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Abstract. The moisture content of vegetation canopies controls various ecosystem processes such as plant productivity, 

transpiration, mortality and flammability. Leaf moisture content (here defined as the ratio of leaf water mass to leaf dry 

biomass, or live-fuel moisture content, LFMC) is a vegetation property that is frequently used to estimate flammability and 

the danger of fire occurrence and spread and is widely measured at field sites around the globe. LFMC can be retrieved from 

satellite observations in the visible and infrared domain of the electromagnetic spectrum, which is however hampered by 15 

frequent cloud cover or low sun elevation angles. As an alternative, vegetation water content can be estimated from satellite 

observations in the microwave domain. For example, studies at local and regional scales have demonstrated the link between 

LFMC and vegetation optical depth (VOD) from passive microwave satellite observations. VOD describes the attenuation of 

microwaves in the vegetation layer. However, neither were the relations between VOD and LFMC investigated at large or 

global scales nor has VOD been used to estimate LFMC. Here we aim to estimate LFMC from VOD at large scales, i.e. at 20 

coarse spatial resolution, globally, and at daily time steps over past decadal time scales. Therefore, our objectives are 1) to 

investigate the relation between VOD from different frequencies and LFMC derived from optical sensors and a global database 

of LFMC site measurements; 2) to test different model structures to estimate LFMC from VOD; and 3) to apply the best-

performing model to estimate LFMC at global scales. Our results show that VOD is medium to highly correlated with LFMC 

in areas with medium to high coverage of short vegetation (grasslands, croplands, shrublands). Forested areas show on average 25 

weak correlations but the variability in correlations is high. A logistic regression model that uses VOD and additionally leaf 

area index as predictor to account for canopy biomass reaches the highest performance in estimating LFMC. Applying this 

model to global VOD and LAI observations allows estimating LFMC globally over decadal time series at daily temporal 

sampling. The derived estimates of LFMC can be used to assess large-scale patterns and temporal changes in vegetation water 

status, drought conditions and fire dynamics.  30 
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1 Introduction 

Changes in water availability and the occurrence and severity of droughts affect various processes in land ecosystems and 

vegetation (Konings et al., 2021a; Sippel et al., 2018). For example, soil moisture and atmospheric water demand affect plant 

water uptake, the water potential and water content of vegetation, stomatal conductance and transpiration (Jarvis, 1976; Bonan, 

2015). The regulation of plant water content and stomatal conductance controls the exchange of water, carbon and energy 35 

between the ecosystem and atmosphere. Hence soil moisture and atmospheric water demand are strong controls on plant 

productivity, growth and mortality (Li et al., 2021a; McDowell, 2011; DeSoto et al., 2020). Furthermore, the water content of 

living or dead vegetation material controls the occurrence and intensity of disturbances such as fires. A low water content of 

the fuel is associated with higher flammability or a higher risk of fire occurrence and spread (Chuvieco et al., 2010). Hence 

fuel moisture content (FMC) is a key variable to estimate daily to long-term changes in fire danger (Stocks et al., 1998; Jolly 40 

et al., 2015). FMC is defined as the ratio of the mass of water to the dry biomass of a material and can be directly measured 

from determining the fresh and dry mass m of a vegetation sample (Yebra et al., 2013):  

𝐹𝑀𝐶 =
mfresh−mdry

mdry
 (1) 

FMC is frequently expressed as a percentage number (FMC x 100%). FMC can be determined for living vegetation components 

such as green grasses and leaves (i.e. live-fuel moisture content, LFMC) or for dead vegetation components such as litter and 45 

woody debris (dead-fuel moisture content, DFMC) (Matthews, 2014; Yebra et al., 2013; Viney, 1991). FMC is measured 

frequently at various locations in grasslands, shrublands or forest ecosystems in several countries to validate or calibrate 

satellite retrieval algorithms and ultimately to support fire danger forecasting. LFMC measurements from various countries 

have been compiled in the Globe-LFMC database which provides observations from 1383 sites over the period 1977 to 2018 

but with different length and frequency of observations among different sites (Yebra et al., 2019). Site-level measurements of 50 

LFMC provide an accurate estimate of the plant water status; however, their limited spatial coverage is a constraint for spatial-

explicit estimates of the role of fuel moisture for fire danger.  

In order to complement site observations of LFMC, satellite observations can be used to estimate LFMC over large areas 

(Yebra et al., 2013). Thereby, especially satellite observations in the visible and infrared domain of the electromagnetic 

spectrum have been used to estimate LFMC. For example, spectral information from the short-wave and near-infrared bands 55 

from Landsat are correlated with LFMC (Chuvieco et al., 2002; Bowyer and Danson, 2004). This is because leaf water content 

has a strong effect on the absorption of near and shortwave infrared radiation. Hence LFMC can be computed by using 

empirical models or visible-infrared leaf and canopy radiative transfer models by estimating equivalent water thickness (EWT, 

i.e. leaf water column per unit area) and the leaf dry matter content (Danson and Bowyer, 2004; Riano et al., 2005). Medium 

and coarse resolution visible-infrared satellite instruments are most commonly used to estimate LFMC as they provide a 60 

frequent temporal coverage (García et al., 2008; Yebra et al., 2008). For example, observations from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) are the main input for recently developed algorithms to estimate LFMC at continental 

or global scales (Yebra et al., 2018; Quan et al., 2021; Zhu et al., 2021). Despite the direct biophysical relations between 
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surface reflectance and LFMC and their implementation in visible-infrared radiative transfer models, the occurrence of cloud 

cover, smoke or low sun elevation angles hinder the retrieval of LFMC time series with high temporal frequency from visible-65 

infrared satellite sensors.  

Microwaves can largely penetrate clouds and smoke, are independent of the illumination by the sun, and hence provide an 

alternative to derive information about the land surface. Microwave observations from either active Radar instruments or from 

passive microwave radiometers are sensitive to the moisture content of soil and vegetation (Ulaby et al., 1979; Jackson et al., 

1982) and hence also to FMC (Konings et al., 2019). For example, early studies have shown that fuel moisture conditions are 70 

related to the Radar backscatter of C-band (5.3 GHz frequency ≈ 5.6 cm wavelength) Synthetic Aperture Radar (SAR) 

observations from the ERS-1 and RADARSAT-1 satellites (Leblon et al., 2002; Abbott et al., 2007). Also observations from 

modern C-band SAR satellites such as Sentinel-1 allow to estimate LFMC (Wang et al., 2019; Rao et al., 2020). SAR 

observations are generally sensitive to the above-ground biomass and moisture content of vegetation, whereby the sensitivity 

to certain vegetation components such as crown and stem changes with the used microwave wavelength. While short 75 

microwave wavelengths at C-band, X-band (≈ 3 cm wavelength), and Ku-band (≈ 1.6 – 2.5 cm) are mostly sensitive to the top 

of the canopy, L-band (≈ 23 cm) is sensitive to the crown, and P-band (≈ 70 cm) to the stem (Saatchi and Moghaddam, 2000).  

Similar relations between the microwave signal and vegetation water content are valid for observations from passive 

microwave instruments that measure naturally emitted microwaves from the Earth surface. Passive microwaves are emitted by 

the soil and vegetation and are then attenuated in the vegetation layer (Jackson et al., 1982; Mo et al., 1982). Passive microwave 80 

instruments are commonly used to estimate surface soil moisture (Njoku and Entekhabi, 1996; Njoku et al., 2003; Wigneron 

et al., 1998; Dorigo et al., 2017; Wigneron et al., 2021). Recently, surface soil moisture datasets from passive microwave 

sensors have also been used as a proxy to estimate LFMC (Jia et al., 2019; Lu and Wei, 2021). However, passive microwaves 

are also directly related to LFMC. The attenuation of the passive microwave signal in the vegetation layer is commonly 

described by the opacity or optical thickness of the vegetation (VOD, vegetation optical depth) (Jackson and Schmugge, 1991; 85 

Frappart et al., 2020). VOD is proportional to vegetation water content (VWC, i.e. mass of water per unit area) and hence to 

the dry biomass (mdry) and LFMC (Konings et al., 2019): 

𝑉𝑂𝐷 = 𝑏 × 𝑉𝑊𝐶 = 𝑏 × 𝑚𝑑𝑟𝑦 × 𝐿𝐹𝑀𝐶  (2) 

where b is a parameter that depends on vegetation type and wavelength. Using this relation, VWC can be estimated from 

passive microwave observations of VOD (Jackson and Schmugge, 1991; Sawada et al., 2016, 2017). However, those studies 90 

were mainly based on measurements of VWC and VOD in grasslands and for different crop types and only few observations 

for the relation between VOD and vegetation water are available for forests (Holtzman et al., 2021; Momen et al., 2017). 

Thereby, the observed relationship between VOD and above-ground biomass (Rodríguez-Fernández et al., 2018; Mialon et 

al., 2020; Frappart et al., 2020) suggests that the relationship in equation 2 is also valid for forest ecosystems but is modulated 

by wavelength (Holtzman et al., 2021). The parameter b exponentially declines with increasing wavelength, which implies 95 

that longer wavelengths have a lower VOD and are less attenuated by the vegetation layer than shorter wavelengths (Jackson 

and Schmugge, 1991). As longer microwave wavelengths can penetrate deeper in the vegetation layer, VOD from L-band 
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instruments (L-VOD) is more related to the biomass and water content of woody components than VOD from instruments 

with shorter wavelengths (e.g. Ku-, X- and C-VOD) which are more related to leaf cover (Tian et al., 2016; Chaparro et al., 

2019; Li et al., 2021b). Hence we assume that Ku-, X- and C-VOD show a stronger relation with LFMC than L-VOD which 100 

should be more sensitive to changes in the moisture content of woody components (Konings et al., 2021b). Fan et al. (2018) 

compared LFMC from site measurements with passive and active microwave satellite datasets of VOD, soil moisture and 

Radar backscatter ratios, and spectral indices from visible-infrared sensors over France. They showed that X-VOD showed the 

highest correlation (median r = 0.43 across sites) with LFMC among all microwave-derived properties but that spectral indices 

from the visible-infrared domain were higher correlated with LFMC than all microwave-derived properties (Fan et al., 2018). 105 

However, the relation in equation 2 (Jackson and Schmugge, 1991) and the results from Fan et al. (2018) and Sawada et al. 

(2016) suggest that LFMC can be directly estimated from passive-microwave VOD.  

Despite this direct theoretical relationship between LFMC and VOD, which has been established from field observations, there 

is currently no study that verified this relationship at large (i.e. continental to global) scale. This implies that no method is 

existing that would allow to estimate LFMC from VOD at large scales. However, the use of novel VOD datasets with almost 110 

daily temporal coverage and data available partly since 1987 (Moesinger et al., 2020; Wang et al., 2021) offers the opportunity 

to estimate LFMC globally with high temporal resolution and over decadal time scales. In comparison to visible-infrared 

satellite observations, the main disadvantage of using VOD to estimate LFMC is the coarser spatial resolution of passive 

microwave data (usually 0.25° x 0.25°). However, the same disadvantage applies for soil moisture datasets from passive 

microwave satellites, which nevertheless experience a wide use for the investigation of land surface processes or to constrain 115 

land surface models at large scale (Dorigo et al., 2017; Wigneron et al., 2021; Scholze et al., 2017).  

