought indices successfully capture the GDIS drought events if the two distributions are not statistically the same. 

3.3 Regional levels of drought indices associated with GDIS drought eventsRegional vulnerability to drought 

The levels of hydro-meteorological drought indices associated with socio-economic drought events shown identified in 

GDIS are different in different regions due to a wide variety of vulnerability to drought. Vulnerability could explain these 

differences (Delbiso et al. 2017; Gasparrini et al. 2015; Tschumi and Zscheischler, 2020). Note that vulnerability is not the 180 

only explanation for these differences; exposure is another factor that influences the linkage between hazards and impact 

(Visser et al., 2014; see also the discussion section). Since we did not directly include exposure, we recognized these 

differences as “the proxy of vulnerability”. Following Bachmair et al. (2016), and Tschumi and Zscheischler (2020), the 

levels of SDI which are associated with socio-economic drought events in GDIS were quantified and analyzed. The levels of 

SDI were stratified by geographical regions to understand the distribution of the proxy of vulnerability in each region. 185 
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3.4 Global drought frequency analysis by drought clustering 

We analyzed whether drought-prone areas identified by drought indices are globally consistent with those found in GDIS. 

We applied the drought clustering method (Andreadis et al., 2005) to search for the spatially contiguous areas (or clusters) 

under drought at each timestep. In this drought clustering, we assume that drought occurs over a reasonably large spatial area 

driven by a large-scale climate process (Sheffield and Wood, 2011). We used the processing code developed by Herrera-190 

Estrada and Diffenbaugh (2020). 

 

After the percentiles are calculated in each grid cell, a 2-D median filter is applied to each monthly global data to smooth out 

small-scale noise. Contiguous areas under drought (soil moisture below the 20th percentile in this study) are aggregated into 

clusters at each timestep. Following Herrera-Estrada and Diffenbaugh (2020), we analyzed clusters that reach a maximum 195 

area of at least 100,000 km2 (approximately 120 grid cells in the upscaled ERA5-Land) to focus on large-scale droughts. For 

a sensitivity analysis of this size of drought clusters, see Text S1 and Fig. S1. The location of the cluster centroid is detected 

at each time step using the weighting average of the cluster’s location with the intensity values of the cluster grid cells. 

Droughts whose centroids fell within the barren or sparsely vegetated areas based on MODIS land cover were masked out 

from the cluster analysis, due to the little or no exposure (i.e., population, assets) (e.g., Carrão et al., 2016; Herrera-Estrada et 200 

al., 2017). We confirmed that there were no drought events in GDIS which were fully included within the barren or sparsely 

vegetated areas. Figure 1 demonstrates this drought clustering. The cluster centroid shows the area that experiences higher 

drought displacement, and we made an upscaled map of cluster centroids from the original spatial resolution of 0.25° to 2.5°. 

For a sensitivity analysis of this upscale resolution, see Text S2 and Fig. S21. See Andreadis et al. (2005) for details about 

the clustering method.  205 

 

We visualized the socio-economic drought-prone areas by overlaying all polygons of the GDIS. We compared the regional 

drought frequencies in GDIS with the number of drought cluster centroids by ERA5-Land. We examined whether hydro-

meteorological drought-prone areas are consistent with those found in GDIS. 

4 Results 210 

4.1 The performance of drought indices to detect the drought 

Figure 2 demonstrates DAP and SDI for the drought events in Ethiopia and Argentina in 2009. For both drought indices, 

higher values indicate severer drought. Figures 2 (a) and 2 (e) show that DAPs in the first and second soil layers respond to 

rainfall deficit more quickly than the deep soil layers. During the GDIS drought period, all layers show high DAPs, and the 

third layer has been experiencing a high DAP for a long time. DAPs in the first and second layer are sometimes high outside 215 

of the GDIS drought period. Root-zone (0–100 cm) layer generally follows the third layer’s fluctuations, though the root-
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zone positions between the second and third layers during the GDIS drought period in Ethiopia case. Figures 2 (c) and 2 (g) 

show that SDIs fluctuate less compared with DAPs. This is because SDI considers the cumulative effect. During the GDIS 

drought period, all layers show high SDIs, and the differences between the GDIS drought period and the non-drought period 

stand out more prominently compared with DAP. The third layer shows the highest SDI during the GDIS drought period, 220 

especially in Argentina case, reflecting the consistently high DAP during the GDIS drought period. Root-zone (0–100 cm) 

layer generally follows the third layer’s fluctuations. 

