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ABSTRACT  18 

Soil hydraulic and hydrodispersive properties are necessary for modelling water and solute 19 

fluxes in agricultural and environmental systems. Despite the large efforts in developing methods 20 

(e.g. lab-based, pedotransfer functions), their characterization at applicative scales is still an 21 

imperative requirement. Accordingly, this paper proposes a non-invasive in situ method 22 

integrating Electromagnetic Induction (EMI) and hydrological modelling to estimate soil hydraulic 23 

and transport properties at the plot scale. To this aim, we carried out two sequential water 24 

infiltration and solute transport experiments and conducted time-lapse EMI surveys using a CMD 25 
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mini-Explorer to examine how well this methodology can be used to i) monitor water content 26 

dynamic after irrigation and to estimate the soil hydraulic van Genuchten–Mualem parameters 27 

from the water infiltration experiment and ii) to monitor solute concentration, and to estimate 28 

solute dispersivity from the solute transport experiment. We then compared the obtained results to 29 

those estimated by direct Time Domain reflectometry (TDR) and tensiometer probes 30 

measurements. The EMI significantly underestimated the water content distribution observed by 31 

TDR, but the water content evolved similarly over time. This introduced two main effects on soil 32 

hydraulic properties obtained by the two methods: i) Similar water retention curve shapes, but 33 

underestimated saturated water content from the EMI method, resulting in a scaled water retention 34 

curve when compared with the TDR method; the EMI-based water retention curve can be scaled 35 

by measuring the actual saturated water content at the end of the experiment with TDR probes or 36 

by weighing soil samples; ii) almost overlapping hydraulic conductivity curves, as expected when 37 

considering that the shape of the hydraulic conductivity curve primarily reflects changes in water 38 

content over time. Nevertheless, EMI-based estimations of soil hydraulic properties and transport 39 

properties were found to be fairly accurate in comparison to those obtained from direct TDR 40 

measurements and tensiometer probes measurements. 41 

 42 

1. INTRODUCTION  43 

Dynamics agro-hydrological models are more and more used for interpreting and solving agro-44 

environmental problems (Hansen et al., 2012; Coppola et al., 2015; Kroes et al., 2017; Coppola et 45 

al., 2019). The soil hydrological component of these models is frequently based on mechanistic 46 

descriptions of water and solute fluxes in soils. Richards equation (RE) for water flow and 47 

Advection-Dispersion equation (ADE) for solute transport is generally accepted to apply at a local 48 
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scale (plot scale, for example). Solving RE requires the determination of the hydraulic properties, 49 

namely the water retention curve relating the soil water content, θ, to the soil water pressure head, 50 

h, and the hydraulic conductivity curve, relating the hydraulic conductivity, K to either the water 51 

content, θ or the pressure head, h. Similarly, ADE requires the dispersivity, , to be also known. 52 

In the last decades several laboratory and in-situ methods have been developed for characterizing 53 

soil hydraulic properties (e.g. Dane and Topp, 2020) and dispersive properties (e.g. Vanderborght 54 

and Vereecken, 2007). Lab-based characterizations may be carried out under more controlled 55 

conditions. Nevertheless, for simulating water and solute dynamics in the real field context, the in-56 

situ methods are obviously more representative than the lab ones. This is firstly related to the size 57 

of the volume investigated, which has to appropriately represent the heterogeneity of the medium 58 

being studied (Wessolek et al., 1994; Ellsworth et al., 1996; van Genuchten et al., 1999; Inoue et 59 

al., 2000). Actually, a water flow process observed in situ will be influenced by the heterogeneities 60 

(stones, macropores, etc.) found in the field. This is the main limitation of the relatively small soil 61 

columns generally analysed in the laboratory. By contrast, an in-situ characterization method, for 62 

example the well-known instantaneous profile method (Watson et al., 1966), can catch the 63 

hydraulic properties which are effective in describing the flow process observed in-situ. This will 64 

also depend on the measurement scale (the size of the plot) and on the observation scale of the 65 

sensors used. These issues have been dealt with in detail for example in Coppola et al. (2012; 66 

2016) and in Dragonetti et al., (2018). Besides, the experimental boundary conditions used to carry 67 

out the hydraulic characterization in lab and in-situ may also induce a different shape of the 68 

hydraulic properties as determined in the lab and in-situ (Basile et al., 2006).  69 

In-situ methods typically evaluate soil hydraulic properties by monitoring an infiltration and/or 70 

a redistribution water flow process (Watson et al., 1966). Similarly, in situ methods for 71 
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determining hydro-dispersive parameters are generally based on monitoring of mixing processes 72 

following pulse or step inputs of a tracer on either large plots or along field transect (Severino et 73 

al., 2010; Coppola et al., 2011; Vanderborght and Vereecken, 2007). Inverse modelling is 74 

frequently used to estimate the hydraulic and transport parameters simultaneously (e.g. Šimůnek 75 

et al., 1998a; Abbasi et al., 2003; Groh et al., 2018). Yet, even by shortening the measurement 76 

procedure by simplified assumptions (e.g. Sisson and van Genuchten 1991; Basile 2006) all in-77 

situ methods for the characterization of the whole soil profile remain extremely difficult to 78 

implement also because they generally require installing sensors at different depths (e.g. TDR 79 

probes, tensiometers, access tubes for neutron probe) which are cumbersome and may induce soil 80 

disturbance, unless the installation is made much earlier than the experiment, to at least partly 81 

allowing the soil to recover through several wetting-drying cycles its natural structure.  82 

In this direction, geophysical non-invasive methods based on the electrical resistivity 83 

tomography (ERT) and Electromagnetic Induction (EMI) techniques represent a promising 84 

alternative to traditional sensors for soil hydraulic and transport parameters assessment. Many 85 

researchers have used the time-lapse ERT data (e.g. Binley et al., 2002; Kemna et al., 2002; Singha 86 

and Gorelick, 2005) to monitor water content and saline tracer in the field. The dependence of soil 87 

electrical conductivity on soil water content and concentration is the key mechanism that permits 88 

the use of time-lapse ERT to monitor water and solute dynamics in time-lapse mode along a soil 89 

profile, by relating resistivities to water contents and solute concentration distributions through 90 

empirical or semi-empirical relationships (e.g. Archie, 1942) or established in-situ relationships 91 

(e.g. Binley et al., 2002).  92 

Electromagnetic induction (EMI) sensors may be also used as they allow for monitoring water 93 

and solute propagation through a soil profile by simply moving the sensor above the soil surface 94 
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without the need to install electrodes, as required by ERT technique. An EMI sensor provides 95 

measurements of the depth-weighted apparent electrical conductivity (σa) according to the specific 96 

distribution of the bulk electrical conductivity (σb), as well as the depth response function of the 97 

sensor used (McNeill, 1980). σa obtained from EMI sensors have been used to map the geospatial 98 

and temporal variability of the soil water content and salinity (Corwin and Lesch, 2005; Bouksila 99 

et al. 2012; Saeed et al., 2017). However, monitoring the propagation of the water and solutes with 100 

depth along a soil profile (as during a water infiltration or a solute transport experiment) requires 101 

the distribution of the σb distribution with depth to be known over time, which can be obtained by 102 

inversion of the σa observations from the EMI sensor (see for example, Hendrickx et al., 2002; 103 

