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ABSTRACT  18 

Soil hydraulic and hydrodispersive properties are necessary for modelling water and solute 19 

fluxes in agricultural and environmental systems. Despite the large efforts in developing methods 20 

(e.g. lab-based, PpedotTransfer functionsF), their characterization at applicative scales is still an 21 

imperative requirement. Accordingly, this paper proposes a non-invasive in situ method 22 

integrating Electromagnetic Induction (EMI) and hydrological modelling to estimate soil hydraulic 23 

and transport properties at the plot scale. To this aim, we carried out two sequential water 24 

infiltration and solute transport experiments and conducted time-lapse EMI surveys using a CMD 25 
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mini-Explorer to examine how well this methodology can be used to i) monitor water content 26 

dynamic after irrigation and to estimate the soil hydraulic van Genuchten–Mualem parameters 27 

from the water infiltration experiment and ii) to monitor solute concentration, and to estimate 28 

solute dispersivity from the solute transport experiment. We then compared the obtained results to 29 

those estimated by direct Time Domain reflectometry (TDR) and tensiometer probes 30 

measurements. The EMI significantly underestimated the water content distribution observed by 31 

TDR, but the water content evolved similarly over time. This introduced two main effects on soil 32 

hydraulic properties obtained by the two methods: i) Similar water retention curve shapes, but 33 

underestimated saturated water content from the EMI method, resulting in a scaled water retention 34 

curve when compared with the TDR method; the EMI-based water retention curve can be scaled 35 

by measuring the actual saturated water content at the end of the experiment with TDR probes or 36 

by weighing soil samples; ii) almost overlapping hydraulic conductivity curves, as expected when 37 

considering that the shape of the hydraulic conductivity curve primarily reflects changes in water 38 

content over time. Nevertheless EMI-based estimations of soil hydraulic properties and transport 39 

properties were found to be fairly accurate in comparison to those obtained from direct TDR 40 

measurements and tensiometer probes measurements. 41 

 We then compared the obtained results to those estimated by direct TDR and tensiometer 42 

probes measurements. Our results show a good agreement between EMI-based estimation of soil 43 

hydraulic and transport properties with those obtained from the direct TDR and tensiometer probes 44 

measurements. When compared with direct TDR measurements, the EMI significantly 45 

underestimated the water content distribution, but the water content evolved similarly over time. 46 

This did not have a significant impact on the hydraulic conductivity curves since the hydraulic 47 

conductivity is mainly a function of water content variation, not its absolute value. On the other 48 
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hand, this underestimation led to lower saturated water content, reflected in the water retention 49 

curve. The latter can be scaled by measuring the actual saturated water content at the end of the 50 

experiment with TDR probes or even by weighing soil samples.  51 

 52 

1. INTRODUCTION  53 

Dynamics agro-hydrological models are more and more used for interpreting and solving agro-54 

environmental problems (Hansen et al., 2012; Coppola et al., 2015; Kroes et al., 2017; Coppola et 55 

al., 2019). The soil hydrological component of these models is frequently based on mechanistic 56 

descriptions of water and solute fluxes in soils. Richards equation (RE) for water flow and 57 

Advection-Dispersion equation (ADE) for solute transport is generally accepted to apply at a local 58 

scale (plot scale, for example). Solving RE requires the determination of the hydraulic properties, 59 

namely the water retention curve relating the soil water content, θ, to the soil water pressure head, 60 

h, and the hydraulic conductivity curve, relating the hydraulic conductivity, K to either the water 61 

content, θ or the pressure head, h. Similarly, ADE requires the dispersivity, , to be also known. 62 

In the last decades several laboratory and in-situ methods have been developed for characterizing 63 

soil hydraulic properties (e.g. Dane and Topp, 2020) and dispersive properties (e.g. Vanderborght 64 

and Vereecken, 2007). Lab-based characterizations may be carried out under more controlled 65 

conditions. Nevertheless, for simulating water and solute dynamics in the real field context, the in-66 

situ methods are obviously more representative than the lab ones. This is firstly related to the size 67 

of the volume investigated, which has to appropriately represent the heterogeneity of the medium 68 

being studied (Wessolek et al., 1994; Ellsworth et al., 1996; van Genuchten et al., 1999; Inoue et 69 

al., 2000). Actually, a water flow process observed in situ will be influenced by the heterogeneities 70 

(stones, macropores, etc.) found in the field. This is the main limitation of the relatively small soil 71 
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columns generally analysed in the laboratory. By contrast, an in-situ characterization method, for 72 

example the well-known instantaneous profile method (Watson et al., 1966), can catch the 73 

hydraulic properties which are effective in describing the flow process observed in-situ. This will 74 

also depend on the measurement scale (the size of the plot) and on the observation scale of the 75 

sensors used. These issues have been dealt with in detail for example in Coppola et al. (2012; 76 

2016) and in Dragonetti et al., (2018). Besides, the experimental boundary conditions used to carry 77 

out the hydraulic characterization in lab and in-situ may also induce a different shape of the 78 

hydraulic properties as determined in the lab and in-situ (Basile et al., 2006).  79 

In-situ methods typically evaluate soil hydraulic properties by monitoring an infiltration and/or 80 

a redistribution water flow process (Watson et al., 1966). Similarly, in situ methods for 81 

determining hydro-dispersive parameters are generally based on monitoring of mixing processes 82 

following pulse or step inputs of a tracer on either large plots or along field transect (Severino et 83 

al., 2010; Coppola et al., 2011; Vanderborght and Vereecken, 2007). Inverse modelling is 84 

frequently used to estimate the hydraulic and transport parameters simultaneously (Šimůnek et al., 85 

1998a; Abbasi et al., 2003; Groh et al., 2018). Yet, even by shortening the measurement procedure 86 

by simplified assumptions (e.g. Sisson and van Genuchten 1991; Basile 2006) all in-situ methods 87 

for the characterization of the whole soil profile remain extremely difficult to implement also 88 

because they generally require installing sensors at different depths (e.g. TDR probes, 89 

tensiometers, access tubes for neutron probe) which are cumbersome and may induce soil 90 

disturbance, unless the installation is made much earlier than the experiment, to at least partly 91 

allowing the soil to recover through several wetting-drying cycles its natural structure.  92 

In this direction, geophysical non-invasive methods based on the electrical resistivity 93 

tomography (ERT) and Electromagnetic Induction (EMI) techniques represent a promising 94 
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alternative to traditional sensors for soil hydraulic and transport parameters assessment. Many 95 

researchers have used the time-lapse ERT data (e.g. Binley et al., 2002; Kemna et al., 2002; Singha 96 

and Gorelick, 2005) to monitor temporal water content and saline tracer in the fieldsolute 97 

concentration changes in flow and transport models. The dependence of soil electrical conductivity 98 

on soil water content and concentration is the key mechanism that permits the use of time-lapse 99 

ERT to monitor water and solute dynamics in time-lapse mode along a soil profile, by relating 100 

resistivities to water contents and solute concentration distributions through empirical or semi-101 

empirical relationships (e.g. Archie, 1942) or established in-situ relationships (e.g. Binley et al., 102 

2002).  103 

Electromagnetic induction (EMI) sensors may be also used as an alternative to the ERT 104 

technique as they allow for monitoring water and solute propagation through a soil profile by 105 

simply moving the sensor above the soil surface without the need to install electrodes, as required 106 

by ERT technique. An EMI sensor provides measurements of the depth-weighted apparent 107 

electrical conductivity (σa) according to the specific distribution of the bulk electrical conductivity 108 

(σb), as well as the depth response function of the sensor used (McNeill, 1980). σa obtained from 109 

