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Abstract. There is an urgent demand for assessments of climate change impact on the hydrological cycle at high spatial 

resolution. In particular, the impacts on shallow groundwater levels, which can lead to both flooding and drought, have 

major implications for agriculture, adaptation and urban planning. Predicting such hydrological impacts is typically 

performed using physically-based hydrological models. However, such models are computationally expensive, especially at 

high spatial resolutions. 10 

This study is based on the Danish national groundwater model, setup as a distributed, integrated surface-subsurface model at 

500 m horizontal resolution. Recently, a version at a higher resolution of 100 m was created; amongst others, to better 

represent the uppermost groundwater table and to meet end user demands for water management and climate adaptation. The 

increase in resolution of the hydrological model, however, also increases computational bottleneck. To evaluate climate 

change impact, a large ensemble of climate models was run with the 500 m hydrological model, while performing the same 15 

ensemble run with the 100 m resolution nation-wide model was deemed infeasible. The desired outputs at 100 m resolution 

were produced by developing a novel, hybrid downscaling method based on machine learning. 

Hydrological models for five subcatchments, covering around 9% of Denmark and selected to represent a range of 

hydrogeological settings, were run at 100 m resolution with forcings from a reduced ensemble of climate models. Random 

Forest algorithms were established using the simulated climate change impacts (future – present) on water table depth at 100 20 

m resolution from those submodels as training data. 

The trained downscaling algorithms then were applied to create nation-wide maps of climate change-induced impacts on the 

shallow groundwater table at 100 m resolution. These downscaled maps were successfully validated against results from a 

validation submodel at 100 m resolution excluded from training the algorithms, and compared to the impact signals from the 

500 m hydrological model across Denmark. 25 

The suggested downscaling algorithm also opens for the spatial downscaling of other model outputs. It has the potential for 

further applications where, for example, computational limitations inhibit running distributed hydrological models at fine 

resolutions. 



2 

 

1 Introduction 

Groundwater accounts for a substantial part of the active hydrological cycle, and exhibits a wide range of interactions with 30 

ecosystems, food and energy security, as well as climate and flood regulation (Gleeson et al., 2016). Interactions with the 

land surface and other components of the hydrological cycle are particularly pronounced where the uppermost groundwater 

table is found within few metres of the surface. Such high groundwater tables affect up to a third of the earth’s land surface 

(Fan et al., 2013; Soylu and Bras, 2022). Moreover, across many parts of the world, groundwater resources are not only 

affected by human interactions, but also changing due to climate change (Rodell et al., 2018). 35 

Denmark, with its gentle topography and temperate climate, has particularly high groundwater tables: The uppermost 

groundwater table (which we hereafter refer to as shallow groundwater) is located only few metres to decimetres below the 

surface across large parts of Denmark (Koch et al., 2021; Henriksen et al., 2020a); see Figure 1. This is also reflected in 

roughly 50% of agricultural land in Denmark being artificially drained (Olesen, 2009; Møller et al., 2018). Along with rising 

precipitation in future climate (Pasten-Zapata et al., 2019), the shallow groundwater levels are generally expected to rise 40 

(Refsgaard et al., 2016; Henriksen et al., 2020b; van Roosmalen et al., 2007). The projected rise in groundwater level is most 

pronounced in winter, where groundwater levels are highest to start with, due to increased precipitation. During summer, the 

picture is more complex for shallow groundwater levels, with some areas showing falling groundwater tables due to 

increased temperature and evapotranspiration. More extreme and higher groundwater levels in the future pose significant 

challenges for infrastructure, agriculture and ecosystems (Halsnæs et al., 2022). Due to the considerable small-scale 45 

variability of shallow groundwater levels (Koch et al., 2021), which are mainly controlled by topographic variability and 

hydrogeology, high-resolution information is required for purposeful groundwater management and climate adaptation. 

This requirement for high resolution data is particularly relevant when evaluating climate change-induced impacts on the 

shallow groundwater table. The national water resource model of Denmark (the so-called DK-model) is based on a 

distributed, coupled surface-subsurface model at 500 m horizontal resolution, and recently at a higher-resolution 100 m 50 

version with specific focus on surface-near processes. As forcing for climate change impact studies, a large ensemble of 

locally bias-corrected climate models is available (Pasten-Zapata et al., 2019). Ideally, national hydrological impact 

assessment would be based on the high-resolution version of the hydrological model. However, the 25-fold increase in 

computational nodes for the 100 m model compared to the 500 m model makes such a modelling task infeasible due to the 

computational burden. 55 

In order to obtain national impact projections at high resolution based on a large climate ensemble, but with a minimized 

computational cost, it is proposed to develop a machine learning (ML) based downscaling method to refine impact 

simulations from the computationally feasible 500 m hydrological model (HM) to a resolution of 100 m. 

Within other fields such as remote sensing, ML-based spatial downscaling algorithms have been explored and used for 

several years, for example in the DisALEXI modelling system (Anderson et al., 2004, 2021). The background here often is 60 

to bridge gaps between coarse-resolution imagery from some satellites that typically have a frequent revisit time, and high-
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resolution imagery from other satellites with lower temporal resolution (Yang et al., 2017; Im et al., 2016). Moreover, image 

sharpening techniques that build scale-independent models are utilized to increase the spatial resolution of satellite data 

(Guzinski and Nieto, 2019). Similarly, spatial downscaling is widely applied for weather predictions and climate models 

(e.g. Cheng et al., 2020; Sun and Tang, 2020). We hypothesize that applying similar techniques on outputs from complex 65 

HMs, combining the information of physically-based models with various high-resolution spatial data and ML methods will 

increase relevance of HM outputs. This is a relatively new field with few applications so far: For example, Koch et al., 2021 

used HM outputs as covariates in ML algorithms predicting groundwater table depth at high spatial resolution, or Zhang et 

al., 2021 downscaled GRACE total water storage data with the help of HM output from the GLDAS Global Land Data 

Assimilation System. Here, the presented research is contributing to further integrating physically-based HMs with ML 70 

techniques. This can also contribute to the discussion of further development of knowledge-guided or theory-informed ML 

techniques in hydrological science (Nearing et al., 2021). 