Lavoué et al., 2010; Deidda et al., 2014; Von Hebel et al., 2014;  Dragonetti et al., 2018; Moghadas 104 

et al., 2019; Farzamian et al., 2019a; Zare et al. 2020; Mclachlan et al. 2020). More recently, this 105 

inversion has been facilitated by the development of multi-coil EM sensors which are designed to 106 

collect σa at multiple coil spacing and orientations simultaneously in one sensor reading. This 107 

allows a rapid investigation of the soil’s electrical conductivity at several depth ranges to obtain 108 

soil water content (Huang et al., 2016; Whalley et al., 2017) and solute concentrations (Paz et al., 109 

2020; Gomez Flores et al., 2022) quickly and cheaply. However, the potential of EMI sensors to 110 

assess soil hydraulic and hydro-dispersive parameters has not been yet studied due to the lack of 111 

high-resolution and well-controlled experiments, required to catch the complexity of water flow 112 

and transport process during infiltration experiments.  113 

With these premises, in this paper we propose a procedure based on a sequence of water 114 

infiltration and solute transport experiments, both monitored by an EMI sensor, with the objective 115 

of estimating in-situ the parameters of soil hydraulic properties and the dispersivity of a soil profile 116 

with a non-invasive EMI sensor and relatively short experiments at the plot scale. The sequence 117 
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of water and solute infiltration has the main aim to discriminate the contribution of the water 118 

content and the soil solution electrical conductivity to the EMI-based σb. All the EMI data will be 119 

analysed by a hydrological model within a so-called uncoupled framework. The goodness of the 120 

adopted approach will be evaluated by comparing the EMI-based hydraulic and hydrodispersive 121 

properties to those obtained from in-situ TDR and tensiometer measurements. The aim is to 122 

explore an approach that does not need sensors installation and minimise data necessary for the in-123 

situ assessment of soil hydraulic and hydrodispersive properties. 124 

 125 

2. HYDRO-GEOPHYSICAL UNCOUPLED APPROACH 126 

Figure 1 provides a schematic view of a six-step (+ one step for comparison) procedure, based 127 

on an uncoupled approach (Camporese et al., 2015) which will be adopted in this work to estimate 128 

the soil hydraulic and hydrodispersive properties using the data obtained from the EMI sensor. All 129 

the steps summarised below will be described in detail in the Materials and Methods section.  130 

(i) Inversion of time-lapse σa EMI data obtained during (i) a water infiltration experiment, 131 

hereafter 1st experiment, and (ii) a subsequent solute transport experiment, hereafter 2nd 132 

experiment, to generate EMI-based σb distributions for each experiment; 133 

(ii) Laboratory calibration of the relationship θ-σb-σw in order to convert σb distributions to water 134 

content, θ, (1st experiment) and to soil solution electrical conductivity, σw, and therefore 135 

solute concentrations, C, (2nd experiment);  136 

(iii) Converting the σb distributions obtained from the 1st experiment to water content 137 

distributions, using the θ-σb-σw relationship, to be used in the next numerical simulation step; 138 
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(iv) Numerical simulation, by using the HYDRUS-1D model (Šimůnek et al., 1998b), of the 1st 139 

experiment in order to estimate the van Genuchten-Mualem (vG-M) parameters through an 140 

inversion procedure based on the water contents inferred from step (iii); 141 

(v) Conversion of the σb distributions obtained from the 2nd experiment to solute concentration 142 

distribution in order to estimate longitudinal dispersivity, . In this step, σw distribution was 143 

estimated by using the laboratory θ-σb-σw calibration. The θ distribution in the 2nd 144 

experiment was simulated based on the vG-M parameters obtained in step (iv). This is a 145 

crucial step in the proposed procedure, as it allows to discriminate the contribution of the 146 

soil water electrical conductivity, and thus of the solute concentration, to the σb EMI readings 147 

during the 2nd experiment. The σw distributions were thus converted to solute concentration 148 

by a simple standard lab-based solute specific σw-C relationship;  149 

(vi) Numerical simulation of the second solute infiltration process in order to estimate  through 150 

an inversion procedure based on the concentrations obtained from step (v).  151 

(vii) An alternative dataset of θ and σb obtained from direct TDR measurements, as well as 152 

tensiometer pressure head (h) readings, collected during the two experiments, allowed us to 153 

obtain independent hydraulic and hydrodispersive properties (hereafter TDR-based for sake 154 

of simplicity) to be used as a reference to evaluate the EMI-based parameter estimation (see 155 

the horizontal grey box in Fig. 1).  156 



 

8 

157 

Figure 1: Schematic diagram of the proposed Hydro-Geophysical uncoupled approach 158 

 159 

3. MATERIAL AND METHODS 160 

3.1. Study area 161 

The experiment was performed at the Mediterranean Agronomic Institute of Bari (CIHEAM-162 

IAM), south-eastern coast of Italy. The study area is located at an altitude of 72 m with 41° 3' 163 

13.251" N, a longitude of 16° 52' 36.274" E, with a typical Mediterranean climate with rainy 164 

winters and very hot dry summers. The soil is a Colluvic Regosol consisting of silty loam layers 165 

of an average depth of 70 cm on a shallow fractured calcareous rock. Two main horizons on the 166 

calcareous rock may be identified: an Ap horizon (depth 0-30 cm) and a Bw horizon (depth 30-70 167 

cm). Scattered calcareous fragments are present due to the breaking and grinding of the bedrock 168 
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operated in the past by using heavy machinery in order to improve the soil structure and increase 169 

the soil depth for plantation 170 

 171 

3.2. Experimental set-up 172 

A layout of the experimental setup is shown in Fig. 2. The plot size is 4 × 4 m. Water was 173 

applied by using a drip irrigation system consisting of 20 lines, with drippers spaced 0.20 m and 174 

delivering a nominal flow rate of 10 l h-1. Thus 400 drippers were installed, capable of delivering 175 

4000 l h-1 on the whole plot. The dripper's grid spacing and the flow rate were selected to ensure 176 

that a 1D flow field rapidly developed after starting irrigation. The drip irrigation system was 177 

placed on a metallic grid to be easily moved away from the plot and whenever EMI measurements 178 

were taken on the ground soil.  179 

Several months before starting the 1st experiment, after digging a small pit, eight three-wire 180 

TDR probes, 7 cm long, 2.5 cm internal distance, and 0.3 cm in diameter, were inserted 181 

horizontally at 2 depths − 20 and 40 cm, corresponding to the Ap and the Bw horizon − in the 4 182 

corners of the experimental plot (at 1 m distance from the plot edge), as shown in Fig. 2. The pits 183 

for installing the sensors were refilled immediately, to leave some natural wetting and drying 184 

cycles to reproduce the original soil aggregation. Then, the plot was covered with a plastic sheet 185 

about four days prior to the start of the experiment to keep the plot under quasi-equilibrium 186 

conditions at the beginning of the experiment. 187 

A Tektronix 1502C cable tester (Tektronix Inc., Baverton, OR) was used in this study, enabling 188 

simultaneous measurement of water content, θ, and bulk electrical conductivity, σb, of the soil 189 

volume explored by the probe (Robinson et al., 2003; Coppola et al., 2011; 2013). Furthermore, 190 

eight tensiometers were vertically inserted near each TDR probe to acquire water potentials by a 191 
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Tensicorder sensor (Hydrosense3 SK800). Both TDR probes and tensiometers were installed for 192 