 

Figures 3 and 4 reveal that ERA5-Land based drought indices can distinguish the GDIS drought period from the whole 

period. The value above the violin plot shows the difference of the median values in the GDIS drought period and the whole 225 

period. In Fig. 3, DAP during the GDIS drought periods is significantly higher (p<0.01) than that of the whole period in all 

soil layers. Please Nnote that the samples in the whole period shown in Fig. 3 include those during the GDIS drought period. 

In addition, severe drought events unreported in GDIS may also be included. The difference of the median values of DAP in 

the GDIS drought period and the whole period is largest in the third layer (28–100 cm) case. In Fig. 4, SDI during the GDIS 

drought period is significantly higher than that of the whole period in all soil layers, as we found in DAP. Although the 230 

second, third and root-zone soil layers show the similar distributions, the difference of the median values of SDI in the GDIS 

drought period and the whole period is largest in the root-zone (0–100 cm) case. Both of drought indices based on ERA5-

Land can generally represent capture the GDIS drought events. Note that although we confirmed a general linkage between 

drought hazards and the GDIS drought events, some GDIS events could not explained by our indices based on the anomaly 

of soil moisture. We will use SDI for the regional comparison shown below, because SDI is a standardized indicator, which 235 

allows the comparison between the different events across space and time, even if the size of the GDIS event area is 

substantially different. 

 

4.2 Regional levels of drought indices associated with GDIS drought eventsRegional vulnerability to drought 

Figure 5 shows the distribution of the root-zone layer’s soil moisture-based SDI stratified by geographical regions. The 240 

colour of the figure shows the average soil moisture over the study period. Sub-Saharan Africa and South Asia have manya 

large number of small SDI events associated with the GDIS identified drought, while North America and Europe have a 

large number of large SDI events. Having manyA large number of small SDI events indicates that less severe hydro-

meteorological droughts have caused serious socio-economic impacts, meaning that the regions are vulnerable to drought. 

On the other hand, the regions with manya large number of large SDI events can be recognized as less vulnerable regions to 245 

drought. robust regions to drought. Thus, Sub-Saharan Africa and South Asia are vulnerable to drought, while North 

America and Europe are less vulnerable robust to drought. Sub-Saharan Africa, which is vulnerable to drought, shows lower 

water availability. This regional characteristic of the proxy of vulnerability to drought can be found when SDI is generated 
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by soil moisture in different soil layers (not shown). Note that Middle East & North Africa were excluded from the analysis 

because the sample size was too small (n = 4). 250 

4.3 Global drought frequency analysis by drought clustering 

Figure 6 shows the number of drought events at a sub-national level during 1964–2018 based on GDIS. It shows that the 

Horn of Africa, Mozambique, northern China, and western India are socio-economic drought-prone areas. Each region is 

shown enlarged in Figs. 6 (b) to 6 (e). Figure 7 shows the number of drought events on the aggregated national level during 

the same period based on EM-DAT. Although we can see that the number of drought events is high in China, there is little 255 

information about the regional differences in drought-prone areas. 