Hence, the objective of this work is to develop a ML-based algorithm for spatial downscaling of physically-based HM 

outputs. This is applied to the downscaling of climate change impact predictions on the simulated depth to the shallow 

groundwater table for Denmark, downscaling from a resolution of 500 m to 100 m. We favour a ML-based approach over 75 

simple interpolation methods or topography-driven downscaling, because ML has the capability to effectively learn 

multivariate relationships which we expect to be highly relevant for a complex variable like the shallow groundwater table. 

Even though running the DK-model nationwide at the fine 100 m resolution with a full ensemble of climate models is 

computationally too expensive, it is feasible to run some selected submodels at 100 m resolution and utilize their high 

resolution outputs as training data for the ML-based downscaling. In addition, a single national scale deterministic run with 80 

historic climate is possible at 100 m, which can serve as valuable information to the downscaling algorithm. Also, all the 

relevant model input data is available at a resolution of at least 100 m. 

2. Data and methods 

2.1 DK-model HIP 

The national water resource model for Denmark, the DK-model, covers most of the Danish land surface area of 85 

approximately 43,000 km2. It has been continuously developed over several decades (Højberg et al., 2013; Henriksen et al., 

2003; Stisen et al., 2019), and been used in various research projects (recent examples: Koch and Schneider, 2022; 

Noorduijn et al., 2021; Schneider et al., 2022; Soltani et al., 2021), as well as public consultancy and in relation to the EU 

Water Framework Directive. It targets, for example, questions of water resource availability, water quality, and future 

impacts on the hydrological cycle due to climate and land use change. Most versions of the DK-model have a horizontal 90 

resolution of 500 m, while a version at 100 m horizontal resolution was created as part of the Danish Hydrologic Information 

and Prognosis System (HIP) (Henriksen et al., 2020b). This most recent version, hereafter referred to as DK-model HIP, is 

the basis of the presented work. Figure 1 displays mean historic depths to the shallow groundwater table as simulated by the 
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DK-model HIP: Shallow groundwater levels are within the first one to two metres from the surface for large parts of the 

country, with variations mostly controlled by topography and geology. 95 

The importance of the location of the shallow groundwater table, and it being controlled by small-scale variations in 

topography and geology, also is one of the main motivations for the creation of the finer 100 m resolution DK-model HIP 

(see also the 10 m resolution map of average groundwater tables developed in the same project by (Koch et al., 2021). 

2.1.1 General hydrological model setup in MIKE SHE 

The DK-model HIP is an integrated, distributed surface water-groundwater model, setup in the MIKE SHE model code 100 

(Abbott et al., 1986; DHI, 2020). MIKE SHE is used to couple 3D subsurface flow, 2D overland flow, a simple 2-layer 

description of the unsaturated zone, and 1D kinematic routing of flow in the stream network. It is run as a transient model 

with daily climate forcing and a maximum timestep of 24 hours. 

The description of the DK-model is kept short here, as the model itself and its development is not the focus of this paper. For 

more details on model setup, input and parameterization, the readers are referred to the provided literature in the following 105 

two sections. 

2.1.2 Input data and conceptualization 

The DK-model HIP exists in two distinct horizontal resolutions of 500 m and 100 m, with all relevant input data available at 

100 m resolution. The saturated zone is divided into 9 to 11 computational layers of varying thickness, depending on the 

region. The 3D unit-based parameterization of the subsurface is based on a nationwide hydrogeological model, with the 110 

exception of the uppermost computational layer with a constant thickness of 2 m which is parameterized based on the Danish 

soil map (Jakobsen et al., 2015). 

Human water use is included to the extent that groundwater extractions for drinking water and irrigation are included as well  

as sewage plant outflows are added to the model. Moreover, the model also includes a representation of (subsurface) 

drainage, which is widespread in Denmark (as described in Schneider et al., 2022). 115 

As historic climate forcing for precipitation, temperature and potential evapotranspiration, the gridded, daily data from the 

Danish Meteorological Institute is used (Scharling, 1999a, b). Temperature and potential evapotranspiration are provided at 

20 km resolution, and precipitation at 10 km, and interpolated to the respective HM resolution of 100 m or 500 m. Daily 

precipitation is corrected as described by Stisen et al., 2011. 

2.1.3 Model calibration 120 

The national DK-model HIP was calibrated in its 500 m version, against observations of groundwater heads and streamflow 

for the period 2000 to 2010, and validated from 1990 to 1999. For calibration, the model optimization tool PEST (Doherty, 

2015) was used with its implementation of the Gauss-Marquardt-Levenberg algorithm. Again, due to excessive 

computational effort, it was not possible to conduct such a calibration, requiring a large number of model runs, with the full 
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100 m national model. However, through a validation comparison, it was deemed feasible to directly transfer the calibrated 125 

parameters from the 500 m version of the model to its 100 m version without loss of performance. On the contrary, 

especially the performance for shallow groundwater heads was improved moving from the 500 m to the 100 m version. A re-

calibration of a limited set of parameters for ten subcatchments in 100 m yielded no substantial additional improvement in 

model performance. Details regarding the model calibration are beyond the scope of this paper and can be found in 

Henriksen et al., 2020a. 130 

2.2 Input data for future climate scenarios 

2.2.1 Climate models 

An ensemble of regional climate models (RCM) from the Euro-CORDEX initiative (Jacob et al., 2014) was used in this 

work. Those RCMs were locally bias corrected for Denmark and remapped to the same 10 km and 20 km resolution of the 

historical climate data as described in Pasten-Zapata et al. (2019). All RCMs cover the years 1971 to 2100 with daily 135 

timesteps. For the work presented here, we used 17 RCMs representing the RCP8.5 greenhouse gas concentration scenario 

(van Vuuren et al., 2011) shown in Table 1. Out of that ensemble of 17 RCMs, we selected a subset of five RCMs. Those 

five RCMs were selected based on their ranges of projected precipitation, to cover a wide range of future climates, and 

ensuring that the median precipitation predictions across the five selected RCMs are close to the median precipitation 

predictions of the entire ensemble of 17, as well as cover variances in changes between summer and winter precipitation. 140 

This subset of five RCMs was used with the 100 m submodels (Figure 1), producing the training data for the downscaling. 