the evaluation of the EMI-based parameter estimation (step (vii)). 193 

The experimental plot was firstly irrigated by using tap water with an electrical conductivity 194 

of about 1 dS m-1 (1st experiment). We applied eleven irrigations, each lasting about 3 minutes to 195 

deliver about 180 l on the whole 16 m2 plot for each irrigation (the volume was measured by a 196 

flowmeter). Irrigations were separated by about a 1-hour shutoff. At each irrigation starting, due 197 

to the short inertia of the irrigation system just after its switching on, for some seconds drippers 198 

delivered less than 10 l h-1. For each irrigation an average flow rate of about 0.375 cm min-1 was 199 

applied, which generated a small ponding at the soil surface for a short time. Overall, an average 200 

water volume of 2000 l was supplied.  201 

The propagation of the wetting front along the soil profile was monitored by using an EMI 202 

sensor (i.e. CMD mini-Explorer, GF Instruments, Czech Republic), positioned horizontally in the 203 

middle of the plot (Fig. 2) in order to measure the apparent electrical conductivity, σa, in the soil 204 

profile in VCP (vertical coplanar, i.e., horizontal magnetic dipole configuration) mode and then 205 

HCP (horizontal coplanar, i.e., vertical magnetic dipole configurations) mode by rotating the probe 206 

90° axially to change the orientation from VCP to HCP mode. The CMD Mini-Explorer operates 207 

at 30 kHz frequency and has three receiver coils with 0.32, 0.71 and 1.18 m distances from the 208 

transmitter coil, referred to hereafter as ρ32, ρ71, and ρ118. The manufacturer indicates that the 209 

instrument has an effective depth range of 0.5, 1.0 and 1.8 m in the HCP mode, which is reduced 210 

to half (0.25, 0.5, and 0.9 m) by using the VCP orientation. As a consequence, this EMI sensor 211 

returns six different σa values (utilizing three offsets with two coil orientations) with each 212 

corresponding to different depth sensitivity ranges. All measurements were performed five 213 

minutes after each water pulse application by temporarily removing the irrigation grid and placing 214 
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the EMI sensor in the middle of the plot. The infiltration was also monitored by TDR probes and 215 

tensiometers in order to monitor the space-time evolution of water content, θ, pressure head, h, as 216 

well as bulk electrical conductivity, σb. The distance of the TDR probes and tensiometers to the 217 

middle of the plot was specifically designed to avoid any interference with the EMI measurements.  218 

 219 

Figure 2. Layout of the experimental and monitoring set-up. HCP (horizontal coplanar) and VCP 220 

(vertical coplanar) are the vertical and horizontal dipolar orientations of the CMD probes, 221 

respectively. 222 

 223 

At the end of the 1st experiment, the soil was allowed to dry and then covered with a plastic 224 

sheet to bring the distribution of water content along the profile similar to the initial one (observed 225 
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before the water infiltration test). Afterward, a similar infiltration experiment (2nd) was carried out 226 

but using saline water at an electrical conductivity of 15 dS m-1, and obtained by mixing CaCl2 227 

into the tap water. Again, eleven saline water supplies were provided at intervals of about 1 h apart 228 

and a total volume of 2000 l saline water was supplied during the experiment. The propagation of 229 

the water and chloride during the 2nd infiltration experiment was monitored similarly to the 1st 230 

experiment using TDR probes, tensiometers, and the CMD Mini-Explorer sensor.  231 

3.3. Site-specific calibration θ-σb-σw 232 

The relationship between the bulk electrical conductivity (σb), the electrical conductivity of the 233 

soil solution soil water (σw), and the water content, were obtained by using the model proposed by 234 

Malicki and Walczak, (1999):  235 

𝜎𝑤 =
𝜎𝑏−𝑎

(𝜀𝑏−𝑏)(0.0057+0.000071 𝑆)
          (1) 236 

where εb (-) is the dielectric constant, which is related to the water content and S is the sand content 237 

in percent. The parameters a = 3.6 dS m−1 and b = 0.11 were obtained in a laboratory experiment 238 

reported in Farzamian et al. (2021). Topp’s equation was used to relate dielectric constant to the 239 

volumetric water content (Topp et al., 1980). The lab experiment for such a calibration is quite 240 

simple, fast, and standard procedure on reconstructed soil samples. An additional linear 241 

calibration, obtained by using solutions at different concentrations of calcium chloride was used 242 

to relate soil water concentrations of chloride, Cl-, to σw.  243 

3.4.  Inversion of time-lapse EMI σa data 244 

Time-lapse σa data obtained during the experiments were inverted using a modified inversion 245 

algorithm proposed by Monteiro Santos et al. (2004) to obtain σb distribution in time. The aim of 246 

the inversion is to minimize the penalty function that consists of a combination between the 247 

observations’ misfit and the model roughness (Farzamian et al., 2019b). The earth model used 248 
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in the inversion process consists of a set of 1D models distributed according to the number of time-249 

lapse measurements. All the models have the same number of layers (i.e. 7) whose thickness is 250 

kept constant. The selected depths of layers are 10, 20, 30, 40, 55, 75 and 180 cm. The number 251 

and thickness of layers were selected based on several factors including the number of σa 252 

measurements (i.e., 6), effective depth range of HCP and VCP modes (i.e., 5 of 6 measurements 253 

have an effective depth of less than 1m), and site specifications (i.e., the large variability of 254 

conductivity of the soil profile over a resistive bedrock). The parameters of each model are 255 

spatially and temporally constrained using their neighbours through smooth conditions. The 256 

forward modelling is solved based on the full solution of the Maxwell equations (Kaufman and 257 

Keller, 1983) to calculate the σa responses of the model. The inversion algorithm is Occam-258 

regularization and the objective function was developed based on Sasaki, (2001). Therefore, the 259 

update of the parameters, in an iterative process are calculated solving the system: 260 

[(JT J + ηCT C)] δp = JT b         (2) 261 

where δp is the vector containing the corrections applied to the parameters (logarithm of 262 

block conductivities, pj) of an initial model, b is the vector of the differences between the logarithm 263 

of the observed and calculated σa [bi = ln(σa
o/σa

c)i], J is the Jacobian matrix whose elements are 264 

given by (σj/σai
c) (∂σai

c ∂σj), the superscript T denotes the transpose operation, and η is a Lagrange 265 

multiplier that controls the amplitude of the parameter corrections and whose best value is 266 

determined empirically. The elements of matrix C are the coefficients of the values of the 267 

roughness of each 1D model, which is defined in terms of the two neighbour’s parameters and the 268 

constraint between the parameters of the different models on time. In this regard and in the 269 

temporal 1D experiment, each cell is constrained spatially by its vertical neighbours, while the 270 

temporal constraints are imposed using its lateral neighbours. An iterative process allows the final 271 
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models to be obtained, with their response fitting the data set in a least-square sense. In terms of 272 

η, generally, large values will produce smooth inversion results with smoother spatial and temporal 273 

variations.  274 

We performed several syntenic tests to determine how well the proposed inversion algorithm 275 

can predict spatiotemporal variability of σb and to fine-tune the regularization parameters. The 276 

syntenic scenarios were selected based on spatiotemporal variability of σa in the HCP and VCP 277 

modes, the site specification (e.g. shallow bedrock) and the expected evolution of conductive zone 278 

due to water and saline water infiltrations.  279 

3.5. Numerical simulation of water flow and chloride transport in soil  280 

The water and the chloride propagation monitored during the experiments were simulated by 281 

using the HYDRUS-1D model (Šimůnek et al., 1998b). HYDRUS-1D simulates water flow and 282 

solute transport by solving the Richards equation and the Advection-Dispersion equation, 283 

respectively.  284 

Richards equation can be written for one-dimensional, unsaturated, non-steady state flow of 285 

water in the vertical direction as follows: 286 

𝐶𝑤(𝜃)
𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑍
[𝐾(ℎ)

