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Abstract. Rainfall depth–duration–frequency (DDF) curves
are required for the design of several water systems and pro-
tection works. For the reliable estimation of such curves, long
and dense observation networks are necessary, which in prac-
tice is seldom the case. Usually observations with different5

accuracy, temporal resolution and density are present. In this
study, we investigate the integration of different observation
datasets under different methods for the local and regional
estimation of DDF curves in Germany. For this purpose,
two competitive DDF procedures for local estimation (Kout-10

soyiannis et al., 1998; Fischer and Schumann, 2018) and two
for regional estimation (kriging theory vs. index based) are
implemented and compared. Available station data from the
German Weather Service (DWD) for Germany are employed,
which includes 5000 daily stations with more than 10 years15

available, 1261 high-resolution (1 min) recordings with an
observation period between 10 and 20 years, and finally 133
high-resolution (1 min) recordings with 60–70 years of ob-
servations. The performance of the selected approaches is
evaluated by cross-validation, where the local DDFs from the20

long sub-hourly time series are considered the true reference.
The results reveal that the best approach for the estimation of
the DDF curves in Germany is by first deriving the local ex-
treme value statistics based on Koutsoyiannis et al.’s (1998)
framework and later using the kriging regionalisation of long25

sub-hourly time series with the short sub-hourly time series
acting as an external drift. The integration of the daily sta-
tions proved to be useful only for DDF values of a low return
period (T [a]<10 years) but does not introduce any improve-
ment for higher return periods (T [a] ≥ 10 years).30

1 Introduction

Rainfall volumes at varying duration and frequencies are re-
quired for the design of water management systems and fa-
cilities, like dams or dikes, spillways, flood retention basins
or urban drainage systems. These design precipitation vol- 35

umes are also known as IDF (intensity–duration–frequency)
or DDF (depth–duration–frequency) curves, and they are de-
rived from an extreme value analysis (EVA) on observed
rainfall. For sampling extreme values, either annual max-
imum series (AMS) or peak over threshold (POT) can be 40

used; however, for return periods greater than 10 years, there
are hardly any differences between the two. Often the AMS
is preferred over the POT because the methodology is more
direct and easier, whereas the POT method needs a prior as-
sumption on the threshold selection. Afterwards, a theoreti- 45

cal probability distribution (PDF) is fitted to the extreme se-
ries of a certain duration, in order to extract design rainfall
volumes at a specific frequency (or return periods). Typically,
a generalised extreme value (GEV) distribution is fitted for
the AMS series and a generalised Pareto for the POT series 50

extracted for a fixed duration level. Rainfall extremes of dif-
ferent durations are strongly related to each other; however, if
the parameter fitting is done independently to each duration
level, these relations may not be kept (Cannon, 2018). There-
fore, generalised concepts as in Koutsoyiannis et al. (1998) 55

and simple scaling (Gupta and Waymire, 1990) or multi-
scaling Van de Vyver (2015) approaches are used to smooth
the extreme statistics over different duration levels. Finally,
since the rainfall observations are mostly point measure-
ments, a regionalisation procedure of the PDF parameters to 60
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unobserved locations is performed. Methodologically, a dis-
tinction can be made between the two approaches: (a) a direct
regionalisation of quantiles, moments or parameters of distri-
bution functions; and (b) a regional estimation of distribution
functions for homogeneous regions. Borga et al. (2005) sug-5

gest the regionalisation of the parameters instead of the quan-
tiles. For the direct regionalisation of parameters, regressions
(Madsen et al., 2009; Smithers and Schulze, 2001), splines
(Johnson and Sharma, 2017) or kriging methods (Ceresetti et
al., 2012; Kebaili Bargaoui and Chebbi, 2009; Uboldi et al.,10

2014; Watkins et al., 2005) are applied. On the other hand,
the estimation of regional distributions functions based on
the index method proposed by Hosking and Wallis (1997) is
one of the most used methods in the literature for the region-
alisation of design precipitation (Burn, 2014; Durrans and15

Kirby, 2004; Forestieri et al., 2018; De Salas and Fernández,
2007).

Since the analysis is performed on extreme values, first
very long observations are required to ensure a proper fitting
of the GEV parameters, particularly of the shape parameter,20

which is of decisive importance for extremes of high return
periods (larger than a 20-year return period). For instance,
Koutsoyiannis (2004a, b) showed clearly that short time se-
ries (less than 50 years) can choose falsely a shape parame-
ter of zero (Gumbel distribution) and hide the true heavy-tail25

behaviour of rainfall extremes (also supported by Papalexiou
and Koutsoyiannis, 2013 and Papalexiou, 2018). Second, a
dense observation network should be available to ensure an
adequate estimation of extreme value statistics also at unob-
served locations. A less dense network would cause for in-30

stance the kriging interpolated values to be less accurate and
the spatial features to be more smoothed in space (Berndt
et al., 2014). On the other side, index-based regionalisation
can provide a more robust estimation at unobserved locations
if larger samples (obtained from denser networks) are used35

(Requena et al., 2019). Third, a high-resolution observation
network (with one or five time steps) is also necessary to es-
timate extremes of short durations (at scales of minutes or
hours) for catchments that respond quickly to rainfall events
(i.e. urban or mountainous areas prone to flash floods). At40

the moment, no perfect observation network that fulfils these
three criteria is available, however different networks or data
types fulfilling two criteria coexist. For example, daily ob-
servation networks are typically very dense (every 10 km)
and can have up to 100–150 years of observations but do not45

capture the extremes at sub-hourly durations. Digital tipping
bucket or weighting sensors can measure the rainfall at 1 min
time steps and can be dense (every 20–25 km), however they
are available mostly after 2000 and are hence too short for
EVA. Long observations at 1 min time steps from analogous50

Hellmann or tipping buckets may be available from 1900–
1950 only for some countries (i.e. Germany, Belgium) but
are not as dense as digital or daily measurements (> 50 km).
Alternatively, weather radar or satellite data can provide rain-
fall fields at 1 or 4 km2 and 5 min time steps but offer short55

observations (less than 20 years) and suffer from high inac-
curacies (Marra et al., 2019).

To optimise the DDF estimation, different data types have
been combined; for instance, Madsen et al. (2017) region-
alised extremes in Denmark from 1 min observations with 60

daily interpolated values as a covariate, Bara et al. (2009)
employed the simple-scale principle to derive DDF curves
for sub-daily duration levels (5 min to 3 h) from daily ob-
servations in Slovakia, Goudenhoofdt et al. (2017) used sta-
tion observations (10 min and varying lengths) to correct 65

radar data and estimate the hourly and daily extremes, and
Burn (2014) pooled together long and short observations at
5 min time steps to form the DDF curves in Canada. How-
ever, care should be taken when combining information from
data types that differ in observation length and temporal and 70

spatial scales. Holešovský et al. (2016) separated the his-
torical data into groups when estimating DDF curves for
the Czech Republic (long series with 35–40 and short se-
ries with 11–15 years of observations) and concluded that
the uncertainty at estimating parameters for the short time 75

series is quite high, especially for high return periods. In
the index-based regionalisation, regional L-moments are av-
eraged based on the observation length, which may lead to
more stable results (Burn, 2014; Requena et al., 2019), how-
ever the interpolated index may still suffer from high uncer- 80

tainties from pooling together short and long time series. This
may also be the case when interpolating local GEV parame-
ters with the kriging theory. The regionalisation of the shape
parameter may be not representative if short and long ob-
servations are pooled together with same importance, thus 85

keeping a fixed shape parameter may help to mitigate this
problem. Nevertheless, further investigation should be done
to ensure if long observations, as more reliable, should have
more importance than the short ones when regionalising ex-
treme value statistics. Regarding the temporal-scale differ- 90

ence, a study from Paixao et al. (2011) performed in On-
tario, Canada, concluded that the scaling factors should not
be used for downscaling daily extremes to durations less or
equal to 1 h. This is because the extremes at such short du-
rations are governed by other rainfall mechanisms than the 95

daily extremes, and hence a low dependency exists between
the two extreme groups. Alternative to the scaling principle,
disaggregation schemes can be applied to the daily data in
order to obtain adequate extremes (with a return period up
to 5 years) for sub-hourly durations (Müller and Haberlandt, 100