2.2.2 Further input data for future scenarios 

Beyond climate forcing, some further input data were adapted to account for future conditions: Sea level is included as fixed 

head boundaries along the HM’s sea boundaries. For the historic model runs, the sea level is kept constant at elevation 0 m. 

For the future scenarios, sea level rise was accounted for as projected by the Danish Meteorological Institute (Thejll et al., 145 

2021). 

Changes in groundwater abstraction rates, sewage plant outflows and land use were not projected, but current historic values 

and maps were assumed for the future period. Irrigation is simulated demand driven in the model; hence, it automatically 

accounts for climatic changes. 

2.3 Climate change impact runs with the hydrological models 150 

An overview over the different climate change impact runs performed with the HMs is given in Table 2: Due to 

computational limitations, we ran the full, 17 RCM ensemble only with the 500 m national HM (C; B is a subset of C). 

Besides that, we selected five training subcatchments, covering in total about 9% of Denmark’s surface area, and ran those 

with five selected RCMs at 100 m resolution (D). To allow for a fully independent validation, a sixth validation submodel 
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was run at 100 m resolution, with the full RCM ensemble (E). Finally, the DK-model HIP was also run for all of Denmark 155 

with observed climate forcing, for the period 1990 to 2019. These historic runs were performed both at 500 m and 100 m 

resolution (A and *). Relevant HM outputs were initially stored at daily timestep and then aggregated as described below in 

section 2.3.1. 

For the climate change impact evaluation, the HMs were run using each individual member of the ensemble of RCMs as 

forcing, for three different periods: The reference period, serving as baseline, as well as the near future period (nf), and the 160 

far future period (ff). For the reference period, model outputs were extracted from 01-01-1991 to 31-12-2020, for the near 

future from 01-01-2041 to 31-12-2070, and for the far future from 01-01-2071 to 31-12-2100. The HMs were started from 

initial conditions taken from a continuous run of the corresponding HM across the entire period of 1991 to 2100, using 

conditions from the same date as the respective simulation start. A warmup period of four years prior to the start dates for 

result extraction was allowed for each of the HM runs. 165 

2.3.1 Climate change-induced changes to the shallow groundwater table 

Finally, the climate change impacts of interest were the average conditions across each of the future 30-year periods, 

subtracted from the reference 30-year period. These climate change impacts on the shallow groundwater table are hereafter 

also referred to as to-be-downscaled-variables (TBDV). 

That means we focus on changes to the groundwater table caused by future climate change, as opposed to absolute values, as 170 

changes can be more useful than absolute values when comparing present-day to future conditions. This is mostly because 

changes to the groundwater table are typically small compared to the absolute depth to the groundwater table and the 

uncertainties in the modelled absolute depth. Hence, when evaluating future conditions, an absolute value predicted by the 

HM can only be used in direct comparison to present-day output of the same HM. If being used in different contexts, for 

example in comparison with more detailed local HM results or observations of the groundwater table, the discrepancies 175 

between these absolute values will dominate and potentially mask the projected changes. When using predicted changes 

between reference and future period HM outputs with the same HM setup, those projected changes can be attributed with 

high confidence to the changes in climate. 

Hence, we downscale projected climate change-induced changes to the shallow groundwater table. Different aggregated 

statistics were chosen, and changes were calculated for both the near and far future periods. The chosen aggregated statistics 180 

are the changes to the mean, 1st percentile and 99th percentile of the simulated groundwater table (high and low groundwater 

tables, respectively), as well as changes to the 1 m exceedance probability. The latter represents the fraction of time the 

groundwater table is closer than 1 m to terrain during the given period. The 1 m threshold was chosen based on user 

feedback (Stisen et al., 2018), and is relevant due to issues with infrastructure and agriculture caused by high groundwater 

levels, many of which are expected to start if the groundwater is closer than 1 m to the surface (e.g. is the typical depth of tile 185 

drains around 1 m). This results in a total of eight statistics to be downscaled (TBDV, see also Table 3). For example, the 

change to 1st percentile depth to the groundwater table for the near future period Q01nf g is calculated as 
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𝑄01𝑛𝑓 𝑔 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑄01(𝑛𝑓𝑖)𝑔 − 𝑄01(𝑟𝑒𝑓𝑖)𝑔)        (1) 

where Q01(nfi)g is the 1st percentile of depth to the groundwater table simulated in each of the HM’s grid cells g individually, 

across all daily values of the 30-year near future period, and Q01(refi)g is the respective value for the 30-year reference 190 

period. i refers to each of the individual members of the RCM ensemble used, and the actual TBDV then is the median 

change across the RCM ensemble. The subscript g is omitted in the following for ease of readability. In equivalent manner, 

all the eight TBDV meannf, meanff, Q01nf, Q01ff, Q99nf, Q99ff, ex1mnf, and ex1mff are calculated. Moreover, in the same 

manner as the TBDV were calculated based on the 500 m national DK-model HIP outputs, the respective training data was 

calculated based on the 100 m submodels. 195 

2.3.2 National climate change impact runs in 500 m 

The full national DK-model HIP was run at 500 m resolution with the full ensemble of 17 RCMs (which includes the five 

selected training RCMs). This 500 m model output represents the data that is to be downscaled to finer 100 m resolution with 

the presented method. 

2.3.3 Submodel runs in 100 m 200 

Six submodels distributed across Denmark (outlined and marked in Figure 1), each representing a hydrologic subcatchment 

and setup at 100 m resolution, were chosen to produce training and validation data for the downscaling algorithm: 

I. Suså 

II. Odense Å 

III. Kongeå/Kolding Å 205 

IV. Storå 

V. Simested Å/Mariager Fjord 

VI. Aarhus Å/Aarhus (validation only) 

The five submodels I to V were used as training data, whereas submodel VI was used as a fully independent validation 

dataset. To reduce computational effort spent on HMs, the five training models were run with the five selected RCMs, i.e. 210 

the training data is based on the reduced RCM ensemble. For the validation, to address the extrapolation capability of the 

downscaling algorithm, the validation model was also run with the full ensemble of 17 RCMs. The submodels were run with 

the same general model setup, periods and warmup as for the national model described at the start of section 2.3. Along the 

submodels’ land boundaries, dynamic boundary conditions were applied based on the simulated groundwater heads in the 

corresponding 500 m national HM. 215 

The five training submodels, along with the sixth validation model, were deliberately selected to cover a representative range 

of geologic, topographic and hydrologic variability occurring across Denmark. ML methods are known to perform poorly 

when used to extrapolate data beyond the range of data they are trained against (Meyer and Pebesma, 2021). Figure 2 

displays the histograms of one of the variables to be downscaled (TBDV), together with some important covariates. The 
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values covered by the five training submodels closely resemble the distribution and ranges seen across all of Denmark; i.e. 220 

the submodels are considered representative of all of Denmark. Similarly, the validation submodel also covers comparable 

covariate ranges. 