𝜕ℎ

𝜕𝑍
+ 𝐾(ℎ)]        (3) 287 

where Cw(θ), the water capacity, is the slope of the water retention curve, θ is the volumetric water 288 

content [L3L-3], h is the soil water pressure head [L], K(h) is the unsaturated hydraulic conductivity 289 

[LT-1]. 290 

The Advection-Dispersion equation governing the transport of a single non-reactive and non-291 

adsorbed (a tracer, chloride in this case) ion in the soil can be written as: 292 
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𝜕(𝜃𝐶)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝜃𝐷

𝜕𝐶

𝜕𝑧
− 𝑞𝐶]         (4) 293 

where q is the darcian flux, C is the solute concentration in the liquid phase [ML-3], D (L2T-1) is 294 

the effective dispersion coefficient, which can be assumed to come from a combination of the 295 

molecular diffusion coefficient, Ddiff (L2T-1) and the hydrodynamic dispersion coefficient, Ddis 296 

(L2T-1): 297 

𝐷 = 𝐷diff + 𝐷dis          (5) 298 

where hydrodynamic dispersion is the mixing or spreading of the solute during transport due to 299 

differences in velocities within a pore and between pores. The dispersion coefficient can be related 300 

to the average pore water velocity v=q/θ through: 301 

𝐷 = 𝜆𝑣           (6) 302 

where λ [L] is the dispersivity, a characteristic property of the porous medium. To solve the 303 

Richards equation (Eq. 3), the water retention function, θ(h), and the hydraulic conductivity 304 

function, K(h), must be defined. In this paper we adopted the van Genuchten-Mualem model (vG-305 

M), (van Genuchten, 1980): 306 

𝑆𝑒 = [1 + (𝛼|ℎ|)𝑛]−𝑚         (7) 307 

𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝜏 [1 − (1 − 𝑆𝑒

1/𝑚)
𝑚

]
2

        (8) 308 

In Eqs. 7 and 8, 𝑆𝑒 =
(𝜃−𝜃𝑟)

(𝜃𝑆−𝜃𝑟)
 is the effective water saturation, θs the saturated water content, θr the 309 

residual water content, α, n and m are fitting parameters with m taken as m=1-1/n, Ks is the 310 

saturated hydraulic conductivity and τ is the pore-connectivity parameter.  311 

 312 
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3.6. Inverse estimation of soil hydraulic and solute transport parameters  313 

The obtained EMI-based spatiotemporal distribution of σb during the 1st experiment was 314 

converted to the θ distribution in order to estimate the temporal evolution of θ during the 315 

infiltration process. These water content data were then used in an optimization procedure by using 316 

the HYDRUS-1D model, in order to estimate the hydraulic properties of the different horizons in 317 

the soil profile. The simulations were carried out by using the actual top boundary flux conditions 318 

during the experiment, including the irrigation events. For the bottom boundary, free drainage was 319 

considered. A simulation domain of 150 cm depth was considered. The same procedure was 320 

repeated using the direct measurements of θ and h inferred from TDR and tensiometers, 321 

respectively, in order to obtain independent hydraulic parameters (TDR-based estimation) to be 322 

compared to those inferred from EMI. A three-layer soil profile (0-25; 25-70; 70-150 cm), 323 

reflecting the actual pedological layering (i.e. Ap, Bw, and bedrock) was used in all simulations.  324 

In terms of the initial condition, a hydrostatic distribution of the pressure heads, h, was considered 325 

for the TDR-based simulations. On the other hand, the water content distribution, inferred from 326 

the first EMI survey (before irrigation) was considered for the EMI-based simulation.  327 

As for the solute transport experiment, a HYDRUS-1D simulation was carried out with the 328 

EMI-based hydraulic properties obtained from the 1st experiment to simulate the water content 329 

distributions in correspondence with the EMI measurement times. The simulations of water 330 

infiltration and solute transport in the 2nd experiment were carried out by using the top boundary 331 

fluxes conditions applied during the 2nd experiment along with the same simulation domain, three-332 

layer soil profile, and the bottom boundary and equilibrium initial conditions described above. 333 

Thus, for each monitoring time, we had available the σb distributions obtained from the EMI and 334 

the θ distributions coming from the HYDRUS-1D simulations. These distributions allowed us to 335 
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estimate as many σw (and thus C) distributions by using the θ-σb-σw relationship obtained in the 336 

laboratory. These C distributions were used in a new HYDRUS-1D simulation to estimate the 337 

longitudinal dispersivity of the investigated soil. The simulated concentrations, with the optimized 338 

dispersivity, λ, were compared to those obtained from the TDR and tensiometer data.  339 

 340 

4. RESULTS AND DISCUSSION 341 

4.1. Water infiltration – 1st experiment 342 

4.1.1. Time-lapse σa data and estimation of σb distribution 343 

Figure 3 shows the σa values observed during the water infiltration experiment. Both VCP 344 

and HCP modes show a relatively similar pattern of σa values with ρ32 and ρ118 being the highest 345 

and lowest respectively. HCP mode shows higher values compared to the VCP mode in the same 346 

receivers. This pattern of σa distribution suggests the presence of a conductive zone over a resistive 347 

zone which is expected in this experiment as a result of the waterfront being infiltrated into the 348 

soil profile and the presence of a resistive bedrock. In terms of temporal σa variabilities, the σa 349 

increases consistently in both VCP and HCP modes during the first three hours of the experiment. 350 

Afterward, σa did not change significantly toward the end of the experiment. The range of σa 351 

variations is relatively small in both VCP and HCP modes with the former in the 10-30 mS m-1 352 

range and the latter in the 10-50 mS m-1 range. 353 
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Figure 3: σa values observed during the water infiltration experiment. (A) VCP, (B) HCP. The 

symbols represent the measured data whereas the lines represent the values calculated after the 

inversion. 