2018). On the other hand, because of the spatial-scale incon-
sistency between weather radar and gauge observations, the
weather radar may not be appropriate to estimate directly ex-
tremes of short durations (Marra et al., 2019), however they
can still be useful to extract sub-daily extremes if used to 105

disaggregate daily observations, as done by Bárdossy and Pe-
gram (2017). More complex disaggregation procedures that
take advantage of the radar information by implementing an
extensive parameter set as suggested by Lisniak et al. (2013)
may also be used to disaggregate daily observation and esti- 110
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mate the extreme values at sub-hourly durations. Neverthe-
less, to the authors knowledge, there is no study in the liter-
ature that investigates if disaggregated daily time series can
be useful in regionalising extreme values statistics when high
resolution data are present, and when this is so, if they should5

have the same weights as high-resolution data.
Lastly, due to lack of data, in most of the literature, the

combination of any two or alternative data types for EVA is
validated on observations that are not dense or long enough
(longer than 40–50 years). Therefore, it would be interesting10

to test different methods for estimation and regionalisation
of DDF curves extracted from different data types on a long
and dense network. The German Weather Service (DWD)
has a relatively dense observations network (every 50 km) of
1 min rainfall data available from 1950 (60–70 years), that15

enables a proper validation of EVA for return periods up
to 100 years. Additionally, denser digital observations (ev-
ery 20 km) at 1 min time steps (mainly from 2000), very
dense (every 10 km) daily observations (10–120 years), and
weather radar observations (from 2000) at 1 km2 and 5 min20

time steps are also available. As multiple data types coexist in
Germany, it is important to investigate the suitability of meth-
ods and data types for the extraction and regionalisation of
extreme statistics while validating only at the long and dense
observations. In Germany, studies either use the Koutsoyian-25

nis approach or a multi/simple scaling approach of GEV pa-
rameters to generalise the extremes over different durations.
To the authors knowledge, there is no comparison of the two
approaches in the literature. The Koutsoyiannis approach has
been implemented in Germany by Ulrich et al. (2020) but on30

a shorter available 1 min dataset (up to 14 years), while Fis-
cher and Schumann (2018) have implemented the multi-scale
approach only at a long station (∼ 85 years). Here we inves-
tigate which of these methods gives a more accurate and pre-
cise estimation of DDF based on the long and 1 min rainfall35

data. The same is true also for the regionalisation approaches:
to the authors knowledge, there is no comparison between
kriging and index-based regionalisation. Naturally, it is inter-
esting to see which of the methods is more appropriate when
validated on a long and high-resolution network, where the40

advantages and disadvantages of each method lie when dif-
ferent data types are integrated, and what combination brings
the best outcome. For this purpose, we investigate here three
competitive regionalisation methods (ordinary kriging, exter-
nal drift kriging and index-based regionalisation) based on a45

different combination of data types (long series, short series,
disaggregated daily series from weather radar parameterisa-
tion), while validating only on the long and high-resolution
observations. At the moment, a revision of the current design
storm maps in Germany (KOSTRA-DWD) is required in or-50

der to use additional data and state-of-the-art methodology.
Therefore, an additional aim of this study is to give the ba-
sis for the development of the new design of storm maps in
Germany (KOSTRA-2023).

Table 1. Number of stations for each of the available data types in
Germany: long series (LS), short series (SS) and daily series (DS).

Resolution 5 min 1 d

Obs. length >41 years >10 years >10 years
No. gauges 133 +1261 +4068

The paper is structured as follows: first, the available 55

datasets for extreme value analysis are introduced in Sect. 2;
then, the methods selected for investigation of the local and
regional estimation are presented respectively in Sect. 3.1
and 3.2; and the performance assessment and validation are
explained in Sect. 3.3. The results are given for each objec- 60

tive as: the best local estimation of extremes in Sect. 4.1,
the best regionalisation technique in Sect. 4.2.1, and the best
data integration in Sect. 4.2.2. Finally, the obtained maps for
Germany are discussed in Sect. 4.3, and the conclusions are
given in Sect. 5. 65

2 Study area and data

2.1 Available data

The study area covers Germany and is illustrated in Fig. 1.
Three rainfall measuring networks are available from the
German Weather Service (DWD): the daily series (DS) – typ- 70

ically Hellman devices recording the rainfall daily, the long
series (LS) – mostly tipping bucket analogue sensors (before
2004) measuring rainfall at 1 min time steps with 0.1 mm res-
olution and 2 % uncertainty, and the most recent short series
(SS) – digital sensors (after 2004) measuring rainfall also at 75

1 min time steps with 0.01 mm resolution. The spatial distri-
bution of these data series is shown in Fig. 1, the observa-
tion length is given respectively in Fig. 2, and the number
of stations available for each one is given in Table 1. The
LS dataset is the most appropriate dataset for extraction and 80

evaluation of extreme rainfall statistics, since on average it
includes 65 years of observations (as shown in Fig. 2, dark
blue) and measures the rainfall at very fine temporal scales.
Nevertheless, this network is sparse in comparison to the
other two, and only 133 stations in Germany are available. 85

On the other side, the SS dataset measures the rainfall also
at very fine temporal scales and is much denser than the long
series (1261 stations excluding the LS locations), however
on average it includes only 18 years of observations which is
not enough for extreme value analysis. Lastly the DS dataset 90

is much denser (with 4068 stations excluding LS and SS lo-
cations) and covers 10 up to 120 years, but the temporal res-
olution of rainfall is too coarse to be useful for sub-hourly
extreme values analysis.
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Figure 1. Available rainfall data types in Germany categorised in
three groups: long series (LS), short series (SS) and daily series
(DS). The black lines illustrate the borders of German federal states.

Figure 2. Observation length of all stations grouped according to
the three available data types in Germany: long series (LS), short
series (SS) and daily series (DS).