EMI sensors have been used to map the geospatial and temporal variability of the soil water content 110 

and salinity (Corwin and Lesch, 2005; Bouksila et al. 2012; Saeed et al., 2017). However, 111 

monitoring the propagation of the water and solutes with depth along a soil profile (as during a 112 

water infiltration or a solute transport experiment) requires the distribution of the σb distribution 113 

with depth to be known over time, which can be obtained by inversion of the σa observations from 114 

the EMI sensor (see for example, Borchers et al., 1997; Hendrickx et al., 2002; Lavoué et al., 2010; 115 

Mester et al., 2011; Deidda et al., 2014; Von Hebel et al., 2014;  Dragonetti et al., 2018; Moghadas 116 

et al., 2019; Farzamian et al., 2019a; Zare et al. 2020; Mclachlan et al. 2020). More recently, this 117 
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inversion has been facilitated by the development of multi-coil EM sensors which are designed to 118 

collect σa at multiple coil spacing and orientations simultaneously in one sensor reading. This 119 

allows a rapid investigation of the soil’s electrical conductivity at several depth ranges to obtain 120 

soil water content (Huang et al., 2016; Whalley et al., 2017) and solute concentrations (Paz et al., 121 

2020; Gomez Flores et al., 2022) quickly and cheaply. However, the potential of EMI sensors to 122 

assess soil hydraulic and hydro-dispersive parameters has not been yet studied due to the lack of 123 

high-resolution and well-controlled experiments, required to catch the complexity of water flow 124 

and transport process during infiltration experiments.  125 

With these premises, in this paper we propose a procedure based on a sequence of water 126 

infiltration and solute transport experiments, both monitored by an EMI sensor, with the objective 127 

of estimating in-situ the parameters of soil hydraulic properties and the dispersivity of a soil profile 128 

with a non-invasive EMI sensor and relatively short experiments at the plot scale. The sequence 129 

of water and solute infiltration has the main aim to discriminate the contribution of the water 130 

content and the soil solution electrical conductivity to the EMI-based σb. All the EMI data will be 131 

analysed by a hydrological model within a so-called uncoupled framework, which will be 132 

discussed in detail in the Hydro-Geophysical uncoupled approach section. The goodness of the 133 

adopted approach will be evaluated by comparing the EMI-based hydraulic and hydrodispersive 134 

properties to those obtained from in-situ TDR and tensiometer measurements. The Our aim is to 135 

explore an approach that does no’t need sensors installation and minimise data necessary for the 136 

in-situ assessment of soil hydraulic and hydrodispersive properties. 137 

 138 

2. HYDRO-GEOPHYSICAL UNCOUPLED APPROACH 139 
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Figure 1 provides a schematic view of a six-step (+ one step for comparison) procedure, based 140 

on an uncoupled approach (Camporese et al., 2015) which will be adopted in this work to estimate 141 

the soil hydraulic and hydrodispersive properties using the data obtained from the EMI sensor. All 142 

the steps summarised below will be described in detail in the Materials and Methods section.  143 

(i) Inversion of time-lapse σa EMI data obtained during (i) a water infiltration experiment, 144 

hereafter 1st experiment, and (ii) a subsequent solute transport experiment, hereafter 2nd 145 

experiment, to generate EMI-based σb distributions for each experiment; 146 

(ii) Laboratory calibration of the relationship θ-σb-σw in order to convert σb distributions to water 147 

content, θ, (1st experiment) and to soil solution electrical conductivity, σw, and therefore 148 

solute concentrations, C, (2nd experiment);  149 

(iii) Converting the σb distributions obtained from the 1st experiment to water content 150 

distributions, using the θ-σb-σw relationship, to be used in the next numerical simulation step; 151 

(iv) Numerical simulation, by using the HYDRUS-1D model (Šimůnek et al., 1998b), of the 1st 152 

experiment in order to estimate the van Genuchten-Mualem (vG-M) parameters through an 153 

inversion procedure based on the water contents inferred from step (iii); 154 

(v) Conversion of the σb distributions obtained from the 2nd experiment to solute concentration 155 

distribution in order to estimate longitudinal dispersivity, . In this step, σw distribution was 156 

estimated by using the laboratory θ-σb-σw calibration. The θ distribution in the 2nd 157 

experiment was simulated based on the vG-M parameters obtained in step (iv). This is a 158 

crucial step in the proposed procedure, as it allows to discriminate the contribution of the 159 

soil water electrical conductivity, and thus of the solute concentration, to the σb EMI readings 160 

during the 2nd experiment. The σw distributions were thus converted to solute concentration 161 

by a simple standard lab-based solute specific σw-C relationship;  162 
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(vi) Numerical simulation of the second solute infiltration process in order to estimate  through 163 

an inversion procedure based on the concentrations obtained from step (v).  164 

(vii) An alternative dataset of θ and σb obtained from direct TDR measurements, as well as 165 

tensiometer pressure head (h) readings, collected during the two experiments, allowed us to 166 

obtain independent hydraulic and hydrodispersive properties (hereafter TDR-based for sake 167 

of simplicity) to be used as a reference to evaluate the EMI-based parameter estimation (see 168 

the horizontal grey box in Fig. 1).  169 

170 

Figure 1: Schematic diagram of the proposed Hydro-Geophysical uncoupled approach 171 

 172 

3. MATERIAL AND METHODS 173 

3.1. Study area 174 
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The experiment was performed at the Mediterranean Agronomic Institute of Bari (CIHEAM-175 

IAM), south-eastern coast of Italy. The study area is located at an altitude of 72 m with 41° 3' 176 

13.251" N, a longitude of 16° 52' 36.274" E, and an elevation of about 68 m a.s.l. with a typical 177 

Mediterranean climate with rainy winters and very hot dry summers. The soil is a Colluvic Regosol 178 

consisting of silty loam layers of an average depth of 70 cm on a shallow fractured calcareous 179 

rock. Two main horizons on the calcareous rock may be identified: an Ap horizon (depth 0-30 cm) 180 

and a Bw horizon (depth 30-70 cm). Scattered calcareous fragments are present due to the breaking 181 

and grinding of the bedrock operated in the past by using heavy machinery in order to improve the 182 

soil structure and increase the soil depth for plantation 183 

 184 

3.2. Experimental set-up 185 

A layout of the experimental setup is shown in Fig. 2. The plot size is 4 × 4 m. Water was 186 

applied by using a drip irrigation system consisting of 20 lines, with drippers spaced 0.20 m and 187 

delivering a nominal flow rate of 10 l h-1. Thus 400 drippers were installed, capable of delivering 188 

4000 l h-1 on the whole plot. The dripper's grid spacing and the flow rate were selected to ensure 189 

that a 1D flow field rapidly developed after starting irrigation. The drip irrigation system was 190 

placed on a metallic grid to be easily moved away from the plot and whenever EMI measurements 191 

were taken on the ground soil.  192 

Several months before starting the 1st experiment, after digging a small pit, eight three-wire 193 

TDR probes, 7 cm long, 2.5 cm internal distance, and 0.3 cm in diameter, were inserted 194 

horizontally at 2 depths − 20 and 40 cm, corresponding to the Ap and the Bw horizon − in the 4 195 

corners of the experimental plot (at 1 m distance from the plot edge), as shown in Fig. 2. The pits 196 

for installing the sensors were refilled immediately, to leave some natural wetting and drying 197 
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cycles to reproduce the original soil aggregation. Then, the plot was covered with a plastic sheet 198 

about four days prior to the start of the experiment to keep the plot under quasi-equilibrium 199 

conditions at the beginning of the experiment. 200 

A Tektronix 1502C cable tester (Tektronix Inc., Baverton, OR) was used in this study, enabling 201 

simultaneous measurement of water content, θ, and bulk electrical conductivity, σb, of the soil 202 

volume explored by the probe (Robinson et al., 2003; Coppola et al., 2011; 2013). Furthermore, 203 

eight tensiometers were vertically inserted near each TDR probe to acquire water potentials by a 204 

