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Abstract. 7 

Rainfall depth-duration-frequency (DDF) curves are required for the design of several water systems and protection 8 

works. These curves are typically generated from the station data by fitting a theoretical distribution to the annual extremes 9 

(AMS). The aim of this study is to investigate the use of different data types and methods for estimating reliable DDF 10 

curves covering whole Germany. The following three questions are investigated for the evaluation and regionalisation of 11 

the DDF curves in Germany: i) which is the best local estimation method, ii) which regionalisation method shows best 12 

performance, and iii) which data sets should be used and how they should be integrated. For this purpose, two competitive 13 

DDF-procedures for local estimation (Koutsoyiannis et al. 1998, Fischer and Schumann, 2018) and two for regional 14 

estimation (kriging theory vs index-based) are implemented and compared. Available station data from the German 15 

Weather Service (DWD) for Germany are employed, which includes; 5000 daily stations with more than 40 years 16 

available, 1261 high resolution (1min) recordings with observations period between 10 and 20 years, and finally 133 high 17 

resolution (1min) recordings with 60-70 years of observations. The performance of the selected approaches is evaluated 18 

by cross-validation, where the local DDFs from the long sub-hourly time series are considered the true reference. The 19 

results reveal that the best approach for the estimation of the DDF curves in Germany is by first deriving the local extreme 20 

value statistics based on Koutsoyiannis et al. 1998 framework, and later use the kriging regionalisation of long sub-hourly 21 

time series with the short sub-hourly time series acting as an external drift. The integration of the daily stations proved to 22 

be useful only for DDF values of very low return period (T<10 years), but not doesn’t introduce any improvement for 23 

higher return periods (T≥10 years). 24 
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1. Introduction 27 

Rainfall volumes at varying duration and frequencies are required for the design of water management systems and 28 

facilities, like dams or dikes, spillways, flood retention basins, urban drainage systems, etc. These design precipitation 29 

volumes are also known as IDF (Intensity-Duration-Frequency) or DDF (Depth-Duration-Frequency) curves. The main 30 

application of the DDF curves is the derivation of design discharge from design rainfall, when no sufficient discharge 31 

observations are available assuming that both rainfall and discharge events have the same recurrence interval (herein 32 

referred to as return period Ta). For sampling, the annual maximum series (AMS) or peak-over-threshold (POT) can be 33 

used, however for return periods greater than 10 years, there are hardly any differences in the results obtained from each 34 

method. Often the AMS are preferred over the POT because the methodology is more direct and easier, whereas the POT 35 

method needs a prior assumption on the threshold selection. The typical procedure includes fitting a theoretical probability 36 

distribution (PDF) to the observed rainfall extremes at a certain duration level, and based on the obtained PDF, compute 37 

the quantiles corresponding to different return periods. Most common distribution functions are Generalised Extreme 38 

Value (GEV), Gumbel, Log-Pearson-III and Lognormal distributions for AMS, with GEV and Gumbel being the most 39 

popular, and Generalised Pareto for POT. L-moments are primarily used for parameter estimation in  recent national 40 

applications (Johnson and Sharma, 2017). Since the estimation of extreme design rainfall is done locally at each 41 

measurement station (rain-gauge), a regionalisation method, often the index-flood method (herein referred the index 42 

method) is employed to estimate design rainfall depth at ungauged location (Hosking and Wallis, 1997). In Germany, the 43 

Coordinated Heavy Rainfall Regionalisation Evaluation KOSTRA-DWD (Malitz and Ertel, 2015) from the German 44 

Weather Service (DWD) has been providing these design precipitation volumes for different application purposes since 45 

1980. A revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. 46 

Therefore, it is the aim of this study to investigate the use of different methods for the estimation and regionalisation of 47 

the DDF curves and the best integration of different data types, in order to give the basis for the development of the new 48 

regional design rainfall catalogue for Germany. In this procedure, several research questions arise which are discussed 49 

below: 50 

i) Local estimation 51 

A prominent probability distribution that is frequently used in the statistical analysis of AMS of heavy rainfall is the 52 

Gumbel distribution. The Gumbel distribution is a special case of the three-parameter GEV distribution where the shape 53 

parameter is zero (γ=0) and the distribution follows an exponential tail behaviour. If the shape parameter is greater than 54 

zero, the distribution exhibits a so-called heavy-tail behaviour (also known as GEV type II), whilst if the shape parameter 55 

is less than zero no-tail behaviour is present (also known as GEV type III)(Coles, 2001). The GEV type III is not employed 56 

in rainfall extreme value statistics, as it is bounded from above. The Gumbel and the GEV type II (herein referred to as 57 

simply GEV) are almost similar for low percentiles, nevertheless diverge greatly for high return periods. Therefore, for 58 

the design rainfall at high return periods, the expression of the shape parameter is of decisive importance. Regarding this 59 

issue, extensive investigations were carried out to determine the role of the shape parameter in heavy precipitation data, 60 

both in a theoretical manner and on the basis of empirical findings. For instance, Koutsoyiannis (2004a) investigated the 61 

heavy-tail behaviour of extreme daily rainfall values at 169 worldwide locations with very long observations (100-150 62 

years) and concluded that when only short observations are present (less than 50 years) the heavy-tail characteristics can 63 

be overlooked and the Gumbel distribution is chosen falsely as a good fit. This may be also the reason why for a long 64 

time in the literature mainly the Gumbel distribution was preferred. Koutsoyiannis (2004b) proposed a GEV distribution 65 

with a shape parameter fixed within the range γ=0.1-0.15 for all examined geographical zones (mainly in Europe and 66 

North America). Specifically, he proposes the value of 0.15 if very high return periods are of interest, and the value of 67 
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0.1 if the focus is also on low return periods. Later, Papalexiou and Koutsoyiannis (2013) analysed more than 15,000 68 

stations worldwide with observation length from 40 to 160 years, and again the results favoured the implementation of 69 

heavy-tail GEV distribution instead of the Gumbel. A recent study by Papalexiou (2018) on hourly rainfall measurements 70 

in the USA, suggested that also for sub-daily durations, the rainfall extremes exhibit a heavy-tail (sub-exponential), much 71 

heavier than the exponential or the Gamma tails. Mountain areas tend to exhibit heavier tails; however, terrain is not the 72 

dominant factor influencing the tail behaviour. Overall, the analysis suggests that the shape parameter cannot be evaluated 73 

adequately when the station's recordings are short and from a Gumbel distribution, therefore the GEV should be used 74 

instead.  75 

To determine the design rainfall, distribution functions are usually first fitted separately for each of the selected duration 76 

levels. This way, quantile crossing may arise between different duration levels (Cannon, 2018). Quantile crossing here 77 

refers to when the extreme rainfall volumes for a fixed return period (say Ta=100 years) are not increasing with longer 78 

duration levels. Theoretically, the rainfall volume is dependent on the duration and thus another step in the extreme value 79 

analysis is needed, to ensure that the extremes are consistently increasing with the duration levels. An empirical 80 

relationship was first developed by Bernard (1932), where the intensities at different duration levels are generalised by a 81 

power law depending on three location constants. (Koutsoyiannis et al., 1998) proposed a similar mathematical 82 

framework, where the AMS intensities are generalised based on two parameters (θ >0 and 0<η<1) and a probability 83 

distribution function (PDF) is fitted based on these generalised intensities to estimate the quantiles for specific return 84 

periods. The generalised concept suggested by Koutsoyiannis has widely been implemented in the literature (Asikoglu 85 

and Benzeden, 2014; Muller et al., 2008; Ulrich et al., 2021; Van de Vyver, 2015). Ulrich et al. (2021)  implemented such 86 

a framework in Germany for both monthly and annual IDFs curve, with a constant shape parameter of 0.11 for the annual 87 

estimation. Another alternative application is based on the wide sense scaling theory, where the PDF parameters or 88 

moments of each duration are dependable on a power law (Gupta and Waymire, 1990). Van de Vyver (2015) implemented 89 

a multi-scaling approach, where both the location and the scale parameters of duration specific GEV were related on a 90 

power law with the duration, while the shape parameter was kept constant. Similar approaches were also proposed and 91 

studied by Haktanir et al. (2010), Holešovský et al. (2016), Soulis et al. (2016), and are typically referred to as smoothing 92 

of extreme statistics over the duration levels.  93 

Other solutions build also on the power law relationship between extremes and durations are for instance Bayesian 94 

distribution models (Boukhelifa et al., 2018; Lima et al., 2016; Roksvåg et al., 2021; Van de Vyver, 2018), marginal 95 

probabilities (Veneziano et al., 2007), and artificial intelligence (Cannon, 2018). An alternative approach for achieving a 96 