 

This distribution of drought-prone areas in GDIS can be reproduced by ERA5-Land. Figure 8 shows the number of the 

drought cluster centroids upscaled to 2.5° based on drought clusters from ERA5-Land third layer’s soil moisture. Drought-

prone areas quantified from ERA5-Land soil moisture (Fig. 8) are consistent withto those listed in GDIS (Fig. 6). The Horn 260 

of Africa, northern China, and western India can also be recognized as drought-prone areas by ERA5-Land-based drought 

clusters. Mozambique cannot be identified as a drought-prone area in ERA5-Land. Please Nnote that the number of the 

drought cluster centroids (Fig. 8) would be larger than the number of drought events in GDIS (Fig. 6). The number of 

drought events in GDIS is counted as one event even if a GDIS event lasts several months. On the other hand, the number of 

drought cluster centroids is counted in every monthly time step. Several clusters may be contained simultaneously in a large 265 

GDIS drought area. ERA5-Land identifies some drought-prone areas which are not included in GDIS, such as Namibia, 

Indonesia, and Spain. See also the supplement material for sensitivity analysis with different thresholds of the size of drought 

clusters (Fig. S1), showing that drought-prone areas found in GDIS cannot be reproduced by ERA5-based drought-prone 

areas when we used too small or large thresholds of the size of drought clusters. The locations of drought-prone areas are 

almost the same when drought clusters are generated by soil moisture in different soil layers (Fig. S32). The drought-prone 270 

areas are most distinguishable from their surroundings in the third layer case. 

5 Discussion 

In previous studies, the verification of sub-national drought events by hydro-meteorological data has been insufficient. There 

are some works only on the specific regions (e.g., Bayissa et al., 2018; Lu et al., 2019) or in a short period of time (Sánchez 

et al., 2018), due to the lack of precise sub-national information on disaster locations. Using the latest sub-national disaster 275 

database, GDIS, this study was able to cover a large number of drought events compared to previous studies. In Sánchez et al. 

(2018), the criterion for the detection of drought events was that more than one-third of the area was under drought. However, 

the size of the drought event area could affect the criterion, and the threshold of one-third is rather subjective. By defining 
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the standardized drought index, this study uniformly and objectively showed the representation accurate detection of sub-

national drought information by ERA5-Land soil moisture, even if the size of the event differs. 280 

 

The comparison of SDI associated with GDIS drought events across regions benefits the quantification of vulnerability to 

drought in each region. The vulnerability to drought was quantitatively assessed across regions by comparing SDI. We 

confirmed that Sub-Saharan Africa and South Asia were vulnerable to drought, while North America and Europe were less 

vulnerable robust to drought. Tschumi and Zscheischler (2020) also showed smaller climate anomalies in less developed 285 

countries associated with EM-DAT disasters, meaning that less developed countries were vulnerable to natural hazards, as 

shown in our Fig. 5. Previous studies have shown that higher GDP per capita is associated with lower vulnerability to natural 

hazards (e.g., Kim et al., 2019; Tanoue et al., 2016)., North America and Europe are high-income countries, and these 

previous works support our findings. and our finding is consistent with these previous works. There are global vulnerability 

indices such as the WorldRiskIndex (Welle and Birkmann, 2015), INFORM index (Marin-Ferrer et al., 2017), and ND-290 

GAIN (Chen et al. 2015), which combine socio-economic factors such as economic level, infrastructure level, and education 

level. These indices have also indicated that Sub-Saharan Africa and South Asia are vulnerable, while North America, 

Europe, Australia, and Japan are less vulnerable  robust to natural hazards (Birkmann et al., 2021; Birkmann et al., 2022; 

Garschagen et al., 2021). The reason why the low-income countries are vulnerable to drought could be the lack of drought 

mitigation measures (e.g., dams, irrigation system, early-warning system, etc.), as pointed out in previous studies (e.g., 295 

Lavell et al., 2012; Stringer et al., 2020; UNEP, 2018). As shown in Fig. 5, Sub-Saharan Africa, which was vulnerable to 

drought, showed lower water availability. It may be another reason for the difficulty in managing the drought hazards in 

Sub-Saharan Africa. 