2.2 Temporal disaggregation of the daily series

The daily dataset (DS) is much denser than both long and
short ones and includes even longer observation periods than
the LS dataset. If it is possible to disaggregate these data re-
liably, this will considerably increase the number of support 5

points for the regionalisation of DDF curves. For the con-
siderations presented here, the so-called cascade model first
introduced by Olsson (1998) is employed. A more exten-
sive parameterisation is implemented in the method accord-
ing to Lisniak et al. (2013), which corresponds to a transfer 10

of the Olsson method to a 3-fold distribution. To generate
sub-hourly data, disaggregation parameters are derived from
the RADOLAN weather radar time series of each grid cell
(Bartels et al., 2004), and the daily observed volumes are
disaggregated for the given durations as shown in Table 2. 15

It is important to note that due to the parameterisation using
RADOLAN data, no parameter regionalisation is required,
so that the parameter-rich disaggregation procedure in the
Lisniak variant can be used. Moreover, 30 realisations of dis-
aggregated data were generated for each duration, in order to 20

capture the uncertainty due to the disaggregation. It was eval-
uated that the relative error does not improve significantly
for more than 30 realisations, as also reported in Müller and
Haberlandt (2018), therefore only 30 realisations of disag-
gregated data were used in this study. 25

To understand what errors can be introduced to the DDF
curves when employing this disaggregation scheme, a direct
comparison was conducted between the long series (LS) and
the disaggregated daily series (DS) for the return periods 1,
10, 20, 50 and 100 years. For each station, duration level and 30

return period, the relative error is calculated as the difference
between the disaggregated and the original rainfall quantile.
The resulting deviations for all stations are shown in Fig. 3.
The results indicate that at the longer duration levels (> 6 h),
the DDF curves are captured quite well, and the main disad- 35

vantage of the disaggregation model (as expected) is for the
very short duration. Below the duration of 4 h, there is a clear
tendency to underestimate the extremes from LS, up to a me-
dian underestimation of 14 % at the 30 min duration level. At
the duration of 15 min, a weakening of the underestimation 40

is observed, which is probably due to the instationarity in the
original series identified in Sect. 2.4 below, which predomi-
nates only at duration levels up to 15 min. Thus, it is expected
for the DS disaggregation scheme to be more useful for the
longer duration extremes than the short ones, particularly the 45

extremes at sub-hourly durations.

2.3 Annual maximum series for each dataset

Using the 5 min time series, the annual maximum series
(AMS) is derived based on the calendar year for the duration
levels of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h, 1 d, 50

2 d, 3 d and 7 d. A moving window with the length of each
duration level is used to derive the annual maxima, consider-
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Table 2. The disaggregation scheme applied to the daily data (DS) to obtain rainfall volumes at the given durations.

Duration 12 h 8 h 6 h 4 h 3 h 2 h 1 h 30 min 15 min

Disaggregation 24 h per 2 24 h per 3 24 h per 22 24 h per 3 per 2 24 h per 23 24 h per 3 per 22 24 h per 3 per 23 24 h per 3 per 24 24 h per 3 per 25

Figure 3. The relative error (−) of the disaggregated daily station data (30 realisations) based on radar parameterisation for different return
periods and duration levels: (+) sign indicates overestimation, while (−) sign is the underestimation of extremes. Different blue shades
indicate the error at different return periods (in years) as shown in the legend (eg. 1a is a 1-year return period).

Table 3. Correction factors for annual maximum series (AMS) of
short duration according to the DWA-531 (DWA, 2012).

Duration level 5 min 10 min 15 min

Correction factor for AMS 1.14 1.07 1.04

ing a dry duration of 4 h to ensure that the maxima selected
in December and January of 2 consecutive years are inde-
pendent from one another. Additionally, following the guide-
lines given by DWA (2012), a scaling of the durations of 5,
10 and 15 min AMS with the factors given in Table 3 is per-5

formed. This is done to avoid the systematic underestimation
of rainfall extremes at a short duration caused by the devia-
tion between (i) the start of the actually largest rainfall sum
of duration D, and (ii) the fixed starting time of the 5 min
time series (employed here).10

2.4 Homogenisation of long and short dataset

First, plausibility and homogeneity checks were performed
on the long and short datasets, herein referred to respec-
tively as the long series (LS) and short series (SS). An ini-
tial analysis of possible trends based on the quantile regres-15

sion (Koenker, 2005) was carried out for the monthly 5 min
maximum intensities of the long series (LS). This method
was chosen, as, in comparison to the classical regression, it
is considerably more robust and it allows to obtain regression
results for different non-exceedance probabilities. In Fig. 4,20

the quantiles for the non-exceedance probabilities τ = 0.5
(i.e. median), 0.8, 0.9 and 0.95 are considered. Quantile re-
gressions for the four selected τ with time as the explanatory
variable are implemented separately for each of the 133 mea-
surement points. Each dashed line corresponds to a measur-25

Figure 4. Quantile regression (QR in mm) on monthly maximum
5 min rainfall intensities for the long series (LS) for different non-
exceedance probabilities τ (shown in coloured dashed lines and in
the legend). The fitted quantile regression is shown with a solid
black line.

ing station and each colour to a non-exceedance probability.
Trend-like changes in the monthly 5 min maxima are visible
with slopes that increase with τ . To understand why this trend
is present in almost all long series, we investigated whether
these instationarities are more trend-like or jump-like, with 30

the latter assuming that the timing of jumps is associated with
sensor changes in the measuring network. In the long series,
a total of 19 different sensor types are distinguished simply
by two states: analogue or digital.

A test for trend, jump or stationarity based on instation- 35

ary extreme value analysis (Coles, 2001) was performed for
all 133 LS. We tested for a linear trend in the location pa-
rameter vs. jump at the date of the sensor change from ana-
logue in the early years to digital in the later years in the
location parameter vs. stationarity. The decision was based 40

on the Akaike information criterion. The results for differ-
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ent duration levels (x axis) are shown in Fig. 5 on the left. It
is obvious that the majority of instationarities at short du-
ration levels is better explained as a jump (with a mostly
positive sign) in the data. A possible reason could lie in the
limited ability of analogue gauges to register abrupt inten-5

sity changes, so that the total amount of precipitation falling
in a short time interval may not be fully detected by ana-
logue sensors, leading to positive jumps at sensor changes
from analogue to digital. However, as a counterargument, the
so-called “step–response–error” that occurs with digital sen-10

sors could also be considered (see e.g. Licznar et al., 2015).
Since the instationarities are usually jumps and not trends, a
simple homogenisation of the data to a uniform sensor type is
possible by raising the mean value of the digital sensor type
(DVWK, 1999). This jump correction is applied separately15

for each station and duration level. The results of applying
the instationarity test to the homogenised series are shown in
Fig. 5 on the right. It can be seen that this approach can elim-
inate the instationarities at short duration levels significantly.
About 30 % of the stations show instationarities (either trend20

or jump), while the remaining part is considered stationary.
Since only a small part of the stations show instationarities,
a stationary extreme value analysis is performed here.

3 Methods

3.1 Local estimation of extreme value statistics25

3.1.1 Reference approach

Here, the generalised extreme value (GEV) probability dis-
tribution is used for the statistical analysis of extreme rain-
fall and the derivation of the local DDF curves, described as
the following:30

F (x;µ,σ,γ )= exp

{
−

[
1+ γ

(x+µ)

σ

]− 1
γ

}
,

1+
γ (x−µ)

σ
> 0,γ 6= 0, (1)

where µ is the location, σ is the scale and γ is the shape
parameter. If the shape parameter is greater than zero, heavy-
tail behaviour is present (GEV type II); if the shape parame-
ter is less than zero, then it is the reverse Weibull distribution35

with no-tail behaviour (Coles, 2001). The GEV parameters
are fitted to the AMS of each duration level and station sepa-
rately, based on the L-moments method. For this purpose, the
R package “lmomco” was used (Asquith, 2021). A prior in-
vestigation in our study revealed that the L-moment approach40

led to more stable results than the method of maximum like-
lihood. The shape parameter was either estimated or fixed
at 0.1 for the estimation of return periods up to 100 years,
approximately following the recommendation from Kout-
soyiannis (2004a, b) for an estimation of return periods up45

to 100 years (γ ∼ 0.1) and in a prior analysis conducted on

LS series. Based on the parameters obtained, the quantiles of
return periods T1a, T10a, T20a, T50a and T100a were de-
rived. Since the AMS approach tends to underestimate quan-
tiles at low return periods (T[a]< 10 years), a correction of 50

the AMS return periods according to the DWA-531 regula-
tions with factors given in Table 4 was performed.