2.4 ML-based downscaling 

2.4.1 Covariates 

Table 3 presents an overview over the covariates used in the downscaling algorithm. The first type of covariates are 225 

topography-related, and contain six different covariates. Secondly, 14 covariates derived from the DK-model HIP parameters 

were used: This group contains the horizontal transmissivities for the uppermost seven computational layers of the model’s 

saturated zone, and the mean horizontal hydraulic conductivities across five depth intervals, as well as the spatially 

distributed drain depths and drain time constants used in the model. The last group contains the actual 500 m change to the 

groundwater table that is to be downscaled (the TBDV). Besides that, the respective absolute value corresponding to each 230 

TBDV from the 100 m historic HM is included. Furthermore, the differences in TBDV between a historic dry and wet period 

were included. As wet period, the 12 consecutive years between 2004 and 2015 were used (average yearly precipitation of 

852 mm), and as dry period the years 1990 to 2001 (average yearly precipitation of 817 mm). The differences between wet 

and dry historic periods were calculated in the same manner as the changes between future and reference periods, and are 

assumed to be a proxy for expected changes with future, generally wetter, climate. 235 

All covariates are available at the target resolution of 100 m for all of Denmark, to allow the application of the downscaling 

algorithm to the entire country. The only exception obviously is the TBDV itself, which only is available in 500 m 

nationwide. It was resampled from its native resolution to 100 m using bilinear interpolation: Initial tests showed 

performance improvements of the downscaling algorithm if interpolated TBDV were used; using resampled TBDV without 

interpolation lead to visible artefacts at the 500 m grid boundaries in the 100 m outputs. 240 

More covariates have been used in preliminary tests. Analyses of covariate importance and collinearity, excluding non-

informative and strongly correlated covariates, lead to the final set of 23 covariates. 

2.4.2 Random Forest regressor 

For the downscaling task at hand, we decided to use a Random Forest (RF) regressor. RF goes back to Breiman, 2001 and 

has over time proven to be a powerful and versatile data-driven modelling tool for a range of applications in environmental 245 

sciences. For example, RF was used in the context of groundwater pollution (Rodriguez-Galiano et al., 2014; Tesoriero et al., 

2017), data analysis and predictions in large-sample hydrology (Addor et al., 2018; Ghiggi et al., 2019), as well as some of 

the remote sensing downscaling models mentioned in section 1. Examples from related Danish contexts include the 

prediction of groundwater level changes based on well observations (Gonzalez and Arsanjani, 2021), modelling of the 
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historic depth to shallow groundwater and redox boundary (Koch et al., 2019b, a), or the modelling of artificial drainage 250 

properties (Motarjemi et al., 2021; Møller et al., 2018). 

RF is a supervised ML method, requiring labelled training data. Based on the training dataset, a RF regressor model learns 

about relationships between a set of covariates and the target (training) data values. In the next step, predictions at 

unsampled locations beyond the training data can be made. Tyralis et al., 2019 provide a concise overview over the theory 

behind and the use of RF in hydrological contexts. 255 

We used the implementation of RF regressors in Python 3.8 from the scikit-learn package, version 1.0.2 (https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html). 

In Figure 3, a workflow diagram of the downscaling algorithm is shown: All covariates exist at 100 m resolution for all of 

Denmark, with the exception of the actual TBDV, which originates from the 500 m HM. The TBDV exists at the finer target 

resolution of 100 m for the five training submodels – these data are used as training data for the RF downscaling regressors, 260 

alongside some auxiliary points from the 500 m HM (see below). After training, the RF regressors are used to produce 

Denmark-wide maps of the TBDV in 100 m. The downscaled outputs are validated against both national HM output, the 

training data itself, and a sixth, independent validation submodel in 100 m. Details are presented in the following sections. 

2.4.3 Auxiliary points for RF training 

Initial tests with spatial cross validations of the downscaling algorithm showed issues with the predictions for the spatial 265 

hold-out, i.e. with spatial transferability of the algorithm to areas not covered by the training data. To improve spatial 

transferability, it was decided to include additional training data sampled from the entirety of Denmark outside the training 

submodels, which enhances the spatially limited training dataset. These points were sampled randomly in space. The actual 

training target – the TBDV in 100 m – is lacking for those points, and instead the TBDV in 500 m was used as training 

target. Hence, we refer to these points as auxiliary points. The inclusion of such auxiliary points increases the robustness of 270 

the RF downscaling outside the training data areas; for example, we experienced some areas where the downscaling 

incorrectly reversed the direction of change to the groundwater table without using auxiliary points, which was alleviated 

after including auxiliary points. Despite the covariate ranges being adequately covered by the training catchments (Figure 2), 

the auxiliary points still inform the algorithm by adding covariate values and likely combinations of covariates (the latter 

being a focus of the work on ML algorithm transferability by Meyer and Pebesma, 2021). However, the more auxiliary 275 

points are included, the closer the downscaled output resembles the original TBDV in 500 m, which is undesired. 