 

GDIS, a sub-national level disaster locations dataset, has enabled us to understand drought-prone areas on a finer scale than 300 

the previous global-scale analyses. EM-DAT is generally a national-level database with limited sub-national disaster 

information. Shen and Hwang (2019) compared the frequency of disaster occurrence in EM-DAT at the national level and 

pointed out that frequent areas were large or populated countries. GDIS provides more detailed information about drought-

prone areas, especially in large countries such as China and India. We successfully clarified that there was the considerable 

heterogeneity of the drought-prone areas within the country. 305 

 

There were some inconsistencies between hydro-meteorological drought-prone areas in ERA5-Land and socio-economic 

drought-prone areas in GDIS. Mozambique is a socio-economic drought-prone area in GDIS, which cannot be identified as a 

drought-prone area in ERA5-Land. Madagascar, which is geographically closer to Mozambique, is a drought-prone area in 

ERA5-Land. The performance of ERA5-Land to simulate soil moisture might affect these inconsistencies. The lack of the 310 

reproducibility of ERA5-Land might affect these inconsistencies. In contrast, there were some hydro-meteorological 

drought-prone areas in ERA5-Land, which were not included in socio-economic drought-prone areas in GDIS (e.g., Spain, 
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Namibia, and Indonesia). Spain, a member of European countries, is less vulnerable  robust to drought, as shown in Fig. 5 

(two events were observed in Spain, and their average SDI was 4.3). In Namibia, a lack of exposure makes socio-economic 

droughts less likely to occur. When assessing socio-economic impact, the presence of the exposure should also be considered 315 

(Visser et al., 2014). Namibia has extremely low population density throughout the country (under 1 person per km2 in 2020, 

Gridded Population of the World (GPW) version 4.11, Doxsey-Whitfield et al., 2015). Similarly, western Australia, central 

and eastern Russia do not have socio-economic droughts in GDIS due to the low population density. In Indonesia, the 

absolute amount of rainfall is so high that the relatively small soil moisture may not cause socio-economic drought. Kim et al. 

(2019) reported that there was no clear correlation between drought severity and yields reduction in areas where average 320 

annual precipitation is more than 900 mm. Indonesia is one of the rainiest regions on the globe, with more than 2,700 mm 

annual precipitation (2017, FAO, 2022). Despite these individual circumstances, our results showed that socio-economic 

drought-prone areas in GDIS were generally consistent with hydro-meteorological drought-prone areas in ERA5-Land (the 

Horn of Africa, northern China, and western India), indicating that the reanalysis product can be utilized to show a “potential” 

of socio-economic drought impact. 325 

 

The consistency between hydro-meteorological drought-prone areas in ERA5-Land and socio-economic drought-prone areas 

in GDIS shows that spatially large hydro-meteorological droughts (we analyzed at least 100,000 km2) typically lead to 

impacts as shown in GDIS. Although the drought frequency defined by simulated soil moisture is the same everywhere at the 

grid level (we set the 20th percentile as a drought threshold), there was considerable heterogeneity in the spatially large 330 

drought-prone areas (Fig. 8). There are some factors that contribute to the emergence of drought-prone areas, such as El 

Niño Southern Oscillation (ENSO), La Niña, intertropical convergence zone (ITCZ), monsoon, landatmosphere coupling, 

and anticyclones (Christian et al., 2021). La Niña affects the Horn of Africa, northern China, and western India and has 

caused severe drought impacts (Funk, 2011; Jain et al., 2021). Ummenhofer et al. (2011) clarified the effect of El Niño–

Indian monsoon relationship on drought in western India. Spatio-temporally large events such as La Niña might cause 335 

drought to persist, which leads to drought impacts as shown in GDIS. However, the drought factors are complex, and much 

future work is needed to reveal the mechanism of the emergence of drought-prone areas. 