Because the parameters are fitted separately on each du-
ration, quantile crossing may occur. Quantile crossing hap-
pens when the extreme rainfall volumes of a fixed probabil- 55

ity (T[a]= 100 years) are not increasing with longer duration
levels. Figure 6 shows for different return periods, T1a, T10a,
T20a, T50a and T100a, the number of stations affected by
these crossings for the empirically calculated quantiles (left)
and the quantiles fitted with the general extreme value (GEV) 60

distribution (right). The empirical quantiles are calculated
according to Hyndman and Fan (1996). It is clear that the
number of stations with this problem increases significantly
for larger return periods. Especially the SS dataset exhibits
frequent crossing in the empirical quantiles at long duration 65

levels (D ≥ 24 h). Here, the volumes of the duration D72 h
and D168 h are lower than the extremes of D24 h. With the
GEV-fitted quantiles, significantly more stations show quan-
tile crossings than with the empirically calculated quantiles.
These problems occur for all return periods, however they 70

are more frequent for the return periods T50a and T100a.
In order to avoid such problems, two different methods are
applied and compared here: the approach presented by Kout-
soyiannis et al. (1998) and the approach presented by Fischer
and Schumann (2018). These two methods are described be- 75

low.

3.1.2 Koutsoyiannis approach

Koutsoyiannis et al. (1998) consider the intensity as a func-
tion of the duration level through two parameters (θ , η), and
the generalised intensity can be calculated from duration spe- 80

cific intensity as described below:

i = id · bd with bd = (d + θ)η, (2)

where i is the generalised intensity in mm h−1, id is the inten-
sity in mm h−1 observed at each duration level, d is the dura-
tion level in hours, and θ and η are the Koutsoyiannis param- 85

eters optimised for each station. Through this relationship, a
generalisation of the AMS intensities over all the chosen du-
ration levels is possible. The parameters θ (larger than 0) and
η (within the range 0 to 1) are estimated for each station by
minimising the Kruskal–Wallis statistic as indicated in Kout- 90

soyiannis et al. (1998). The advantage of this optimisation
method lies in its non-parametric character and robustness,
as the Kruskal–Wallis statistics are not affected by the pres-
ence of extreme values in the sample. Once the parameters θ
and η are determined, the generalised intensities from all du- 95

ration levels are pooled together (as the main assumption is
now that they follow the same distribution) and a GEV distri-
bution is fitted to this sample by the methods of L-moments.
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Figure 5. Number of long series (LS) stations that show stationarity (stat) vs. instationarity (either jump- or trend-like) at different duration
levels following the instationary extreme value analysis; (a) before jump elimination and (b) after jump elimination between analogue and
digital sensors.

Table 4. Correction of the return periods (T[a]) when fitting the GEV to the annual maximum series (AMS) adapted from DWA (2012).

Return periods for POT T[a]= 1 year T[a]= 5 years T[a]= 10 years

Return periods for AMS T[a]= 1.6 years T[a]= 5.5 years T[a]= 10.5 years

Lastly, to obtain DDF curves, the quantiles at specific return
periods are estimated from the fitted GEV distribution and
are divided by the term bd in Eq. (2) (depending on θ and
η parameters and the duration level). This joint estimation of
parameters over all durations should not only avoid the quan-5

tile crossings but also make the estimation of the DDF more
robust.

3.1.3 Fischer–Schumann approach

In contrast to Koutsoyiannis who treats the intensities of
AMS as a function of the duration, Fischer and Schu-10

mann (2018) propose an approach based on the GEV distri-
bution, where the generalised GEV parameters are monoton-
ically dependent on the GEV parameters determined for each
duration level. Thus, as a first step, the GEV parameters (as
in Eq. 1) are estimated from the L-moment methods for each15

duration level at each station, and then through a nonlinear
regression (with two parameters α and β), each GEV param-
eter is related to the different duration levels as indicated by
the following equations:

µd =
αµ

dβµ
,σd =

ασ

dβσ
and

σ

γ
= α+β · d, (3)20

where d is the duration level in 5 min, µd ,σd ,γ are the GEV
parameters of each duration, while α and β are the regres-
sion coefficients with αµ,ασ >0, βµ, βσ > − 1, β ≥ 0. The
parameters are obtained by nonlinear least square minimis-
ing. In addition to the shape parameter dependency shown in25

Eq. (3), three alternative approaches are considered: a con-
stant shape parameter over all durations, a shape parameter
fixed at 0.1, and a quadratic relationship as in Eq. (4).

ξ = a+P1 · log(d)+P2 · log(d)2, (4)

where P1 and P2 are estimated spanning across all stations, 30

and a is a station-specific optimised parameter.

3.2 Regionalisation of extreme value statistics

The local parameters estimated for each station (GEV param-
eters and generalisation parameters) make the base dataset
for the regionalisation of the extreme rainfall statistics. Each 35

of these parameters is regionalised independently based on
the regionalisation methods explained below, and later on,
DDF maps for each duration and return period of interest
are generated. The overall procedure for regionalisation is
given in Fig. 7a, and the regionalisation methods are given in 40

Fig. 7b. The regionalisation approaches were compared only
for four parameters (see parameters of KO.FIX in Table 5), as
these four parameters were selected as the most appropriate
for local DDF estimation in Sect. 4.1.

3.2.1 Ordinary kriging interpolation 45

The regionalisation of extreme value statistics for Germany
will first be carried out with ordinary kriging (OK) interpo-
lation. Here, the extreme rainfall parameters are interpolated
independently. The flow chart for this interpolation technique
is shown in Fig. 7b. Ordinary kriging is widely used for in- 50

terpolation due to its simplicity in comparison to other krig-
ing methods. The expected value of the random process be-
ing investigation (E) is treated as constant in space (as per
Eq. 5), whereas the increase in variance of the target vari-
able at any two locations (u and u+h) depends only on the 55

distance h. This increase in the variance is represented by
the semi-variogram function γ (h) (here called variogram).
Therefore, in the first step, the empirical variogram is esti-
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Figure 6. Number of all stations at a 5 min resolution (for both short and long series) for different return periods (T[a]) showing quantile
crossings in the empirically calculated quantiles (a) and the GEV-fitted quantiles (b) with increasing duration.