Considering this trade-off, we tested different amounts of auxiliary points, and settled on an optimal number of 20,000 

auxiliary points covering all of Denmark to be included in the training data. This adds 5% to the total number of data points 

in the training dataset comprised of the five training submodels, where all 100 m HM grids were included in the training data 

(approximately 400,000 points). 280 
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2.4.4 Training the RF regressors 

The four different climate change impact statistics regarded in this work – that is changes to the depth to the groundwater 

table in average (mean), high (Q01), and low (Q99) conditions, as well as the probability of the groundwater table exceeding 

1 m below terrain (ex1m) – are expected to be controlled by different properties. Hence, it was decided to train a separate RF 

downscaler for each of the four TBDV. However, to ensure the consistency across near and far future and to increase the 285 

robustness of the downscaler by increasing the amount of training data, each of the downscalers was trained against data 

from both near future and far future periods simultaneously. That means that four RF downscaler models were trained; one 

for each mean, Q01, Q99, and ex1m. 

The training was performed using the 100 m target values from the five fine-scale submodels (D in Table 2), based on the 

reduced RCM ensemble, as well as the auxiliary points from the 500 m HM. The respective TBDV in 500 m was taken from 290 

the national HM (B in Table 2). Beyond the training data in 100 m and the TBDV in 500 m, the other covariates presented in 

Table 3 were used. 

Based on the training data, the importances of each of the covariates was evaluated: The information content (importance) 

that each covariate delivers to the RF regressors is determined by randomly perturbing each of the individual covariates one 

by one, retraining the model, and observing the decrease in model fit. Moreover, as covariate collinearity can lead to 295 

misleading results of such an analysis, the importance analysis was also performed by perturbing whole groups of related 

covariates at a time (e.g. Koch et al., 2019a). 

2.4.5 RF hyperparameter search 

RF regressors have built-in parameters controlling model behaviour and complexity, the so-called hyperparameters. To fine-

tune and optimize the RF regressor performance, a hyperparameter search was performed using the standard grid-search 300 

procedure. The tested parameter values, resulting in 144 unique combinations, are listed in Table 4. For each of the 

parameter combinations, and each of the TBDV, the following was performed: 

(i) An evaluation of the ability of the RF regressor to reproduce the 100 m HM results by determining Pearson’s R. This was 

performed in a spatial cross-validation test, where the RF regressor was trained against four of the five training submodels, 

and its results validated against the hold-out submodel, looping through all five permutations of train/hold-out submodels. 305 

(ii) An evaluation of the Denmark-wide bias introduced by the downscaling. Here, the RF regressor was trained against all 

five training submodels, and then used for predictions for all of Denmark. Those predictions were compared against the 

national 500 m HM results. 

In this setup, (i) presents an indication of the RF regressor’s ability to reproduce the fine-scale 100 m results, whereas (ii) 

represents an indication of the transferability and robustness of the RF regressor, with decreasing performance in case of 310 

overfitting. Based on averaging these results across all TBDV, a hyperparameter set representing an optimal trade-off was 
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determined. These hyperparameters, marked bold in Table 4 alongside the other reported parameters, then were used in all 

subsequent tasks. 

2.4.6 Validation of the RF regressors’ downscaled outputs 

Subsequent to training the RF regressors with the optimal hyperparameters, they were applied to produce predictions for the 315 

entirety of Denmark. That means that the four RF downscaler models were used to downscale the national 500 m HM 

outputs to 100 m, separately for both the near and far future period, and for both the ensemble of five RCMs used in the 

training as well as for the full ensemble of 17 RCMs. The only difference in downscaling for the different periods and RCM 

ensembles is in the used TBDV in 500 m, which always represents the corresponding period and RCM ensemble. 

Validation of the downscaled results in 100 m then was performed in two distinct ways: First, against the national 500 m HM 320 

output, verifying that the downscaling does not introduce an overall bias. Second, against the 100 m HM output from the 

validation submodel VI, which was not used in the training process. 

3. Results and Discussion 

3.1 Covariate importance 

Figure 4 summarizes the results of the covariance importance analysis, for each of the final trained RF downscalers. Results 325 

are shown separately for individual covariate importance, as well as for covariate group importance. The groups were, in 

order of decreasing importance: (i) the TBDV itself, (ii) the historic TBDV from the 100 m model, (iii) the geology-related 

covariates, (iv) the topography-related covariates, and (v) the drain parameterization-related covariates. It is noteworthy that 

on average, the TBDV turns out as the most important covariate, followed by the respective historic absolute value of the 

TBDV and the difference between historic dry and wet periods. That means that the downscaling is largely guided by 330 

information on the TBDV itself, which is desired as our aim was to develop a downscaling algorithm. Turning to the 

topography and model parameter-related covariates, and comparing the different downscalers, it can be seen that Q01 (high 

groundwater tables) is more strongly guided by the hydraulic conductivities in the uppermost layers (the four most important 

covariates from that group being trh_lay0, trh_lay1, trh_lay3, and kh_mean_2-5m). Q99 (low groundwater tables), on the 

other hand, is more guided by hydraulic conductivity from lower layers (the four most important covariates from that group 335 

beingkh_mean_2-5m, kh_mean_5-10m, trh_lay5, and try_lay1). In general, the topography-related covariates show a lower 

importance than the geology-related covariates, stressing the need for integrating geologic knowledge when modelling 

groundwater levels. 

3.2 Downscaled output 

Figure 5 presents different input data and results for the same area located at the north eastern edge of submodel III 340 

Kongeå/Kolding Å (extent indicated in Figure 1), for the example TBDV meanff. The top row (maps a and b) shows 
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examples for two of the used covariates, the relative topography and the horizontal hydraulic transmissivity in the second 

layer of the HM. Map d shows the simulated mean groundwater heads from the historic 100 m HM, which is used as a 

covariate. In map c, the used training data from the 100 m hydrological submodel can be seen, whereas map e shows the 

corresponding downscaled result at 100 m resolution. Comparing those two maps, together with the actual TBDV in map f, 345 

i.e. the results from the HM at 500 m resolution, gives a good visual example of the capability of the downscaling algorithm 

to reproduce the details at 100 m resolution from the 500 m coarse resolution input. It also emphasizes the value of the fine-

scale information: As can be seen, the 100 m HM output resolves significant variations in both the absolute values of the 

depth to the groundwater table as well as the climate change-induced changes to the groundwater table that are completely 

lost at 500 m resolution. The complexity of the fine-scale variations also goes beyond what can be achieved by merely 350 

interpolating the coarser 500 m to the finer 100 m resolution. Rather, it becomes apparent that local variations in 

groundwater levels and level changes are controlled by an interplay of topography and geology. 