Tensicorder sensor (Hydrosense3 SK800). Both TDR probes and tensiometers were installed for 205 

the evaluation of the EMI-based parameter estimation (step (vii)). 206 

The experimental plot was firstly irrigated by using tap water with an electrical conductivity 207 

of about 1 dS m-1 (1st experiment). We applied eleven irrigations, each lasting about 3 minutes to 208 

deliver about 180 l on the whole 16 m2 plot for each irrigation (the volume was measured by a 209 

flowmeter). Irrigations were separated by about a 1-hour shutoff. At each irrigation starting, due 210 

to the short inertia of the irrigation system just after its switching on, for some seconds drippers 211 

delivered less than 10 l h-1. For each irrigation an average flow rate of about 0.375 cm min-1 was 212 

applied, which generated a small ponding at the soil surface for a short time. Overall, an average 213 

water volume of 2000 l was supplied.  214 

The propagation of the wetting front along the soil profile was monitored by using an EMI 215 

sensor (i.e. CMD mini-Explorer, GF Instruments, Czech Republic), positioned horizontally in the 216 

middle of the plot (Fig. 2) in order to measure the apparent electrical conductivity, σa, in the soil 217 

profile in VCP (vertical coplanar, i.e., horizontal magnetic dipole configuration) mode and then 218 

HCP (horizontal coplanar, i.e., vertical magnetic dipole configurations) mode by rotating the probe 219 

90° axially to change the orientation from VCP to HCP mode. The CMD Mini-Explorer operates 220 
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at 30 kHz frequency and has three receiver coils with 0.32, 0.71 and 1.18 m distances from the 221 

transmitter coil, referred to hereafter as ρ32, ρ71, and ρ118. The manufacturer indicates that the 222 

instrument has an effective depth range of 0.5, 1.0 and 1.8 m in the HCP mode, which is reduced 223 

to half (0.25, 0.5, and 0.9 m) by using the VCP orientation. As a consequence, this EMI sensor 224 

returns six different σa values (utilizing three offsets with two coil orientations) with each 225 

corresponding to different depth sensitivity ranges. All measurements were performed five 226 

minutes after each water pulse application by temporarily removing the irrigation grid and placing 227 

the EMI sensor in the middle of the plot. The infiltration was also monitored by TDR probes and 228 

tensiometers in order to monitor the space-time evolution of water content, θ, pressure head, h, as 229 

well as bulk electrical conductivity, σb. The distance of the TDR probes and tensiometers to the 230 

middle of the plot was specifically designed to avoid any interference with the EMI measurements.  231 
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 232 

Figure 2. Layout of the experimental and monitoring set-up. HCP (horizontal coplanar) and VCP 233 

(vertical coplanar) are the vertical and horizontal dipolar orientations of the CMD probes, 234 

respectively. 235 

 236 

At the end of the 1st experiment, the soil was allowed to dry and then covered with a plastic 237 

sheet to bring the distribution of water content along the profile similar to the initial one (observed 238 

before the water infiltration test). Afterward, a similar infiltration experiment (2nd) was carried out 239 

but using saline water at an electrical conductivity of 15 dS m-1, and obtained by mixing CaCl2 240 

into the tap water. Again, eleven saline water supplies were provided at intervals of about 1 h apart 241 

and a total volume of 2000 l saline water was supplied during the experiment. The propagation of 242 
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the water and chloride during the 2nd infiltration experiment was monitored similarly to the 1st 243 

experiment using TDR probes, tensiometers, and the CMD Mini-Explorer sensor.  244 

3.3. Site-specific calibration θ-σb-σw 245 

The relationship between the bulk electrical conductivity (σb), the electrical conductivity of the 246 

soil solution soil water (σw), and the water content, were obtained by using the model proposed by 247 

Malicki and Walczak, (1999):  248 

𝜎𝑤 =
𝜎𝑏−𝑎

(𝜀𝑏−𝑏)(0.0057+0.000071 𝑆)
          (1) 249 

where εb (-) is the dielectric constant, which is related to the water content and S is the sand content 250 

in percent. The parameters a = 3.6 dS m−1 and b = 0.11 were obtained in a laboratory experiment 251 

reported in Farzamian et al. (2021). Topp’s equation was used to relate dielectric constant to the 252 

volumetric water content (Topp et al., 1980). The lab experiment for such a calibration is quite 253 

simple, fast, and standard procedure on reconstructed soil samples. An additional linear 254 

calibration, obtained by using solutions at different concentrations of calcium chloride was used 255 

to relate soil water concentrations of chloride, Cl-, to σw.  256 

3.4.  Inversion of time-lapse EMI σa data 257 

Time-lapse σa data obtained during the experiments were inverted using a modified inversion 258 

algorithm proposed by Monteiro Santos et al. (2004) to obtain σb distribution in time. The aim of 259 

the inversion is to minimize the penalty function that consists of a combination between the 260 

observations’ misfit and the model roughness (Farzamian et al., 2019b). The earth model used 261 

in the inversion process consists of a set of 1D models distributed according to the number of time-262 

lapse measurements. All the models have the same number of layers (i.e. 7) whose thickness is 263 

kept constant. The selected thickness depths of layers is are10, 20, 30, 40, 55, 75 and 180 cm. The 264 

number and thickness of layers were selected based on several factors including the number of σa 265 
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measurements (i.e., 6), effective depth range of HCP and VCP modes (i.e., 5 of 6 measurements 266 

have an effective depth of less than 1m), and site specifications (i.e., the large variability of 267 

conductivity of the soil profile over a resistive bedrock). The parameters of each model are 268 

spatially and temporally constrained using their neighbours through smooth conditions. The 269 

forward modelling is solved based on the full solution of the Maxwell equations (Kaufman and 270 

Keller, 1983) to calculate the σa responses of the model. The inversion algorithm is Occam-271 

regularization and the objective function was developed based on Sasaki, (2001). Therefore, the 272 

corrections update of the parameters, in an iterative process are calculated solving the system: 273 

[(JT J + ηCT C)] δp = JT b         (2) 274 

where δp is the vector containing the corrections applied to the parameters (logarithm of 275 

block conductivities, pj) of an initial model, b is the vector of the differences between the logarithm 276 

of the observed and calculated σa [bi = ln(σa
o/σa

c)i], J is the Jacobian matrix whose elements are 277 

given by (σj/σai
c) (∂σai

c ∂σj), the superscript T denotes the transpose operation, and η is a Lagrange 278 

multiplier that controls the amplitude of the parameter corrections and whose best value is 279 

determined empirically. The elements of matrix C are the coefficients of the values of the 280 

roughness of each 1D model, which is defined in terms of the two neighbour’s parameters and the 281 

constraint between the parameters of the different models on time. In this regard and in our the 282 

temporal 1D experiment, each cell is constrained spatially by its vertical neighbours, while the 283 

temporal constraints are imposed using its lateral neighbours. An iterative process allows the final 284 

models to be obtained, with their response fitting the data set in a least-square sense. In terms of 285 