Figure 7. (a) The step-by-step methodology applied here from the given point datasets to the final regionalised rainfall depths over all du-
rations and return periods (T[a]) in Germany; (b) a detailed procedure for step 6 – regionalisation (shown in red) only for the parameters of
KO.FIX (see Table 5) carried out with different methods (ordinary kriging – left, external drift kriging – middle, and index-based regionali-
sation – right). The parameters interpolated are the GEV (location µ and scale σ ) and Koutsoyiannis (θ and η) parameters. For both kriging
methods, for each parameter, first a spherical variogram is estimated (step 6.1) and the interpolation is performed (steps 6.2 or 6.3) with
the given nmin, nmax and Rmax which are the kriging parameters for minimum, maximum number of neighbours and maximum radius for
neighbour search. For index-based regionalisation, first the generalised series obtained in step 3 are normalised with the index 9 (step 6.1),
next a regional GEV growth curve for each homogeneous region is derived based on regional L-moments (step 6.2), and finally the quantiles
at each duration are rescaled with the index 9 (step 6.3).

mated by discrete point observations according to Eq. (6).

E[Z(u+h)] = E[Z(u)] =m (5)

γ (h)=
1

2N (h)

∑
ui−uj=h

(Z (ui)−Z
(
uj
)
)2, (6)

whereN is the number of any two observed data pairs (uiand
uj ) at distance h. Since the empirical variograms are not con-5

tinuous functions, theoretical variograms must be fitted to the
observed values. To describe the spatial variance of the data,
several theoretical variogram models can be used and fitted
to the empirical variogram using the least squares method.
For the interpolation of rainfall extremes, a spherical vari-10

ogram (as per Eq. 7) is chosen as more appropriate (Kebaili

Bargaoui and Chebbi, 2009).

γ (h)= c0+ c ·

(
3h
2a
−
h3

2a3

)
for h ≤ a

and γ (h)= c for h= a, (7)

where c0 is the nugget, c the sill, and a is the range of the
variogram. The variogram describes the spatial variability 15

of the target variable and the average dissimilarity between
a known and unknown location. Once the theoretical vari-
ogram is known, it can be used as a basis for interpolating the
statistical properties on a 5 km grid. This grid resolution was
chosen for two reasons; first it is consistent with the HyRas 20

product from the German Weather Service that uses the same
resolution, second it is a compromise between the coarsest
and finest legible resolution computed from the given density
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Table 5. A review of the methods and the different calculation of the shape parameter investigated for the local statistics, where KO stands
for Koutsoyiannis and FS for the Fischer and Schumann framework.

Method Shape parameter Abbreviation Optimised parameter

KO is constant per each station, as fitted by L-moments KO.CON µ,σ , γ , θ , η
is fixed at all stations as γ = 0.1 KO.FIX µ,σ , θ , η

FS is calculated as proposed by Fischer and Schumann (2018) FS.RLM αµ, βµ, ασ , βσ , α, β
is constant over all durations FS.CON αµ, βµ, ασ , βσ , γ
a quadratic dependence on duration-specific shape parameters FS.QUA αµ, βµ, ασ , βσ , a
is fixed at all stations as γ = 0.1 FS.FIX αµ, βµ, ασ , βσ

of long series (LS) (the reference for this study) following the
suggestions of Hengl (2006). The interpolation is done as in-
dicated in Eq. (8), the variable at an unknown location (Z′)
is estimated by the weighted average of the nearby known
locations (Zui).5

Z′ (uo)=

n∑
i=1

λi ·Z(ui), (8)

where the weights (λi) are derived from the theoretical vari-
ogram, and n is the number of selected neighbours. The R
package “gstat” is used to fit the variograms and interpo-
late the variables (Pebesma, 2004). An advantage of ordinary10

kriging interpolation is that the weights are determined in
such a way that the difference between the estimated and the
observed values is zero on average. However, this can lead
to the interpolated variable being smoothed in space. Dif-
ferent theoretical variograms were previously investigated,15

i.e. exponential, Gaussian and spherical, with the spherical
model together with a nugget effect showing the best fit for
the case study. The fitting of the variogram model parame-
ters for different data types and experiments is done auto-
matically by a weighted least square fit. Since the automatic20

fit relies on the initial values of the model parameters, we de-
fined the initial values with trial and error, and accepted a fit
that was adequate qualitatively. Figure 8 illustrates the empir-
ical and theoretical normalised variograms for interpolation
of the GEV and Koutsoyiannis parameters (after the method25

KO.FIX shown in Table 5) estimated from the three main
datasets available: long series (LS), short series (SS) and 30
realisations of disaggregated daily series (DS). Note that the
variograms are normalised in order to ensure a comparison
between the different datasets. From this figure, a clear dif-30

ference between the spatial dependency of different datasets,
due to different station densities and settings, is visible. The
long and short series (LS and SS) exhibit a similar relation-
ship with each other for the GEV parameters (µ and σ ) but
distinguish either in the nugget value (c0) or the range (a),35

whilst the daily disaggregated series clearly exhibits a differ-
ent nugget (c0), range (a) and even sill (c). The differences
between the datasets are less visible in the spatial dependen-
cies of the Koutsoyiannis parameters (θ and µ), where the
three datasets differ slightly in nugget and range. Particularly40

the spatial dependency of the scale parameter is captured
quite differently by the three datasets. Here, LS and SS are
differing mainly at the nugget value, where LS has a smaller
value than the SS series, suggesting that the spatial struc-
ture of the scale parameter from SS is smoother than that of 45

LS. On the other hand, the DS datasets exhibit a completely
different variogram for the scale parameter, suggesting that
the extremes of the high return period (influenced mainly by
the scale parameter) will have different spatial structures than
those of the LS and SS series. 50

3.2.2 Kriging with external drift interpolation

In the kriging with external drift (KED), the expected value
E of the target variable Z at any location u is linear-
dependent on secondary variables Y , and thus Eq. (5) takes
the form of Eq. (9). Here the secondary variables (or the 55

external drifts) reflect the spatial trend of the target vari-
able. Theoretically, the variogram for KED interpolation is
computed from the residuals between the target and the sec-
ondary variables. Here for simplicity the OK variograms are
used instead, since, as shown in Delrieu et al. (2014), they 60

can produce very similar results to the KED one.

E[Z(u) | Y1(u),Y2(u), . . .,Ym(u)] = b0+
∑m

k=1
bkYk(u), (9)

where Y represents k secondary variables from 1 to m that
are used as an external drift, b0 is the interception of the lin-
ear dependency, and bk is the coefficient for each k drift. For 65

this study, different site characteristics (i.e. elevation) were
investigated as external drift, however as indicated by the
cross-correlation between the target variables (in this case,
the four parameters describing the local statistics) and the
site characteristics, the linear dependency between them is 70

not high (see Appendix Fig. A1). Therefore, here only inter-
polated local parameters from the short and/or daily series
are used as external drift information.