 

Prior to the inversion of σa data we fine-tuned the regularization parameter, η, as discussed 354 

in 3.4. the results of several synthetic tests (not shown here) suggest that a value of η between 1 to 355 
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5 provides a better result in resolving the spatio-temporal σb distributions in both experiments. 356 

Figure 4 depicts the time-lapse σb modelling results of σa shown in Fig. 3. The model shows clearly 357 

the evolution of the conductive zone into the soil profile shortly after the irrigation started as 358 

expected from the σa data. The resistive zone beneath a conductive zone corresponds to the bedrock 359 

layer in the experimental plot. The σb of the resistive zone remains below 5 mS m-1 and does not 360 

vary significantly during the experiment, while, in contrast, the σb of the upper layers increased 361 

significantly from an average of 20 mS m-1 at the beginning of the experiment to more than 50 mS 362 

m-1 after the 5th irrigation. The conductivity of this zone does not increase largely since then, 363 

suggesting that the upper soil is fairly saturated after the 5th irrigation. The calculated response of 364 

this model was shown in Fig. 3. There is a fairly good agreement between σa measurements and 365 

model response, however, a slight shift can be noticed in the ρ32- VCP mode and ρ71- HCP mode 366 

between data and model response. This shift can be due to several reasons such as i) the 367 

instrumental drift of the EMI sensor, ii) the large spatiotemporal variability of soil electrical 368 

conductivity in this experiment as well as smoothness constraint performed in the inversion 369 

process to stabilize the inversion process which make it difficult to resolve the sharp changes, and 370 

iii) the choice of initial model. 371 

 372 

Figure 4. Time evolution of bulk electrical conductivity (σb) distribution with depth during the 373 

water infiltration experiment.  374 
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4.1.2. Comparison between TDR-based and EMI-based σb and θ distributions 375 

Figure 5 shows the temporal σb changes inferred from TDR and EMI observations at two 376 

depths, 20 and 40 cm. As reported by some authors (e.g. Coppola et al., 2016; Dragonetti et al., 377 

2018), both techniques provide σb estimations but a direct comparison between σb by TDR and 378 

EMI is not straightforward due to different observation volumes of the two sensors. However, this 379 

comparison can be used as a means to investigate the consistency of the σb trends and to provide 380 

an insight into the uncertainty associated with the EMI survey and inversion process in resolving 381 

the water infiltration process into the soil profile. Note that the average of TDR measurements in 382 

four corners at depths of 20 and 40 cm were considered both in this comparison and in the inversion 383 

procedure. The average values and the standard deviation of TDR measurements were presented 384 

in Fig. 5.  385 

Focusing on the σb series inferred from both TDR observations and EMI inversion, a 386 

similar time pattern of σb variability is evident, but in general, the EMI model underestimates the 387 

σb obtained by TDR. A better agreement was observed at 20 cm in terms of both absolute σb values 388 

and trend (r=0.94; Mean Error=10.1 mS m-1). In contrast, at 40 cm, the mismatch between TDR 389 

observations and EMI inversions becomes larger at the end of the experiment. The EMI σb values 390 

– especially at 40 cm depth – remain rather invariant in the last part of the infiltration experiment. 391 

The general outcome that for both layers the EMI σb values underestimate the TDR σb 392 

measurements has been frequently found in the literature (e.g. von Hebel et al., 2014; Coppola et 393 

al., 2015; Dragonetti et al., 2018; Visconti and de Paz, 2021). Furthermore, TDR measurements 394 

show a low local variability, as depicted in Fig. 5 by the error bars reporting the standard deviation 395 

of the σb as measured by the four TDR probes. 396 
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Figure 6 shows the evolution of θ at the same two depths, 20 and 40 cm as observed by 397 

TDR and EMI sensors. TDR provides the direct in-situ measurement of θ. In contrast in order to 398 

estimate θ from EMI observation, σb values extracted at these depths (Fig. 4) were converted to θ 399 

by the calibration performed in the laboratory, as detailed in Farzamian et al., (2021). A rapid 400 

increase of θ is visible shortly after injection in both EMI-based and TDR-based measurements. 401 

The EMI-based θ estimation is able to detect the similar water content evolution (similar water 402 

content differences over time) observed by TDR measurements but at a different water content 403 

level. Specifically, EMI water contents were lower than the TDR ones but the two series showed 404 

a quasi-parallel evolution at 20 cm depth (r=0.98; Mean Error=0.09 cm3 cm-3), while diverging for 405 

longer times at 40 cm depth (r=0.60; Mean Error=0.17 cm3 cm-3).  406 

 407 

 408 

Figure 5. σb evolution estimated from the TDR and EMI measurements at 20 cm (A) and 40 cm 409 

(B) depths. The vertical bars represent the standard deviation of the measurements obtained by the 410 

four TDR sensors. 411 
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 412 

 413 

Figure 6. Evolution of θ measured by TDR (circles) and estimated from EMI measurements 414 

(triangles) at 20 cm (A) and 40 cm (B) depths. Continuous lines for TDR and dashed lines for EMI 415 

refer to the estimation obtained by the inversion procedure of the water infiltration process (see 416 

Sect. 4.1.3 below). 417 

 418 

4.1.3. Estimation of hydraulic properties  419 

In order to estimate hydraulic properties parameters, an inversion procedure was carried 420 

out applying HYDRUS-1D. The first set of hydraulic parameters was obtained by using the soil 421 

water contents measured by TDR and the pressure heads measured by tensiometers as measured 422 

data in the objective function for the optimization procedure (TDR-based). The second set of 423 

hydraulic parameters was obtained by using the soil water contents estimated by EMI 424 

measurements as measured data (EMI-based). The inversion simulations were carried out by fixing 425 

θr=0 and τ=0.5, while θs, α, n and Ks were optimized for both the Ap and the Bw layers. The 426 

hydraulic properties of the bedrock were already known and fixed to θr=0.068, θs=0.354, α=0.055, 427 

n=3.67, τ=0.5 and Ks=19.02 according to Caputo et al. (2010; 2015). We want to stress here that 428 
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an a-priori characterization of the bedrock layer is not essential and the proposed procedure holds 429 

independently on the presence of bedrock. We could have treated the bedrock layer as any other 430 

layer in the soil profile, but inserting TDR probes and tensiometers into bedrock presents 431 

difficulties. Therefore, we decided to fix the bedrock parameters to the values already available 432 

from independent measurements. In different soils with either deeper or absent bedrock, we could 433 

have inserted TDR probes into deeper layers of the profile and applied the procedure to any of 434 

them. 435 

In the inversion procedure, the parameters were determined separately for each horizon of 436 

the profile (Abbaspour et al., 1999). First, the parameters for the topsoil were estimated and these 437 

parameters were then treated as known for the second layer estimation. Despite the water content 438 

development in one layer is not independent from the hydraulic properties of the other layers when 439 

long-time evolution is considered, in the case of a relatively short infiltration event as used here, 440 

this approach makes parameter estimation of multi-layered profiles feasible. It should be noted 441 

that in the case of the TDR-based estimations, optimization involved both measured water contents 442 

and pressure head data, whereas the EMI-based estimations only involved “measured” water 443 

contents.  444 

Figure 6 reports a comparison between water contents measured (symbols) and estimated 445 

(lines) by the inversion procedure. The θ evolution was properly estimated at 20 cm depth in both 446 

approaches. It is worth noting here that, despite the differences in the absolute value of the water 447 

contents, a clear parallel behaviour of the two curves was observed, suggesting similar water 448 

content changes over time. A lower agreement was obtained at 40 cm but still reproduced similar 449 

water content changes over time. This is a crucial point in this paper, as the parallel behaviour of 450 
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the water content evolution will explain the similar shape of hydraulic properties we found for the 451 

TDR and EMI-based estimations (see Figure 8). 452 

 453 

Figure 7. Evolution of pressure head at 20 and 40 cm depth measured by tensiometers (symbols) 454 

and estimated by the inversion procedure (lines) of the water infiltration process. The vertical bars 455 

represent the standard deviation of the measurements obtained by the four tensiometers.  456 

 457 

Similarly, in Fig. 7 the measured (points) and estimated (lines) values of pressure heads 458 

are shown. The simulated values of pressure head well follow the measured one (r=0.950 at 20 cm 459 

and r=0.986 at 40 cm depth). Furthermore, the error bars, reporting the standard deviation of the 460 

pressure head as measured by the four tensiometers, overlap when the profile is wet (i.e. after the 461 