DDF based on data from example of such implementation in Germany was proposed by Fischer and Schumann (2018), 97 

where location and scale parameters are obtained by a regression model (based on a nonlinear least squares method), and 98 

the shape parameter is estimated indirectly by quantifying first the normalised scale/shape ratio with a robust linear 99 

regression. Here we consider the two approaches of Koutsoyiannis et al. (1998) and Fischer and Schumann (2018), as 100 

they have successfully been tested in Germany. Here, the question remains whether a homogenisation of intensities or a 101 

smoothing of GEV parameters across different duration levels is more appropriate for the estimation of the DDF curves 102 

in Germany. 103 

ii) Regionalisation methods  104 

Regionalisation of the design DDF curves provides estimation for unobserved locations, but also contributes to a more 105 

robust estimation, e.g. by using larger samples (Requena et al., 2019). Methodologically, a distinction can be made 106 

between two approaches: a) a direct regionalisation of quantiles, moments or parameters of distribution functions and b) 107 

a regional estimation of distribution functions for homogeneous regions. A direct regionalisation of quantiles may lead 108 
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as well to quantile crossing across durations, and therefore mostly regionalisation of parameters is performed. Furthermore 109 

Borga et al. (2005) suggests the regionalisation of the parameters instead of the quantiles. For the direct regionalisation 110 

of parameters, regressions (Madsen et al., 2009; Smithers and Schulze, 2001), splines (Johnson and Sharma, 2017) or 111 

geostatistical methods (Ceresetti et al., 2012; Kebaili Bargaoui and Chebbi, 2009; Uboldi et al., 2014; Watkins et al., 112 

2005) are applied. On the other hand, the estimation of regional distributions functions based on the index method 113 

proposed by Hosking and Wallis (1997), is one of the most used methods in the literature for the regionalisation of design 114 

precipitation (Burn, 2014; Durrans and Kirby, 2004; Forestieri et al., 2018; De Salas and Fernández, 2007). Many 115 

countries have actually employed the index-based regionalisation for estimation of regional IDF/DDF curves, for instance 116 

Canada (Burn, 2014), Denmark (Madsen et al., 2009) and  USA (Perica et al., 2019). However, prior to the application 117 

of the index method, it is important to define adequately homogeneous regions where the rainfall statistics are similar, 118 

which can be a challenging task (De Salas and Fernández, 2007). Hosking and Wallis, (1997) recommend that site 119 

characteristics should be used for the identification of homogeneous regions instead of site statistics. Therefore, the second 120 

objective of this paper is to investigate whether a direct kriging interpolation of the GEV parameters or the application of 121 

the index-method on homogeneous regions is more suitable for the estimation of regional DDF curves in Germany.  122 

iii) Combination of available datasets with different temporal resolution and observation length  123 

As stated in Koutsoyiannis (2004a,b) short time series can choose Gumbel parameters falsely and hide the true heavy-tail 124 

behaviour of rainfall extremes. Thus, care should be taken when combining different statistics from different observation 125 

lengths. Madsen et al., (2017) investigated the IDF curves with long stations (more than 40 years) and short stations (less 126 

than 30 years) based on Generalised Pareto distribution with fix shape parameter, and concluded that the statistics are 127 

changing from one case to the other, with short series giving large estimates of the extreme intensities. This of course can 128 

be attributed to the non-stationarity of the IDF curves. Holešovský et al. (2016) separated the historical data into groups 129 

when estimating IDF curves for Czech Republic (long series with 35-40 and short series with 11-15 years of observations), 130 

and concluded that the uncertainty at estimating parameters for the short time series is quite high, especially for high 131 

return periods. In the index-based regionalisation, regional L-moments are averaged based on the observation length, 132 

which may lead to more stable results (Burn, 2014; Requena et al., 2019), however the interpolated index may still suffer 133 

from high uncertainties from pooling together short and long time series. This may also be the case when interpolating 134 

local GEV parameters with the kriging theory. Therefore, it is important to investigate which is the best combination of 135 

time series with different observation length: even though the short time series may be not adequate for high return period 136 

quantiles, they are much denser than the longer time series. Hence their information may be helpful in trading space for 137 

time.  138 

In Addition to the high resolution (1-5min) network, the daily one is much denser and as well with very long observation 139 

lengths. Nevertheless, the temporal resolution is too coarse for the estimation of sub-hourly to sub-daily extremes. In such 140 

cases, GEV parameters for the sub-daily duration can be scaled from the GEV parameters of the daily extremes following 141 

the scale invariance principle of precipitation extremes. Bara et al. (2009) employed the scale invariance principle to 142 

derive DDF curves for sub-daily duration levels (5min – 3h) from daily observations in Slovakia, while Borga et al. (2005) 143 

applied two different scaling factors one for duration levels less than 1 hour and one for longer than 1 hour in northern-144 

eastern Italy. A later study from Paixao et al. (2011) performed in Ontario Canada concluded that the scaling factors 145 

should not be used for reliable downscaling of daily extremes to durations less or equal to one hour. This is because the 146 

extremes at such short durations are governed by other rainfall mechanisms then the daily extremes, and hence a low 147 

dependency exists between the two extreme groups. Alternative to the scale invariance principle, disaggregation schemes 148 

can be applied to the daily data in order to obtain high resolution data. Various model approaches for disaggregation are 149 

https://doi.org/10.5194/hess-2022-118
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



5 
 

described in the literature, and they mostly consist of a so-called cascade model (Müller and Haberlandt, 2018). Weather 150 

radar data can be used to estimate the probabilities in the individual levels and to derive the extensive parameter-sets 151 

suggested by Lisniak et al. (2013) for the disaggregation scheme. Therefore, the third objective of the paper is to 152 

investigate the value and the best combination of data from the long, short and disaggregated daily series for the 153 

regionalisation of the DDF curves in Germany. 154 

The paper is structured as follows: first the available data sets for extreme value analysis are introduced in Section 2, then 155 

the methods selected for investigation of the local and regional estimation are presented respectively in Section 3.1 and 156 

3.2, with performance assessment and validation explained in Section 3.3. The results are given for each objective as: 157 

best local estimation of extremes in Section 4.1, best regionalisation technique 4.2.1, best data integration 4.2.2. Finally, 158 

the obtained maps for Germany are discussed in section 4.3 and concludes in Section 5. 159 

2. Study Area and Data 160 

2.1 Available Data 161 

The study area covers Germany and is illustrated in Figure 1. Three rainfall measuring networks are available 162 

from the German Weather Service (DWD); the daily network (DS) – typically Hellman devices recording the rainfall 163 

daily, the long network (LS) – mostly tipping bucket analogue sensors (before 2004) measuring rainfall at 1 min time 164 

steps with 0.1mm resolution and 2% uncertainty, and the most recent short network (SS) – digital sensors (after 2004) 165 

measuring rainfall also at 1min timesteps with 0.01mm resolution. The spatial distribution of these networks is shown in 166 

Figure 1, the observation length is given respectively in Figure 2 and the number of stations available for each network 167 

is given in Table 1. The long network is the most appropriate data set for extraction and evaluation of extreme rainfall 168 

statistics, since on average it includes 65 years of observations (as shown in Figure 2– dark blue) and measures the rainfall 169 

at very fine temporal scales. Nevertheless, this network is sparse and only 133 stations in the whole Germany are available. 170 

On the other side the short network measures the rainfall as well at very fine temporal scales and is much denser than the 171 

long network (1261 stations excluding the LS locations), however on average it includes only 18 years of observations 172 

which is not enough for extreme value statistics. Lastly the daily network is much denser (with 4068 stations excluding 173 

LS and SS locations) and covers 40 years up to 120 years, but the temporal resolution of rainfall is too coarse to be useful 174 

for sub hourly extreme values analysis. 175 
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Figure 1 Available rainfall networks in Germany for different 
temporal resolution. The black lines illustrate the borders of German 
Federal States. 

 

Table 1 Number of stations for each of the 
available networks in Germany. 