3.2.3 Index-based regionalisation

The regionalisation of extreme rainfall statistics in Germany 75

is also carried out using the index method according to Hosk-
ing and Wallis (1997). The index method was originally de-
veloped for the regionalisation of flood quantiles, however
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Figure 8. Empirical (dots) and fitted (solid lines) spherical theoretical variograms for the GEV (µ – location and σ – scale) and Koutsoyiannis
(θ and η) parameters estimated by three different datasets (long series LS in dark blue, short series SS in light blue and disaggregated daily
series DS in grey).

it found a wide application also for the regionalisation of
extreme rainfall statistics. By pooling information in statis-
tically homogeneous regions, a more robust estimate of ex-
treme rainfall statistics can be made, and based on each de-
fined region, the information can be transferred to other un-5

observed points. A homogeneous region exists if the distri-
bution functions have the same shape at all points in the re-
gion. The homogeneity indicator H1 presented by Hosking
and Wallis (1997) is typically used to determine homoge-
neous regions. If the H1 is lower than 1, the region is said10

to be homogeneous, if it is between 1 and 2 the region may
be heterogeneous, and if it is higher than 2, the region is def-
initely not homogeneous. Here different site characteristics
like the latitude, longitude, elevation and long-term annual
average of sunshine duration and mean annual precipitation15

were used as inputs to define homogeneous regions. Based
on a k-clustering approach (Ward, 1963), nine homogeneous
regions were identified and are shown in Fig. 9. The obtained
homogeneous regions were tested for homogeneity for each
data type combination and, as visible from Fig. A2 in Ap-20

pendix, all values are below 1, meaning that the regions se-
lected are homogeneous and can be used for the index-based
regionalisation. Note that the generalised statistics over all
the durations from Sect. 3.1 are used as inputs for the homo-
geneity test. The R package “nsRFA” is used to obtain the25

homogeneous regions (Viglione et al., 2020). In order to find
an appropriate number of clusters, different numbers of clus-
ters between 2 and 20 are tested and compared based on the
homogeneity indicator H1 and whether they were spatially
continuous and physically reasonable. The maximum num-30

ber of clusters of 20 was chosen to ensure a sufficient number
of stations and thus a sufficient number of observation years
per region (Hosking and Wallis, 1997).

Once the homogeneous regions are determined, the dif-
ferent local statistics are normalised by a scaling factor, the35

index. In contrast to the previous regionalisation techniques
discussed so far, the index-based regionalisation has an extra
step – the normalisation of the general intensities with the
index (performed in step 3 in Fig. 7 on the left), which in
this case is the mean generalised intensity. Next, the local L-40

Figure 9. Nine homogeneous regions implemented here for the
index-based regionalisation. The regions shown here are a gener-
alisation of the k-cluster results to account for spatial consistency.

moments are estimated on the basis of the normalised annual
series, and regional L-moments are derived for each region
weighting the local L-moments according to their time se-
ries length. Finally, a GEV growth curve is fitted for each
region via the regional L-moments. The R package “lmom- 45

RFA” was employed for the application of the index method
(Hosking and Wallis, 1997). In the final step, by back-scaling
the normalised extreme rainfall for all observed and unob-
served points in the homogeneous region, estimates can be
made about the extreme rainfall as a function of the dura- 50

tion (based on regional averaged values of observed θ and
η) and the return period (based on the regional GEV growth
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curve). The geostatistical interpolation of the index makes it
possible to transfer the extreme value statistical evaluations
to unobserved points within the region.

3.3 Performance assessment and comparison

3.3.1 Local performance assessment5

For the local estimation of the GEV parameters that describe
the extreme rainfall over all the selected duration levels, two
different approaches were consulted: from Koutsoyiannis et
al. (1998) (herein referred to as KO) and from Fischer and
Schumann (2018) (herein referred to as FS). Before carry-10

ing on with the regionalisation, it is important to investigate
which of the methods is more adequate for the estimation
of the GEV parameters over all the duration levels. More-
over, the two methods not only distinguish their approach of
generalisation across duration, but they also include differ-15

ent variations on the calculation of the GEV shape parameter
(γ ). A review of the methods and shape parameters is given
in Table 5, together with the respective optimised parame-
ter set for each case. The obtained parameters for different
datasets are shown in the Appendix in Fig. A3 for KO and in20

Fig. A4 for FS.
The performance of the methods and the respective case of

shape parameters as illustrated in Table 5 is evaluated only at
the location of the long series (LS) by comparing the nor-
malised quantiles over all durations for return periods T1a,25

T10a, T20a, T50a and T100a with the GEV quantiles calcu-
lated separately at each duration level. Here the percentage
RMSE (as per Eq. 10) was employed to assess the errors of
the selected cases at each duration level and station with re-
spect to the GEV duration specific quantiles as follows:30

percentage RMSE : RMSEd,st [%]

= 100 ·

√
1
5
∑5
i=1
(
RDgen,st−RDd,st

)2
RDd,st

, (10)

where i represents each of the five selected return periods,
T[a], varying from 1 to 100 years, st varies from 1 to 133
available long series, RDgen,st corresponds to the derived
rainfall depth from the generalisation method of duration d,35

RDd,st is the derived rainfall depth from the GEV quantiles
at duration d , and the RDd,st is the mean rainfall depth from
the GEV quantiles at a duration d averaged over the return
periods. Alternatively, the error for each return period and
station can also be calculated by Eq. (10) by swapping the d40

with T[a] and where RDTa ,st is the mean rainfall depth from
the GEV quantiles at return period T[a] averaged over the
duration levels d (from 5 min up to 7 d, therefore i changes
from 1 to 12).

Since the GEV quantiles fitted per duration level cannot45

be considered the ground truth, a non-parametric bootstrap is
performed when estimating the parameters of each method,
in order to investigate the sampling uncertainty of derived

DDF values. For this purpose, 100 randomisations of the ob-
servations were conducted and the uncertainty range of the 50

derived rainfall depths is computed as follows:

normalised 95% confidence interval width:

nCI95width [−]=
CI95st,d,T[a]

meanst,d,T[a]
, (11)

where nCI95width is the 95 % confidence interval width and
mean is the average of rainfall depth obtained from 100 real-
isations and expressed for each long series (LS) location st, 55

duration level d and return period T[a]. The smaller the un-
certainty range, the more robust the estimated parameters for
the high return periods. Based on the two performance cri-
teria, percentage RMSE and nCI95width, all the methods in
Table 5 are compared to evaluate the best one for the estima- 60

tion of rainfall DDF curves. The best method is selected as
the one with the lowest RMSE and nCI95width. The results of
this comparison are given in Sect. 4.1.

3.3.2 Spatial performance assessment

In order to check which of the regionalisation approaches 65

provides the best results, a leave-one-out cross-validation
was carried out at the locations of the long series (LS 133
stations). For each approach, the rainfall depth (RD) is de-
termined from the return periods T1a, T10a, T20a, T50a and
T100a and the selected duration levels. After regionalisation, 70

the regionalised rainfall depths are compared with the local
generalised GEV quantiles (here assumed to be the truth).
The short series are omitted from the cross-validation, as no
reliable extreme value statistics can be carried out for large
return periods due to the very short observation length. The 75

quality of the regionalisation approaches is evaluated using
the following criteria:

percentage bias : PBIASst,T[a] [%]

= 100 ·
1
D

∑D
d=1

(
RDregional,d −RDlocal,d

)∑D
d=1

(
RDlocal,d

) , (12)

percentage RMSE : RMSEst,T[a] [%]

= 100 ·

√
1
D

∑D
d=1

(
RDregional,d −RDlocal,d

)2
RDlocal

, (13)

Nash–Sutcliffe criteria : NSCst,T[a] [−]

= 1−

∑D
d=1

(
RDregional,d −RDlocal,d

)2∑D
d=1

(
RDlocal,d −RDlocal

)2 , (14) 80

where the d varies from 1 to D = 12 for each duration level
between 5 min and 7 d, T[a] is the return period, st the respec-
tive long series (LS) station, RDregional corresponds to the re-
gionalised rainfall depth, RDlocal the locally derived rainfall
depth from the generalised GEV function, and the RDlocal 85

is the mean local rainfall depth averaged over the durations.
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Table 6. Overview of the experiments performed with different data
sets for each regionalisation method, where SS is the short series,
LS is long series and DS is the disaggregated daily series.