η, generally, large values will produce smooth inversion results with smoother spatial and temporal 286 

variations.  287 
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We performed several syntenic tests to determine how well the proposed inversion algorithm 288 

can predict spatiotemporal variability of σb and to fine-tune the regularization parameters. The 289 

syntenic scenarios were selected based on spatiotemporal variability of σa in the HCP and VCP 290 

modes, the site specification (e.g. shallow bedrock) and the expected evolution of conductive zone 291 

due to water and saline water infiltrations.  292 

3.5. Numerical simulation of water flow and chloride transport in soil  293 

The water and the chloride propagation monitored during the experiments were simulated by 294 

using the HYDRUS-1D model (Šimůnek et al., 1998b). HYDRUS-1D simulates water flow and 295 

solute transport by solving the Richards equation and the Advection-Dispersion equation, 296 

respectively.  297 

Richards equation can be written for one-dimensional, unsaturated, non-steady state flow of 298 

water in the vertical direction as follows: 299 

𝐶𝑤(𝜃)
𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑍
[𝐾(ℎ)

𝜕ℎ

𝜕𝑍
+ 𝐾(ℎ)]        (3) 300 

where Cw(θ), the water capacity, is the slope of the water retention curve, θ is the volumetric water 301 

content [L3L-3], h is the soil water pressure head [L], K(h) is the unsaturated hydraulic conductivity 302 

[LT-1]. 303 

The Advection-Dispersion equation governing the transport of a single non-reactive and non-304 

adsorbed (a tracer, chloride in our this case) ion in the soil can be written as: 305 

𝜕(𝜃𝐶)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝜃𝐷

𝜕𝐶

𝜕𝑧
− 𝑞𝐶]         (4) 306 

where q is the darcian flux, C is the solute concentration in the liquid phase [ML-3], D (L2T-1) is 307 

the effective dispersion coefficient, which can be assumed to come from a combination of the 308 
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molecular diffusion coefficient, Ddiff (L2T-1) and the hydrodynamic dispersion coefficient, Ddis 309 

(L2T-1): 310 

𝐷 = 𝐷diff + 𝐷dis          (5) 311 

where hydrodynamic dispersion is the mixing or spreading of the solute during transport due to 312 

differences in velocities within a pore and between pores. The dispersion coefficient can be related 313 

to the average pore water velocity v=q/θ through: 314 

𝐷 = 𝜆𝑣           (6) 315 

where λ [L] is the dispersivity, a characteristic property of the porous medium. To solve the 316 

Richards equation (Eq. 3), the water retention function, θ(h), and the hydraulic conductivity 317 

function, K(h), must be defined. In this paper we adopted the van Genuchten-Mualem model (vG-318 

M), (van Genuchten, 1980): 319 

𝑆𝑒 = [1 + (𝛼|ℎ|)𝑛]−𝑚         (7) 320 

𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝜏 [1 − (1 − 𝑆𝑒

1/𝑚)
𝑚

]
2

        (8) 321 

In Eqs. 7 and 8, 𝑆𝑒 =
(𝜃−𝜃𝑟)

(𝜃𝑆−𝜃𝑟)
 is the effective water saturation, θs the saturated water content, θr the 322 

residual water content, α, n and m are fitting parameters with m taken as m=1-1/n, Ks is the 323 

saturated hydraulic conductivity and τ is the pore-connectivity parameter.  324 

 325 

3.6. Inverse estimation of soil hydraulic and solute transport parameters  326 

The obtained EMI-based spatiotemporal distribution of σb during the 1st experiment was 327 

converted to the θ distribution in order to estimate the temporal evolution of θ during the 328 
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infiltration process. These water content data were then used in an optimization procedure by using 329 

the HYDRUS-1D model, in order to estimate the hydraulic properties of the different horizons in 330 

the soil profile. The simulations were carried out by using the actual top boundary flux conditions 331 

during the experiment, including the irrigation events. For the bottom boundary, free drainage was 332 

considered. A simulation domain of 150 cm depth was considered. The same procedure was 333 

repeated using the direct measurements of θ and h inferred from TDR and tensiometers, 334 

respectively, in order to obtain independent hydraulic parameters (TDR-based estimation) to be 335 

compared to those inferred from EMI. A three-layer soil profile (0-25; 25-70; 70-150 cm), 336 

reflecting the actual pedological layering (i.e. Ap, Bw, and bedrock) was used in all simulations.  337 

In terms of the initial condition, a hydrostatic distribution of the pressure heads, h, was considered 338 

for the TDR-based simulations. On the other hand, the water content distribution, inferred from 339 

the first EMI survey (before irrigation) was considered for the EMI-based simulation.  340 

As for the solute transport experiment, a HYDRUS-1D simulation was carried out with the 341 

EMI-based hydraulic properties obtained from the 1st experiment to simulate the water content 342 

distributions in correspondence with the EMI measurement times. The simulations of water 343 

infiltration and solute transport in the 2nd experiment were carried out by using the top boundary 344 

fluxes conditions applied during the 2nd experiment along with the same simulation domain, three-345 

layer soil profile, and the bottom boundary and equilibrium initial conditions described above. 346 

Thus, for each monitoring time, we had available the σb distributions obtained from the EMI and 347 

the θ distributions coming from the HYDRUS-1D simulations. These distributions allowed us to 348 

estimate as many σw (and thus C) distributions by using the θ-σb-σw relationship obtained in the 349 

laboratory. These C distributions were used in a new HYDRUS-1D simulation to estimate the 350 
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longitudinal dispersivity of the investigated soil. The simulated concentrations, with the optimized 351 

dispersivity, λ, were compared to those obtained from the TDR and tensiometer data.  352 

 353 

4. RESULTS AND DISCUSSION 354 

4.1. Water infiltration – 1st experiment 355 

4.1.1. Time-lapse σa data and estimation of σb distribution 356 

Figure 3 shows the σa values observed during the water infiltration experiment. Both VCP 357 

and HCP modes show a relatively similar pattern of σa values with ρ32 and ρ118 being the highest 358 

and lowest respectively. HCP mode shows higher values compared to the VCP mode in the same 359 

receivers. This pattern of σa distribution suggests the presence of a conductive zone over a resistive 360 

zone which is expected in this experiment as a result of the waterfront being infiltrated into the 361 

soil profile and the presence of a resistive bedrock. In terms of temporal σa variabilities, the σa 362 

increases consistently in both VCP and HCP modes during the first three hours of the experiment. 363 

Afterward, σa did not change significantly toward the end of the experiment. The range of σa 364 

variations is relatively small in both VCP and HCP modes with the former in the 10-30 mS m-1 365 

range and the latter in the 10-50 mS m-1 range. 366 
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Figure 3: σa values observed during the water infiltration experiment. (A) VCP, (B) HCP. The 

symbols represent the measured data whereas the lines represent the values calculated after the 

inversion. 