Resolution 5min 1 day 

Obs. Length > 41y > 10 y >10 y 

No. Gauges 133 +1261 +4068 
 

2.2 Temporal Disaggregation of the Daily Network 176 

The daily network is much denser than both long and short networks and includes even longer observation periods than 177 

the long network. If it is possible to disaggregate these data reliably, this will considerably increase the number of support 178 

points for the regionalisation of DDF curves. For the considerations presented here, the so-called cascade model first 179 

introduced by Olsson (1998) is employed. A more extensive parameterisation is implemented in the method according to 180 

Lisniak et al. (2013) which corresponds to a transfer of the Olsson method to a 3-fold distribution. To generate sub-hourly 181 

data, disaggregation parameters are derived from the RADOLAN radar time series of each grid cell (Bartels et al., 2004), 182 

and the daily observed volumes are disaggregated for the given durations as shown in Table 2. It is important to note that, 183 

due to the parameterisation using RADOLAN data, no parameter regionalisation is required, so that the parameter-rich 184 

disaggregation procedure in the Lisniak variant can be used. Moreover 30 realisations of disaggregated data were 185 

generated for each duration, in order to capture the uncertainty due to the disaggregation. 186 

Table 2 The disaggregation scheme applied to the daily network (DS) to obtain rainfall volumes at the given durations. 

Duration 12h 8h 6h 4h 3h 2h 1h 30min 15min 

Disaggregation 24h /2 24h /3 24h/22 24h /3/2 24h/23 24h / 3/ 22 24h/3/23 24h/ 3/24 24h/ 3/25 

To understand what errors can be introduced to the DDF curves when employing this disaggregation scheme, a direct 187 

comparison was conducted between the long series (LS) and the disaggregated series (DS) for the return periods 1, 10, 188 

20, 50 and 100 years. For each station, duration level and return period, the relative error is calculated as the difference 189 

Figure 2 Observation length of all stations 
grouped according to the three available 
networks in Germany. 
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between the disaggregated and the original rainfall quantile. The resulting deviations for all stations are shown in Figure 190 

3. The results indicate that at the longer duration levels (>6 hours), the DDF curves are captured quite well, and the main 191 

disadvantage of the disaggregation model (as expected) is for the very short duration. Below the duration of 4 hours, there 192 

is a clear tendency to underestimate the extremes. Thus, it is expected for the DS disaggregation scheme to be more useful 193 

for the longer duration extremes than the short ones. This is particularly true for extremes at very short duration (5min) 194 

as the disaggregation scheme estimates volumes only down to 15 min durations.  195 

2.3 Annual Maximum Series for Each Dataset 196 

Using the five-minute time series, annual maximum series (AMS) are derived based on the calendar year for the duration 197 

levels 5min, 10min, 15min, 30min, 1h, 2h, 6h, 12h, 1d, 2d, 3d and 7d. A moving window with the length of each duration 198 

level is used to derive the annual maxima, considering a dry duration of 4 hours to ensure that the maxima selected are 199 

independent from one another. Additionally, following the guidelines given by DWA (2012) a scaling of the durations 5, 200 

10 and 15 min AMS with the factors given in Table 3 is performed. This is done to avoid the systematic underestimation 201 

of rainfall extremes at short duration caused by the deviation between i) the start of the actually largest rainfall sum of 202 

duration D, and ii) the fixed starting time of the 5 min time series (employed here). 203 

Table 3 Correction factors for the short duration AMS according to the DWA-531(DWA, 2012). 

Duration level 5min 10min 15min 

Correction factor for AMS 1,14 1,07 1,04 

2.4 Homogenisation of Long and Short Network 204 

First plausibility and homogeneity checks were performed on the long and short data sets, herein referred to as 205 

respectively long series (LS) and short series (SS). An initial analysis of possible trends based on the quantile regression 206 

(Koenker, 2005) was carried out for the monthly 5min maximum intensities of the long series (LS). This method was 207 

chosen, as in comparison to the classical regression it is considerably more robust and it allows to obtain regression results 208 

for different non-exceedance probabilities. In Figure 4, the quantiles for the non-exceedance probabilities τ = 0.5 (i.e. 209 

median), 0.8, 0.9 and 0.95 are considered. Quantile regressions for the four selected τ with time as the explanatory variable 210 

are implemented separately for each of the 133 measurement points. Each dashed line corresponds to a measuring station 211 

and each colour to a non-exceedance probability. Trend-like changes in the monthly five-minute maxima are visible with 212 

slopes that increase with τ. To understand why this trend is present in almost all long series, we investigated whether 213 

these instationarities are more trend-like or jump-like, with the latter assuming that the timing of jumps is associated with 214 

Figure 3 The relative error of the disaggregated daily station data (30 realisations) based on radar parametrisation for 

different return periods and duration levels. 
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sensor changes in the measuring network. In the long network, a total of 19 different sensor types are distinguished simply 215 

by two states: analogue or digital.  216 

 A test for trend, jump or stationarity based on in-stationary extreme value analysis (Coles, 2001) was performed for 217 

all 133 LS. We tested for linear trend in location parameter vs. jump at date of sensor change in the location parameter vs 218 

stationarity. The decision was based on Akaike Information Criterion. The results for different duration levels (x-axis) 219 

are shown in Figure 5 –left. It is obvious that the majority of instationarity at short duration levels is better explained as 220 

a jump (with mostly positive sign) in the data. A possible reason could lie in the limited ability of analogue gauges to 221 

register abrupt intensity changes. Since the instationarities are usually jumps and not trends, a simple homogenisation of 222 

the data to a uniform sensor type is possible by raising to the mean value of the digital sensor type (DVWK, 1999). This 223 

jump correction is applied separately for each station and duration level. The results of applying the instationarity test to 224 

the homogenised series are shown in Figure 5– right. It can be seen that this approach can eliminate the instationarities 225 

at short duration levels significantly. About 30% of the stations show instationarities (either trend of jump), while the 226 

remaining part is considered stationary. Since only a small part of the stations show instationarities, here a stationary 227 

extreme value analysis is performed.   228 

Figure 5 Trend vs Jump Analysis (%) for left) - before jump elimination, right) after jump elimination. 

Figure 4 Quantile regression on monthly maximum 5 min rainfall intensities for the long series (LS) for different non-

exceedance probabilities (shown in coloured dashed lines). The fitted quantile regression is shown with solid black line. 
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3. Methods 229 

3.1 Local Estimation of Extreme Value Statistics  230 

3.1.1 Reference Approach 231 

Here, the Generalised Extreme Value (GEV) probability distribution is used for the statistical analysis of extreme 232 

rainfall and the derivation of the local DDF curves, that is described as following: 233 

 𝐹(𝑥; 𝜇, 𝜎, 𝛾) =𝑒𝑥𝑝 { − ቂ1 + 𝛾
(௫ାఓ)

ఙ
ቃ

ି
భ

ം
 }, 1 +

௬(௫ିఓ)

ఙ
> 0, 𝛾 ≠ 0,  234 

where μ is the location, σ the scale and γ the shape parameter. If the shape parameter is greater than zero, heavy-tail 235 

behaviour is present (GEV type II); if the shape parameter is less than zero, then it is the reverse Weibull distribution with 236 

no-tail behaviour (Coles, 2001). The GEV parameters are fitted to the AMS of each duration level and station separately, 237 

based on the L-moments method. For this purpose, the R-package “lmomco” was used (Asquith, 2021). A prior 238 

investigation on our study revealed that the L-moment approach led to more stable results than the method of Maximum 239 

Likelihood. The shape parameter was either estimated or fixed at 0.1 for estimation of return periods up to 100 years, 240 

approximately following the recommendation from Koutsoyiannis (2004a, b) and on a prior analysis conducted on LR 241 

series.  Based on the parameters obtained the quantiles of return periods T1a, T10a, T20a, T50a and T100a were derived. 242 

Since the AMS-approach tends to underestimate quantiles at low return periods (Ta < 10 years), a correction of the AMS 243 

return periods according to the DWA 531-Regulations with factors given in Table 4 was performed.   244 

Table 4 Correction of the Return Periods when fitting the GEV to the AMS adapted from (DWA, 2012). 