 

Although various reanalysis products have been developed and their validations have been conducted by comparing them 

with earth observation data their reproducibility has been verified (e.g., Muñoz-Sabater et al., 2021; Reichle et al., 2017; 340 

Rodell et al., 2004), few studies have examined the validation reproducibility in terms of the disaster occurrencesocio-

economic impact. Sawada (2018) compared the areas identified as drought quantified from a reanalysis product with the 

disaster records from EM-DAT, but only in a country-scale. As seen in Fig. 7, national-level information does not provide 

accurate views pictures of disaster locations, so that it which is insufficient for validation data. The use of sub-national 

disaster databases such as GDIS opens the door to validate evaluate reanalysis products in terms of the disaster occurrence.  345 

 



12 

 

Although there are many variables to quantify hydro-meteorological droughts, we showed that soil moisture could represent 

clearly capture the GDIS drought events in time and space. In the comparison of the soil layers, deep layers (i.e., the third 

layer (28–100 cm) and root-zone layer (0–100 cm)) were affected for a longer period, which made SDI tend to be higher 

than that of the first (0–7 cm) and second (7–28 cm) layers during drought. In drought clustering, the drought-prone areas 350 

were most distinguishable from their surroundings in the third layer case. Sawada and Koike (2016) used land reanalysis 

products to confirm that drought propagates from surface to root-zone (5–100 cm) soil moisture and then to vegetation, and 

showed that root-zone soil moisture and vegetation were good indices to represent capture the prolonged drought impact in 

the case of the Horn of Africa drought (2010–2011). In this study, we confirmed that many of the serious socio-economic 

drought events such as those listed in GDIS were the events that were associated with the soil moisture deficit not only on 355 

the surface layer but also down to the root. Many drought studies have used root-zone soil moisture and our study has 

reinforced its validity. Hao and Singh (2015) suggested that a single drought index is insufficient to capture different impact 

types of droughts (e.g., water shortage, famine. wildfire, etc.). Several studies have tried to develop a new combined drought 

index based on several hydro-meteorological variables (e.g., precipitation and soil moisture) to express socio-economic 

drought impact by using Random Forest models (e.g., Bachmair et al., 2016; Hobeichi et al., 2022). We used the percentile 360 

soil moisture, deviation from the normal condition, to quantify drought following many previous studies (e.g., Sheffield and 

Wood, 2011; Hanel et al., 2018). However, the inconsistency for Indonesia between hydro-meteorological drought-prone 

areas and drought-prone areas found in GDIS implies that the drought in extremely wet regions might not be well 

represented. It means that our drought quantification method based on relative values of soil moisture cannot accurately 

consider the amount of regularly available water resources. An alternative way to quantify drought is to use an absolute soil 365 

moisture value, but it is not straightforward to quantify drought events by absolute soil moisture values. The thresholds of 

drought impact occurrences in absolute values are different in different regions, because ecosystems/societies have adapted 

to the water availability in their region. It means that a unified drought analysis across multiple regions is difficult to be 

developed based on absolute values of soil moisture. The other limitation is the biases of absolute values of soil moisture in 

reanalysis products. Many climate studies have used relative values rather than absolute values because biases in climate 370 

models are less important in relative values (Liu and Key, 2016). Further studies are needed for the variable selection and 

drought indices according to the type of drought, which leads to more accurate representation of socio-economic drought 

impact by hydro-meteorological variables. 

 

The relationship between hazards and impact is much more complex than addressed in this study. Many studies have 375 

revealed the non-linear relationships between the drought severity and the reduction of vegetation growth (e.g., Chen et al. 

2020; Meyer et al., 2014), where damage increases suddenly when the drought severity exceeds a certain critical threshold. 