Here we aim to estimate LFMC from VOD at large scales, i.e. globally at coarse spatial resolution and at decadal time scales. 

Therefore, we will use VOD from short wavelengths from the VOD Climate Archive (VODCA) dataset, which provides 

consistent time series of Ku-VOD, X-VOD and C-VOD harmonized from VOD retrievals from different passive microwave 

satellites (Moesinger et al., 2020). We first investigate the relation between VOD and LFMC by comparing VOD with a LFMC 120 

dataset from MODIS (Yebra et al., 2018) and with the Globe-LFMC database of site observations (Yebra et al., 2019). In the 

second step, we develop different model structures to compute LFMC from VOD and we calibrate each model against site-

level observations from the Globe-LFMC database. Finally, we apply the best-performing model globally to estimate and 

analyse LFMC at large scales.  

2 Data and methods 125 

An overview of the properties of all used datasets is provided in Table 1. 
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Table 1: Properties of the used datasets.  

Dataset Variable 
Spatial resolution 

and coverage 

Temporal resolution 

and coverage 
Reference 

VODCA v01.0 Ku-VOD 

X-VOD  

C-VOD  

0.25 x 0.25° 

Global 

Daily 

Ku-VOD: 1987-2017 

X-VOD: 1997-2018 

C-VOD: 2002-2018 

(Moesinger et al., 

2020) 

MODIS-LFMC LFMC (%) 500 x 500 m 

Australia, Europe 

including the EU, the 

UK and Turkey 

8-daily (Europe) 

4-daily (Australia) 

2000-2019 

(Yebra et al., 2018) 

Globe-LFMC LFMC (%) Site measurements 

(1383 sites) 

Globally distributed 

Irregular sampling, 

some stations since 

1980s 

(Yebra et al., 2019) 

MOD15A2H v006 LAI 500 x 500 m 

Global 

8-daily 

2000-2019 

(Myneni et al., 2015) 

AVHRR tree and 

short vegetation cover 

Tree cover (%) 

Short vegetation cover 

(%) 

1 x 1 km 

Global 

Annual 

1982-2016 

(Song et al., 2018) 

ESA CCI Land cover 

V2.0.7 

Land cover classes 

converted into 

fractional coverage 

300 x 300 m 

Global 

Annual 

1992-2015 

(Li et al., 2016) 

Worldclim 2.5 

bioclimatic variables 

Mean annual 

temperature, annual 

total precipitation 

10’ x 10’ 

Global 

Average for the period 

1970-2000 

(Fick and Hijmans, 

2017) 

CGIAR CSI SRTM Digital elevation 

model 

90 x 90 m 

Global 

2000 (Jarvis et al., 2008) 

Global Drought 

Observatory 

Standardized 

Precipitation Index 

12-monthly 

Standardized 

Precipitation Index 

(SPI-12) 

1 x 1° 

Global 

Monthly 

Since 1981 

(Global Drought 

Observatory - JRC 

European 

Commission, 2022) 
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U.S. Drought Monitor U.S. Drought Severity 

and Coverage Index 

(DSCI) 

Per US state, 

downloaded for 

California 

Weekly 

Since 2000 

(U.S. Drought 

Monitor, 2022) 

2.1 Vegetation Optical Depth Climate Archive (VODCA) dataset 

VOD was taken from the VODCA dataset (Moesinger et al., 2020). VODCA provides VOD at 0.25° x 0.25° spatial resolution 

in three separate wavelength bands with different temporal coverage, namely Ku-VOD (1987-2017), X-VOD (1997-2018) and 130 

C-VOD (2002-2018). The dataset is a merge of VOD retrievals from several passive microwave instruments that were derived 

with the Land Parameter Retrieval Model (LPRM) (Owe et al., 2001; van der Schalie et al., 2017). The merging uses a 

cumulative distribution function matching of the individual VOD retrievals into a joint long-term time series. Thereby VOD 

retrieved from the AMSR-E sensor is used as scaling reference (Moesinger et al., 2020).  

The VODCA dataset has a daily temporal sampling but observations are not available for each day dependent on time period 135 

and latitude. The VODCA dataset was masked for artefacts because of Radio Frequency Interference (RFI), for land surface 

temperature < 0°C, and for negative VOD values and, therefore, has mainly gaps in the winter months in northern latitudes. 

We did not perform any gap-filling or other further processing of the VODCA dataset. However, we excluded grid cells from 

further analysis that were either not vegetated or that have a higher coverage of ocean or inland water bodies (see section 2.5). 

Spatial patterns, seasonal dynamics, and long-term trends in the VODCA dataset have been intensively compared with datasets 140 

of leaf area index, gross primary production and vegetation cover and show that VODCA reflects common patterns of large-

scale vegetation changes (Moesinger et al., 2020; Li et al., 2021b; Wild et al., 2022). 

2.2 Live Fuel Moisture Content datasets 

LFMC was taken from two datasets, namely from the Globe-LFMC database of site observations (Yebra et al., 2019) and from 

LFMC data retrieved from MODIS satellite observations by applying the methodology of Yebra et al. (2018) (in the following 145 

MODIS-LFMC). The Globe-LFMC measurements are the primary dataset for the comparison with VOD and to develop and 

calibrate the models to estimate LFMC from VOD. However, as there is severe scale mismatch between site measurements of 

LFMC and the coarse spatial resolution of VOD (0.25° x 0.25°), we additionally used LFMC retrievals from MODIS to make 

comparisons at the same spatial scale and to assess if the obtained results are comparable. 

Globe-LFMC provides LFMC field measurements from 1383 sites in 11 countries, mainly in the USA (963 sites), China (229 150 

sites), Spain (76 sites) and Australia (42 sites). However, each site has a different temporal coverage and sampling frequency 

of measurements and different plant species are sampled (Yebra et al., 2019). For example, all sites in China have only one 

LFMC measurement while the site “Reader Ranch” in California has 1291 measurments. At most sites, only one plant species 

is sampled throughout the time but at other sites, several plant species are sampled. LFMC values vary at many sites between 

species. In order to simplify the comparison of LFMC measurements from different species with VOD, we grouped each 155 

species according to their genus into a typical growth form. We considered the following growth forms: broad-leaved trees 
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(TreeB), needle-leaved trees (TreeN), shrubs, grass (i.e. herbaceous graminoid), and forbs (i.e. herbaceous non-graminoid). 

As some plant genera can grow as tree or shrub, we decided for one or the other based on the land cover type (forest or 

shrubland) at the site and based on the site photos that come with the Globe-LFMC database.  

MODIS-LFMC is based on an inversion (using look-up tables) of different radiative transfer models for grass/shrubs 160 

(PROSAILH) and trees (PROGeoSAIL) to estimate LFMC from surface reflectance observations of MODIS (Yebra et al., 

2018). The method and dataset were initially developed for Australia. Additionally, we used retrievals for Europe based on the 

same method. The dataset provides LFMC at 500 m spatial resolution for the period 2000 to 2019 at 4-daily (Australia) and 8-

daily (Europe) time steps. The dataset comes in tiles based on the original sinusoidal grid of MODIS observations. We first 

merged all tiles within Europe or Australia and then reprojected the data to a longitude/latitude projection (WGS84) using 165 

nearest neighbour resampling in GDAL. We then aggregated the dataset to 0.25° x 0.25° spatial resolution of the VODCA 

dataset using spatial averaging.   

2.3 Leaf area index – MODIS  

As the relationship between VOD and LFMC also depends on leaf or canopy biomass, we additionally used leaf area index 

(LAI) retrievals from MODIS as a proxy for total leaf biomass. The MOD15A2H collection 6 product provides LAI globally 170 

on 500 m spatial resolution and 8-daily time steps (Myneni et al., 2015). We only used retrievals that were flagged as good 

quality in the dataset. Like the MODIS-LFMC data, the LAI data was projected to geographical coordinates and then 

aggregated to 0.25° x 0.25° spatial resolution by spatial averaging. The 8-daily MODIS LAI data obtains a clear temporal 

variability within months which despite the use of good quality observations might be still related to atmospheric effects or 

possibly other changes in leaf and canopy properties (e.g. water content) that were not considered during the retrieval of LAI. 175 

As we here intend to use LAI only as a proxy for the temporal changes in canopy biomass, we averaged the 8-daily LAI values 

to monthly values to supress the intra-monthly variability.  

2.4 Vegetation cover and ancillary data 

The cover of trees and short vegetation was used to stratify the comparison between LFMC and VOD with land cover 

information and to account for land cover in the models to calculate LFMC from VOD. For this purpose, we used the dataset 180 

from Song et al. (2018), which provides the percentage of tree cover, short vegetation and bare ground within grid cells of 1 

km x 1 km resolution. The dataset was estimated based on observations from AVHRR and provides annual maps for the years 

1982 to 2016.  

We additionally used information about ocean and inland water cover from the ESA CCI land cover map (version 2.0.7) (Li 

et al., 2016). We aggregated the land cover information from the original spatial resolution to the fractional coverage of 185 

different plant functional types at 0.25° x 0.25° by using the cross-walking approach (Poulter et al., 2015). We then used the 

fractional cover of water (> 50%) in grid cells to mask VOD data in global analyses (see section 2.5). 
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Global maps of mean annual temperature and annual precipitation from the Worldclim 2.5 dataset (Fick and Hijmans, 2017) 

and the CGIAR SRTM digital elevation model (Jarvis et al., 2008) were used to stratify analyses with ancillary information 

(Figure A 4).  190 

Time series of the 12-monthly Standardized Precipitation Index (SPI-12) and the U.S. Drought Severity and Coverage Index 

(DSCI) were used in a case study to compare the large-scale estimates of LFMC with drought conditions in the western United 

States and in California. SPI-12 data was taken from the Global Drought Observatory (Global Drought Observatory - JRC 

European Commission, 2022) and DSCI data from the U.S. Drought Monitor (U.S. Drought Monitor, 2022). 

2.5 Combination and comparisons of VOD and LFMC data 195 

We combined the VOD and LFMC data in four different data combinations for our comparisons. Each combination of VOD 

and LFMC data had a different purpose and used a different masking or temporal sampling of data. The four combinations 

enable to 1) compare satellite retrievals from MODIS-LFMC with the different bands of VOD; 2) compare site measurements 

of LFMC from Globe-LFMC with VOD; 3) calibrate and test models to estimate LFMC from VOD using LFMC site 

measurements; and 4) to apply the best performing model to global VOD data to estimate LFMC globally.  200 

The first data combination (D1) uses MODIS-LFMC for Australia and Europe to compare the temporal dynamic of LFMC 

with Ku-, X- and C-VOD. In order to make a comparison of VOD and LFMC time series per grid cell and to assess the 

differences between the different VOD wavelengths, we only used observations from dates that occur in all four datasets (i.e. 