Return Periods for POT Ta=1 year Ta=5 years Ta=10 years 

Return Periods for AMS Ta=1.6 years Ta=5.5 years Ta=10.5 years 

 As discussed previously in the introduction, because the parameters are fitted separately on each duration, quantile 245 

crossing may occur. Figure 6 shows for different return periods T1a, T10a, T20a, T50a and T100a the number of stations 246 

affected by these crossings for the empirically calculated quantiles (left) and the quantiles fitted with the General Extreme 247 

Value (GEV) distribution (right). The empirical quantiles are calculated according to Hyndman and Fan (1996). It is clear 248 

that the number of stations with this problem increases significantly for larger return periods. In the empirical quantiles, 249 

especially the short series show quantile crossing at the long duration levels (D ≥ 24h). Here, the extremes of the duration 250 

levels D72h and D168h are lower than the extremes of the duration level D24h. With the GEV-fitted quantiles, 251 

significantly more stations show quantile crossings than with the empirically calculated quantiles. These problems occur 252 

for all return periods, however are more frequent for the return periods T50a and T100a. In order to avoid such problems 253 

two different methods are applied and compared here: the approach presented by Koutsoyiannis et al. (1998) and the 254 

approach presented by Fischer and Schumann (2018). These two methods are described below.  255 

(1)

Figure 6 Number of stations for different return periods showing quantile crossings in the empirically calculated quantiles 

(left) and the GEV-fitted quantiles (right) with increasing duration. 
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3.1.2 Koutsoyiannis Approach  256 

Koutsoyiannis et al. (1998) considers the intensity as a function of the duration level through two parameters (θ, η) and 257 

the generalised intensity can be calculated from duration specific intensity as described below:   258 

𝑖 = 𝑖ௗ ∙  𝑏ௗ    𝑤𝑖𝑡ℎ 𝑏ௗ =  (𝑑 + 𝜃)ఎ , 259 

where i is the generalised intensity in mm/h, id is the intensity in mm/h observed at each duration level, d is the duration 260 

level in hours and ϴ, η are the Koutsoyiannis parameters optimised for each station. Through this relationship a 261 

generalisation of the AMS intensities over all the chosen duration levels is possible. The parameters ϴ (larger than 0) and 262 

η (within the range 0 to 1) are estimated for each station by minimising the Kruskal-Wallis statistic as indicated in 263 

Koutsoyiannis et al. (1998). The advantage of this optimisation method lies in its non-parametric character and robustness, 264 

as the Kruskal-Wallis statistics is not affected by the presence of extreme values in the sample. Once the parameters ϴ 265 

and η are determined, the generalised intensities from all duration levels are pooled together (as the main assumption is 266 

now that they follow the same distribution) and a GEV distribution is fitted to this sample by the methods of L-moments. 267 

Lastly, to obtain DDF curves, the quantiles at specific return periods are estimated from the fitted GEV distribution, and 268 

are divided by the term bd in Equation (2) (dependable on θ, η parameters and the duration level). This joint estimation of 269 

parameters over all durations should not only avoid the quantile crossings, but also make the estimation of DDF more 270 

robust. 271 

3.1.3 Fischer/Schumann Approach  272 

In contrast to Koutsoyiannis that treats the intensities of AMS as a function of the duration, Fischer and Schumann (2018) 273 

propose a new approach based on the GEV distribution, where the generalised GEV parameters are monotonically 274 

dependent on the GEV parameters determined for each duration level. Thus, as a first step the GEV parameters (as in 275 

Equation (1) are estimated from the L-moment methods for each duration level at each station, and then through a 276 

nonlinear regression (with two parameters α and β) each GEV parameter is related to the different duration levels as 277 

indicated by the following equations:  278 

  𝜇ௗ =
ఈഋ

ௗഁഋ
, 𝜎ௗ =  

ఈ഑

ௗഁ഑
  𝑎𝑛𝑑 

ఙ

ఊ
=  𝛼 + 𝛽 ⋅ 𝑑,   279 

where d is the duration level in 5min, 𝜇ௗ , 𝜎ௗ, 𝛾  are the GEV parameters of each duration, while α and β are the regression 280 

coefficients with  𝛼ఓ , 𝛼ఙ> 0,  𝛽ఓ , 𝛽ఙ  > -1, 𝛽 ≥ 0.  The parameters are obtained by nonlinear least-square-minimising. In 281 

addition to the shape parameter dependency shown in Equation (3), three alternative approaches are considered: a constant 282 

shape parameter over all durations, a shape parameter fixed at 0.1 and a quadratic relationship as in Equation (4). 283 

                 𝜉 =  𝑎 + 𝑃ଵ ⋅𝑙𝑜𝑔 (𝑑)  + 𝑃ଶ ⋅ 𝑙𝑜𝑔 (𝑑) ଶ,  284 

where P1 and P2 are estimated spanning across all stations and a is a station specific optimised parameter.  285 

3.2 Regionalisation of Extreme Value Statistics  286 

The local parameters estimated for each station (GEV parameters and generalisation parameters) make the base data set 287 

for the regionalisation of the extreme rainfall statistics. Each of these parameters is regionalised independently based on 288 

the regionalisation methods explained below, and later on, DDF maps for each duration and return period of interest are 289 

generated. The overall procedure for regionalisation is given in Figure 7-a, and the regionalisation methods are given in 290 

Figure 7-b. 291 

 (3)

(4)

(2)
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a)                                                                                            b) 292 

Figure 7 a) Overall methodology from the given data sets to DDF maps for Germany, b) a short description of the 

regionalisation methods applied here only for the KO.FIX local estimation of DDF; where RD is short for rainfall depth, 

and nmin, nmax and Rmax are respectively the kriging parameters for minimum, maximum number of neighbours and maximum 

radius for neighbour search. 

3.2.1 Ordinary Kriging Interpolation  293 

The regionalisation of extreme value statistics for Germany will first be carried out with Ordinary Kriging (OK) 294 

interpolation. Here, the extreme rainfall parameters are interpolated independently. The flow chart for this interpolation 295 

technique is shown in Figure 7-b. Ordinary Kriging is widely used for interpolation due to its simplicity in comparison 296 

to other kriging methods. The expected value of the random process being investigation (E) is treated as constant in space 297 

(as per Equation (5)), whereas the increase in variance of the target variable at any two location (u and u+h) depends only 298 

on the distance h. This increase in the variance is represented by the semi-variogram function γ(h) (here called variogram). 299 

Therefore, in the first step, the empirical variogram is estimated by discrete point observations according to Equation (6). 300 

𝐸[𝑍(𝑢 + ℎ)] = 𝐸[𝑍(𝑢)] = 𝑚         301 

𝛾 (ℎ) =
ଵ

ଶே(௛)
 ∑ (𝑍(𝑢௜) − 𝑍൫𝑢௝൯)ଶ

௨೔ି௨ೕୀ௛ , 302 

where N is the number of any two observed data pairs (ui and uj) at distance h. Since the empirical variograms are not 303 

continuous functions, theoretical variograms must be fitted to the observed values. To describe the spatial variance of the 304 

data, several theoretical variogram models can be used and fitted to the empirical variogram using the least squares 305 

method. For the interpolation of rainfall extremes a spherical variogram (as per Equation (7)) is chosen as more 306 

appropriate (Kebaili Bargaoui and Chebbi, 2009).  307 

𝛾 (ℎ) =  𝑐଴ + 𝑐 ∙  ቀ
ଷ௛

ଶ௔
−

௛య

ଶ௔యቁ  𝑓𝑜𝑟 ℎ ≤ 𝑎 𝑎𝑛𝑑 𝛾 (ℎ) =  𝑐 𝑓𝑜𝑟 ℎ = 𝑎  , 308 

where c0 is the nugget, c the sill and a the range of the variogram. The variogram describes the spatial variability of the 309 

target variable and the average dissimilarity between a known and unknown location. Once the theoretical variogram is 310 

known, it can be used as a basis for interpolating the statistical properties on a 5km2 grid. Here, as indicated in Equation 311 

(8), the variable at an unknown location (Z') is estimated by the weighted average of the nearby known locations (Zui). 312 

𝑍ᇱ(𝑢௢) =  ෍ 𝜆௜ ∙ 𝑍(𝑢௜),   

௡

௜ୀଵ

 313 

(5)

(8)

(6)

(7)
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where the weights (λi) are derived from the theoretical variogram, and n is the number of selected neighbours. The R-314 

package "gstat" is used to fit the variograms and interpolate the variables (Pebesma, 2004). An advantage of Ordinary 315 

Kriging interpolation is that the weights are determined in such a way that the difference between the estimate and the 316 

observed values is zero on average. However, this can lead to the interpolated variable being smoothed in space. 317 