Figure 6 illustrates downscaling results for the fully independent validation submodel VI Aarhus Å/Aarhus (extent indicated 

in Figure 1), for the example of TBDV ex1mff. The left column shows the median change of the five RCMs used in the 

training exercise, where the top displays the TBDV from the 500 m HM (B in Table 2). The middle shows the respective 355 

TBDV as simulated by the 100 m HM submodel (E in Table 2). The bottom map then displays the respective downscaling 

results in 100 m. The right column shows the corresponding results for the full RCM ensemble of 17 models. These 17 

RCMs were not used in training, but only in validation. Even if confronted with a different climate signal (compare the 

differences between the 500 m HM outputs in maps a and b in Figure 6), and used outside the area of training data, the 

downscaling algorithm still works well. That means it is robust enough to be trained based on a (small) RCM ensemble, and 360 

then be applied to HM output based on a different (larger) RCM ensemble, which also is in line with the findings from the 

covariate importance analysis, where the corresponding TBDV showed to be the most important covariate. 

These visual evaluations of the downscaling outputs can be confirmed quantitatively – Figure 7 presents an overview. The 

top row presents a Denmark-wide evaluation of the climate change-induced changes to the shallow groundwater table: The 

bars present the mean changes across all of Denmark for each of the eight TBDV (i.e. mean, Q01, Q99, and 1mex for both 365 

near and far future), as predicted by the 500 m national HM runs, and the downscaled outputs in 100 m, respectively. It can 

be observed that generally, the downscaling does not introduce overall biases to the predicted changes, but remains true to 

the general picture predicted by the coarser national HM. This applies to both the ensemble of five RCMs, as well as the full 

RCM ensemble with 17 models. The bottom two rows of Figure 7 display validation results of the downscaling output 

against 100 m HM outputs for submodel VI. I.e. this is a fully independent validation of the 100 m RF downscaling output 370 

versus 100 m HM outputs. Spatial transferability to independent areas without training data is a well-known weakness of the 

used ML techniques. However, our RF downscaling model proves to be robust also in this context: Pearson correlation 

coefficients between the 100 m RF output and the 100 m HM output are consistently higher than correlation coefficients 

between 500 m HM output and 100 m HM output. It can also be seen that the RF downscaling adds more information than a 

simple interpolation, as results are given separately for the 500 m HM outputs and a bilinear interpolation of the 500m HM 375 
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outputs. The latter is considered the benchmark to be beaten to determine whether a downscaling algorithm actually delivers 

additional information over the coarse-scale HM outputs. The same applies to the mean absolute error (MAE) between the 

100 m RF downscaling output and the 100 HM, which is consistently smaller than the MAE between the 500 m HM and 

100 m HM. 

For the example of the TBDV meanff, per-pixel data is presented in scatterplots in Figure 8. The left panel shows a 380 

comparison of the 100 m training data from the HM of the five training submodels against the corresponding TBDV from 

the 500 m HM. Most values range between roughly -10 cm and 30 cm, which means that the mean groundwater table for the 

far future period is predicted to mostly be between 10 cm lower to 30 cm higher than in the reference period. There is good 

general agreement between the 500 m and 100 m HMs and no general bias, but a considerable scatter caused by the 

differences in resolution. This is in line with the previously discussed lack of bias in the predicted changes from the 500 m 385 

and 100 m HMs as apparent from the top row of Figure 7. The right panel shows a comparison of the 100 m training data 

and the RF downscaling predictions in 100 m. Here it can be seen that the downscaled results follow the 100 m HM outputs 

more closely than the 500 m HM outputs, with a much narrower scatter. 

Finally, Figure 9 displays Denmark-wide results of the downscaling algorithm, for all four TBDV of the far future period 

meanff, Q01ff, Q99ff, and ex1mff. Each of the detail maps shows the same extent: They serve as a good illustration that 390 

groundwater tables (and changes to them) are controlled by small-scale landscape features, such as topography and geology. 

If only 500 m information was available, many details would be lost that are apparent in 100 m resolution. For many 

purposes, e.g. agriculture, information on the groundwater table at the coarse scale of 500 m is inappropriate – a grid size of 

25 ha is larger than typical field size. However, with a resolution of 100 m, i.e. 1 ha, we move into more relevant, near field-

size-resolutions. Also, as the downscaled outputs are still based on physically-based HMs, fine-scale physical information is 395 

added on the interplay of controls such as topography and geology on the groundwater table. 

Moreover, Figure 9 also displays the initially mentioned tendency to more extreme groundwater levels: The low 

groundwater tables (Q99), typically occuring during the summer months, are projected to fall across many regions of the 

country, especially across Zealand and southern Jutland where groundwater levels are very shallow and affected by 

evapotranspiration. The high groundwater tables (Q01), typcially occuring during the wetter winter months, are simulated to 400 

rise further for most of the country. Some of the highest rises are simulated for areas in central Jutland where the shallow 

groundwater levels are deep below surface (compare Figure 1). Moderate rises are also simulated in regions where the 

groundwater tables are very shallow (within the first 1 m or 2 m below surface), such as parts of Zealand and Funen. 

3.3 Overarching discussion 

Despite the discussed capabilities of ML techniques in exploiting large datasets at high spatial resolution, physically-based 405 

HMs are still needed to predict climate change-induced changes to the hydrological cycle. Purely data-driven methods (often 

based on ML algorithms) struggle with predicting previously unobserved states, which holds true for both, spatial and 

temporal extrapolation (Meyer and Pebesma, 2021; Mai et al., 2021; Koch and Schneider, 2022). As an attempt to overcome 
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the computational burden of high resolution, complex HM, Tran et al., 2021 have developed a ML-based emulator of a HM. 

Read et al., 2019 and Koch and Schneider, 2022 showed that guiding ML models with simulation data from a physically-410 

based model enhanced the capability of the ML model to extrapolate. The downscaling algorithm presented in this work 

increases the resolution of HM outputs, guided by fine-resolution HM outputs. 