On the other hand, de Brito et al. (2020) reported that there was a linear relationship between the drought severity and the 

number of drought articles as a proxy of socio-economic drought impacts. In addition, drought is a long-lasting disaster and 

there is a time-lag between hazards and impact, so that the period of hydro-meteorological drought is not necessarily 380 
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consistent with the period considered as a disaster in EM-DAT. Some studies have revealed that the impacts of drought last 

even after the hydro-meteorological drought ends (e.g., Shahbazbegian and Bagheri, 2010). Yokomatsu et al. (2020) 

analyzed the impact of the drought in terms of the economic development after the drought. In any case, further analyses are 

needed to focus on the chronological correspondence to drought hazards. 

 385 

The limitation of the quantification of the proxy of vulnerability in assessment of this study is that we only captured the 

static conditions over time. We do not reveal which factors (e.g., infrastructure, economic, social, or cultural assets) 

contribute to the vulnerability. Vulnerability to disasters is complex and dynamic. For example, people’s water demand 

could dynamically change after experiencing drought events (Gonzales and Ajami, 2017). Improved irrigation scheduling 

(Cao et al., 2019) and dam operation (Wu et al., 2018) based on forecasts could reduce the drought damage. Exposure is 390 

another important factor that influences the linkage between hazards and impact (Visser et al., 2014). The inconsistency 

between hydro-meteorological drought-prone areas in ERA5-Land and drought-prone areas found in GDIS in Namibia 

implies that the quantification of exposure is necessary to strengthen the analysis in our study. It is necessary to identify what 

has been damaged (e.g., people, crops, forests, etc.) to quantify exposure. However, EM-DAT provides no information about 

impact types (e.g., water shortage, famine, wildfire, etc.) in many drought events, which inhibits the identification of what 395 

has been damaged. Like vulnerability, exposure is complex and dynamic. For example, the level of exposure is affected by 

changes in crop growing with the seasons (Bodner et al., 2015). To improve our analysis on vulnerability shown in Sect. 

4.2, detailed analyses on the complex and dynamic nature of both vulnerability and exposure are necessary.Although we 

quantified the vulnerability to drought in different geographical regions, detailed analyses are needed to reveal the complex 

and dynamic nature of vulnerability based on the linkage between hydro-meteorological drought hazards and socio-400 

economic impacts. 

 

The major limitation of this study is the incompleteness of the drought impact data. Although GDIS enables sub-national 

drought analysis, GDIS only covers about 60% of droughts in EM-DAT due to vague or unknown location names in EM-

DAT (Rosvold and Buhaug, 2021). Note that even EM-DAT does not cover all disasters. Moreover, EM-DAT and GDIS 405 

have insufficient quantitative impact information. EM-DAT provides no information about the amount of damage in multiple 

drought events. There is a lot of uncertainty in the amount of damage because it is difficult to quantify indirect damages of 

drought (e.g., Yokomatsu et al., 2020). Although we excluded GDIS drought events shorter than two months from our 

analysis, some of the analyzed events might be shorter than two months. This is because we applied January for the start and 

December for the end of the event if the start and/or end months of events shown in EM-DAT were unclear. Although GDIS 410 

is a pioneering work to achieve the detailed analysis of the relationship between hydro-meteorological drought hazards and 

socio-economic impact of drought in a global scale, which we performed in this paper, there is much room for improvement 

of the global disaster database such as including detailed and quantifiable damage information by following the approaches 

of EDII and US DIR. 
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6 Conclusions 415 

We evaluated how the sub-national socio-economic drought impact information events shown in GDIS could be reproduced 

by the natural hydrological drought indices generated by the reanalysis product, ERA5-Land. We confirmed that the 

reanalysis product represented  captured the socio-economic drought impacts in GDIS at a statistically significant level. Our 

comparison between GDIS and ERA5-Land could benefit the quantification of vulnerability to drought, and wWe also 

showed that Sub-Saharan Africa and South Asia were vulnerable to drought, while North America and Europe were less 420 

vulnerable robust to drought. We analyzed the global spatial distribution of drought frequency, and we found that socio-

economic drought-prone areas in GDIS were generally consistent with hydro-meteorological drought-prone areas expressed 

by ERA5 Land based soil moisture deficit (the Horn of Africa, northern China, and western India). The use of sub-national 

disaster information, such as GDIS, makes it possible to identify socio-economic drought-prone areas on a finer scale and 

can contribute to validating reanalysis products. 425 

Code and data availability 

The drought clustering python code can be downloaded at https://github.com/julherest/drought_clusters (last access: 5 31 

August March 2022). The ERA5-Land dataset can be downloaded at 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form (last access: 531 August  March 2022). 