MODIS-LFMC, Ku-VOD, X-VOD and C-VOD). These are for Australia 1,390 time steps between 2002-06-22 and 2017-07-

28 and for Europe 900 time steps between 2002-06-26 and 2017-07-31. We then computed the Spearman rank correlation 205 

between LFMC and the different VOD bands per grid cell and stratified the result for tree and short vegetation cover. 

The second data combination (D2) is used to compare site measurements from Globe-LFMC with VOD. For this comparison, 

we used VOD data from the same days when LFMC measurements were available. As each site has a different temporal 

sampling of LFMC, the number of joint pairs of LFMC and VOD observations is on average per site 80, 72 and 42 for Ku-, 

X- and C-VOD, respectively, whereby the differences between the number of observations for each band are caused by the 210 

longer temporal coverage of Ku-VOD than for X- or C-VOD. Single sites have up to 827 pairs of Ku-VOD/LFMC 

observations. For this comparison we only matched LFMC with the dates of each individual VOD band but did not match 

additionally the dates of the three VOD bands because this would decrease the availability of LFMC/VOD pairs further. We 

then computed the Spearman rank-correlation between VOD and all LFMC measurements for each site (regardless of the 

sampled plant species) and also for each individual species at a site. We calculated the correlation for all sites/site-species with 215 

at least 10 pairs of LFMC/VOD observations. Based on this criterion, correlations were computed for 910 sites. We then 

assessed how a difference in the land cover distribution at the site and at the corresponding 0.25° x 0.25° grid cell affects the 

correlation between LFMC and VOD. Therefore, we extracted for the coordinate of each site the percentage of tree and short 

vegetation cover from the original resolution (1 x 1 km) and the aggregated resolution (0.25° x 0.25°) of the vegetation cover 

dataset. The use of both resolutions allows assessing if the local land cover distribution at the site is comparable with the land 220 
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cover distribution of the 0.25° x 0.25° grid cell of the VOD data. The difference in land cover between the 1 km spatial 

resolution at the local site and the coarse 0.25° resolution of the corresponding grid cell was computed based on the Euclidean 

distance: 

𝐷 = √(𝑇𝐶25 − 𝑇𝐶1)2 + (𝑆𝑉25 − 𝑆𝑉1)2 (3) 

whereby TC and SV are tree cover and short vegetation, respectively and the subscripts 1 and 25 denote the 1 km and 0.25° 225 

spatial resolution. As TC and SV are percentages, the difference D is in percent. 

The third data combination (D3) used Globe-LFMC site measurements to calibrate and evaluate models to estimate LFMC 

from VOD. We found from data combination D2 that the correlation between site measurements of LFMC and VOD decreases 

if the land cover distribution at 1 x 1 km around the site increasingly differs from the land cover distribution at the 0.25° x 

0.25° grid cell of the VOD data (see results in section 3.1). Therefore, we aimed to select only sites for the calibration and 230 

evaluation of models that are homogenous and representative for the coarse resolution of the VOD data. The Globe-LFMC 

database provides for each site a spatial coefficient of variation of the normalised difference vegetation index to quantify the 

homogeneity of vegetation cover at each site (Yebra et al., 2019). We used sites with a low coefficient of variation (CV < 

0.26). Additionally, we used the land cover difference D (equation 3) to quantify the representativeness of the land cover at 

the site for the coarse spatial resolution of the VOD data. We selected only sites with D < 10%, i.e. with a similar land cover 235 

distribution at 1 km and 0.25° spatial resolution. We further selected sites for model calibration that have at least 15 pairs of 

VOD and LFMC observations and that showed a positive correlation (r > 0.2) between VOD and LFMC. These selection 

criteria were leaving 216 combinations of sites and plant species at 163 sites to calibrate and test models (Figure A 4).  

The fourth data combination (D4) uses daily-sampled VODCA Ku-VOD and monthly-averaged MODIS LAI to estimate daily 

LFMC globally with the best performing model for the overlapping period of both datasets (2000-02-01 to 2017-07-31). We 240 

applied the model to all grid cells at 0.25° x 0.25° spatial resolution that have on average at least 5% vegetation cover (TC + 

SV ≥ 5%) and that have less than 50% water cover.  

2.6 Models to estimate LFMC from VOD  

We developed and tested four different models to estimate daily LFMC from daily values of VOD. All models were developed 

in this study either by assuming non-linear regressions between LFMC and VOD or by adopting known relations between 245 

LFMC, VOD, VWC and dry biomass from previous studies (Jackson and Schmugge, 1991; Sawada et al., 2016; Frappart et 

al., 2020). Specifically, in models A and B we assume a positive relationship between VOD and LFMC and use logistic 

regression (S-shaped curve) to estimate LFMC from VOD. We use logistic regression because LFMC cannot be smaller than 

0% and LFMC values higher than 200% are rare (the 95-percentile of LFMC is 193%, the maximum is 549% in the Globe-

LFMC database). In models C and D, we adopt the relationships between LFMC, VWC and dry biomass (equation 1) and 250 

between VOD and VWC (equation 2) to calculate LFMC. The four models are described with more detail in the following 

paragraphs. Each model has up to four model parameters. Prior ranges and values of those model parameters were manually 
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selected in order to always obtain a positive relationship between VOD and LFMC and to obtain typical LFMC values (Table 

2). 

In Model A, we assume that LFMC is directly proportional to VOD by using a logistic regression: 255 

𝐿𝐹𝑀𝐶 =  
𝐿𝐹𝑀𝐶𝑚𝑎𝑥

1+𝑒−𝑠𝑙×(𝑉𝑂𝐷−𝑉𝑂𝐷0) (4) 

Where LFMCmax is the maximum possible LFMC value (in %) and sl is the slope of the curve. VOD0 is the inflection point of 

the logistic curve, i.e. the VOD value at which half of the LFMC between 0% and LFMCmax is reached. The parameters 

LFMCmax, sl and VOD0 were calibrated for each site.  

In Model B, we additionally assume that LFMC depends on seasonal changes in canopy structure. Therefore, we additionally 260 

include monthly-averaged LAI as predictor. We assume that LFMC can be expressed based on a weighted combination x of 

daily VOD and monthly-averaged LAI. Like in model A, we use a logistic regression in order to limit LFMC between 0% and 

LFMCmax: 

𝑥 = 𝑓 × 𝑉𝑂𝐷 + (1 − 𝑓) × 𝐿𝐴𝐼 (5) 

𝐿𝐹𝑀𝐶 =  
𝐿𝐹𝑀𝐶𝑚𝑎𝑥

1+𝑒−𝑠𝑙×(𝑥−𝑥0) (6) 265 

Where f is a fraction between zero and one that regulates if VOD (f = 1) or LAI (f = 0) contributes more to the calculation of 

x and hence to LFMC. sl and x0 are the slope and inflection point of the logistic curve. Note that we kept the parameter 

LFMCmax constant at 400% in model B (corresponding to the 99.99%-ile of LFMC in the Globe-LFMC database) throughout 

all analyses because the calibration results from model A have shown that any high value for LFMCmax is not sensitive for the 

performance of the estimated LFMC.  270 

For Model C we directly made use of  the VOD-LFMC relationship presented in equation 2 (Jackson and Schmugge, 1991; 

Konings et al., 2019) and compute LFMC by solving this equation for LFMC:   

𝐿𝐹𝑀𝐶 =
𝑉𝑂𝐷

𝑏 ×𝑚𝑑𝑟𝑦
× 100% (7) 

To account for dry biomass of the canopy, we assume a linear relation with monthly-averaged LAI: 

𝑚𝑑𝑟𝑦 = 𝑎 × 𝐿𝐴𝐼 + 𝑐 (8) 275 

For the parameter b in equation 7, a prior value of 1.5 with a range between 0.1 and 4 was taken based on the values presented 

in Jackson and Schmugge (1991). The parameter a was varied between 0.01 and 100 as dry canopy biomass should positively 

scale with LAI. The parameter c is the intercept of this linear regression and was chosen around zero (between -10 and 10). 

Note that the parameters a and b are directly positively correlated in model C and could indeed be represented by a combined 

product. However, as we have both prior information on the values of b (i.e. VOD-VWC relation) and a (i.e. the relation 280 

between leaf mass and leaf area) but not on their combined product, we decided to keep the two factors separated.  

We developed Model D by using the basic definition of FMC (equation 1) and compute LFMC as the ratio between VWC and 

dry biomass: 

 𝐿𝐹𝑀𝐶 =
𝑉𝑊𝐶

𝑚𝑑𝑟𝑦
× 100% (9) 
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Thereby, we compute VWC based on a exponetial relationship between LAI and VWC (Paloscia and Pampaloni, 1988; Sawada 285 

et al., 2016) and compute dry biomass by assuming a positive relationship between VOD and biomass (e.g. Frappart et al., 

2020). Following Sawada et al. (2016), VWC is computed based on an exponential relationship with LAI: 

𝑉𝑊𝐶 = 𝑒
𝐿𝐴𝐼

𝑘 − 1   (10) 

Where the parameter k defines the shape of the exponential relationship. As we have no prior information about the value of 

k, we sampled k over a large range (0.1 - 100). The computation of dry biomass is based on a linear relation with VOD which 290 

is based on the assumption that VOD at short wavelengths is proportional to canopy biomass (Frappart et al., 2020): 

𝑚𝑑𝑟𝑦 = 𝑎 × 𝑉𝑂𝐷 + 𝑐  (11) 

The parameters a and c define like in model C the relation with dry biomass. 

 

Table 2: Overview about prior parameter values and results after site-level calibration for the four models. 295 

Model Parameter 

Prior parameter  

(prior, minimum 

and maximum) 

Parameter after site-level calibration  

(median and percentiles 5% and 95% across all sites with the same growth form) 

   Forb or Grass Shrub Broad-leaved tree Needle-leaved tree 

Model A 

(equation 

4) 

LFMCmax (%) 360 [315, 600] 375 [315, 592] 420 [315, 554] 476 [343, 599] 389 [315, 579] 

sl 10 [3, 50] 10.34 [4.2, 23.8] 4.9 [3.2, 8.6] 5.6 [3, 12] 3.9 [3, 6] 

VOD0 0.8 [0.1, 1.4] 0.78 [0.62, 1.1] 1 [0.76, 1.2] 0.95 [0.79, 1.14] 1.02 [0.84, 1.22] 

Model B 

(equations 

5-6) 

LFMCmax (%) fixed at 400 -- -- -- -- 

f 0.5 [0, 1] 0.53 [0.01, 0.85] 0.55 [0.08, 0.91] 0.75 [0.39, 1] 0.7 [0, 0.96] 

sl 10 [1, 50] 7.2 [2.4, 14.7] 2.8 [1.1, 7.4] 4.1 [1.3, 12.6] 2.8 [1.4, 5.3] 

x0 0.5 [0.1, 2] 0.77 [0.43, 1.24] 1.26 [0.7, 1.87] 1.07 [0.76, 1.68] 1.13 [0.78, 1.73] 

Model C 

(equations 

7-8) 

a 1 [0.01, 100] 0.02 [0.01, 24] 0.01 [0.01, 28] 0.01 [0.01, 6.29] 0.01 [0.01, 25] 

b 1.5 [0.1, 4] 0.19 [0.1, 1.64] 0.22 [0.1, 4] 0.33 [0.1, 3.79] 0.21 [0.1, 3.98] 

c 0.1 [-10, 10] 3.1 [-8.3, 8.7] 4.1 [-9.1, 9.4] 0.78 [-7.1, 6.3] 1.0 [-8.63, 7.45] 

Model D 

(equations 

9-11) 

a 0.1 [0.01, 100] 0.66 [0.01, 50.1] 0.58 [0.01, 55.4] 0.41 [0.01, 9.57] 0.69 [0.01, 41.9] 

c 0.1 [-10, 10] 0.33 [-9.9, 9.05] 0.57 [-9, 6.9] 0.61 [-7, 5.3] 0.07 [-9.4, 6.1] 

k 1 [0.1, 100] 0.39 [0.16, 1.92] 0.78 [0.34, 12.9] 0.92 [0.33, 15.7] 0.72 [0.21, 18.9] 

 

2.7 Site-level calibration and evaluation 

The parameters of the models A to D were calibrated separately for each species at each site from the data combination D3. 