 

Prior to the inversion of σa data we fine-tuned the regularization parameter, η, as discussed 367 

in 3.4. the results of several synthetic tests (not shown here) suggest that a value of η between 1 to 368 
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5 provides a better result in resolving the spatio-temporal σb distributions in both experiments. 369 

Figure 4 depicts the time-lapse σb modelling results of σa shown in Fig. 3. The model shows clearly 370 

the evolution of the conductive zone into the soil profile shortly after the irrigation started as 371 

expected from the σa data. The resistive zone beneath a conductive zone corresponds to the bedrock 372 

layer in the experimental plot. The σb of the resistive zone remains below 5 mS m-1 and does not 373 

vary significantly during the experiment, while, in contrast, the σb of the upper layers increased 374 

significantly from an average of 20 mS m-1 at the beginning of the experiment to more than 50 mS 375 

m-1 after the 5th irrigation. The conductivity of this zone does not increase largely since then, 376 

suggesting that the upper soil is fairly saturated after the 5th irrigation. The calculated response of 377 

this model was shown in Fig. 3. There is a fairly good agreement between σa measurements and 378 

model response, however, a slight shift can be noticed in the ρ32- VCP mode and ρ71- HCP mode 379 

between data and model response. This shift can be due to several reasons such as i) the 380 

instrumental shift of one or more channelsdrift of the EMI sensor, ii) the large spatiotemporal 381 

variability of soil electrical conductivity in this experiment as well as smoothness constraint 382 

performed in the inversion process to stabilize the inversion process which make it difficult to 383 

resolve the sharp changes, and iii) the choice of initial model. 384 

 385 

Figure 4. Time evolution of bulk electrical conductivity (σb) distribution with depth during the 386 

water infiltration experiment.  387 
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4.1.2. Comparison between TDR-based and EMI-based σb and θ distributions 388 

Figure 5 shows the temporal σb changes inferred from TDR and EMI observations at two 389 

depths, 20 and 40 cm. As reported by some authors (e.g. Coppola et al., 2016; Dragonetti et al., 390 

2018), both techniques provide σb estimations but a direct comparison between σb by TDR and 391 

EMI is not straightforward due to different observation volumes of the two sensors. As argued by 392 

Coppola et al. (2016), “because of its relatively small observation volume, a TDR probe provides 393 

a quasi-point-like measurements and do not integrate the small-scale variability (in soil water 394 

content, solute concentrations, etc.) induced by natural soil heterogeneity. By contrast, EMI data 395 

necessarily overrule the small-scale heterogeneities seen by TDR probes as they investigate a much 396 

larger volume”. However, this comparison can be used as a means to investigate the consistency 397 

of the σb trends and to provide an insight into the uncertainty associated with the EMI survey and 398 

inversion process in resolving the water infiltration process into the soil profile. Note that the 399 

average of TDR measurements in four corners at depths of 20 and 40 cm were considered both in 400 

this comparison and in the inversion procedure. The average values and the standard deviation of 401 

TDR measurements were presented in Fig. 5.  402 

Focusing on the σb series inferred from both TDR observations and EMI inversion, a 403 

similar time pattern of σb variability is evident, but in general, the EMI model underestimates the 404 

σb obtained by TDR. A better agreement was observed at 20 cm in terms of both absolute σb values 405 

and trend (r=0.94; Mean Error=10.1 mS m-1). In contrast, at 40 cm, the mismatch between TDR 406 

observations and EMI inversions becomes larger at the end of the experiment. The EMI σb values 407 

– especially at 40 cm depth – remain rather invariant in the last part of the infiltration experiment. 408 

The general outcome that for both layers the EMI σb values underestimate the TDR σb 409 

measurements has been frequently found in the literature (e.g. von Hebel et al., 2014; Coppola et 410 
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al., 2015; Dragonetti et al., 2018; Visconti and de Paz, 2021). von Hebel et al. (2014) also found a 411 

similar behaviour when comparing their EMI results with ERT surveys. In that case, the σa values 412 

measured by EMI systematically underestimated the σa generated by applying EMI forward 413 

modelling to the σb distribution retrieved from the ERT surveys. Furthermore, TDR measurements 414 

show a low local variability, as depicted in Fig. 5 by the error bars reporting the standard deviation 415 

of the σb as measured by the four TDR probes. 416 

Figure 6 shows the evolution of θ at the same two depths, 20 and 40 cm as observed by 417 

TDR and EMI sensors. TDR provides the direct in-situ measurement of θ. In contrast in order to 418 

estimate θ from EMI observation, σb values extracted at these depths (Fig. 4) were converted to θ 419 

by the calibration performed in the laboratory, as detailed in Farzamian et al., (2021). A rapid 420 

increase of θ is visible shortly after injection in both EMI-based and TDR-based measurements. 421 

The EMI-based θ estimation is able to detect the similar water content evolution (similar water 422 

content differences over time) observed by TDR measurements but at a different water content 423 

level. Specifically, EMI water contents were lower than the TDR ones but the two series showed 424 

a quasi-parallel evolution at 20 cm depth (r=0.98; Mean Error=0.09 cm3 cm-3), while diverging for 425 

longer times at 40 cm depth (r=0.60; Mean Error=0.17 cm3 cm-3).  426 

 427 
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 428 

Figure 5. σb evolution estimated from the TDR and EMI measurements at 20 cm (A) and 40 cm 429 

(B) depths. The vertical bars represent the standard deviation of the measurements obtained by the 430 

four TDR sensors. 431 

 432 

 433 

Figure 6. Evolution of θ measured by TDR (circles) and estimated from EMI measurements 434 

(triangles) at 20 cm (A) and 40 cm (B) depths. Continuous lines for TDR and dashed lines for EMI 435 

refer to the estimation obtained by the inversion procedure of the water infiltration process (see 436 

Sect. 4.1.3 below). 437 

 438 
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4.1.3. Estimation of hydraulic properties  439 

In order to estimate hydraulic properties parameters, an inversion procedure was carried 440 

out applying HYDRUS-1D. The first set of hydraulic parameters was obtained by using the soil 441 

water contents measured by TDR and the pressure heads measured by tensiometers as measured 442 

data in the objective function for the optimization procedure (TDR-based). The second set of 443 

hydraulic parameters was obtained by using the soil water contents estimated by EMI 444 

measurements as measured data (EMI-based). The inversion simulations were carried out by fixing 445 

θr=0 and τ=0.5, while θs, α, n and Ks were optimized for both the Ap and the Bw layers. The 446 

hydraulic properties of the bedrock were already known and fixed to θr=0.068, θs=0.354, α=0.055, 447 

n=3.67, τ=0.5 and Ks=19.02 according to Caputo et al. (2010; 2015). We want to stress here that 448 

an a-priori characterization of the bedrock layer is not essential and the proposed procedure holds 449 

independently on the presence of bedrock. We could have treated the bedrock layer as any other 450 

layer in the soil profile, but inserting TDR probes and tensiometers into bedrock presents 451 

difficulties. Therefore, we decided to fix the bedrock parameters to the values already available 452 

from independent measurements. In different soils with either deeper or absent bedrock, we could 453 

have inserted TDR probes into deeper layers of the profile and applied the procedure to any of 454 

them. 455 

In the inversion procedure, the parameters were determined separately for each horizon of 456 

the profile (Abbaspour et al., 1999). First, the parameters for the topsoil were estimated and these 457 

parameters were then treated as known for the second layer estimation. Despite the water content 458 

development in one layer is not independent on the hydraulic properties of the other layers when 459 

long-time evolution is considered, in the case of a relatively short infiltration event as used here, 460 

this approach makes parameter estimation of multi-layered profiles feasible. According to 461 
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Abbaspour et al. (1999), this approach makes parameter estimation of multi-layered profiles more 462 

feasible and accurate. It should be noted that in the case of the TDR-based estimations, 463 

optimization involved both measured water contents and pressure head data, whereas the EMI-464 

based estimations only involved “measured” water contents.  465 

Figure 6 reports a comparison between water contents measured (symbols) and estimated 466 

(lines) by the inversion procedure. The θ evolution was properly estimated at 20 cm depth in both 467 

approaches. It is worth noting here that, despite the differences in the absolute value of the water 468 

contents, a clear parallel behaviour of the two curves was observed, suggesting similar water 469 

content changes over time. A lower agreement was obtained at 40 cm but still reproduced similar 470 

water content changes over time. This is a crucial point in this paper, as the parallel behaviour of 471 

the water content evolution will explain the similar shape of hydraulic properties we found for the 472 

TDR and EMI-based estimations (see below, Figure 8). 473 

as it is the main reason for the shape of the hydraulic properties we found for the TDR and 474 