3.2.2. Kriging with External Drift Interpolation  318 

In the Kriging with External Drift (KED), the expected value E of the target variable Z at any location u is linear dependent 319 

on secondary variables Y, and thus the Equation (5) takes the form of the Equation (9). Here the secondary variables (or 320 

the external drifts) reflect the spatial trend of the target variable. Theoretically, the variogram for KED interpolation is 321 

computed from the residuals between the target and the secondary variables. Here, for simplicity the OK variograms are 322 

used instead, since as shown in Delrieu et al. (2014) they can produce very similar results to the KED one. 323 

𝐸[𝑍(𝑢) ∣ 𝑌ଵ(𝑢), 𝑌ଶ(𝑢), . . . . , 𝑌௠(𝑢)] = 𝑏଴ + ∑ 𝑏௞𝑌௞(𝑢)௠
௞ୀଵ       324 

where Y represent the k secondary variables from 1 to m that is used as an external drift, and b0 in the interception of the 325 

linear dependency and bk the coefficient for each k drift.  For this study different site characteristics (i.e. elevation) were 326 

investigated as external drift, however as indicated by the cross-correlation between the target variables (in this case the 327 

4 parameters describing the local statistics) and the site characteristics, the linear dependency between them is not high 328 

(see in appendix Figure A1). Therefore, here only interpolated local parameters from the short or daily network are used 329 

as external drift information.  330 

3.2.3 Index-based Regionalisation 331 

The regionalisation of extreme rainfall statistics in Germany is as well carried out using the index method according to 332 

Hosking and Wallis (1997). The index method was originally developed for the regionalisation of flood quantiles, 333 

however found a wide application also for the regionalisation of extreme rainfall statistics. By pooling information in 334 

statistically homogeneous regions, a more robust estimate of extreme rainfall statistics can be made and on the basis of 335 

the regions the information can be transferred to other unobserved points. A homogeneous region exists if the distribution 336 

functions have the same shape at all points in the region. The homogeneity indicator H1 presented by Hosking and Wallis 337 

(1997) is typically used to determine homogeneous regions. If the H1 is lower than 1, the region is said to be homogeneous, 338 

if it is between 1 and 2 the region may be heterogeneous, and else, if it is higher than 2, the region is definitely not 339 

homogeneous. Here different site characteristics like the latitude, longitude, elevation, long term annual average of 340 

sunshine duration and mean annual precipitation were used as input to define homogeneous regions. Based on a k-341 

clustering approach (Ward, 1963) 9 homogeneous regions were identified and are shown in Figure 8. The obtained 342 

homogeneous regions were tested for homogeneity for each data type combination and, as visible from Figure A2 in 343 

appendix, all values are below 1, meaning that the regions selected are homogeneous and can be used for the index-based 344 

regionalisation. Note that the generalised statistics over all the durations from Section 3.1 are used as input for the 345 

homogeneity test. The R-package “nsRFA” is used to obtain the homogeneous regions (Viglione et al., 2020). 346 

Once the homogeneous regions are determined, the different local statistics are normalised by a scaling factor, the index. 347 

In contrast to the previous regionalisation techniques discussed so far, the index-based regionalisation has an extra step – 348 

the normalisation of the general intensities with the index, which in this case is the mean generalised intensity. Next, the 349 

local L-moments are estimated on the basis of the normalised annual series and regional L-moments are derived for each 350 

region weighting the local L-moments according to their time series length. Finally, a GEV growth curve is fitted for each 351 

region and duration level via the regional L-moments. The R-package “lmomRFA” was employed for the application of 352 

the index method (Hosking and Wallis, 1997). In the final step, by back-scaling the normalised extreme rainfall for all 353 

(9)
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observed and unobserved points in the homogeneous region, estimates can be made about the extreme rainfall as a 354 

function of the duration and the return period. The geostatistical interpolation of the index makes it possible to transfer 355 

the extreme value statistical evaluations to unobserved points within the region. 356 

 357 
Figure 8 Nine homogeneous regions implemented here for the index-based regionalisation. The regions shown here are 

a generalisation of the k-cluster results to account for spatial consistency. 

3.3 Performance Assessment and Comparison  358 

3.3.1 Local Performance Assessment  359 

For the local estimation of the GEV parameters that describe the extreme rainfall over all the selected duration levels, two 360 

different approaches were consulted: from Koutsoyiannis et al. (1998) (herein referred as KO) and from Fischer and 361 

Schumann (2018) (herein referred as FS). Before carrying on with the regionalisation it is important to investigate which 362 

of the methods is more adequate for the estimation of the GEV parameters over all the duration levels. Moreover, the two 363 

methods do not only distinguish in their approach of generalisation across duration, but they also include different 364 

variations on the calculation of the shape GEV parameter (γ). A review of the methods and shape parameters is given in 365 

Table 5, together with the respective optimised parameter set for each case. The obtained parameters for different data 366 

sets are shown in the appendix: Figure A3 for KO and in Figure A4 for FS.  367 

Table 5 A review of the methods and the different calculation of the shape parameter investigated for the local statistics. 

Method  Shape Parameter  Abbreviation Optimised Parameter 

KO is constant per each station, as fitted by L-moments  KO.CON μ, σ, γ, θ, η 

is fixed at all stations as γ = 0.1 KO.FIX μ, σ, θ, η 

FS 
is calculated as proposed by Fischer and Schumann FS.RLM αμ, βμ, ασ, βσ, α, β 

is constant over all durations FS.CON αμ, βμ, ασ, βσ, γ 

a quadratic dependence on duration specific shape FS.QUA αμ, βμ, ασ, βσ, a 

is fixed at all stations as γ = 0.1 FS.FIX αμ, βμ, ασ, βσ 

The performance of the methods and the respective case of shape parameters as illustrated in Table 5 is evaluated only 368 

at the location of the long series (LS) by comparing the normalised quantiles over all durations for return periods T1a, 369 

T10a, T20a, T50a and T100a with the GEV quantiles calculated separately at each duration level. Here the percentage 370 

RMSE (as per Equation (10)) was employed to assess the errors of the selected cases at each duration level and station 371 

with respect to the GEV duration specific quantiles:  372 
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Percentage RMSE:  𝑅𝑀𝑆𝐸ௗ,௦௧[%] = 100 ∙
ට

భ

ఱ
∑ ൫ோ஽೒೐೙,ೞ೟ ିோ஽೏,ೞ೟൯

మఱ
೔సభ

ோ஽೏,ೞ೟തതതതതതതതത
 ,  373 

where i represents each selected return period Ta varying from 1 to 100 years, st varies from 1 to 133 available long series, 374 

RDgen,st  corresponds to the derived rainfall depth from the generalisation method of duration d, RDd,st the derived rainfall 375 

depth from the GEV quantiles, and the 𝑅𝐷ௗ,௦௧
തതതതതതതത is the mean rainfall depth from the GEV quantiles averaged over the return 376 

periods. Alternatively, the error for each return period and station can as well be calculated by Equation (10) by swapping 377 

the d with Ta, and where 𝑅𝐷்ೌ ,௦௧
തതതതതതതതത is the mean rainfall depth from the GEV quantiles at return period Ta averaged over the 378 

duration levels d (from 5min up to 7d).  379 

Since the GEV quantiles fitted per each duration level cannot be considered the ground truth, a non-parametric bootstrap 380 

is performed when estimating the parameters of each method, in order to investigate the sampling uncertainty of derived 381 

DDF values. For this purpose, 100 randomisations of the observations were conducted and the uncertainty range of the 382 

derived rainfall depths is computed as following: 383 

 Normalised 95% Confidence Interval:       𝑛𝐶𝐼95 [−] = 100
஼ூଽହೞ೟, ೏, ೅ೌ

ெ௘௔௡ೞ೟, ೏, ೅ೌ
 384 

where CI95 is the 95% confidence interval and Mean is the average of rainfall depth obtained from 100 realisations and 385 

expressed for each LS location st, duration level d and return period Ta. The smaller the uncertainty range, the more robust 386 

are the estimated parameters for the high return periods. Based on the two performance criteria, percentage RMSE and 387 

nCI95, all the methods in Table 5 are compared in order to evaluate the best one for the estimation of rainfall DDF curves. 388 

The best method is selected as the one with the lowest RMSE and nCI95. The results of this comparison are given in 389 