For the calibration, we used a genetic optimization algorithm together with a cost function that is sensitive to the statistical 

distribution of LFMC and the temporal correlation. We initially tested several common model performance measures as cost 300 
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functions like the root-mean squared error (RMSE), modelling efficiency and the Kling-Gupta efficiency (KGE) (Gupta et al., 

2009) to calibrate the model parameters but we found that based on those cost functions the variance of the observed LFMC 

was underestimated in most cases. As an alternative, we developed a cost function that aims to fit the observed variance by 

minimizing the differences in the percentiles of the statistical distribution of LFMC. The used cost function J adopts the basic 

definition of the Euclidean distance like in the Kling-Gupta efficiency and is here defined as the Euclidean distance in a 305 

multivariate space of performance measures based on the Pearson correlation r between estimated and observed LFMC and 

the ratios of the 5%, 50% and 95% percentiles p: 

𝐽 = √3 × (𝑟 − 1)2 + (
𝑆𝑝=5

𝑂𝑝=5
− 1)

2

+ (
𝑆𝑝=50

𝑂𝑝=50
− 1)

2

+ (
𝑆𝑝=95

𝑂𝑝=95
− 1)

2

 (12) 

Where S and O are the percentiles of simulated and observed LFMC, respectively. The individual terms in the cost function 

are zero in case of a perfect model-data agreement and can go to infinite. The correlation-related term was multiplied with 3 310 

to give the temporal correlation the same weight like the three distribution-based ratios.  

The cost function was minimized for each model and for each plant species at each site by using the Genetic Optimization 

using Derivatives (GENOUD) algorithm (R package rgenoud, version 5.8-3) (Mebane and Sekhon, 2011). GENOUD is a 

global optimization algorithm that additionally uses a local search algorithm. We used GENOUD with 100 parameter sets per 

generation and computed it for ten generations. The local search algorithm was used only after the third generation to avoid a 315 

too fast convergence of the algorithm to a local minimum. Prior ranges of each parameter (Table 2) were provided as search 

domains to the optimization algorithm. As a measure for parameter uncertainty, we then selected the best-performing parameter 

sets from the optimization results, which have a cost J less than or equal to the 25%-ile of all parameter sets in an optimization 

run. As a result, we obtained for each species at each site a sample of best-performing parameters for each model. The median 

and the percentiles 5% and 95% of each parameter from the best-performing parameter sets are listed for different growth 320 

forms in Table 2. 

Additionally to the used cost function, we used the Pearson correlation coefficient r, the RMSE and the KGE performance 

measures to evaluate the optimization results. The KGE allows associating the lack of model performance to a mismatch 

between observed and estimated mean values (bias component), to a mismatch between observed and estimated variance 

(variance component) and to a lack of correlation (correlation component) (Gupta et al., 2009). We used the KGE and its three 325 

components to diagnose the model performance.  

Please note that we did not perform for the site-level calibrations any evaluation with independent test data. We used at each 

site all available pairs of LFMC/VOD observations for model calibration because a split of the available LFMC observations 

would further reduce the available data and sites for model calibration as many sites have few observations. However, we built 

a random forest model to predict the parameters of the best performing model in space and we applied spatial cross validation 330 

to evaluate the performance of the predicted LFMC (section 2.8).  
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2.8 Spatial model application, evaluation and uncertainty assessment 

The calibration of model parameters was performed for each species at each site and allows evaluating and comparing the 

performance of the four models at site level. However, in order to apply the best-performing model globally, the model 

parameters need to be estimated for each grid cell of the global 0.25° x 0.25° raster. We therefore tested different regression 335 

approaches to predict single model parameters from percentage tree cover or from other model parameters. We initially tested 

different regression approaches to estimate the model parameters, namely linear regression, 2nd- and 3rd-order polynomials, 

generalized additive models (GAM), and random forest (RF). While 3rd-order polynomials, GAM and RF resulted in similar 

performance in training, only RF had plausible results in cross validation. Hence, we decided to use RF to estimate the 

parameters of model B in space. Thereby we followed a step-wise application of RF: In the first RF model, we predicted the 340 

parameter x0 of model B from percentage tree cover. In the second RF model, we then predicted the parameter sl from tree 

cover and the parameter x0. In the third RF model, we predicted the parameter f from tree cover, and the parameters x0 and sl. 

The parameter LFMCmax was held constant at 400%. We applied RF in the same way for the parameters of the other models 

by first always predicting the parameter that had the highest correlation with tree cover. We used the randomForest package 

version 4.6-14 (Liaw and Wiener, 2002) in R with 200 decision trees per RF and a node size of 15. A higher number of decision 345 

trees did not result in better performance. The node size describes the number of samples in the terminal nodes of each decision 

trees that are averaged to provide the regression result. Note that we here used based on our experience with RF a higher node 

size of 15 than the default value of 5 in order to reduce the risk of overfitting when using RF with only one to three predictors 

and only 216 sites. In summary, to predict the parameters of model B for one grid cell, a nested set of three RF models is 

needed (one RF for each parameter). 350 

In order to train and evaluate the set of three RF models, we applied a 20-fold spatial cross validation procedure. Therefore, 

we spatially clustered all Globe-LFMC sites from the data collection D4 based on their coordinates using a k-means clustering 

with 20 clusters. We then used the optimized model parameters from all sites within 19 clusters to train the set of three RF 

models and applied the trained set of RF to the 20th cluster to predict and evaluate the parameters of model B. Model B was 

then applied with the predicted parameters to estimate LFMC and to cross-validate LFMC. The procedure was repeated 20 355 

times so that each spatial cluster was once not included in the training of the RF models but used for cross-validation.  

During this spatial training and cross-validation procedure, we also attempted to propagate the uncertainty of the optimized 

model parameters. Therefore, we randomly sampled from each Globe-LFMC site in the training set five out of the best-

performing parameter sets from the site-level calibration. Hence, in each of the 20 folds a different combination of best-

performing parameter sets was used to train the set of RF models.  360 

The spatial training and cross-validation resulted in 20 sets of RF models that allow estimating model B parameters for any 

grid cell based on percentage tree cover. Each of the 20 sets of RF models varies based on the spatial distribution of the used 

Globe-LFMC sites in training and based on the uncertainty of the best-performing model parameters after site-level calibration. 

To estimate LFMC globally, we applied all 20 sets of RF models to all global vegetated grid cells. Therefore, we excluded 
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grid cells with less than 5% vegetation cover (tree cover + short vegetation cover) and grid cells with more than 50% water 365 

cover. For each grid cell we then obtained the model parameters from the set of RF models and used model B to predict 20 

realisations of LFMC. We then computed from the predicted LFMC values the median, minimum and maximum values as 

measures of the uncertainty. In the results, we display this uncertainty estimate as relative uncertainty (i.e. (maximum LFMC 

– minimum LFMC) / median LFMC). 

2.9 Global random forest model as alternative to models A-D 370 

As described in the previous section, we used RF to estimate parameters of models A-D in space and then apply those models 

to estimate LFMC. As an alternative, RF could be used directly to estimate LFMC globally, which would not require any 

assumptions about the type of relationships like in models A-D and allows a higher flexibility in including predictor variables. 

In order to assess the performance of the spatially-applied models A-D against a more flexible global RF model, we trained a 

global RF model directly against LFMC measurments from all sites within the 20 spatial folds and by using the same set of 375 

predictors that we used for model B (i.e. daily Ku-VOD, monthly LAI, and tree cover). The global training of the RF was 

performed with the same spatial cross-validation procedure like for the other models, i.e. with the same set of 20 folds of 

spatially-clustered LFMC sites.  

3 Results and discussion 

3.1 Correlation between VOD and LFMC 380 

3.1.1 Temporal and spatial correlations 

The comparison of VOD and LFMC time series from ground measurements and MODIS retrievals shows widespread positive 

temporal correlations (Figure 1). Across the 910 Globe-LFMC sites with ≥ 10 pairs of VOD/LFMC observations, the median 

temporal correlation between LFMC and VOD is 0.10 for Ku- and X-VOD, and 0.06 for C-VOD. The maximum correlation 

is 0.88 for Ku-VOD, 0.79 for X-VOD, and 0.80 for C-VOD. Globally, 633 sites show positive correlations and 277 sites show 385 

negative correlations with Ku-VOD. For X- and C-VOD, 632 and 395 sites show positive correlations, respectively. The 

comparison with MODIS-LFMC shows median correlations of 0.30 for Ku-VOD, 0.26 for X-VOD and 0.28 for C-VOD in 

Europe and 0.39 for Ku-VOD, 0.37 for X-VOD and 0.35 for C-VOD in Australia. These results show that correlations between 

VOD and LFMC from site measurements and MODIS retrievals are in the majority of sites or grid cells positive and similar 

for the different VOD bands but that Ku-VOD shows slightly higher correlations. 390 

The spatial pattern of temporal correlations between LFMC and Ku-VOD indicate spatial clusters with medium to high positive 

correlation and clusters with low or negative correlation (Figure 1). In the USA, sites with low correlation (r < 0.1) are in many 

cases distributed along the mountain ranges of the Rocky Mountains, Coast Range or Sierra Nevada (Figure 1 b). This 

association of low correlations with mountain ranges is also confirmed by the comparison with MODIS-LFMC in Europe, 
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where positive correlations between LFMC and Ku-VOD are widespread but negative correlations occur in the Alps, the 395 

Carpathians and the Scandinavian mountains (Figure 1 c). Additionally, the flatter areas of central and eastern Scandinavia 

show generally very low correlations between Ku-VOD and MODIS-LFMC. In Australia, positive correlations between LFMC 

and Ku-VOD dominate but negative correlations occur in parts of the northern Great Dividing Range, and in parts of the 

Simpson Desert and the Nullabor Plain (Figure 1 d). These spatial patterns of correlations with MODIS-LFMC are nearly 

identical in all three VOD bands.  400 
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Figure 1: Temporal correlations between Ku-VOD and LFMC. Correlations of Ku-VOD with Globe-LFMC sites are plotted as point 

symbols and with MODIS-LFMC as coloured back ground raster (in c and d). The greyscale raster in (a) and (b) shows percentage 405 
short vegetation cover.   