EMI-based estimations.  475 
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 476 

 477 

Figure 7. Evolution of pressure head at 20 and 40 cm depth measured by tensiometers (symbols) 478 

and estimated by the inversion procedure (lines) of the water infiltration process. The vertical bars 479 

represent the standard deviation of the measurements obtained by the four tensiometers.  480 

 481 

Similarly, in Fig. 7 the measured (points) and estimated (lines) values of pressure heads 482 

are shown. The simulated values of pressure head well follow the measured one (r=0.950 at 20 cm 483 

and r=0.986 at 40 cm depth). Furthermore, the error bars, reporting the standard deviation of the 484 

pressure head as measured by the four tensiometers, overlap when the profile is wet (i.e. after the 485 

6th irrigation) and separate during the wetting process. 486 

Table 1 reports the parameters of the hydraulic functions, estimated for the first two 487 

horizons and Fig. 8 reports the water retention curves and the hydraulic conductivity curves 488 

corresponding to the parameters shown in table 1 for a better comparison between TDR-based and 489 

EMI-based hydraulic properties assessment. Compared to the Ap horizon, higher Ks and lower n 490 
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values were found for the Bw horizon. This may be explained by considering that tillage in the Ap 491 

horizon changes the geometry of the porous system, by reducing the structural pores, responsible 492 

of the lower Ks for Ap, and increasing the textural pores, explaining the higher n value for Ap. 493 

Note in the table the high values of n and Ks for the bedrock, which indicate a high conductive 494 

porous medium. It is possible to explain this by considering that the bedrock is fractured 495 

calcareous, which, contrary to expectation, does not impede water flow. 496 

 497 

Table 1. vG-M Hydraulic parameters (Eqs. 7 and 8) and dispersivity, λ (Eq. 6) as estimated for Ap 498 

and Bw horizons, and fixed for the bedrock layer.  499 

Soil hydraulic and 

transport parameters* 

Ap Bw Bedrock 

TDR-

based 

EMI-

based 

TDR-

based 

EMI-

based 

Fixed a-priori 

θs [cm3 cm-3] 0.54 0.45 0.52 0.45 0.354 

α [cm-1] 0.006 0.003 0.009 0.007 0.055 

n [-] 1.70 1.54 1.50 1.41 3.67 

ks [cm min-1] 0.06 0.02 0.28 0.29 19 

λ [cm] 10 12 0.5 0.8 30 

* For all horizons θr=0 and =0.5. 500 

As for water retention, the TDR and EMI water retention curves showed similar shapes but 501 

with slightly different saturated water contents. As discussed earlier, the lower saturated water 502 

content is not surprising for the EMI-based estimation due to the overall underestimation of water 503 

content. The two curves almost overlapped once scaling the EMI curve by the ratio of the saturated 504 

water contents. Obviously, this result is consistent with the underestimation of EMI-based θ 505 

distributions as shown in Fig. 6. 506 

As for the hydraulic conductivity, TDR-based and EMI-based hydraulic conductivity 507 

curves at both 20 and 40 cm appear to almost overlap, with similar saturated hydraulic conductivity 508 
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and curve shape. This result is expected because the shape of hydraulic conductivity curve is 509 

mainly a function of explained by the variation of θ and not the absolute value of θ itself. It is 510 

worth mentioning that the same top boundary flux and different water contents in the soil profile 511 

provided similar EMI-based and TDR-based hydraulic conductivity. These conditions led to two 512 

different water flow processes, with simulations predicting higher water stored in the soil profile 513 

and lower downward fluxes (data not shown) when TDR-based results are compared to the EMI-514 

based results.  515 

 516 

Figure 8. Soil water retention (A) and unsaturated hydraulic conductivity (B) curves, estimated 517 

from the TDR and EMI measurements at 20 cm and 40 cm depths. 518 

 519 

4.2. Solute Infiltration – 2nd Experiment 520 

4.2.1. Time-lapse σa data and estimation of σb distribution 521 

Figure 9 shows the σa data collected during the solute infiltration experiment. Again, as for 522 

the 1st experiment, both VCP and HCP modes show a relatively similar pattern of σa values with 523 

ρ32 and ρ118 being the highest and lowest respectively. HCP mode shows higher values on 524 

(a) (b)
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average compared to the VCP mode. Similarly, to the water infiltration experiment, σa increases 525 

consistently during the first three hours of the experiment, then it does not change significantly or 526 

consistently until the end of the experiment. Much higher ranges of σa variations were measured 527 

in both VCP and HCP configurations, with σa values ranging in 20-200 and 50-250 mS m-1 528 

respectively.  529 

Figure 10 depicts the σb evolution for the 2nd experiment, obtained by time-lapse inversion 530 

of σa data. σa measurements and model response agrees fairly as shown in Fig. 9, however a slight 531 

shift can be noticed in the ρ71- VCP mode between data and model response. The results show the 532 

rapid evolution of the conductive zone to the soil profile shortly after the irrigation started. In 533 

comparison to the obtained σb in the 1st experiment, the results reveal significantly higher soil 534 

conductivity in topsoil but a much slower evolution. The conductivity of the top layer exceeds 300 535 

mS m-1 shortly after the irrigation. The higher topsoil conductivity results from injection of high-536 

saline water (about 15 dS m-1) that dramatically increases soil conductivity whereas the smaller 537 

evolution of the conductive zone is caused by significantly slower concentration propagation into 538 

the soil profile.  539 

 540 
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 541 

Figure 9: σa values observed during the solute infiltration experiment. (A) VCP, (B) HCP. The 542 

symbols represent the measured data whereas the lines represent the values calculated after the 543 

inversion. 544 

 545 

 546 
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 547 

Figure 10. Time evolution of bulk electrical conductivity (σb) during the solute infiltration 548 

experiment.  549 

 550 
4.2.2. Comparison between TDR-based and EMI-based σb and [Cl-] distributions 551 

Figure 11 shows the comparison between the σb values obtained by the TDR measurements 552 

and those obtained from the EMI inversion (Fig. 10) during the 2nd experiment. As discussed 553 

above, this comparison is to provide an insight into the potential of the EMI survey and inversion 554 

process in monitoring a solute transport experiment into a soil profile. The comparison shows a 555 

similar time pattern of σb variability, but in general the EMI model underestimates the σb obtained 556 

by TDR. The results of this comparison agree with the 1st experiment where, again, the EMI-based 557 

σb are lower compared to those measured by the TDR. In contrast to the 1st experiment, the 558 

differences between the two techniques and in terms of the absolute σb values are of minor concern. 559 

This could be due to the larger conductivity contrast that tracer introduced into the soil profile in 560 

the 2nd experiment which became easier to detect by using the EMI sensor. On the other hand, the 561 

TDR probes show more fluctuations in σb measurements, especially at 20 cm. We attribute these 562 

fluctuations to the smaller volume of investigation of the TDR probes which are very sensitive to 563 

the process taking place very close to the probe and, therefore, strongly influenced by small-scale 564 

heterogeneities.  565 
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 566 

Figure 11. σb evolution estimated by TDR and EMI measurements at 20 cm (A) and 40 cm (B) 567 

depth. 568 

 569 

The next step in the procedure allows us to determine the distribution of Cl- concentrations 570 

by EMI sensors (Sect. 4.2.3.) used for estimating the longitudinal dispersivity of the two soil layers 571 

investigated. For the sake of comparison, TDR-based [Cl-] distributions were obtained directly in 572 

the field from a direct measurement of the σbimpedance Z along the TDR transmission line 573 

embedded in the soil. As for the EMI-based Cl- concentrations, a forward HYDRUS-1D simulation 574 

was carried out using the EMI-based hydraulic properties obtained from the 1st experiment and 575 

reported in Table 1 to estimate the water content distributions in correspondence with the EMI 576 

measurement times of the 2nd experiment. These water contents, combined with the available σb 577 

distribution obtained from the EMI inversion, allowed us to obtain the σw distributions (through 578 

the θ-σb-σw calibration relationship) for both depths and, consequently, the [Cl-] distributions.  579 

 580 
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Figure 12. [Cl-] distributions inferred from EMI and TDR measurements, at 20 (A) and 40 (B) 

cm depth. 