Section 4.1. 390 

3.3.2 Spatial Performance Assessment  391 

In order to check which of the regionalisation approaches provides the best results, a leave-one out cross-validation was 392 

carried out at the locations of the long series (LS 133 stations). For each approach, the rainfall depth (RD) is determined 393 

from the return periods T1a, T10a, T20a, T50a and T100a and the selected duration levels. After regionalisation, the 394 

regionalised rainfall depths are compared with the local generalised GEV quantiles (here assumed to be the truth). The 395 

short series are omitted from the cross-validation, as no reliable extreme value statistics can be carried out for large return 396 

periods due to the very short observation length. The quality of the regionalisation approaches is evaluated using the 397 

following criteria: 398 

Percentage Bias:    𝑃𝐵𝐼𝐴𝑆௦௧,்௔[%] = 100 ∙
భ

ವ
∑ ൫ோ஽ೝ೐೒೔೚೙ೌ೗,೏ ିோ஽೗೚೎ೌ೗,೏൯ವ

೏సభ

∑ ൫ோ஽೗೚೎ೌ೗,೏൯ವ
೏సభ

 ,                                    399 

Percentage  RMSE:   𝑅𝑀𝑆𝐸௦௧,்௔[%] = 100 ∙
ට

భ

ವ
∑ ൫ோ஽ೝ೐೒೔೚೙ೌ೗,೏ ିோ஽೗೚೎ೌ೗,೏൯

మವ
೏సభ

ோ஽೗೚೎ೌ೗തതതതതതതതതതത
 ,  400 

Nash-Sutcliffe Criteria:        𝑁𝑆𝐶௦௧,்௔[−] = 1 −  
∑ ൫ோ஽ೝ೐೒೔೚೙ೌ೗,೏ ିோ஽೗೚೎ೌ೗,೏൯

మವ
೏సభ

 ∑ ൫ோ஽೗೚೎ೌ೗,೏ ି ோ஽೗೚೎ೌ೗തതതതതതതതതതത൯
మವ

೏సభ

,  401 

where the d is the selected duration level, Ta the return period, st the respective LS, RDregional corresponds to the 402 

regionalised rainfall depth, RDlocal the locally derived rainfall depth from the normalised GEV function and the RDlocal is 403 

the mean local rainfall depth averaged over the 133 locations. The cross-validation only at the location of the LS makes 404 

it possible to investigate the value that the short (SS) and the disaggregated daily network (DS) are adding to each 405 

regionalisation method. For this purpose, the regionalisation methods are run first only with the LS as input, and the 406 

performance of such an application is considered the benchmark for improvement. Later on, the SS and DS are added 407 

(10)

(11)

(12)

(13)

(14)
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stepwise as input to the regionalisation, in order to assess the improvement, they introduce towards the benchmark. 408 

Additionally, one can calculate the expected performance when only the short or/and the disaggregated daily networks 409 

are available, and not the automatic one. An overview of these experiments and their aim is given at Table 6. 410 

Table 6 Overview of the experiments performed with different data sets for each regionalisation method. 

Input Aim 

Only LS Benchmark for improvement 

Only SS The expected error from only short network 

Only DS The expected error from only disaggregated daily network 

LS and SS The added value from the short network 

LS and DS The added value from the daily network 

SS and DS The expected error from short and daily network 

LS, SS and DS The added value from the short and daily network 

A directed comparison of the performance criteria between the different experiments and the benchmark is calculated 411 

here as per Equation (15).  412 

𝑃𝑒𝑟𝑓௜௠௣௥,்௔  [%] = 100 ∙
൫ି௉௘௥௙೙೐ೢ,೅ೌ ା ௉௘௥௙ೝ೐೑,೅ೌ൯

௉௘௥௙ೝ೐೑,೅ೌ
, 413 

where Perfref,Ta is the performance criteria calculated for each return period Ta as per Equation (12)-(14) from the scenario 414 

with only LS as input, and Perfnew,Ta is the performance of any other combination of input data as per Equation (12)-(14). 415 

A positive value for this criterion indicates an improvement in performance in comparison to the only LS scenario, while 416 

a negative value indicates a deterioration. Note that, the signs of the nominator are exchanged in the case of the 417 

improvement of the NSE. It is as well important to emphasise that the scenario ref corresponds to the best regionalisation 418 

method with only LS as input, namely ordinary kriging of LS based on results of Section 4.2. 419 

Finally, based on different combinations of the available network as external drift in the kriging interpolation may help 420 

to shed light on which combination of the data is more useful for the regionalisation of the rainfall DDF values. Here the 421 

data to be used as external drift are first interpolated with ordinary kriging (also in cross-validation mode). A description 422 

of these different combinations for the KED interpolation is given is Table 7. The performance of the different 423 

combinations is evaluated only at the location of the LS, and the best integration is selected based on the highest 424 

improvement in comparison to regionalisation with only LS as input.    425 

Table 7 Overview of different integration of data types in the interpolation with KED. Pooling the data together with 

same importance is represented by (+) sign, whereas integration through an external drift (linear dependence) is 

represented by the (|) sign. 

Combination Abbreviation 

Interpolate LS with OK[SS] as external drift KED[LS|SS] 

Interpolate LS with OK[DS] as external drift KED[LS|DS] 

Interpolate LS with both OK[SS] and OK[DS] as external drift KED[LS|SS+DS] 

Interpolate LS and SS with OK[DS] as external drift KED[LS+SS|DS] 

Interpolate SS with OK[DS] as external drift KED[SS|DS] 

426 

(15)
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4. Results 427 

4.1 Local Estimation of Extreme Statistics  428 

Figure 9 illustrates the local percentage RMSE of each method in comparison to the duration specific quantiles (as per 429 

Equation (10)). The upper row of Figure 9 shows the percentage RMSE calculated for each location and duration level 430 

over all the return periods and the lower row of Figure 9 shows the percentage RMSE calculated for each location and 431 

return period over all the duration levels. The results from Figure 9 – upper row indicate that the KO approaches (both 432 

fix and station constant shape parameter) have an almost constant RMSE over all durations under the value 10%. On the 433 

other hand, the FS approaches tend to have similar or little smaller RMSE for the longer duration (median RMSE under 434 

8%), but are not able to represent well enough the very short durations. For the FS approaches, the RMSE median for 435 

duration levels up to 60 min, is higher than 10%, with the 5min RMSE being the highest (between 25-45%). The results 436 

from Figure 9 – lower row illustrate that all the approaches manifest higher errors with higher return period. Both of the 437 

KO approaches (fix and station constant shape) show very similar behaviour. The KO.FIX performs slightly worse (1-438 

4% higher RMSE) than the KO.CON, but this is expected as the duration GEV fitted per each duration independently 439 

favours the KO.CON (as the shape parameter is let free for the GEV parameter fitting). The FS approaches perform very 440 

similarly to one another, however here contrary to the KO.FIX approach, the performance of the FS.FIX seems better 441 

than the other approaches. Overall, the KO approaches have the priority at shorter durations and they can capture the 442 

volumes at specific durations better than the FS approaches. On the other side, the FS approaches can capture better 443 

extremes at longer durations. A unanimous selection is not yet possible from the obtained results so far, because the local 444 

GEV duration specific parameters may not represent the ground truth.  445 

To analyse which approach estimates more stable and representative parameters, a non-parametric bootstrap was 446 

performed (with 100 random realisations), and served as a basis for assessing the 95% confidence interval of the obtained 447 

DDF values. Figure 10-left shows the normalised 95% confidence intervals (nCI95) for the rainfall depth (as per Equation 448 

(11)) estimated for each of the selected approaches. A high value of the nCI95 indicates that the bootstrap yields very 449 

variable rainfall depths, and hence a higher uncertainty is associated with the method. Contrarily a low value of the nCI95 450 

indicates that the rainfall depths have low variation across the random realisations, and thus the obtained DDF curves are 451 

considered more stable or robust. The results shown in Figure 10 indicate that the KO.FIX exhibits the lowest variation 452 

(median nCI95~0.23), followed up by FS.FIX (~0.25), and by KO.CON, FS.CON, FS.QUA with slightly higher 453 

Figure 9 RMSE (%) performance of the given generalisation methods over all the long stations (LS) in comparison to 

the duration specific GEV quantiles grouped: upper row - for different duration levels (calculated per station over return 

periods), and lower row - for different return periods (calculated per station over duration levels). 
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variations (respectively ~0.3). Interesting is to see that the FS.RLM has a median nCI95 ~ 0.3, but can reach extreme 454 

values up to 2. Figure 10-right) shows the scatterplot of nCI95 obtained from the KO.FIX (x-axis) and FS.FIX (y-axis) 455 

for different duration levels and return periods (shown with different colours) at the LS locations. Except for very low 456 

return periods (T1a), FS.FIX exhibits on average higher values of nCI95 than KO.FIX. Based on these results, the KO.FIX 457 

was chosen as the best method and was used for the regionalisation of the DDF curves. The advantages of the KO.FIX 458 

are that: 1. It represents all duration levels similarly and fairly, 2. The parameter estimation is more robust than any of the 459 

other methods, 3. It uses a known and well-established method for the estimation of the DDF curves.  460 

 461 

Figure 10 left) comparison of confidence interval robustness for the methods and shape parameters selected for the 

generalisation of the DDF values over all the durations; right) a direct comparison of the confidence interval robustness 

for KO.FIX (x-axis) with FS.FIX (y-axis) for each duration and return period (shown in different colours). 