The GDIS dataset can be downloaded at https://cmr.earthdata.nasa.gov/search/concepts/C2022273992-SEDAC.html (last 430 

access: 531 AugustMarch 2022). The EM-DAT database can be viewed at https://www.emdat.be/ (last access: 531  August 

March 2022). World bank's geographical regions can be viewed at https://datatopics.worldbank.org/world-development-

indicators/the-world-by-income-and-region.html (last access: 531 August March 2022). The MODIS land cover data can be 

downloaded at https://lpdaac.usgs.gov/products/mcd12c1v006/ (last access: 531 AugustMarch 2022). The gridded 

population of the world can be downloaded at https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11 435 

(last access: 531 AugustMarch 2022). The global map of FAO’s annual average precipitation can be viewed at World bank 

website https://data.worldbank.org/indicator/ag.lnd.prcp.mm?msclkid=215b9959b08711ec944832810373c8aa&view=map 

(last access: 531 AugustMarch 2022). 
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Figure 1: Demonstration of drought clustering. (a) Global map of soil moisture percentile for the root-zone layer’s soil moisture in 

January 1964. (b) Drought clusters, spatially contiguous areas under drought (below 20th percentile) are extracted from (a). A 2-D 

median filter is applied prior to drought clustering, which makes slight differences compared with (a). 

 



22 

 

 

Figure 2: Demonstration of drought indices in different soil layers for the drought events in Ethiopia in 2009 (a–d) and Argentina 

in 2009 (e–h). (a, e) DAP; red band shows the GDIS drought period, and each coloured line shows the values in each soil layer 

(first (blue), second (green), third (orange), and root-zone (black)). (b, f) the enlarged view of DAP around the GDIS drought 

period. (c, g) SDI; the legends are the same as DAP (a, e), and grey dotted line shows the value of 1 (the mean of SDI over the 

study period).  (d, h) the GDIS drought area of this event; black line shows the country border, and light blue line shows the 

affected administrative units shown in GDIS. GDIS provides GIS polygons of administrative units, and administrative units with 

the same event identifier (disasterno) were treated as one “GDIS event area”, the assembles of each light-blued administrative 

unit. The soil moisture percentile is generated from the root-zone layer’s soil moisture as an example. 
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Figure 3: Comparison of DAP between the GDIS drought 

period and the whole period. The red line shows the median 

value and grey dotted lines show the 25th and 75th percentile 

values of each distribution. The value above the violin plot 

shows the difference of the median values in the GDIS drought 

period and the whole period. 

Figure 4: Comparison of SDI between the GDIS drought 

period and the whole period. The red line shows the median 

value and grey dotted lines show the 25th and 75th percentile 

values of each distribution. The value above the violin plot 

shows the difference of the median values in the GDIS drought 

period and the whole period. 
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Figure 5: Comparison of the root-zone SDI by geographical 

regions. The red line shows the median value and grey dotted 

lines show the 25th and 75th percentile values of each 

distribution. The colour shows the average soil moisture over the 

study period (1964– 2018). 
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Figure 6: The number of drought events based on GDIS. (a) Global map, enlarged view of (b) the Horn of Africa, (c) 

Mozambique, (d) China, and (e) India. 
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Figure 7: The number of drought events based on EM-DAT. 
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Figure 8: The number of drought cluster centroids based on ERA5-Land. (a) Global map, enlarged view of (b) the Horn of Africa, 

(c) Mozambique, (d) China, and (e) India. 

 