Figure 12 shows the [Cl-] distributions inferred from EMI compared to the TDR 581 

measurements. The comparison suggests a good agreement between the two time-series. The EMI-582 

based concentrations underestimate − on average − the TDR-based ones by 4% and by 7% at 20 583 

cm and 40 cm depths, respectively. The time evolution of the two data series reveals marked 584 

differences, as shown by the very different correlation: r = - 0.04 for the 20 cm depth and r = 0.70 585 

for the 40 cm depth. The difference between the two data series at both depths can be mostly 586 

explained by the differences between σb distributions shown in Fig. 11. Additionally, another point 587 

of difference may arise from the assumption that the water content distribution obtained from the 588 

HYDRUS-1D simulation can be used as a substitute for the water content measurements, in order 589 

to obtain [Cl-] from the EMI readings.  590 

4.2.3. Estimation of longitudinal dispersivity  591 

Inverse HYDRUS-1D simulations were conducted using concentration data provided by both 592 

the TDR and EMI results, in order to estimate the longitudinal dispersivity for both Ap and Bw 593 

horizons. The results are reported in the last row of Table 1. TDR-based and EMI-based procedures 594 
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provide similar values of λ. Specifically, for the Ap horizon, the obtained values agree with those 595 

frequently found in the literature for either large columns or field-measured dispersivity (e.g. 596 

Vanderborght and Vereecken, 2007; Coppola et al., 2011). The TDR and EMI-based estimation 597 

of dispersivity for the Bw horizon shows one order of magnitude lower values compared to the Ap 598 

horizon. These values are more consistent with values measured in the laboratory (Coppola et al., 599 

2019). For column scale (undisturbed soil monoliths with a length > 30 cm), Vanderborght and 600 

Vereecken (2007) found values in the order of 10 cm. The same values were found by Coppola et 601 

al. (2011) at both plot and transect scales. Note in the Table 1 the high value of dispersivity used 602 

for the bedrock layer. This is consistent with the nature of the bedrock, which, as mentioned, is a 603 

fractured calcareous and highly conductive rock, which may well explain high dispersivity values.  604 

 605 

5. FURTHER DISCUSSION ON THREE KEY POINTS OF THE PROPOSED 606 

APPROACH 607 

Following, our the discussion will focus on three major aspects of this research in terms of the 608 

choice of approach (uncoupled vs coupled), the suitability of EMI as a replacement for invasive 609 

sensors, and EMI-related sources of uncertainty. 610 

5.1. Uncoupled vs Coupled approach  611 

In hydro-geophysical studies there is an ample debate on this issue. Camporese et al. (2015), 612 

stated in their conclusions: “the relative merit of the coupled approach versus the uncoupled one 613 

cannot be assumed a priori and should be assessed case by case. As the information content of the 614 

geophysical data remains the same in both the coupled and uncoupled methods, the main difference 615 

is the approach taken in order to complement the information content and construct an ‘‘image’’ 616 
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of the process”. Based on the methodology proposed in this paper and the corresponding results, 617 

the following discussion aims to better clarify why we applied an uncoupled approach.  618 

Let’s refer to the vertical water infiltration process monitored by the EMI sensor during the 1st 619 

experiment and producing direct measurements of apparent electrical conductivity (σa_meas). In a 620 

coupled approach, the hydrological model is the starting point of the procedure. Guess values of 621 

hydraulic and dispersive parameters are initially fixed; thus, a hydrological simulation is carried 622 

out producing water content distributions along the soil profile, evolving over time. These water 623 

content distributions are converted to corresponding distributions of bulk electrical conductivity, 624 

σb, by using an empirical relationship (e.g. Binley et al., 2002). These σb distributions, in turn, are 625 

used as input in an EM forward modelling to produce the estimations of apparent electrical 626 

conductivity (σa_est). In this approach, the objective function involves the residuals (σa_meas - σa_est). 627 

This objective function is eventually minimised by optimising the hydraulic parameters in the 628 

hydrological model.  629 

The main strength of this approach relies on the fact that no EMI inversion is required. Also, 630 

as discussed by Hinnell et al. (2010), the attractiveness of the coupled approach is that the 631 

hydrologic model may provide the physical context for a plausible interpretation of the geophysical 632 

measurements. Yet, this strength is counterbalanced by a weakness which is crucial in view of 633 

simplifying the experimental requirements of hydraulic characterization. Actually, an instrumental 634 

shift in EMI σa readings has been frequently observed when compared to other sources of 635 

measurements such as ERT data (von Hebel et al., 2014; 2019) or direct measurements of TDR 636 

(Dragonetti et al. 2018). In the context of a hydraulic parameter estimation procedure, this is a 637 

crucial point, as it means that EMI measurements do not immediately provide correct electrical 638 

conductivity distributions. Thus, the coupled approach always requires an independent dataset, 639 
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obtained by different sensors (e.g. ERT, TDR, sampling) to remove the shift in the EMI σa 640 

readings. Such a scheme would be contrary to the spirit of thisour paper, which mainly aims at 641 

minimising the sensors and the data necessary for in-situ soil hydraulic characterization.  642 

In an uncoupled approach, the geophysical model is the starting point of the procedure. As a 643 

result of geophysical inversion, the σb distributions are derived, which are then converted to as 644 

many distributions of water content (meas) through an empirical relationship, determined from 645 

laboratory analysis. Afterward, the hydrological model estimates water contents (est), and the 646 

objective function, involving the residuals (meas-est), is eventually minimised by optimising the 647 

hydraulic parameters. The main weakness of this approach corresponds to the strength of the 648 

coupled approach. The uncoupled approach requires geophysical inversion, involving the 649 

uncertainty source coming from the ill-posedness problem. However, the main strength of the 650 

methodology we propose in thisour paper − a fast in-situ non-invasive method to estimate soil 651 

hydraulic and transport properties at plot scale − does not require preliminary removal of the 652 

(unknown) shift in the EMI readings by additional field measurements with other sensors. 653 

Conversely, the shift effect is implicitly kept in the σb distributions, from this in the measured 654 

water content distributions and finally included in the hydrological inversion. This allowed us to 655 

reveal the effects of technical limitations of the EMI sensor including the instrumental shift in EMI 656 

σa readings in the water content estimations and from this in the hydraulic properties’ estimation. 657 

In the 1st experiment, by comparing the EMI-based water contents to the water contents coming 658 

from TDR, it was possible to see that the shift in the EMI readings produced quasi-parallel water 659 

content evolutions, thus meaning that the EMI shift is rather stable with water content change. 660 