6th irrigation) and separate during the wetting process. 462 

Table 1 reports the parameters of the hydraulic functions, estimated for the first two 463 

horizons and Fig. 8 reports the water retention curves and the hydraulic conductivity curves 464 

corresponding to the parameters shown in table 1 for a better comparison between TDR-based and 465 
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EMI-based hydraulic properties assessment. Compared to the Ap horizon, higher Ks and lower n 466 

values were found for the Bw horizon. This may be explained by considering that tillage in the Ap 467 

horizon changes the geometry of the porous system, by reducing the structural pores, responsible 468 

of the lower Ks for Ap, and increasing the textural pores, explaining the higher n value for Ap. 469 

Note in the table the high values of n and Ks for the bedrock, which indicate a high conductive 470 

porous medium. It is possible to explain this by considering that the bedrock is fractured 471 

calcareous, which, contrary to expectation, does not impede water flow. 472 

 473 

Table 1. vG-M Hydraulic parameters (Eqs. 7 and 8) and dispersivity, λ (Eq. 6) as estimated for Ap 474 

and Bw horizons, and fixed for the bedrock layer.  475 

Soil hydraulic and 

transport parameters* 

Ap Bw Bedrock 

TDR-

based 

EMI-

based 

TDR-

based 

EMI-

based 

Fixed a-priori 

θs [cm3 cm-3] 0.54 0.45 0.52 0.45 0.354 

α [cm-1] 0.006 0.003 0.009 0.007 0.055 

n [-] 1.70 1.54 1.50 1.41 3.67 

ks [cm min-1] 0.06 0.02 0.28 0.29 19 

λ [cm] 10 12 0.5 0.8 30 

* For all horizons θr=0 and =0.5. 476 

As for water retention, the TDR and EMI water retention curves showed similar shapes but 477 

with slightly different saturated water contents. As discussed earlier, the lower saturated water 478 

content is not surprising for the EMI-based estimation due to the overall underestimation of water 479 

content. The two curves almost overlapped once scaling the EMI curve by the ratio of the saturated 480 

water contents. Obviously, this result is consistent with the underestimation of EMI-based θ 481 

distributions as shown in Fig. 6. 482 
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As for the hydraulic conductivity, TDR-based and EMI-based hydraulic conductivity 483 

curves at both 20 and 40 cm appear to almost overlap, with similar saturated hydraulic conductivity 484 

and curve shape. This result is expected because the shape of hydraulic conductivity curve is 485 

mainly explained by the variation of θ and not the absolute value of θ. It is worth mentioning that 486 

the same top boundary flux and different water contents in the soil profile provided similar EMI-487 

based and TDR-based hydraulic conductivity. These conditions led to two different water flow 488 

processes, with simulations predicting higher water stored in the soil profile and lower downward 489 

fluxes (data not shown) when TDR-based results are compared to the EMI-based results.  490 

 491 

Figure 8. Soil water retention (A) and unsaturated hydraulic conductivity (B) curves, estimated 492 

from the TDR and EMI measurements at 20 cm and 40 cm depths. 493 

 494 

4.2. Solute Infiltration – 2nd Experiment 495 

4.2.1. Time-lapse σa data and estimation of σb distribution 496 

Figure 9 shows the σa data collected during the solute infiltration experiment. Again, as for 497 

the 1st experiment, both VCP and HCP modes show a relatively similar pattern of σa values with 498 

(a) (b)
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ρ32 and ρ118 being the highest and lowest respectively. HCP mode shows higher values on 499 

average compared to the VCP mode. Similarly, to the water infiltration experiment, σa increases 500 

consistently during the first three hours of the experiment, then it does not change significantly or 501 

consistently until the end of the experiment. Much higher ranges of σa variations were measured 502 

in both VCP and HCP configurations, with σa values ranging in 20-200 and 50-250 mS m-1 503 

respectively.  504 

Figure 10 depicts the σb evolution for the 2nd experiment, obtained by time-lapse inversion 505 

of σa data. σa measurements and model response agrees fairly as shown in Fig. 9, however a slight 506 

shift can be noticed in the ρ71- VCP mode between data and model response. The results show the 507 

rapid evolution of the conductive zone to the soil profile shortly after the irrigation started. In 508 

comparison to the obtained σb in the 1st experiment, the results reveal significantly higher soil 509 

conductivity in topsoil but a much slower evolution. The conductivity of the top layer exceeds 300 510 

mS m-1 shortly after the irrigation. The higher topsoil conductivity results from injection of high-511 

saline water (about 15 dS m-1) that dramatically increases soil conductivity whereas the smaller 512 

evolution of the conductive zone is caused by significantly slower concentration propagation into 513 

the soil profile.  514 

 515 
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 516 

Figure 9: σa values observed during the solute infiltration experiment. (A) VCP, (B) HCP. The 517 

symbols represent the measured data whereas the lines represent the values calculated after the 518 

inversion. 519 

 520 

 521 
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 522 

Figure 10. Time evolution of bulk electrical conductivity (σb) during the solute infiltration 523 

experiment.  524 

 525 
4.2.2. Comparison between TDR-based and EMI-based σb and [Cl-] distributions 526 

Figure 11 shows the comparison between the σb values obtained by the TDR measurements 527 

and those obtained from the EMI inversion (Fig. 10) during the 2nd experiment. As discussed 528 

above, this comparison is to provide an insight into the potential of the EMI survey and inversion 529 

process in monitoring a solute transport experiment into a soil profile. The comparison shows a 530 

similar time pattern of σb variability, but in general the EMI model underestimates the σb obtained 531 

by TDR. The results of this comparison agree with the 1st experiment where, again, the EMI-based 532 

σb are lower compared to those measured by the TDR. In contrast to the 1st experiment, the 533 

differences between the two techniques and in terms of the absolute σb values are of minor concern. 534 

This could be due to the larger conductivity contrast that tracer introduced into the soil profile in 535 

the 2nd experiment which became easier to detect by using the EMI sensor. On the other hand, the 536 

TDR probes show more fluctuations in σb measurements, especially at 20 cm. We attribute these 537 

fluctuations to the smaller volume of investigation of the TDR probes which are very sensitive to 538 

the process taking place very close to the probe and, therefore, strongly influenced by small-scale 539 

heterogeneities.  540 
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 541 

Figure 11. σb evolution estimated by TDR and EMI measurements at 20 cm (A) and 40 cm (B) 542 

depth. 543 

 544 

The next step in the procedure allows us to determine the distribution of Cl- concentrations 545 

by EMI sensors (Sect. 4.2.3.) used for estimating the longitudinal dispersivity of the two soil layers 546 

investigated. For the sake of comparison, TDR-based [Cl-] distributions were obtained directly in 547 

the field from a direct measurement of the σb. As for the EMI-based Cl- concentrations, a forward 548 

HYDRUS-1D simulation was carried out using the EMI-based hydraulic properties obtained from 549 

the 1st experiment and reported in Table 1 to estimate the water content distributions in 550 

correspondence with the EMI measurement times of the 2nd experiment. These water contents, 551 

combined with the available σb distribution obtained from the EMI inversion, allowed us to obtain 552 

the σw distributions (through the θ-σb-σw calibration relationship) for both depths and, 553 

consequently, the [Cl-] distributions.  554 

 555 
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Figure 12. [Cl-] distributions inferred from EMI and TDR measurements, at 20 (A) and 40 (B) 

cm depth. 