Input Aim

Only LS Benchmark for improvement

Only SS The expected error from only short series

Only DS The expected error from only disaggregated
daily series

LS and SS The added value from the short series

LS and DS The added value from the daily disaggregated
series

SS and DS The expected error from short and daily dis-
aggregated series

LS, SS and DS The added value from the short and daily dis-
aggregated series

The cross-validation only at the location of the LS makes it
possible to investigate the value that the short (SS) and the
disaggregated daily series (DS) are adding to each regionali-
sation method. For this purpose, the regionalisation methods
are run first only with the LS as input, and the performance5

of such an application is considered the benchmark for im-
provement. Later on, the SS and DS are added stepwise as
input to the regionalisation, in order to assess the improve-
ment they introduce towards the benchmark. Additionally,
one can calculate the expected performance when only the10

short or/and the disaggregated daily series are available and
not the long one. An overview of these experiments and their
aim is given in Table 6.

A directed comparison of the performance criteria be-
tween the different experiments and the benchmark is cal-15

culated here as per Eq. (15) as follows:

perfimpr,T[a] [%]= 100 ·

(
−perfnew,T[a]+Perfref,T[a]

)
perfref,T[a]

, (15)

where perfref,T[a] is the performance criteria calculated for
each return period T[a] as per Eqs. (12)–(14) from the sce-
nario with only LS as input, and perfnew,T[a] is the per-20

formance of any other combination of input data as per
Eqs. (12)–(14). A positive value for this criterion indicates
an improvement in performance in comparison to the only
LS scenario, while a negative value indicates a deterioration.
Note that the signs of the nominator are exchanged in the25

case of the improvement of the NSE. It is also important to
emphasise that the scenario ref corresponds to the best re-
gionalisation method with only LS as the input, namely the
ordinary kriging of LS based on the results of Sect. 4.2.

Finally, based on different combinations of the available30

series (data types) as external drift in the kriging interpola-
tion may help to shed light on which combination of the data

Table 7. Overview of different integration of data types in kriging
with external drift (KED) interpolation, where SS is the short se-
ries, LS is the long series and DS is the disaggregated daily series.
Pooling the data together with the same importance is represented
by a (+) sign, whereas priority importance (integration through an
external drift) is represented by the (|) sign.

Combination Abbreviation

Interpolate LS with OK[SS] as external
drift

KED[LS|SS]

Interpolate LS with OK[DS] as external
drift

KED[LS|DS]

Interpolate LS with both OK[SS] and
OK[DS] as external drift

KED[LS|SS+DS]

Interpolate LS and SS with OK[DS] as
external drift

KED[LS+SS|DS]

Interpolate SS with OK[DS] as external
drift

KED[SS|DS]

is more useful for the regionalisation of the rainfall DDF val-
ues. Here the data to be used as external drift are first interpo-
lated with ordinary kriging. A description of these different 35

combinations for the KED interpolation is given in Table 7.
The performance of the different combinations is evaluated
only at the location of the LS, and the best integration is se-
lected based on the highest improvement in comparison to
regionalisation with only LS as the input. 40

4 Results

4.1 Local estimation of extreme statistics

Figure 10 illustrates the local percentage RMSE of each
method in comparison to the duration-specific quantiles (as
per Eq. 10). The upper row of Fig. 10 shows the percentage 45

RMSE calculated for each location and duration level over
all the return periods, and the lower row of Fig. 10 shows
the percentage RMSE calculated for each location and return
period over all the duration levels. The results from Fig. 10
in the upper row indicate that the KO approaches (both fixed 50

and station constant shape parameter) have an almost con-
stant RMSE over all durations under the value of 10 %. On
the other hand, the FS approaches tend to have similar or
smaller RMSE for the longer duration (median RMSE un-
der 8 %), but they are not able to represent well enough the 55

very short durations. For the FS approaches, the RMSE me-
dian for duration levels up to 60 min is higher than 10 %,
with the 5 min RMSE being the highest (between 25 % and
45 %). The results from Fig. 10 in the lower row illustrate
that all the approaches manifest higher errors witha higher 60

return period. Both of the KO approaches (fixed and station
constant shape) show very similar behaviour. The KO.FIX



B. Shehu et al.: Regionalisation of rainfall depth–duration–frequency curves 13

performs slightly worse (1 %–4 % higher RMSE) than the
KO.CON, but this is expected as the duration GEV fitted per
duration independently favours the KO.CON (as the shape
parameter is let free for the GEV parameter fitting). The FS
approaches perform very similarly to one another, however5

here contrary to the KO.FIX approach, the performance of
the FS.FIX seems better than the other approaches. Overall,
the KO approaches have the priority at shorter durations, and
they can capture the volumes at specific durations better than
the FS approaches. On the other hand, the FS approaches can10

capture better extremes at longer durations. A unanimous se-
lection is not yet possible from the obtained results so far,
because the local GEV duration-specific parameters may not
represent the ground truth.

To analyse which approach estimates more stable and rep-15

resentative parameters, a non-parametric bootstrap was per-
formed (with 100 random realisations), and it served as a ba-
sis for assessing the 95 % confidence interval width of the
obtained DDF values. Fig. 11 on the left shows the nor-
malised 95 % confidence interval widths (nCI95width) for the20

rainfall depth (as per Eq. 11) estimated for each of the se-
lected approaches. A high value of the nCI95width indicates
that the bootstrap yields very variable rainfall depths, and
hence a higher uncertainty is associated with the method.
Contrarily a low value of the nCI95width indicates that the25

rainfall depths have low variation across the random realisa-
tions, and thus the obtained DDF curves are considered more
stable or robust. The results shown in Fig. 11 indicate that
the KO.FIX exhibits the lowest variation (median nCI95width
∼ 0.23), followed by FS.FIX (∼ 0.25), and by KO.CON,30

FS.CON and FS.QUA with slightly higher variations (re-
spectively∼ 0.3). It is interesting to see that the FS.RLM has
a median nCI95width ∼ 0.3 but can reach extreme values up
to 2. Fig. 11 on the right shows the scatterplot of nCI95width
obtained from the KO.FIX (x axis) and FS.FIX (y axis) for35

different duration levels and return periods (shown with dif-
ferent colours) at the LS locations. Except for very low return
periods (T1a), FS.FIX exhibits on average higher values of
nCI95width than KO.FIX. Based on these results, the KO.FIX
(Koutsoyiannis framework with shape parameter fixed at 0.1)40

was chosen as the best method and was used for the regional-
isation of the DDF curves. The advantages of the KO.FIX are
that: (1) it represents all duration levels similarly and fairly,
(2) the parameter estimation is more robust than any of the
other methods and (3) it uses a known and well-established45

method for the estimation of the DDF curves.