Related to this, in terms of hydraulic properties, the shift simply results in scaled saturated water 661 

content. This may well be explained physically by just considering the parallel behaviour of the 662 
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water contents over time signifies similar water content changes over time. This is translated in 663 

similar hydraulic conductivities, which in the van Genuchten-Mualem model means similar α and 664 

n parameters, and thus water retention curves are simply scaled by the saturated water content 665 

ratio.  666 

As an additional benefit of an uncoupled approach, it allows for the sequential estimation of 667 

parameters (from the upper to the lower horizon), which can reduce the problems of parameter 668 

correlation and uniqueness. In this work, the parameters were estimated separately for each horizon 669 

of the profile according to Abbaspour et al. (1999). This approach makes parameter estimation of 670 

multi-layered profiles more feasible and accurate, however, this cannot be done within a coupled 671 

model. If more than one layer has to be characterised, the coupled approach requires that all the 672 

parameters have to be simultaneously optimised. This is because the electrical conductivity 673 

distribution of the whole soil profile must be first simulated in order to generate required σa_est to 674 

compare to σa_meas in the objective function. 675 

 676 

5.2. Suitability of EMI as a replacement for invasive sensors  677 

The proposed methodology for the estimation of vG-M parameters proved to be effective for 678 

both Ap and Bw horizons. The overall EMI-based underestimation of θ did not impact the 679 

hydraulic conductivity curves significantly, as the shape of hydraulic conductivity is mainly 680 

explained mainly function of by the θ variation and not of its absolute value. On the other hand, 681 

this underestimation resulted in lower saturated water content which also appeared in the water 682 

retention curve. The latter can be simply converted to more accurate water content distribution by 683 

direct measurement of the actual saturated water content at the end of the experiment using TDR 684 

probes or even by taking soil samples for laboratory weight.  685 
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In terms of the longitudinal dispersivity, λ, there was a very good agreement between EMI-686 

based and TDR-based estimation for both Ap and Bw horizons. The finding results are also in very 687 

good agreement with previous in-situ and laboratory measurements. However, this method 688 

requires that the hydraulic properties of the investigated soil at the scale of concern be assessed 689 

prior to the application of this method to discriminate the contribution of water content and 690 

concentration in the EMI-based σb estimation.   691 

 692 

5.3. EMI-related sources of uncertainty 693 

The application of EMI for detailed investigation of the infiltration process has several 694 

limitations, apart from the potential instrumental drift of EMI sensor and the overall 695 

underestimation of water content and concentration, and requires further investigation. Resolving 696 

the wetting zone during the water injection is one source of uncertainty in this approach. The water 697 

content sharply decreases with depth in this zone to near the initial water content of the soil and 698 

causes dramatic resistivity variation. The limited number of σa measurements (total of 6) is not 699 

sufficient for recovering the sharp σb variability that takes place during the infiltration. In addition, 700 

a smoothness constraint was performed in the inversion process to stabilize the inversion process 701 

which further smooths the layer boundaries in this approach. Resolving the shallow bedrock 702 

interface at depth and beneath a conductive zone was also very challenging. This is because the 703 

sensitivity of the EMI signals is generally very limited over the resistive zone and the condition 704 

becomes much worse when the resistive zone (bedrock) is located beneath a conductive zone 705 

(tracer): the EMI response of the subsurface is dominated by the influence of the near-surface 706 

conductive zone. In addition, five of the six depths of investigation of the CMD Mini-Explorer are 707 

limited to the first 1 m, and, as a result, a lower resolution is expected at greater depths. This 708 

resulted in an even larger underestimation of soil conductivity on top of the bedrock and an 709 
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overestimation of bedrock conductivity in the close vicinity of soil. These findings from synthetic 710 

studies and modelling field data are similar to those reported in Farzamian et al. (2021) due to the 711 

similarity of the site, experiment, and the use of the same EMI sensor. Measuring σa at different 712 

heights or using different EMI sensor with larger number of receivers such as CMD Mini-Explorer 713 

6L enables us to collect more σa data to better resolve changes that occur over short depth 714 

increments. To this aim, the EMI configuration and data survey can also be optimized using 715 

optimization techniques such as machine learning based methods, given the specific survey goals 716 

and independent knowledge of the subsurface electrical properties, as shown for example by van't 717 

Veen et al. (2022). 718 

 719 

6. CONCLUSION 720 

In this paper, we proposed a non-invasive in-situ method integrating EMI and hydrological 721 

modelling to estimate soil hydraulic and transport properties at the plot scale. For this purpose, we 722 

carried out two experiments involving 1) water infiltration and 2) solute transport over a 4 x 4 m 723 

plot. The propagation of wetting front and solute concentration along the soil profile in the plot 724 

was monitored using an EMI sensor (i.e. CMD mini-Explorer) and for the sake of procedure 725 

evaluation Time Domain Reflectometry probes and tensiometers. Time-lapse apparent electrical 726 

conductivity (σa) data obtained from the EMI sensor were inverted to estimate the evolution over 727 

time of the vertical distribution of the bulk electrical conductivity (σb). The σb distributions were 728 

converted to water content and solute concentration by using a standard laboratory calibration, 729 

relating σb to water content (θ) and soil solution electrical conductivity (σw).  730 

Based on the first water infiltration experiment, the soil water retention and hydraulic 731 

conductivity curves were then obtained for two layers of the soil profile by an optimization 732 
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procedure minimizing the deviations between the numerical solution of the water infiltration 733 

experiment and the estimated water contents inferred from the EMI results. EMI-based hydraulic 734 

properties were very similar in shape to those obtained by TDR and tensiometers data. This shape-735 

similarity allowed to convert the EMI-based hydraulic properties to the TDR-based ones by simply 736 

scaling them by the ratio of the saturated water content for both the soil layers considered. This 737 

was a crucial finding in this paper and was mainly ascribed to the fact that the water content 738 

changes over time detected by the EMI closely followed those observed by TDR. These EMI-739 

based hydraulic properties were then used as input for hydrological modelling of the second solute 740 

transport experiment. This allowed discriminating water content and solute concentration 741 

components in the EMI σb distributions obtained during the second experiment. These 742 

concentrations were afterward used to estimate the dispersivity based on an inversion procedure 743 

minimizing the residuals of EMI-based concentration and those simulated by the hydrological 744 

model. The reliability of the EMI-based hydraulic properties allowed us to obtain estimations of 745 

the dispersivity comparable to those obtained by the same optimization procedure applied to the 746 

TDR data.  747 

The overall results show the high potential of the EMI sensor to replace TDR and tensiometer 748 

probes in the assessment of soil hydraulic properties. In practice, one could monitor a relatively 749 

short infiltration experiment with an EMI sensor and use the water content estimations in an 750 

inversion procedure to estimate the hydraulic properties. The underestimated water content 751 

observed in the first experiment can be converted to more accurate water content distribution by 752 

direct measurement of the actual saturated water content at the end of the experiment using TDR 753 

probes or even by taking samples and laboratory measurements.  754 
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The EMI-based estimation of longitudinal dispersivity, λ agrees well with TDR-based 755 

estimation as well as previous in-situ and laboratory measurements which suggests that the 756 

proposed methodology can be used in the assessment of this parameter which is indeed an 757 

important parameter in soil salinity simulations in salt-affected regions across the world. However, 758 

estimating λ based on only a solute infiltration test is not feasible as the temporal variability of σb 759 

is a function of both water content and concentration changes. We proposed the sequence of water 760 

and solute infiltration tests to discriminate the contribution of the water content and the soil 761 

solution electrical conductivity to the EMI-based σb. 762 

Water irrigation and soil salinity management and thus hydrological investigations are usually 763 

field and even large-scale challenges. The EM method is a non-invasive, fast, and cost-effective 764 

technique, covering large areas in less time and at a lower cost. Although our this study was limited 765 

to a controlled experiment on a plot scale and a single study report, scaling up from plot scale to 766 

field scale assessment might be feasible due to the method's potential for rapid data collection. 767 

More investigations have to be conducted in this area to evaluate the potential of EMI sensors 768 

under different soil conditions and within the larger 2D and 3D investigations to further address 769 

the limitations of this methodology at different scales.  770 
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