 

All global spatio-temporal pairs of VOD and LFMC site measurements together show a weak positive correlation but a large 

bi-variate scatter (Figure 2 a-c). This scatter between globally distributed VOD and LFMC indicates that a unique global VOD-

LFMC relation does not exist or that such a relationship is modified by other surface and land cover properties or by the scale 410 

mismatch between VOD grid cells and LFMC site measurements.  

The medium to high positive correlations between VOD and LFMC in the majority of sites support earlier studies that identified 

a relationship between VOD and VWC or LFMC (Jackson and Schmugge, 1991; Konings et al., 2019). Despite the strong 
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similarity in correlations between LFMC and the different VOD bands, contaminations by residual effects of RFI could explain 

the slightly lower correlation for C-VOD. The VODCA dataset uses the RFI flagging in LPRM version 6.0, which is based on 415 

the method proposed by de Nijs et al. (2015). Main contamination areas in AMSR2 in both the C1- (6.9 GHz) and C2- (7.3 

GHz) bands include North America and Europe (de Nijs et al., 2015), where also the majority of Globe-LFMC sites in located. 

We observed that some residual RFI can still be observed in these areas, which was not covered by the masking used in 

VODCA (Figure A 1). As the D2 data combination uses VOD from the same days as Globe-LFMC without any smoothing, it 

is likely that the lower correlation between C-VOD and LFMC is affected by residual RFI.  420 

3.1.2 Effect of land cover differences between scales 

The site measurements of LFMC and the 0.25° x 0.25° grid cells of the VOD data are representative for very different scales. 

Therefore, we further investigated how a difference in land cover at a site (here defined as the 1 km grid cell in which the site 

is located) and at the 0.25° grid cell affects the temporal correlations between LFMC and VOD. Despite a large variability of 

temporal correlations, on average we found decreasing correlations with increasing dissimilarity in land cover distribution 425 

between the site-scale and the VOD-grid. For example, the correlation between Globe-LFMC and Ku-VOD increased by 0.07 

(to median r = 0.17) if the land cover difference is less than 10%. In this case, 126 sites had negative correlations and 365 sites 

had positive correlations. Hence, the difference in land cover at a LFMC measurement site and in the coarse VOD grid cell 

can explain a small decrease in the correlation between VOD and LFMC.  

Although this analysis allowed to quantify how the correlation between site measurements of LFMC and coarse-resolution 430 

grid cells of VOD are affected by the land cover differences between both scales, it does not allow to resolve this scale 

mismatch. Only local measurements of passive microwave emissions and derived estimates of VOD in conjunction with LFMC 

samples allow to factor out the scale mismatch for the analysis of relations between LFMC and VOD. However, such 

measurements are rare (Momen et al., 2017). Our results demonstrate the need to better understand the effect of the local to 

regional heterogeneity in land cover on coarse-scale VOD estimates in order to make better use of VOD in estimating LFMC. 435 
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Figure 2: Global scatterplots and correlation of LFMC from the Globe-LFMC database against Ku-, X- and C-VOD. The red lines 

are smoothing spline fits between the values at the x- and y-axes.   440 

 

3.1.3 Effect of vegetation type  

Furthermore, we investigated if the correlations between VOD and LFMC are associated to vegetation type (Figure 3). The 

comparison of VOD with Globe-LFMC shows higher correlations at higher short vegetation cover within the VOD-grid cell. 

For example, the median correlation between LFMC and Ku-VOD is 0.30 if the short vegetation cover is ≥ 80% and is 0.09 if 445 

the short vegetation cover is < 80% (Figure 3a). However, despite this average increase in correlation with increasing short 

vegetation cover, several sites with low short vegetation cover also have correlations > 0.5. The increase of correlation with 

short vegetation cover are mirrored by a decrease of correlation with increasing tree cover. For example, the median correlation 

between Globe-LFMC and Ku-VOD is 0.15 for tree cover < 20% and is 0.05 for tree cover ≥ 20%. The changes in correlation 

with short vegetation or tree cover are similar for all three VOD bands but Ku-VOD shows in the majority of vegetation cover 450 

fractions higher correlations than the other two bands. The dependency of the correlation between LFMC and VOD on 

vegetation type is more pronounced if we use MODIS-LFMC instead of Globe-LFMC site measurements. Thereby we find 

for all VOD bands and both in Australia and Europe a general increase of the correlation with increasing short vegetation cover 

(or decreasing tree cover) (Figure 3c-d).  

The dependency on vegetation composition becomes clearer when we compute the correlation between VOD and LFMC 455 

separately for each sampled plant species at each site and then grouped the plant species in growth forms (Figure 3b). We find 

the highest correlation for forbs (median r = 0.38 for Ku-VOD), followed by grass (r = 0.22), broad-leaved trees (r = 0.15), 

shrubs (r = 0.11), and finally needle-leaved trees (r = 0). The order of median correlations is the same for X- and C-VOD. 

However, the results show that despite low median correlations for some growth form classes, also high correlations are 

possible at some sites for all growth forms. For example, the percentile 90% of the correlation between LFMC and Ku-VOD 460 

is 0.7 for forbs, 0.65 for grass, 0.55 for shrubs, 0.61 for broadleaved trees and 0.40 for needle-leaved trees. These results 
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demonstrate that especially Ku-VOD is related to LFMC and that the relationship is closest for short vegetation types such as 

forbs, grasses and shrubs.  

The results are in agreement with earlier studies that established the relation between VOD and VWC or LFMC based on 

observations from crops and grasses (Jackson and Schmugge, 1991; Konings et al., 2019). The more homogenous canopies of 465 

short vegetation than of forest canopies might cause the generally higher correlations between VOD and LFMC at many 

herbaceous sites than at forest sites. However, based on the additional high 90% percentiles of correlations at some tree-

dominated sites, we assume that coarse-resolution VOD data is also sensitive to LFMC at forest sites but that the relationship 

is in many cases masked by the mismatch between land cover at the local site and the coarse VOD grid cell. This assumption 

is also supported by the findings of Holtzman et al. (2021) who report a correlation of r = 0.76 between L-VOD and leaf water 470 

potential as measured locally in a deciduous forest and by Momen et al. (2017) who were able to model X-VOD from 

measurements of leaf water potential and LAI for two mixed deciduous forests.  

The higher correlation for Ku- and X-VOD with LFMC than for C-VOD might be confounded by an effect of rain on the 

atmospheric transmissivity of those wavelengths. Although microwaves are generally assumed largely independent of 

atmospheric conditions, thick water clouds and rain reduce the transmissivity of the atmosphere especially for shorter 475 

wavelength microwaves. For example, the atmospheric transmissivity is between 60 and 80% in the case of water clouds and 

between 20 and 70% in the case of rain for Ku-band (Ulaby et al., 1981, p.2–3). However, effects of rain on the retrievals of 

Ku- and X-VOD in the VODCA product are not known. Overall, the quality of the Ku-band VOD is comparable to X- and C-

VOD (Moesinger et al., 2020): Ku-VOD correlates higher (global average r = 0.39) with MODIS LAI than C-VOD (r = 0.37) 

but a bit weaker than X-VOD (r = 0.42). The effect of RFI on C-VOD is not present in Ku-VOD. Moreover, Ku-VOD has a 480 

larger data coverage because the CDF matching approach used in the VODCA dataset was more often successful for Ku-VOD 

than for the X- or C-VOD data. Multi-year trends in Ku-VOD agree with trends in X and C-VOD. Hence, the higher correlation 

of Ku-VOD with LFMC and the quality and overall similarity of the Ku-VOD data with X- and C-VOD, suggests using Ku-

VOD to estimate LFMC.  

 485 
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Figure 3: Statistical distributions of the temporal correlation between VOD and LFMC stratified by vegetation type. (a and b) 

Correlation with measurements from the Globe-LFMC database stratified by (a) the percentage cover of short vegetation and (b) 

by the growth form of the sampled plant. (c and d) Correlation with MODIS-LFMC in (d) Australia and (d) Europe stratified by 490 
the percentage cover of short vegetation. 

 

3.2 Estimating LFMC at site-level 

3.2.1 Performance of models A-D in site-level calibration 

Based on the finding that Ku-VOD shows slightly higher correlations with LFMC than X- or C-VOD and given the longer 495 

temporal overlap of Ku-VOD with Globe-LFMC observations, we used Ku-VOD as input to four different models to estimate 

LFMC. We separately calibrated each model at each of 216 Globe-LFMC sites that were selected based on the criteria for the 
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data collection D3 (section 2.5). An example of the calibration of model B for one species at one site is shown in Figure 4. The 

example demonstrates a very good fit between observed and estimated LFMC (correlation r = 0.84). This example corresponds 

approximately to the 90%-ile highest correlation between observed and estimated LFMC from model B and is therefore among 500 

the best results of all sites. The model response function shows that the estimated LFMC increases with both daily Ku-VOD 

and monthly LAI, which is supported by the observed LFMC (Figure 4 b). In this model, the performance of the estimated 

LFMC is most strongly influenced by the parameter sl (e.g., r = 0.95 between sl and RMSE) while also the parameter x0 has a 

strong effect on the model performance (e.g., r = -0.65 between x0 and RMSE). This example shows that LFMC from site-

level observations can be estimated from coarse resolution Ku-VOD (and LAI) observations.  505 

Across all sites and vegetation types, the estimated LFMC from model B shows a better fit against the observed LFMC than 

the estimates from the other three models (Figure 5). Model B achieves correlations of 0.640.36
0.86 (median and 5% and 95%-

percentiles), followed by model D with 0.540.66
0.83, model A with 0.450.16

0.75, and finally model C with 0.410.06
0.75. Also for the 

RMSE, model B shows the lowest error with RMSE = 2911.5
60.7%-LFMC. The other three models show higher RMSE with model 

C having the highest error (RMSE = 44.910.1
643707%-LFMC). Please note the high 95%-ile of the RMSE for model C, which 510 

indicates that it was not possible to successfully fit model C at some sites.  

By investigating the model performance for different vegetation growth forms, we generally found that model B performed 

best and that the ranking of model performance for the other three models is similar for all vegetation types (Figure 5). We 

found the highest correlation between estimated and observed LFMC for shrubs (0.730.46
0.87, model B), followed by forbs and 

grasses (0.670.44
0.83), broad-leaved trees (0.550.32

0.86), and needle-leaved trees (0.500.28
0.70). The lowest median correlation was found 515 

for model C for broad-leaved trees (0.350.14
0.62). While the models A, B and D resulted in only positive correlations between 

observed and estimated LFMC, model C produced at five sites negative correlations. In terms of the RMSE, needle-leaved 

trees had the lowest error with RMSE = 15%-LFMC (median for model B), followed by shrubs (RMSE = 19%), broad-leaved 

deciduous trees (RMSE = 35%) and forbs and grasses (RMSE = 39%). The results indicate that the performance of the models 

to estimate LFMC from Ku-VOD depends on vegetation type. Thereby the temporal correlation can be well estimated for all 520 

vegetation types using model B. The absolute values of estimated LFMC show low to medium errors for most vegetation types 

except for broad-leaved evergreen trees.  
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Figure 4: Example of the fit of model B using daily Ku-VOD and monthly LAI for Artemisia tridentata ssp. at the site Great Divide, 525 
Colorado (40.76°N, 107.85°W). (a) Scatterplot of estimated against observed LFMC. (b) Distribution of observed LFMC (points) 

and estimated LFMC (coloured background) in relation to daily Ku-VOD and monthly LAI.  