As our method is based on output from distributed, physically based HMs, we (i) are able to obtain fully distributed climate 

change impact evaluations, and (ii) have higher confidence in extrapolating the models to values outside observed ranges, 

which is unique and, for example, goes beyond recent efforts with purely data-driven extrapolations of climate change 415 

impacts on groundwater levels for selected wells across Germany (Wunsch et al., 2022). Our developed downscaling 

algorithms were shown to be robust to be transferrable in space, and also transferrable to a different climate signal, i.e. 

transferable to a different RCM ensemble. 

Acknowledging computational limitations, we based our 100 m training data on five HM subcatchments, representing 

around 9% of Denmark, which were run with forcings from a reduced ensemble of five RCM. This meant that computational 420 

time for hydrological model runs was reduced to less than 3% of what would be required for a nation-wide full ensemble run 

at 100 m. The size of the training dataset was chosen sufficiently large to allow for extrapolation beyond the area of the 

training data. We assume also that the careful choice of the training submodels, covering a variety of different 

hydrogeological settings across Denmark, facilitated the spatial transferability of the downscaling algorithm. For other 

applications of similar downscaling algorithms, the necessary size of the training data also depends on the specific 425 

application – an algorithm used for predictions to a limited area or within the training data requires a smaller training dataset 

than an algorithm used for extrapolation beyond areas with training data. 

The downscaling was facilitated by the consistency of parameter sets between the 500 m and 100 m HM setups: We do not 

intend to compensate for potential discrepancies in simulated groundwater heads due to differences in parameter values, but 

merely want to downscale the 500 m national HM results to a finer scale as simulated by the corresponding model in higher 430 

resolution. The same applies for all the other input data: For both 100 m and 500 m HMs, the same input data was being 

used, with the only exception of scale. 

4. Conclusions 

We successfully designed and tested a RF-based spatial downscaling algorithm for outputs from distributed HMs. The usage 

of ML techniques in spatial downscaling is widespread in fields such as remote sensing, however, still limited in hydrologic 435 

modelling. The developed downscaling algorithm is based on the existence of a coarse-scale HM for the full domain of 

interest, together with equivalent fine-scale HMs for limited parts of the domain. Furthermore, covariates in fine scale are 

required for the full domain. We trained the RF regressor based on the selected, representative fine-scale HMs covering only 

around 9% of the full domain, significantly reducing computational effort on the complex HMs. Furthermore, using the 

downscaling algorithm in the context of an ensemble of RCMs, we could show that it is possible to train the downscaling 440 
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algorithm based on a smaller ensemble of RCMs, and apply it to the full ensemble, further reducing computational effort on 

HMs. The downscaling results were successfully validated against the output from a fully independent fine-scale validation 

HM, as well as the full-domain results of the coarse-scale HM. 

The presented framework is envisioned to be transferrable to the downscaling of other spatial output from hydrological and 

environmental models in general also beyond aggregated statistics (i.e. also in transient manner). It is generally 445 

acknowledged that there is a disparity between the – computationally possible – spatial resolution of HM output, and what is 

desired or required by users of the data, such as authorities, consultants or citizens (Samaniego et al., 2019). Also from a 

scientific point of view, we are commonly dealing with HM resolutions issues and spatial aggregation beyond what is 

appropriate, hindering process understanding (Wood et al., 2011; Nijzink et al., 2016). 

This also applies to the greater context of this paper, the Danish HIP4Plus project (Henriksen et al., 2020b). Within this 450 

project, a larger dataset of climate change-induced changes to the shallow groundwater table was generated based on the 

presented framework. This includes predictions for different greenhouse gas concentration scenarios (RCP4.5 and RCP8.5), 

further statistics, and monthly as well as seasonally aggregated values; a total of 236 variables (as compared to the eight 

presented here). All downscaled maps and further data can be accessed via the HIP data portal 

https://hip.dataforsyningen.dk/. Due to computational limits, the spatial resolution of HMs is, in many cases as in the 455 

presented example, below what is requested by end-users and decision makers. Downscaling can help bridge the gap to make 

HM output more relevant, in this case in the context of climate change impact evaluation and adaptation, to deliver valuable 

input to urban and infrastructure planning, or agriculture and future needs for artificial drainage or water pollution risks. 
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Figure 1: Denmark with the mean depth to the shallow groundwater table, as simulated by the DK-model HIP in 100 m for the 

period 1990 – 2019. The submodels used for training and validation of the downscaling algorithm are outlined in blue and red. The 635 
extents of the detail maps shown in Figures 5, 6, and 8 are indicated as black rectangles. 
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Figure 2: Histograms of covariate ranges covered by the five training and the validation submodels, compared to all of Denmark. 

Shown for the example of TBDV meanff. Top left: Change in mean depth to shallow groundwater from the 500 m model (i.e. the 

TBDV) [m]. Top right: Mean depth to shallow groundwater from the historic 100 m model (the respective most important 640 
covariate) [m]. Bottom left and right: kh mean 2-5m ([m/s], log-transformed) and reltop5 [m] as two more covariates. 

 

Figure 3: Diagram of the downscaling algorithm. 
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Figure 4: Permutation covariate importance for the four RF downscaling regressors, for each covariate (see Table 3 for an 645 
overview). The higher the reduction in R2, the higher the importance of the covariate. The importances are provided permuting 

one covariate at a time (black bars), and permuting whole groups of covariates (grey bars). 
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Figure 5: Example of downscaling results for changes to the mean depth to the groundwater table for the far future period 

(meanff). All panels show the same extent. a and b: examples for covariates (reltop5 and trh_lay1). c: 100 m HM submodel results 650 
(training data). d: 100 m historic absolute values (covariate). e: 100 m downscaling result. f: 500 m HM results (TBDV). 
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Figure 6: Downscaling outputs for validation submodel VI, for the example of ex1mnf. Left column: The RF downscaling was 

trained to downscale the median change of the five RCM from the 500 m HM (a) with the 100 m HM training data (c; however, 

submodel VI is not included in the training). Downscaling results are shown in e. If applied for the full RCM ensemble (right 655 
column), the downscaling results (f) also align with the truth (d). 
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Figure 7: Overview over the validation results of the RF downscaling algorithm. 1st row: Climate change impact on the TBDV. 2nd 

and 3rd row: MAE and Pearson’s R between the 100 m HM from the validation submodel and the corresponding 500 m HM, both 

in its original resolution and using bilinear interpolation to 100 m (“500m HM intp”), as well as the 100 m RF results. Values along 660 
the y-axis are given in cm for mean, Q01 and Q99, and in % for ex1m, for both near (nf, 2041-2070) and far future (ff, 2071-2100). 
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Figure 8: Scatterplots, for the example of TBDV meanff: Comparing the training data (i.e. the TBDV in 100 m) with the actual 