Figure 12 shows the [Cl-] distributions inferred from EMI compared to the TDR 556 

measurements. The comparison suggests a good agreement between the two time-series. The EMI-557 

based concentrations underestimate − on average − the TDR-based ones by 4% and by 7% at 20 558 

cm and 40 cm depths, respectively. The time evolution of the two data series reveals marked 559 

differences, as shown by the very different correlation: r = - 0.04 for the 20 cm depth and r = 0.70 560 

for the 40 cm depth. The difference between the two data series at both depths can be mostly 561 

explained by the differences between σb distributions shown in Fig. 11. Additionally, another point 562 

of difference may arise from the assumption that the water content distribution obtained from the 563 

HYDRUS-1D simulation can be used as a substitute for the water content measurements, in order 564 

to obtain [Cl-] from the EMI readings.  565 

4.2.3. Estimation of longitudinal dispersivity  566 

Inverse HYDRUS-1D simulations were conducted using concentration data provided by both 567 

the TDR and EMI results, in order to estimate the longitudinal dispersivity for both Ap and Bw 568 

horizons. The results are reported in the last row of Table 1. TDR-based and EMI-based procedures 569 
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provide similar values of λ. Specifically, for the Ap horizon, the obtained values agree with those 570 

frequently found in the literature for either large columns or field-measured dispersivity (e.g. 571 

Vanderborght and Vereecken, 2007; Coppola et al., 2011). The TDR and EMI-based estimation 572 

of dispersivity for the Bw horizon shows one order of magnitude lower values compared to the Ap 573 

horizon. These values are more consistent with values measured in the laboratory (Coppola et al., 574 

2019). For column scale (undisturbed soil monoliths with a length > 30 cm), Vanderborght and 575 

Vereecken (2007) found values in the order of 10 cm. The same values were found by Coppola et 576 

al. (2011) at both plot and transect scales. Note in the Table 1 the high value of dispersivity used 577 

for the bedrock layer. This is consistent with the nature of the bedrock, which, as mentioned, is a 578 

fractured calcareous and highly conductive rock, which may well explain high dispersivity values.  579 

 580 

5. FURTHER DISCUSSION ON THREE KEY POINTS OF THE PROPOSED 581 

APPROACH 582 

Following, the discussion will focus on three major aspects of this research in terms of the 583 

choice of approach (uncoupled vs coupled), the suitability of EMI as a replacement for invasive 584 

sensors, and EMI-related sources of uncertainty. 585 

5.1. Uncoupled vs Coupled approach  586 

In hydro-geophysical studies there is an ample debate on this issue. Camporese et al. (2015), 587 

stated in their conclusions: “the relative merit of the coupled approach versus the uncoupled one 588 

cannot be assumed a priori and should be assessed case by case. As the information content of the 589 

geophysical data remains the same in both the coupled and uncoupled methods, the main difference 590 

is the approach taken in order to complement the information content and construct an ‘‘image’’ 591 
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of the process”. Based on the methodology proposed in this paper and the corresponding results, 592 

the following discussion aims to better clarify why we applied an uncoupled approach.  593 

Let’s refer to the vertical water infiltration process monitored by the EMI sensor during the 1st 594 

experiment and producing direct measurements of apparent electrical conductivity (σa_meas). In a 595 

coupled approach, the hydrological model is the starting point of the procedure. Guess values of 596 

hydraulic and dispersive parameters are initially fixed; thus, a hydrological simulation is carried 597 

out producing water content distributions along the soil profile, evolving over time. These water 598 

content distributions are converted to corresponding distributions of bulk electrical conductivity, 599 

σb, by using an empirical relationship (e.g. Binley et al., 2002). These σb distributions, in turn, are 600 

used as input in an EM forward modelling to produce the estimations of apparent electrical 601 

conductivity (σa_est). In this approach, the objective function involves the residuals (σa_meas - σa_est). 602 

This objective function is eventually minimised by optimising the hydraulic parameters in the 603 

hydrological model.  604 

The main strength of this approach relies on the fact that no EMI inversion is required. Also, 605 

as discussed by Hinnell et al. (2010), the attractiveness of the coupled approach is that the 606 

hydrologic model may provide the physical context for a plausible interpretation of the geophysical 607 

measurements. Yet, this strength is counterbalanced by a weakness which is crucial in view of 608 

simplifying the experimental requirements of hydraulic characterization. Actually, an instrumental 609 

shift in EMI σa readings has been frequently observed when compared to other sources of 610 

measurements such as ERT data (von Hebel et al., 2014; 2019) or direct measurements of TDR 611 

(Dragonetti et al. 2018). In the context of a hydraulic parameter estimation procedure, this is a 612 

crucial point, as it means that EMI measurements do not immediately provide correct electrical 613 

conductivity distributions. Thus, the coupled approach always requires an independent dataset, 614 
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obtained by different sensors (e.g. ERT, TDR, sampling) to remove the shift in the EMI σa 615 

readings. Such a scheme would be contrary to the spirit of this paper, which mainly aims at 616 

minimising the sensors and the data necessary for in-situ soil hydraulic characterization.  617 

In an uncoupled approach, the geophysical model is the starting point of the procedure. As a 618 

result of geophysical inversion, the σb distributions are derived, which are then converted to as 619 

many distributions of water content (meas) through an empirical relationship, determined from 620 

laboratory analysis. Afterward, the hydrological model estimates water contents (est), and the 621 

objective function, involving the residuals (meas-est), is eventually minimised by optimising the 622 

hydraulic parameters. The main weakness of this approach corresponds to the strength of the 623 

coupled approach. The uncoupled approach requires geophysical inversion, involving the 624 

uncertainty source coming from the ill-posedness problem. However, the main strength of the 625 

methodology we propose in this paper − a fast in-situ non-invasive method to estimate soil 626 

hydraulic and transport properties at plot scale − does not require preliminary removal of the 627 

(unknown) shift in the EMI readings by additional field measurements with other sensors. 628 

Conversely, the shift effect is implicitly kept in the σb distributions, from this in the measured 629 

water content distributions and finally included in the hydrological inversion. This allowed us to 630 

reveal the effects of technical limitations of the EMI sensor including the instrumental shift in EMI 631 

σa readings in the water content estimations and from this in the hydraulic properties’ estimation. 632 

In the 1st experiment, by comparing the EMI-based water contents to the water contents coming 633 

from TDR, it was possible to see that the shift in the EMI readings produced quasi-parallel water 634 

content evolutions, thus meaning that the EMI shift is rather stable with water content change. 635 