4.2 Regionalisation of Extreme Statistics  462 

As discussed in the Section 4.1, the AMS at different duration levels were normalised according to Koutsoyiannis 463 

approach and the GEV parameters were fitted to the grouped generalised intensities. The shape parameter was kept fixed 464 

at 0.1. Ordinary Kriging (OK) and index-based (INDEX) regionalisation were run first only with the LR data as input – 465 

to decide about which of the two approaches will serve as a benchmark. A direct comparison based on Equation (15) is 466 

then performed for each of the selected performance criteria (where new is OK and ref is INDEX), to compute the 467 

improvement or deterioration of OK with only LS data compared to the INDEX. The median values for each return period, 468 

performance criteria and method, are given in Table 8. Here it becomes clear that the kriging approach exhibits lower 469 

RMSE for all return periods, worse BIAS for high return periods, and slightly better NSE than the index method. Based 470 

on these results, the kriging with LS as input (KRIGE[LS]) is used as a benchmark for calculating the improvement in 471 

performance by adding additional data types. Apart from the performance, the other advantage of kriging is that, it is 472 

more of a “pure” method, as it interpolates independently the 4 parameters, while the index approach is a “mixture” 473 

between the regional growth curve estimation, averaging θ and η parameters, and kriging to interpolate the index. For this 474 

reason, one may prefer the kriging regionalisation, as the errors are mainly from the kriging system, while the index 475 

method includes errors from the kriging system and from regional and averaged parameters.  476 

Table 8 Median performance improvement/deterioration (%) of ordinary kriging (OK) versus index-based (INDEX) 

interpolated calculated for different data as per Equation (15) (where new is OK and ref in INDEX), when only LS dataset 

is used as input. The performance is obtained by cross-validation over 133 LS stations. The colour green (+) indicates 

better performance by OK, red (-) indicates better performance by INDEX. 

 477 
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4.2.1 Best Regionalisation for Different Data Combination 478 

Kriging and index-based regionalisation was then performed for each data type experiment given in Table 6, and the 479 

cross-validation results for the 133 LS locations were compared to the benchmark (KRIGE[LS]) selected before as the 480 

best regionalisation with only LS as input. To enable an easy comparison between the two regionalisation methods, the 481 

difference between the improvements achieved between the kriging and the index-based regionalisation in comparison to 482 

the benchmark was calculated for each of the 133 LS locations. The median differences (in percent) for each data type 483 

experiment over the 133 locations for each performance criteria and return period are given in Table 9. A positive 484 

difference (dark green shade) means that the improvements reached by the kriging interpolation are higher than the index-485 

based regionalisation. A negative difference (red shade) means vice versa. The data are combined by two operators: either 486 

(+) referring to pooling of the datasets together and the parameters and the index are interpolated with ordinary kriging, 487 

and (|) referring to a linear relationship between the datasets and the parameters and the index are interpolated through 488 

external drift kriging.  489 

 490 

The results from the Table 9 indicate that for the majority of the cases the kriging interpolation brings higher 491 

improvements to the benchmark than the index-based regionalisation. Exception are the regionalisation with only SS, 492 

LS+SS, SS|DS, LS+SS|DS and LS|SS+DS where the index-based regionalisation exhibits on median 2-12% higher 493 

PBIAS improvement for higher return periods than the kriging interpolation. However, for these cases, the RMSE and 494 

the NSE improvements are much higher for the kriging regionalisation. Therefore, it can be concluded that overall the 495 

kriging interpolation yields better results than the index-based regionalisation (lower RMSE and higher NSE), but may 496 

suffer depending on the combination of data types from slightly higher PBIAS.  Also, it has to be mentioned, that when 497 

grouping the daily disaggregated time series directly (operator +) with the other data types (either LS and SS), the kriging 498 

performs up to 100% better than the index-based regionalisation. This suggests that the parameters from the 499 

disaggregation do not follow the same regions or growth curve as the high-resolution data (LS and SS), thus a kriging 500 

interpolation seems to be more reasonable when including these data as well. 501 

The results of Table 9 give a direct comparison between kriging and index-based regionalisation, nevertheless as they 502 

are relative to each case, do not give any information if ordinary kriging or external drift kriging is yielding better 503 

regionalisation results. For this purpose, the difference of improvements between KED and OK were calculated and 504 

shown as median over the 133 LS locations in Table 10. A positive difference (green shade) means that the improvements 505 

reached by KED are higher than the OK interpolation. A negative difference (red shade) means otherwise. The results 506 

Table 9 Median difference between kriging and index-based improvements calculated for different data as per Equation 

(15). The median is computed from 133 stations. The positive difference shown in green shades indicate that kriging 

introduces bigger improvements towards the benchmark than the index-based regionalisation. The negative differences 

shown in red shades indicate that the index-based regionalisation has the bigger improvements. 
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show that overall the KED exhibits higher RMSE and NSE improvements than the OK, but the KED tends to have lower 507 

PBIAS improvements than the OK. When only the high-resolution data sets are present (LS and SS), the KED behaves 508 

better than OK mainly for high return periods (50-100a), when LS and DS are present, KED clearly outperforms the OK. 509 

For all the remaining cases the OK outperforms the KED only for the PBIAS of high return periods.   510 

Table 10 Median difference between external drift kriging (KED) and ordinary kriging (OK) improvements calculated 

for different data as per Equation (15). The median is computed from 133 stations. The positive difference shown in green 

shades indicate that KED introduces bigger improvements towards the benchmark than the OK. The negative differences 

shown in red shades indicate that the OK regionalisation has the bigger improvements. 

 511 

4.2.2 Best Data Integration for Regionalisation 512 

So far, the external drift kriging interpolation has shown superiority for regionalising DDF curves in comparison to the 513 

index-based and ordinary kriging regionalisation. Nevertheless, the question still remains, what is the best combination 514 

of the data sets for regionalising the DDF curves in Germany. Here it is interesting to see if all the three available data 515 

sets are useful for regionalisation, or if single or dual networks are enough. For this purpose, the performance 516 

improvement exhibited by different combinations of the data types in KED (as per Table 7) in comparison to the 517 

benchmark are visualised in Figure 11. Note that since there are 30 realisation of DS data, a boxplot is illustrating the 518 

performance spread over these 30 realisations. This affects regionalisation methods where DS data is present, otherwise 519 

a horizontal line indicates the performance of the regionalisation. For very low return periods (T1a), the integration of all 520 

data types of the form KED[LS+SS|DS] brings the best performance, with RMSE and BIAS up to 20% smaller and NSE 521 

0.7% higher. For return period T10a, the KED[LS|SS], KD[LS|DS] and KED[LS+SS|DS] perform very similar: some 522 

random realisation from the disaggregated daily network (DS) introduce high improvement but as well low values, even 523 

though the median over the 30 realisation is at the same level as the KED[LS|SS] one. For high return periods (T100a), 524 

KED[LS|SS] introduces the highest improvement in all three performance criteria. Actually KED[LS|DS] is the second-525 

best option, however the median over the 30 realisations is either lower or equal to the performance of the KED[LS|SS]. 526 

There are few realisations that introduce the highest improvements for RMSE and BIAS, nevertheless the computation 527 

time for the disaggregation scheme and the fitting of the Koutsoyiannis approach is also a disadvantage of using the DS 528 

data type. So finally, the kriging interpolation of the long network (LS) with the short network (SS) as an external drift, 529 

is chosen as an optimal method for the regionalisation of the GEV and Koutsoyiannis parameters. Table 11 indicates the 530 

median performance criteria (RMSE, PBIAS, NSE) for different return periods reached by this method (KED[LS|SS]). 531 

Table 11 Median cross-validation performance over 133 stations for the final selected regionalisation method. 532 

  T1a T10a T20a T50a T100a 

KED[LS|SS] 