 

3.2.2 Suitability of model structures 

The logistic regression model B based on daily VOD and mean monthly LAI outperforms other model structures. The improved 530 

performance of model B (using VOD and monthly LAI) over model A (only using VOD) demonstrates that the dynamics in 

LAI needs to be considered in order to provide good estimates of LFMC. The parameter f in model B defines the relative 

contribution of VOD or LAI to the estimated LFMC. The higher values of f for trees than for grasses and forbs (Table 2) shows 

that VOD needs to be higher weighted to predict the LFMC of forest sites while a lower weight of VOD (and higher relative 

contribution of monthly LAI) is necessary to predict the LFMC of grasses and forbs. The higher weighting of VOD to predict 535 

LFMC of trees corresponds to the findings of Zhang et al. (2019) who found that canopy biomass has a stronger effect on 

short-wavelength VOD than leaf water potential in temperate forests.  

Model C adapted the relationship between VOD and LFMC as proposed by Jackson and Schmugge (1991) and Konings et al. 

(2019) (i.e. equation 2). Hence, this model used VOD to account for VWC and used LAI to account for canopy biomass. Model 

C resulted on average in low correlations and high errors between estimated and observed LFMC. While this model could not 540 

be fitted successfully at some sites, it also reached good performances at others. These results suggest that the relationship 

between VOD and LFMC as denoted in equation 2 is valid for some sites but it might not be valid for all sites or is overly 

sensitive to scale mismatches in the local measurements and the coarse-scale VOD and LAI data.  
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Model D adapted the relationship between VWC and LAI as suggested by Sawada et al. (2016) and estimated canopy biomass 

based on VOD. As this model resulted in better performance than model C, it indicates that VOD is indeed a valuable predictor 545 

for canopy biomass and VWC can be indeed estimated from LAI at many sites. Model D achieved on average higher 

correlations between estimated and observed LFMC than model A (only using VOD), which shows that LAI is required to 

predict temporal dynamics in LFMC. However, model D had higher errors than model A, which indicates that using VOD 

only as predictor for canopy biomass is not sufficient but that the VOD information in model A provides information of 

absolute values (and hence reduces errors) of LFMC.  550 

Models A, C and D with lower performance have a low flexibility in how they use VOD and LAI to estimate LFMC: model 

A only uses VOD; model C uses VOD to account for VWC and LAI to account for biomass; and model D uses LAI to account 

for VWC and VOD to account for biomass. On the other hand, model B allowed to combine daily VOD and monthly LAI in 

a flexible way to estimate LFMC and reached highest performance. These results demonstrate that flexible model structures 

are needed in order to estimate LFMC from VOD and LAI. This finding is supported by several studies that identified that the 555 

relative contributions of  changes in biomass and vegetation water content (or leaf water potential) depends on land cover type 

(Momen et al., 2017; Zhang et al., 2019; Konings et al., 2021b).  
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Figure 5: Performance of the models A-D using daily Ku-VOD (and monthly LAI in models C-D) after calibrating each model at 560 
each site. Shown is the root mean squared error (RMSE) and correlation coefficient between estimated and measured LFMC. Small 

dots are results from different parameter sets at each site, big dots and bars are the median and range from the 5 to 95%-iles across 

all sites, respectively.  

 

3.3 Estimating LFMC spatially using spatial cross-validation 565 

In a next step, we investigated the applicability of the four models in space, which requires an estimate of the model parameters 

for each of the 0.25° VOD-grid cells. Therefore, we first analysed the correlation of the estimated parameters of each model 

with land cover properties of the VOD-grid cell (e.g. shown for model B in Figure A 2). We found that some of the optimized 

model parameters are highly correlated with land cover information while other parameters can be estimated based on the 

covariation between parameters. For example, in model B the parameter x0 had the strongest correlation with the percentage 570 

tree cover (r = 0.74), the parameter sl with the parameter x0 (r = -0.74) and then with tree cover (r = -0.32), and the parameter 
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f with the parameter sl (r = 0.3) (Figure A 2). Based on those findings, we used random forest to predict first for each VOD-

grid cell the parameter x0 from percentage tree cover and then the parameter sl from tree cover and the parameter x0. Finally, 

we predicted the parameter f from tree cover and the parameters x0 and sl. We performed the same step-wise approach to 

predict the parameters with random forest for the other models and then applied each model to the 0.25° grid cell by using the 575 

predicted parameters to estimate LFMC. We applied this approach within a 20-fold spatial cross validation to evaluate the 

performance of the estimated LFMC in space. Additionally, we uF to estimate the spatial-teporal dynamics of LFMC directly. 

3.3.1 Model performance in spatial cross-validation 

As expected, the performance of all models slightly decreased in cross validation in comparison to the site-level calibration 

results (Figure 6). However, the ranking in model performance remained the same with model B showing the best performance. 580 

For example, model B had correlations of 0.580.30
0.84 in spatial cross validation samples (0.640.36

0.86 in site-level calibration, see 

section 3.2), which corresponds to a decrease of 0.06 of the median correlation in comparison to the calibration against the site 

data. The RMSE in spatial cross validation was 48.817.9
111.8%-LFMC for model B (RMSE = 2911.5

60.7 %-LFMC in site-level 

calibration). Like model B, also models A and D experienced small decreases in correlation and increases in RMSE in spatial 

cross validation (Figure 6). However, model C experienced strong decreases in correlation from median r = 0.42 in site-level 585 

calibration to r = 0.22 in spatial cross validation, which shows the parameters of model C could not be reliably estimated in 

space in order to obtain a sufficient performance in estimating LFMC. 

The global RF model achieved comparable performances like the other models with correlations of 0.500.18
0.77 and RMSE of 

4021.9
79.5%-LFMC in spatial cross validation between observed and estimated LFMC. Hence, the RF performed in average 

slightly better than the best-performing model B in terms of RMSE but worse than model B and D in terms of correlation.  590 

These results demonstrate that especially model B can be applied in space and results in a comparable performance in estimated 

LFMC between site-level calibration and spatial cross validation.  
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Figure 6: Performance of the models A-D using Ku-VOD after calibrating each model for each species at each site (cal at site) and 

after using sites as test data in spatial cross validation after the application of random forest to predict model parameters (spatial-595 
cv). The global RF model (shown in orange) was directly trained against LFMC measurments from multiple sites. Shown is the root 

mean squared error (RMSE) and correlation coefficient between estimated and measured LFMC. Dots and bars are the median and 

range from the 5 to 95%-iles across all sites, respectively.  

 

 600 
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Figure 7: Performance of model B using Ku-VOD in spatial cross validation at each site grouped by the sampled vegetation growth 

form of LFMC measurements. (a) Kling-Gupta efficiency with its components caused by bias, variance and correlation. Purple dots 

represent the 5%, 50% and 95%-iles of the KGE across all sites. The time series of the sites corresponding to those percentiles are 605 
shown in panels (b, 5% = site with low performance, broad-leaved tree site), (c, 50% = site with medium performance, broad-leaved 

tree site) and (d, 95% = site with -good performance, forb site).  

 

We then performed a more detailed evaluation of the cross validation results of the best-performing model B by investigating 

the Kling-Gupta efficiency (KGE) and its components for each site and each vegetation growth form (Figure 7). We found the 610 

highest KGE in cross validation for shrubs (median KGE = 0.4) and forbs (median KGE = 0.32). Grasslands (median KGE = 

0.29) and broad-leaved trees (median KGE = 0.25) had lower performance and needle-leaved trees had overall low 

performance (median KGE = -0.49). However, the variability in KGE was high within all vegetation types. All grass sites and 

88% of the forb and shrub sites had positive KGE but only 38% of the needle-leaved sites had positive KGE. In most sites 

with low KGE, KGE is dominated by a mismatch between the observed and estimated variance of LFMC. This can be seen 615 

for example in the LFMC time series in Figure 7 b, which is representative for a broadleaved tree site with low KGE and 

corresponds to the percentile 5% of the KGE across all sites. However, the correlation between observed and estimated LFMC 

is still moderate at such sites, which indicates that the temporal dynamic of the estimated LFMC has still a moderate agreement 

with the observed LFMC. For sites with medium and high KGE (Figure 7 c and d), the error is in most cases a mixture of a 

mismatch in mean values (bias), variance or not-perfect correlation. For example, the time series in Figure 7 c and d 620 

demonstrate that the model B fits well the mean, variance and correlation of the observed LFMC.  
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3.3.2 Spatial applicability of model structures 

The ranking in performance of the four models in spatial cross validation resembles the ranking of the performance in site-

level calibrations. On the one hand, the large variability in performance at site-level calibration and the strong decrease in 

performance in spatial cross validation for model C demonstrates that this model cannot be successfully applied and transferred 625 

to estimate LFMC globally. On the other hand, the results demonstrate that model B can be successfully used to estimate the 

spatial-temporal dynamics of LFMC, whereby the parameters of model B can be estimated from observed tree cover using 

random forest. Medium to high performance of the estimated LFMC can be expected for herbaceous vegetation, shrublands 

and for most broad-leaved trees. On average, a low performance and underestimation of the observed variance can be expected 

for needle-leaved trees, but this is not the case for all sites with needle-leaved trees.  630 

The application of model B in estimating LFMC results in performances (i.e. median RMSE = 48.8% in global spatial cross-

validation) that are comparable with other studies that estimated LFMC based on optical satellite observations. For example, 

estimated LFMC reached errors of 40% (Yebra et al., 2018), 45% (Caccamo et al., 2011) and 44% (Nolan et al., 2016) across 

validation sites in Australia (Yebra et al., 2018) and approx. 34% in a global study with MODIS data (Quan et al., 2021). Rao 

et al. (2020) used Landsat-8 and Sentinel-1 Radar backscatter to estimate LFMC for the western US using a neural network 635 

model and obtained RMSE of 25% across vegetation types. They obtained the lowest errors for mixed and needle-leaved 

forests (RMSE = 20% and 22%) and the highest errors for grasslands (RMSE = 31%). While our results are similar for site-

level calibrations of model B (i.e. RMSE = 15% for needle-leaved trees and 39% for grasslands ), we found much lower 

performance for needle-leaved trees in spatial cross validation.  