Related to this, in terms of hydraulic properties, the shift simply results in scaled saturated water 636 

content. This may well be explained physically by just considering the parallel behaviour of the 637 
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water contents over time signifies similar water content changes over time. This is translated in 638 

similar hydraulic conductivities, which in the van Genuchten-Mualem model means similar α and 639 

n parameters, and thus water retention curves are simply scaled by the saturated water content 640 

ratio.  641 

As an additional benefit of an uncoupled approach, it allows for the sequential estimation of 642 

parameters (from the upper to the lower horizon), which can reduce the problems of parameter 643 

correlation and uniqueness. In this work, the parameters were estimated separately for each horizon 644 

of the profile according to Abbaspour et al. (1999). This approach makes parameter estimation of 645 

multi-layered profiles more feasible and accurate, however, this cannot be done within a coupled 646 

model. If more than one layer has to be characterised, the coupled approach requires that all the 647 

parameters have to be simultaneously optimised. This is because the electrical conductivity 648 

distribution of the whole soil profile must be first simulated in order to generate required σa_est to 649 

compare to σa_meas in the objective function. 650 

 651 

5.2. Suitability of EMI as a replacement for invasive sensors  652 

The proposed methodology for the estimation of vG-M parameters proved to be effective for 653 

both Ap and Bw horizons. The overall EMI-based underestimation of θ did not impact the 654 

hydraulic conductivity curves significantly, as the shape of hydraulic conductivity is mainly 655 

explained by the θ variation and not of its absolute value. On the other hand, this underestimation 656 

resulted in lower saturated water content which also appeared in the water retention curve. The 657 

latter can be simply converted to more accurate water content distribution by direct measurement 658 

of the actual saturated water content at the end of the experiment using TDR probes or even by 659 

taking soil samples for laboratory weight.  660 
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In terms of the longitudinal dispersivity, λ, there was a very good agreement between EMI-661 

based and TDR-based estimation for both Ap and Bw horizons. The finding results are also in very 662 

good agreement with previous in-situ and laboratory measurements. However, this method 663 

requires that the hydraulic properties of the investigated soil at the scale of concern be assessed 664 

prior to the application of this method to discriminate the contribution of water content and 665 

concentration in the EMI-based σb estimation.   666 

 667 

5.3. EMI-related sources of uncertainty 668 

The application of EMI for detailed investigation of the infiltration process has several 669 

limitations, apart from the potential instrumental drift of EMI sensor and the overall 670 

underestimation of water content and concentration, and requires further investigation. Resolving 671 

the wetting zone during the water injection is one source of uncertainty in this approach. The water 672 

content sharply decreases with depth in this zone to near the initial water content of the soil and 673 

causes dramatic resistivity variation. The limited number of σa measurements (total of 6) is not 674 

sufficient for recovering the sharp σb variability that takes place during the infiltration. In addition, 675 

a smoothness constraint was performed in the inversion process to stabilize the inversion process 676 

which further smooths the layer boundaries in this approach. Resolving the shallow bedrock 677 

interface at depth and beneath a conductive zone was also very challenging. This is because the 678 

sensitivity of the EMI signals is generally very limited over the resistive zone and the condition 679 

becomes much worse when the resistive zone (bedrock) is located beneath a conductive zone 680 

(tracer): the EMI response of the subsurface is dominated by the influence of the near-surface 681 

conductive zone. In addition, five of the six depths of investigation of the CMD Mini-Explorer are 682 

limited to the first 1 m, and, as a result, a lower resolution is expected at greater depths. This 683 

resulted in an even larger underestimation of soil conductivity on top of the bedrock and an 684 
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overestimation of bedrock conductivity in the close vicinity of soil. These findings from synthetic 685 

studies and modelling field data are similar to those reported in Farzamian et al. (2021) due to the 686 

similarity of the site, experiment, and the use of the same EMI sensor. Measuring σa at different 687 

heights or using different EMI sensor with larger number of receivers such as CMD Mini-Explorer 688 

6L enables us to collect more σa data to better resolve changes that occur over short depth 689 

increments. To this aim, the EMI configuration and data survey can also be optimized using 690 

optimization techniques such as machine learning based methods, given the specific survey goals 691 

and independent knowledge of the subsurface electrical properties, as shown for example by van't 692 

Veen et al. (2022). 693 

 694 

6. CONCLUSION 695 

In this paper, we proposed a non-invasive in-situ method integrating EMI and hydrological 696 

modelling to estimate soil hydraulic and transport properties at the plot scale. For this purpose, we 697 

carried out two experiments involving 1) water infiltration and 2) solute transport over a 4 x 4 m 698 

plot. The propagation of wetting front and solute concentration along the soil profile in the plot 699 

was monitored using an EMI sensor (i.e. CMD mini-Explorer) and for the sake of procedure 700 

evaluation Time Domain Reflectometry probes and tensiometers. Time-lapse apparent electrical 701 

conductivity (σa) data obtained from the EMI sensor were inverted to estimate the evolution over 702 

time of the vertical distribution of the bulk electrical conductivity (σb). The σb distributions were 703 

converted to water content and solute concentration by using a standard laboratory calibration, 704 

relating σb to water content (θ) and soil solution electrical conductivity (σw).  705 

Based on the first water infiltration experiment, the soil water retention and hydraulic 706 

conductivity curves were then obtained for two layers of the soil profile by an optimization 707 
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procedure minimizing the deviations between the numerical solution of the water infiltration 708 

experiment and the estimated water contents inferred from the EMI results. EMI-based hydraulic 709 

properties were very similar in shape to those obtained by TDR and tensiometers data. This shape-710 

similarity allowed to convert the EMI-based hydraulic properties to the TDR-based ones by simply 711 

scaling them by the ratio of the saturated water content for both the soil layers considered. This 712 

was a crucial finding in this paper and was mainly ascribed to the fact that the water content 713 

changes over time detected by the EMI closely followed those observed by TDR. These EMI-714 

based hydraulic properties were then used as input for hydrological modelling of the second solute 715 

transport experiment. This allowed discriminating water content and solute concentration 716 

components in the EMI σb distributions obtained during the second experiment. These 717 

concentrations were afterward used to estimate the dispersivity based on an inversion procedure 718 

minimizing the residuals of EMI-based concentration and those simulated by the hydrological 719 

model. The reliability of the EMI-based hydraulic properties allowed us to obtain estimations of 720 

the dispersivity comparable to those obtained by the same optimization procedure applied to the 721 

TDR data.  722 

The overall results show the high potential of the EMI sensor to replace TDR and tensiometer 723 

probes in the assessment of soil hydraulic properties. In practice, one could monitor a relatively 724 

short infiltration experiment with an EMI sensor and use the water content estimations in an 725 

inversion procedure to estimate the hydraulic properties. The underestimated water content 726 

observed in the first experiment can be converted to more accurate water content distribution by 727 

direct measurement of the actual saturated water content at the end of the experiment using TDR 728 

probes or even by taking samples and laboratory measurements.  729 
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The EMI-based estimation of longitudinal dispersivity, λ agrees well with TDR-based 730 

estimation as well as previous in-situ and laboratory measurements which suggests that the 731 

proposed methodology can be used in the assessment of this parameter which is indeed an 732 

important parameter in soil salinity simulations in salt-affected regions across the world. However, 733 

estimating λ based on only a solute infiltration test is not feasible as the temporal variability of σb 734 

is a function of both water content and concentration changes. We proposed the sequence of water 735 

and solute infiltration tests to discriminate the contribution of the water content and the soil 736 

solution electrical conductivity to the EMI-based σb. 737 

Water irrigation and soil salinity management and thus hydrological investigations are usually 738 

field and even large-scale challenges. The EM method is a non-invasive, fast, and cost-effective 739 

technique, covering large areas in less time and at a lower cost. Although this study was limited to 740 

a controlled experiment on a plot scale and a single study report, scaling up from plot scale to field 741 

scale assessment might be feasible due to the method's potential for rapid data collection. More 742 

investigations have to be conducted in this area to evaluate the potential of EMI sensors under 743 

different soil conditions and within the larger 2D and 3D investigations to further address the 744 

limitations of this methodology at different scales.  745 
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