RMSE (%) 8.11 8.06 8.24 8.46 8.86 

PBIAS (%) 1.00 1.10 0.80 1.00 0.80 

NSE (-) 0.982 0.981 0.979 0.979 0.980 
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 4.3 Final Product  533 

 The obtained maps, on a 5 by 5 km raster, for the four regionalised parameters (location parameter – μ, scale parameter 534 

σ, Koutsoyiannis θ and η parameters) with the KED[LS|SS] approach, are illustrated in Figure 12. The spatial distribution 535 

of the location parameters follows partly the elevation information, with higher values in the south east, where the German 536 

Alps are located. The scale parameter values are independent of the elevation, with a high localised value near to Münster 537 

city. Recently, there has been a very extreme event in Münster which has affected the statistics of the station located in 538 

the vicinity. Currently it is not clear how to handle these singular extraordinary events in extreme value analysis in an 539 

optimal way. Both Koutsoyiannis parameters show similar spatial patterns with lower values in the Alp and other 540 

mountainous regions, as well as on the northern-west coast. These parameters exhibit higher variability in space than the 541 

GEV location or scale parameters. With these 4 interpolated maps, together with the shape parameter fixed at 0.1, DDF 542 

curves can be obtained for any location in Germany. Few examples of design rainfall maps for duration levels 5min, 1 543 

hour and 1 day, and return period Ta=1,10,100 years, are given in Figure 13. For short durations (i.e. D=5 min) the spatial 544 

distribution of rainfall extremes is independent from the elevation and becomes more erratic with higher return periods. 545 

This is in accordance with the fact that the convective extreme events can happen anywhere and are very low correlated 546 

with the orography. With increasing duration level, the relationship between orography and extreme rainfall becomes 547 

stronger. As for instance in D=1h, the influence of the alpine regions is visible, which becomes even stronger for the 548 

duration of D=1d. 549 

Figure 11 Median performance improvements towards the benchmark from regionalising on different data 

combinations, as per Table 7, in kriging with external drift. 
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 550 

Figure 12 Obtained interpolated maps from the KED[LS|SS] for each of the parameter: location parameter - 𝜇, scale 

parameter - 𝞂, Koutsoyiannis θ and η parameters. The shape parameter ɣ is kept constant at 0.1. 
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 551 

Figure 13 Obtained design rainfall [mm] maps for whole Germany from the KED[LS|SS] regionalisation approach 

derived for different durations: first row – return period Ta=1-year, second row – return period Ta=10 years and third 

row – return period Ta=100 years. 

  552 
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5. Conclusions 553 

In this study the use of three ground measuring networks in Germany was investigated for the estimation of design rainfall 554 

maps. These networks included the long high-resolution network, with long observations at 5 min time steps from 60-70 555 

years, the short high-resolution network with short observation also at 5 min time steps from 10 to 20 years, and the daily 556 

network with observations varying from 20 to 100 years. The purpose of the work was to review different methods for 557 

the estimation and regionalisation of the DDF curves and to investigate the value and the best integration of different data 558 

types for estimating DDF curves in ungauged locations. The results will provide the basis for a new update of the design 559 

storm maps for Germany, the KOSTRA-DWD2023. First, the long and short high-resolution networks were homogenised 560 

by performing a jump correction, with the jumps coinciding with sensor type changes. Second the daily network was 561 

disaggregated to sub hourly durations based on a cascade model parameterised according to Olsson, (1998) and Lisniak 562 

et al. (2013) from the RADOLAN data in Germany. Third, Annual Maximum Series (AMS) were derived for each station 563 

available in the three networks for duration levels ranging from 5 min to 7 days. This represents the main database for the 564 

present investigation. Two methods were investigated for local estimation of rainfall extreme statistics, adopted from 565 

Koutsoyiannis et al. (1998), and Fischer and Schumann (2018), and three different regionalisation approaches (ordinary 566 

kriging, external drift kriging and index-based regionalisation) were investigated for the spatial estimation of DDF curves 567 

in Germany. The conclusions derived, by considering the long high-resolution network as the truth, are summarised as:  568 

 Both methods for local estimation of the rainfall extreme statistics behave quite similarly in capturing the 569 

local duration specific rainfall depths. 570 

 Nevertheless, the estimation of parameters through the Koutsoyiannis approach is more robust in terms 571 

of data sampling uncertainties. Particularly the Koutsoyiannis approach combined with a Generalised 572 

Extreme Value (GEV) distribution with a fixed shape parameter value at 0.1 exhibited the highest 573 

robustness with tolerable decline in precision. Therefore, 4 parameters were used to describe the local 574 

statistics of extreme rainfall: the location and scale GEV parameters and the two Koutsoyiannis 575 

parameters θ and η. These 4 parameters represent the basis for the testing of different scenarios and 576 

regionalisation approaches.  577 

 When only the long high-resolution network is present, both ordinary kriging and index-based 578 

regionalisation perform similarly, with ordinary kriging showing slightly better median performance. 579 

This result remains true as well for other data combination settings, with kriging methods exhibiting lower 580 

RMSE and NSE, but slightly higher PBIAS than the index-based regionalisation. The only case where 581 

the index-based regionalisation has slight superiority against kriging, is when only short high-resolution 582 

series are present.  583 

 When more than two networks are available, kriging with external drift seems more adequate for the 584 

parameter interpolation than ordinary kriging, at least regarding the RMSE and NSE performance.   585 

 A combination of long and short networks improves the performance of regionalisation considerably (up 586 

to 15% for Ta=100 years), but only when the data sets are combined with external drift kriging. Here the 587 

digital network is first interpolated with ordinary kriging, which later on, serves as an external drift for 588 

the kriging interpolation of the long network. This combination gave overall the best results at least for 589 

return periods higher than 10 years.  590 
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 A combination of the long high-resolution and daily networks improves the performance of 591 

regionalisation up to 10% being the second-best method for regionalisation. Here as well the best 592 

regionalisation was the external drift kriging, with the ordinary kriging interpolation of daily network 593 

serving as an external drift. 594 

 A combination of the three networks improves the regionalisation considerably (up to 20%) only for low 595 

return periods (shorter or equal than 10 years).  596 

 Overall, the best method for the regionalisation of the DDF curves in Germany, was the kriging 597 

interpolation of the long sub hourly stations, with the short sub hourly stations as an external drift. On 598 

average, this approach exhibited 8-9% RMSE (increasing with the return period) and up to 1% BIAS 599 

(decreasing with the return period) when compared to the locally estimated DDF curves.  600 

The cross-validation implemented here can only describe the accuracy of the regionalisation methods when compared to 601 

the local estimation, but it does not say much about the precision of the predictions. Thus, it is important to perform an 602 

uncertainty analysis, which should include not only the local estimation of sample statistics (briefly discussed here) but 603 

as well the spatial uncertainty of the kriging interpolation. An investigation is currently going on for the integration of 604 

spatial uncertainty in the DDF design storms of Germany. Further improvements of the methodology, might include the 605 

validation of the methods on distinguished region. It has to be noted that the majority of the reference stations in Germany 606 

are located in the lowlands, thus the mountainous areas may be under-represented. It would be interesting to investigate 607 

if daily data or other site characteristics (like the elevation) are improving the performance of the chosen method in these 608 

regions. However, should one decide to perform region specific regionalisation, special care should be paid to the 609 

continuity of DDF values at the borders of the regions. Lastly, these conclusions are valid mainly for Germany, where 610 

dense networks are present. The advantage of each data set or approach may still change depending on the station density 611 

or study area location.   612 
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12. Appendix 744 

 745 

 746 

 747 

Figure A1 Cross-correlation between the selected local parameters (Koutsoyiannis and GEV parameters) for 

regionalisation and useful site characteristics that might act as an external drift information. Mu is the location 

parameter, sigma the scale parameter, theta and eta the Koutsoyiannis parameters, ELEV is short for elevation 

information, SUN is short for long term average of annual sunshine duration, PCP is short for long term average of 

annual rainfall amount, and TEMP is short for the long-term average of annual mean temperature.   

Figure A2 The homogeneity index (H1) computed for each of the 9th selected regions for each of the dataset 

combinations. 
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 751 

Figure A3 Koutsoyiannis parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) when 

fixing the shape parameter to 0.1 (FIX) or letting it free (FREE). 

Figure A4 Fischer/Schumann parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) 

when fixing the shape parameter to 0.1 (FIX) or letting it free (FREE). 
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