The lower performance of model B for needle-leaved trees in spatial cross-validation than at site-level calibration indicates 640 

that the calibrated parameters from each site cannot be well estimated in space. We assume that this is caused by the spatial 

representativeness of the used LFMC sites with needle-leaved trees. All of the used sites with needle-leaved trees are located 

in the western US and most of the sites are located in regions with low tree cover. Only a few sites are located in regions with 

higher tree cover and those sites are distributed across different spatial clusters for cross-validation. Hence, needle-leaved trees 

are included in 11 out of 20 spatial clusters and six of the spatial clusters include less than three sites with needle-leaved trees. 645 

This implies that in such cases the training of model parameters is mostly based on sites without needle-leaved trees and from 

other regions, which will results in a low performance for needle-leaved forests. Those results suggest that still all vegetation 

types should be considered in spatial cross-validation in order to obtain realistic results for under-represented vegetation types. 

Overall, our estimates of LFMC from coarse-resolution VOD and LAI data reach medium to high performances for most 

vegetation types that are comparable with other studies that use more data with higher spatial resolution or data from optical 650 

satellite systems for which the physical relations between LFMC and surface reflectance are established for several years 

(Yebra et al., 2013).  
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3.4 Global LFMC estimates 

3.4.1 Global spatial-temporal patterns 

Finally, we applied model B and the associated RF-based parameters to global data of Ku-VOD, LAI and tree cover to estimate 655 

LFMC globally at 0.25 x 0.25° spatial resolution and at daily sampling for the period February 2000 to July 2017 (overlapping 

period of Ku-VOD and MODIS LAI). As an example, we show global estimates for four days in the year 2003 (Figure 8). The 

four days cover the different seasons in northern ecosystems as well as wet and dry seasons in tropical Africa. The four maps 

show generally high LFMC in wet tropical regions (Amazon and Congo basins, SE Asia), medium LFMC in many sub-tropical 

and temperate regions and low LFMC in Savannah and desert regions. Seasonal changes in LFMC generally follow wet and 660 

dry seasons in semi-arid regions and the course of the phenological development as commonly seen in other vegetation 

properties (i.e. LAI or productivity). For example, the Sahel in northern Africa shows high LFMC in August (wet season) and 

low LFMC in February (dry season). Similar seasonal changes between wet and dry seasons can be seen in South America, 

the southern United States, the Mediterranean, India, eastern Asia and Australia. The seasonal changes in LFMC are also 

visible in the Hovmöller diagram (Hovmöller, 1949) shown in Figure 9. Thereby, equatorial regions show continuously high 665 

LFMC with a very weak seasonality. Northern subtropical regions between 5 and 18°N show prolonged dry seasons with low 

LFMC towards northern latitudes. Northern mid and high latitudes (> 30°N) show higher LFMC during the summer months 

than during spring and autumn.  

The large similarity of the global seasonal changes in LFMC with similar changes found in other vegetation properties such 

as LAI or gross primary productivity might seem astonishing at first view because LFMC represents a relative property of 670 

moisture content and not an absolute property of vegetation cover or biomass (like LAI). However, seasonal changes in leaf 

cover are highly correlated with LFMC, especially in short vegetation regions. For example, MODIS LAI has an across-site 

median temporal correlation with measurements of the Globe-LFMC dataset between  r = 0.30 and r = 0.50 for regions with 

short vegetation cover > 80% (Figure A 5). Hence the Globe-LFMC site-level data shows indeed a strong coupling between 

LFMC and LAI, which is then also reflected in our global estimates of LFMC. This suggests a close coupling of LFMC 675 

increases with leaf development and of LFMC decreases with leaf caviation and shedding.  

Areas without estimates of LFMC (grey areas in Figure 8 and 9) occur because of several reasons. 1) Missing data in deserts 

and ice-covered regions are because the model was not applied to grid cells with less than 5% vegetation cover. 2) Missing 

data in northern latitudes in winter months are either because of months without LAI observations because of low solar zenith 

angles, snow or cloud cover, or because Ku-VOD observations were not available over frozen soils. 3) Other days with missing 680 

observations in some regions are because of missing coverage of passive microwave sensors or were masked in the VODCA 

dataset because of RFI.  

We also compared the estimated LFMC from model B with MODIS-LFMC for Australia and Europe to assess the similarity 

of both datasets. However, as the VOD-based LFMC uses monthly LAI from MODIS as input, which is derived from the same 

spectral bands like MODIS-LFMC, both LFMC datasets are not independent of each other and a high correlation can be 685 
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expected. Indeed both the VOD-based LFMC and MODIS-LFMC are highly correlated (Figure A 3). The spatial patterns of 

correlation between the VOD-based LFMC and MODIS-LFMC show similar regions where already Ku-VOD had high and 

low correlations with MODIS-LFMC, respectively (Figure 1). The correlation between VOD-based LFMC and MODIS-

LFMC is higher than between Ku-VOD and MODIS-LFMC in many regions, which is likely due to the additional use of 

MODIS-LAI in model B. The low correlation in parts of northern Europe and the Alps was already present in the correlation 690 

between MODIS-LFMC and Ku-VOD. The low correlation between VOD-based LFMC and MODIS-LFMC in northern 

Europe can be additionally caused by the low performance of the estimates in needle-leaved forests, which are widespread in 

those regions. However, the very high correlation between VOD-based LFMC and MODIS-LFMC demonstrates in many 

regions and in most fire-prone regions a good comparability of the two datasets. 
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 695 

Figure 8: Example of global patterns of LFMC and associated uncertainties as estimated with model B for four selected days in 2003, 

representing typical days during the northern seasons and the wet and dry seasons in Africa. Grey areas (missing data) is because 

of missing vegetation cover or gaps in the LAI or VOD data.  
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 700 

Figure 9: Hovmoeller diagram of monthly LFMC as estimated from model B using daily Ku-VOD and monthly LAI. 

 

3.4.2 Uncertainties and observational support  

The uncertainty estimates of the global LFMC estimates are on average low (global mean relative uncertainty = 0.28) and do 

not show distinct spatial patterns (Figure 8, right column). Larger relative uncertainties tend to occur at low LFMC, i.e. at 705 

seasonally dry conditions or in transitions areas to deserts (e.g. the Sahel, border of Sahara, Central Asia, parts of Australia) 

and in the boreal forest regions in Russia and Canada. The higher uncertainty over boreal forests corresponds to the lower 

correlations between LFMC and Ku-VOD and between estimated and observed LFMC after site-level calibration, and to the 

lower performance in spatial cross-validation for sites with needle-leaved trees.  

The analysis of the estimated global patterns of LFMC needs to be compared with the number of observations that are 710 

supporting the global estimates. The majority of pairs of Ku-VOD and Globe-LFMC observations come from the western US 

and from sites in the Mediterranean, western Africa and southern Australia (Figure A 4a). The available Globe-LFMC 

observations cover mean annual temperatures between -0.3 and 27°C and annual total precipitation between 202 and 1465 mm 

(Figure A 4c). This indicates that boreal and polar regions and very wet tropical regions are generally not supported by Globe-

LFMC observations. Likewise, the observations cover tree coverages between 0 and 79% but no observations are available at 715 

high tree cover with high mean annual temperature > 20°C (i.e. in tropical forests) (Figure A 4d).  
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We additionally estimated the number of supporting observations in space as a function of mean annual temperature, tree 

cover, maximum Ku-VOD and maximum LAI (Figure A 4b).  Therefore a random forest regression was fitted to the number 

of observations per site in the Globe-LFMC database and by using  mean annual temperature, tree cover, mean annual 

maximum Ku-VOD, and mean annual maximum LAI as predictors. The fitted random forest model was then applied to each 720 

0.25 x 0.25° grid cell to provide an estimate of how many observations are actually supporting a LFMC estimate in a grid cell. 

We found that the global LFMC estimates are not supported by any site-level LFMC observations with similar conditions in 

most of the tropical forests and in the boreal forests in Eurasia. However, most temperate and semi-arid regions are supported 

by Globe-LFMC observations. In addition, large areas of high northern latitudes (including most of the polar Tundra regions) 

are supported by Globe-LFMC observations because they have similar conditions of low tree cover, LAI and Ku-VOD like 725 

some sites in mountainous areas in the western US or the existing sites in Alaska. However, as many sites in mountainous 

regions have low correlations between VOD and LFMC (Figure 1), the plausibility of LFMC estimates in northern latitudes is 

questionable. However, the global estimates of LFMC have strong observational support by site-level observations in many 

fire-prone regions such as in western Canada, the western US and Mexico, in southern South America, in the Mediterranean, 

central Asia, parts of China, southern and eastern Africa, and southern and eastern Australia. This provides confidence that the 730 

LFMC estimates can be used as a predictor for fire dynamics in most fire-prone ecosystems.  

3.5 Applicability of the LFMC estimates and future directions  

The aim of this study was to investigate the VOD-LFMC relationship and to develop and test model approaches to estimate 

LFMC globally. We also generated a daily LFMC dataset for past conditions, whereby the daily information originates from 

the Ku-VOD data. Although the presented LFMC dataset has a much coarser spatial resolution than MODIS-LFMC datasets 735 

(Yebra et al., 2018; Quan et al., 2021; Zhu et al., 2021), the advantages are the daily coverage because VOD is cloud- and 

illumination-independent and the long time span of VOD data (e.g. Ku-VOD starting in 1987), which potentially allows to 

produce long-term estimates of LFMC in future studies. Hence, the described methodology to estimate LFMC from VOD can 

complement LFMC retrievals from optical sensors by providing a higher temporal frequency and potentially a longer temporal 

coverage.  740 

We envision several applications of the global Ku-VOD-based estimates of leaf moisture content (expressed as LFMC) but 

also want to raise attention to the limitations of the dataset in other applications. The VOD-based LFMC estimates are suitable 

to investigate large-scale patterns of vegetation responses to drought, to assess fire danger and to estimate fire emissions, or to 

benchmark global ecohydrological and fire-enabled vegetation models.  

3.5.1 Application of the LFMC estimates as drought indicator 745 

Several remotely sensed vegetation properties such as spectral vegetation indices, LAI, sun-induced fluorescence or derived 

variables of plant productivity are frequently used to monitor drought effects on vegetation (e.g. Jiao et al., 2021; Crocetti et 
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al., 2020) or to investigate the  effects of water availability on vegetation growth. The VOD-based LFMC estimates can 

complement such analyses by providing information on large-scale changes in leaf moisture content.  