TBDV in 500 m (left panel), and with the RF downscaling results in 100 m (right panel) for the five training submodels. 
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 665 

Figure 9: Results of the downscaling, for the far future of all four TBDV. Top row: Downscaling results in 100 m for all of 

Denmark. Middle row: Detail of the 100 m downscaling results (extent indicated in top row). Bottom row: Same detail for the 

corresponding TBDV in 500 m. 
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Table 1: Overview over the 17 used bias corrected RCMs. The training models are marked. Changes to projected precipitation are 

given for the far future relative to the reference period, yearly as well as separately for the summer and winter half year. 

   change in annual P, ff [mm]  

GCM RCM ensemble year summer winter train 

CERFACS-CNRM-CM5 CCLM 4.8.17 r1i1p1 151 71 80 x 

HadGEM2-ES REMO2015 r1i1p1 108 -15 123 x 

MPI-ESM-LR RCA4 r1i1p1 182 32 150 x 

MPI-ESM-LR CSC-REMO r2i1p1 138 -3 142 x 

NorESM1-M HIRHAM5 r1i1p1 143 39 104 x 

CanESM2 REMO2015 r1i1p1 263 89 173  

EC-EARTH RACMO 2.2E r12i1p1 82 15 67  

EC-EARTH RACMO 2.2E r1i1p1 67 5 63  

EC-EARTH HIRHAM5 r3i1p1 126 53 73  

IPSL-CM5A-MR RCA4 r1i1p1 209 32 177  

MIROC5 REMO2015 r1i1p1 145 58 87  

HadGEM2-ES CCLM 4.8.17 r1i1p1 107 38 69  

HadGEM2-ES HIRHAM5 r1i1p1 203 68 136  

HadGEM2-ES RACMO 2.2E r1i1p1 149 13 137  

HadGEM2-ES RCA4 r1i1p1 213 40 173  

MPI-ESM-LR CSC-REMO r1i1p1 134 33 101  

EC-EARTH RCA4 r12i1p1 64 -8 71  

 

 

Table 2: Overview over the performed HM runs with different climate inputs for Denmark and different submodels. A: Used as 675 
covariate. B: To be downscaled, in training, and as additional training data (auxiliary points). C: To be downscaled, in validation. 

D: Training data. E: Validation data. *: Not directly used in this study. 

  

Denmark, 

500 m 

Denmark, 

100 m 

5 training 

submodels I 

– V, 100 m 

validation 

submodel 

VI, 100 m 

historic climate (1990 – 2019) * A   

17 RCMs (full 

ensemble) 

reference period (1991 – 2020) C   E 

near future (2041 – 2070) C   E 

far future (2071 – 2100) C   E 

5 selected training 

RCMs 

reference period (1991 – 2020) B  D E 

near future (2041 – 2070) B  D E 

far future (2071 – 2100) B  D E 
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Table 3: Overview over the covariates. 680 

topography-related covariates  

topo Elevation [mamsl] 

topod1-5 Difference between elevation in 500 m and 100 m resolution [m] 

TWI Topographic Wetness Index (Beven and Kirkby, 1979) [-] 

slope Slope of terrain [-] 

reltop2 Relative topography within 200 m radius [m] 

reltop5 Relative topography within 500 m radius [m] 

model parameter-related covariates (from DK-model HIP in 100 m)  

drain_d Drain depth  [m] 

drain_tc Drain time constant  [s-1] 

trh_lay<x> Horizonal transmissivity in computational layers 1 to 7 [m2 s-1] 

kh_mean_<x> Geometric mean of horizontal hydraulic conductivity in five depth intervals:  

2-5 m, 5-10 m, 10-15 m, 15-20 m, 20-25 m 

[m2 s-1] 

Covariates related to TBDV  

TBDV “to-be-downscaled-variable”, i.e. change in depth to shallow groundwater table. 

From 500 m DK-model HIP (bilinear interpolation to 100 m). B and C in Table 2. 

TBDV is one of  

• meannf, meanff (mean groundwater table) 

• Q01nf, Q01ff (high groundwater table) 

• Q99nf, Q99ff (low groundwater table) 

• ex1mnf, ex1mff (1 m exceedance probability) 

 

 

 

[m] 

[m] 

[m] 

[-] 

TBDV_hist Absolute value of TBDV for the historic period from DK-model HIP 100 m (e.g. the 

mean depth to the shallow groundwater table). A in Table 2. 

 

TBDV_hist_wd Difference in TBDV between a wet and dry period (dry: 1990 – 2001, wet: 2004 – 

2015) from the historic DK-model HIP 100 m (e.g. the mean depth to shallow 

groundwater table in the wet period minus the mean to shallow groundwater table in 

the dry period). A in Table 2. 
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Table 4: The parameters used for the RF regressors. The first section presents the tested hyperparameters, where the selected 

values for each parameter are marked in bold. Further parameters are reported in the second section. 

Name Description Values (optimal) 

RF parameters tested in hyperparameter search 

max_depth 
Maximum depth of tree. If “all”, nodes are expanded until leaves 

are pure or all leaves contain less than min_samples_split samples 
all, 30 

max_features 
Number of features (covariates) to consider when looking for the 

best split 

n_features, 

0.5*n_features, 

sqrt(n_features) 

min_samples_split Minimum number of samples required to split an internal node 2, 5, 25 

min_samples_leaf Minimum number of samples required to be a leaf node 1, 3, 10, 50 

bootstrap Use bootstrap samples to build trees True, False 

Further RF parameters 

n_estimators Number of trees in the forest 200 

criterion Function to measure the quality of a split mse 
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