As a case study, we compared the VOD-based LFMC with drought conditions in North America and specifically in California 750 

by using the 12-monthly Standardized Precipitation Index (SPI-12) and the U.S. Drought Severity and Coverage Index (DSCI) 

(Figure 10). August 2014 was one of the most severe drought months in the western U.S. The VOD-based LFMC estimates 

show wide-spread patterns of very low LFMC over the western U.S. during this month (Figure 10 a). This corresponds to a 

lack in precipitation as indicated by the negative SPI-12 (Figure 10 b). Also large regions in northern Canada show precipitation 

deficit with low SPI-12 in northern Canada, which also corresponds to patterns of low LFMC.  755 

To investigate multi-year drought events, we also compared LFMC, SPI-12 and DSCI time series averaged for the state of 

California (Figure 10 c). Both SPI-12 and the DSCI show the multi-year drought between 2013 and 2016. The LFMC time 

series is dominated by the strong seasonal signal. Therefore, we decomposed the LFMC time series for California into a 

seasonal, trend and remainder component using the seasonal decomposition of time series by Loess (STL) method (Cleveland 

et al., 1990). The LFMC trend shows a long period of low values between 2013 and 2016, which corresponds to the drought 760 

period. Likewise the wet period between 2005 and 2007 with higher precipitation (i.e. high SPI-12) and no drought conditions 

(i.e. DSCI close to 0) corresponds to high LFMC values. The LFMC trend component is medium correlated with SPI-12 (r = 

0.495) and DSCI (r = -0.515) and hence reflects well the inter-annual variability of drought and wet conditions. This 

continental/regional case study demonstrates the potential to investigate effects of multi-year drought conditions and climate 

variability on vegetation moisture with the VOD-based LFMC estimates.  765 
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Figure 10: Comparison of LFMC as estimated from model B with drought conditions in North America and California. (a) Map of 

mean monthly LFMC for August 2014, a month with severe drought in the western United States. The state of California is 

highlighted in the map. (b) Map of the Standardized Precipitation Index for 12-monthly accumulation periods (SPI-12) for August 770 
2014. SPI-12 data is taken from GDO (2021). (c) Comparison of LFMC, SPI-12 and the US Drought Severity and Coverage Index 

(DSCI) for California. A severe drought started in California (and in the western US) in 2013 and lasted until end 2016 as shown by 

negative SPI-12 values, very high DSCI values, and low LFMC. The dashed vertical line corresponds to August 2014, which is shown 

as map in panels (a) and (b).  

 775 
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3.5.2 Applications for large-scale fire science 

Generally, the main application of LFMC data is the assessment of fire risks (Chuvieco et al., 2010). The high temporal 

frequency and long period of the VOD-based LFMC dataset allow investigating short-term to long-term changes in fuel 

moisture and hence fire risk at a large scale. Previously, VOD datasets have been used as proxies for fuel conditions in global 

empirical models of burned area (Forkel et al., 2017; Kuhn-Régnier et al., 2021) and helped to explain how trends in climate 780 

conditions and vegetation affect large-scale trends in burned area (Forkel et al., 2019). However, the interpretation of VOD 

effects on the prediction of burned area was hampered in those studies by the unclear role of VOD as a proxy for fuel loads 

(biomass) or fuel moisture content. The VOD-based LFMC estimates overcome this problem by translating VOD into LFMC. 

Besides in empirical models for large-scale burned area, the VOD-based LFMC estimates can be used to investigate changes 

in fire radiative energy or fire emissions, which both depend on fuel moisture content. Further investigations could assess the 785 

predictive performance of the VOD-based LFMC data within large-scale empirical modelling studies to predict burned area 

or other properties of fire dynamics.  

However, the coarse spatial resolution of the VOD-based LFMC data (0.25° x 0.25°) prevents applications in regional and 

local fire risk assessment. At a small scale, differences in vegetation structure and topography are the main controls on fire 

ignitions and propagation (Chuvieco et al., 2010), which are not accounted for in the VOD-based LFMC dataset. Hence, an 790 

application of the VOD-based LFMC estimates for regional fire risk assessment should be tested with caution, especially in 

heterogeneous landscapes or mountainous regions. However, our cross-validation results suggest that the LFMC estimates can 

be applied in large homogenous landscapes with short vegetation types.  

Furthermore, the VOD-based LFMC estimates can contribute to the evaluation and improvement of moisture simulations in 

global ecohydrological and fire-enabled vegetation models such as from the fire-model inter-comparison project (FireMIP) 795 

(Rabin et al., 2017). FireMIP models simulate live and dead fuel moisture either based on fire danger indices (e.g. the Nesterov 

index, Thonicke et al. (2010)) or based on empirical functions with soil moisture or relative humidity (Rabin et al., 2017). 

FireMIP models have been intensively evaluated for simulations of burned area, fire emissions, LAI, plant productivity and 

biomass (Hantson et al., 2020) and the simulated fuel moisture has a strong effect on simulations of burned area and fire 

emissions (Li et al., 2019). However, fuel moisture has not yet been evaluated in those models. Hence, we propose that the 800 

VOD-based LFMC estimates or other global products (Quan et al., 2021) can be used in benchmarking activities of global 

fire-enabled vegetation models.  

3.5.3 Future developments  

Finally, we propose several further developments of the VOD-based LFMC datasets:  

 The calibration and evaluation of the applied models used only 163 sites out of 1384 sites in the Globe-LFMC 805 

database accoding to the selection criteria described in section 2.5. This is mainly caused by the joint availability of 

pairs of LFMC/VOD observations. Additionally, our selection criteria also prevented us from using the measurements 
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from all 229 sites in China, where each site has only one measurement. Future developments can apply different 

approaches to make use of more observations in model training. While sites with single measurements cannot be used 

to calibrate models at site level, they could be still used in training the spatial random forest model to estimate model 810 

parameters. At other sites, a filling of short temporal gaps in VOD time series could increase the availability of 

LFMC/VOD pairs and would increase the number of sites that can be used for model calibration.  

 An estimation of LFMC for different vegetation types within a VOD-grid cell can be explored as the site-level model 

calibration was performed for different vegetation growth forms reported in the Globe-LFMC database.  

 LAI data at their original spatial resolution within the VOD-based models could be used to provide LFMC estimates 815 

at higher spatial resolution. 

 One advantage of our methodology is the long time span of VOD data (e.g. Ku-VOD starting in 1987), which 

potentially allows to produce long-term estimates of LFMC in future studies. Hence, the temporal coverage of the 

LFMC estimates can be extended back to 1987 by using longer LAI time series than provided by MODIS. Such an 

extension would also allow the use of older LFMC field data in model calibration. Such long time series of LFMC 820 

can facilitate climatological studies on the variability and LFMC and the potential effects on fire.  

 The prediction of fire risks requires the availability of satellite products shortly after the observation. Our 

methodology could be applied to estimate LFMC in near-real time, however, this requires the availability of near-real 

time VOD products.  

4 Conclusions 825 

This study assessed the relationship between short-wavelength VOD from passive microwave satellite observations and leaf 

moisture content (expressed as LFMC) globally and successfully developed and applied a method to estimate LFMC from 

VOD globally at 0.25° x 0.25° spatial resolution, at daily time steps and for the period from February 2000 to July 2017. We 

achieved our three objectives as follows: 

1) We investigated the relationship between VOD and LFMC. VOD and LFMC are in the majority of sites or grid cells 830 

positively correlated, whereby Ku-band VOD has slightly higher correlations than X- or C-VOD. The correlation between 

VOD and LFMC is on average higher for short vegetation types such as forbs, grasses and shrubs than for trees but also 

several forest sites show high correlations. Broad-leaved forests show higher correlations than needle-leaved forest. These 

results confirm earlier studies about the VOD-LFMC relation and demonstrate additionally that coarse-scale VOD is 

sensitive to LFMC at forest sites if the land cover distribution locally is similar to the coarse grid cell.  835 

2) We tested different model structures to estimate LFMC from VOD. A logistic regression model that uses daily Ku-VOD 

and monthly LAI as predictors for LFMC outperformed alternative model structures in site-level calibration and spatial 

cross-validation. The comparison of model structures demonstrates that LAI is needed in addition to VOD as a proxy for 

either canopy biomass or vegetation water content to reach acceptable model performances.  
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3) We applied spatial cross validation to assess the transferability of model structures in space and applied the best-840 

performing model to estimate LFMC globally. The obtained model performances are comparable with results from 

previous studies that estimated LFMC based on visible/near-infrared satellite observations. Medium to high performance 

of the VOD-based LFMC estimates can be expected for herbaceous vegetation, shrublands and for most broad-leaved 

trees in many fire-prone regions such as in western Canada, the western US and Mexico, in southern South America, in 

the Mediterranean, central Asia, parts of China, southern and eastern Africa, and southern and eastern Australia. Large 845 

variability in performance and high uncertainties can be expected in needle-leaved forests, whereby especially estimates 

in boreal forest have low observational support.  

We propose to use VOD-based estimates of LFMC to investigate effects of drought and climate variability on vegetation leaf 

moisture at large scale, for large-scale assessments and empirical modelling of fire dynamics, or to benchmark global fire-

enabled vegetation models.  850 

 

Data availability.  The global daily LFMC results of model B for the period February 2000 to July 2017 are available at zenodo: 

https://doi.org/10.5281/zenodo.6545571  
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Appendix 855 

 

Figure A 1: Example time series of C-, X- and Ku-VOD over a grid cell in Spain (5.88°W, 40.12°N), where the C-VOD time series 

shows a high level of noise likely caused by RFI in the later years.  
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 860 

Figure A 2: Across-site correlations between the site-optimized parameters f, sl, and x0 of model B with model performance measures 

and land cover properties of the corresponding 0.25° grid cells. Numbers and blue to red colours in the upper triangle display 

Spearman correlation coefficients. Red lines in the lower triangle are loess-fits between x- and y-values. Grey bars along the diagonal 

are histograms of each variable. Correlation (Cor), percent bias (Pbias) and RMSE of predicted and observed LFMC; temporal 

median of Ku-VOD (VOD.K.med); multi-year mean of the annual inter-quartile range of Ku-VOD (VOD.K.yiqr); multi-year mean 865 
of annual maximum Ku-VOD (VOD.K.ymax); tree and short vegetation cover from Song et al. (2018); tree cover of broad-leaved 
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deciduous (TreeBD), broad-leaved evergreen (TreeBE), needle-leaved deciduous (TreeND), and needle-leaved evergreen (TreeNE) 

trees (ESA CCI Land cover V2.0.7 dataset); elevation (Elev) and slope from the CGIAR CSI SRTM digital elevation model.    

 

 870 

Figure A 3: Pearson correlation between the VOD-based LFMC from model B and MODIS-LFMC for Australia and Europe for 

the time period February 2000 to July 2017. 
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Figure A 4: Distribution of the number of joint observations of Ku-VOD and Globe-LFMC measurements. (a) Distribution of Globe-875 
LFMC sites overlaid over the percentage tree cover. (b) Spatial estimate of the number of supporting observations that indicates 

how many pairs of Ku-VOD/Globe-LFMC observation are available with similar mean annual temperature and vegetation 

conditions (i.e. LAI, tree cover, Ku-VOD). To create this map a random forest regression was fitted to the number of observations 

shown in (a) and by using  mean annual temperature, tree cover, mean annual maximum Ku-VOD, and mean annual maximum 

LAI as predictors. The fitted random forest model was then applied to each 0.25° grid cell to provide an estimate of how many 880 
observations are actually supporting a LFMC estimate in a grid cell. (c and d) Number of observation within the global feature space 

of mean annual temperature and annual total precipitation (c) and mean annual temperature and tree cover (d).   
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Figure A 5: Statistical distributions of the temporal correlation between Ku-VOD or LAI and measurements from the Globe-LFMC 885 
database stratified by the percentage cover of short vegetation. 
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