4.2 Regionalisation of extreme statistics

As discussed in the Sect. 4.1, the AMS at different dura-
tion levels was normalised according to the Koutsoyiannis
approach and the GEV parameters were fitted to the grouped50

generalised intensities. The shape parameter was kept fixed
at 0.1. Ordinary kriging (OK) and index-based (INDEX) re-
gionalisation were run first only with the LR data as in-

put, to decide about which of the two approaches will serve
as a benchmark. A direct comparison based on Eq. (15) is 55

then performed for each of the selected performance criteria
(where new is OK and ref is INDEX), to compute the im-
provement or deterioration of OK with only LS data com-
pared to the INDEX. The median values for each return
period, performance criteria and method are given in Ta- 60

ble 8. Here it becomes clear that the kriging approach ex-
hibits a lower RMSE for all return periods, worse BIAS for
high return periods and slightly better NSE than the index
method. Based on these results, the kriging with LS as input
(KRIGE[LS]) is used as a benchmark for calculating the im- 65

provement in performance by adding additional data types.
Apart from the performance, the other advantage of kriging
is that it is more of a “pure” method, as it interpolates inde-
pendently the four parameters, while the index approach is
a “mixture” between the regional growth curve estimation, 70

averaging θ and η parameters and kriging to interpolate the
index. For this reason, one may prefer the kriging region-
alisation, as the errors are mainly from the kriging system,
while the index method includes errors from the kriging sys-
tem and from regional and averaged parameters. 75

4.2.1 Best regionalisation for different data
combinations

Kriging and index-based regionalisation was then performed
for each data type experiment given in Table 6, and the
cross-validation results for the 133 LS locations were com- 80

pared to the benchmark (KRIGE[LS]) selected before as the
best regionalisation with only LS as an input. To enable an
easy comparison between the two regionalisation methods,
the difference between the improvements achieved between
the kriging and the index-based regionalisation in compar- 85

ison to the benchmark was calculated for each of the 133
LS locations. The median differences (in percent) for each
data type experiment over the 133 locations for each perfor-
mance criteria and return period are given in Table 9. A pos-
itive difference (dark green shade) means that the improve- 90

ments reached by the kriging interpolation are higher than
the index-based regionalisation. A negative difference (red
shade) means the opposite. The data are combined by two
operators: either (+), referring to pooling of the datasets to-
gether with same importance (the parameters and the index 95

are interpolated with ordinary kriging), or (|), referring to a
linear relationship between the datasets (priority importance)
where the parameters and the index are interpolated through
external drift kriging.

The results from Table 9 indicate that for most of the cases 100

the kriging interpolation brings higher improvements to
the benchmark than the index-based regionalisation. Excep-
tions are the regionalisation with only SS, LS+SS, SS|DS,
LS+SS|DS and LS|SS+DS where the index-based regional-
isation exhibits a median 2 %–12 % higher PBIAS improve- 105

ment for higher return periods than the kriging interpolation.
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Figure 10. RMSE (%) performance of the given generalisation methods over all the long series (LS) in comparison to the duration-specific
GEV quantiles grouped in the upper row for different duration levels (calculated per station over return periods, T[a]), and the lower row for
different return periods (calculated per station over duration levels). The overview of the methods shown here is given in Table 5.

Figure 11. On the left is the comparison of the normalised 95 % confidence interval width [–] for the methods and shape parameters selected
for the generalisation of the DDF values over all the durations (see Table 5 for a summary of the methods). On the right is a direct comparison
of the normalised 95 % confidence interval width [–] for KO.FIX (x axis) with FS.FIX (y axis) for each duration D and return period T[a]
(shown in different colours).

However, for these cases, the RMSE and the NSE improve-
ments are much higher for the kriging regionalisation. There-
fore, it can be concluded that overall the kriging interpola-
tion yields better results than the index-based regionalisation
(lower RMSE and higher NSE), but may suffer depending on5

the combination of data types from slightly higher PBIAS.
Also, it has to be mentioned that when grouping the daily
disaggregated time series directly (operator+) with the other
data types (either LS and SS), the kriging performs up to
100 % better than the index-based regionalisation. This sug-10

gests that the parameters from the disaggregation do not fol-
low the same regions or growth curve as the high-resolution
data (LS and SS), thus a kriging interpolation seems a more
reasonable choice for integrating daily disaggregated series
(DS).15

The results of Table 9 give a direct comparison between
kriging and index-based regionalisation; nevertheless, as
they are relative to each case, they do not give any informa-
tion if ordinary kriging or external drift kriging yields bet-
ter regionalisation results. For this purpose, the difference of 20

improvements between KED and OK were calculated and
shown as median over the 133 LS locations in Table 10. A
positive difference (green shade) means that the improve-
ments reached by KED are higher than the OK interpolation.
A negative difference (red shade) means otherwise. The re- 25

sults show that overall, the KED exhibits higher RMSE and
NSE improvements than the OK, but the KED tends to have
lower PBIAS improvements than the OK. When only the
high-resolution datasets are present (LS and SS), the KED
behaves better than OK mainly for high return periods (50– 30

100 a); when LS and DS are present, KED clearly outper-
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Table 8. Median performance improvement/deterioration (%) of ordinary kriging (OK) versus index-based (INDEX) regionalisation calcu-
lated for different data as per Eq. (15) (where new is OK and ref in INDEX), when only long series (LS) are used as input. The performance
is obtained by cross-validation over 133 LS stations. The colour green (+) indicates better performance by OK, and red (–) indicates better
performance by INDEX.

Table 9. Median difference between kriging and index-based improvements calculated for different data as per Eq. (15). The median is
computed from 133 stations. The data used as input are short series (SS), long series (LS) and disaggregated daily series (DS) and com-
bined either with same importance (+) or with priority importance (|). The positive difference shown in green shades indicates that kriging
introduces bigger improvements towards the benchmark than the index-based regionalisation. The negative differences shown in red shades
indicate that the index-based regionalisation has the bigger improvements.

forms the OK. For all the remaining cases the OK outper-
forms the KED only for the PBIAS of high return periods.

4.2.2 Best data integration for regionalisation

So far, the external drift kriging interpolation has shown su-
periority for regionalising DDF curves in comparison to the5

index-based and ordinary kriging regionalisation. Neverthe-
less, the question still remains: what is the best combina-
tion of the datasets for regionalising the DDF curves in Ger-
many? Here it is interesting to see if all the three available
datasets are useful for regionalisation or if single or dual10

networks are enough. For this purpose, the performance im-
provement exhibited by different combinations of the data
types in KED (as per Table 7) in comparison to the bench-
mark are visualised in Fig. 12. Note that since there are
30 realisations of DS data, a boxplot is illustrating the per-15

formance spread over these 30 realisations. This affects re-
gionalisation methods where DS data are present, otherwise
a single line indicates the performance of the regionalisa-
tion. For very low return periods (T1a), the integration of
all data types of the form KED[LS+SS|DS] brings the best20

performance, with RMSE and BIAS up to 20 % smaller and
NSE 0.7% higher. For return period T10a, the KED[LS|SS],
KED[LS|DS] and KED[LS+SS|DS] perform very similarly:
some random realisation from the disaggregated daily series
(DS) introduces high improvement but also low values, even25

though the median over the 30 realisations is at the same level

as the KED[LS|SS] one. For high return periods (T100a),
KED[LS|SS] introduces the highest improvement in all three
performance criteria. Actually KED[LS|DS] is the second-
best option, however the median over the 30 realisations is 30

either lower or equal to the performance of the KED[LS|SS].
There are few realisations that introduce the highest improve-
ments for RMSE and BIAS, nevertheless the computation
time for the disaggregation scheme and the fitting of the
Koutsoyiannis approach is also a disadvantage of using the 35

DS dataset. So finally, the kriging interpolation of the long
network (LS) with the short network (SS) as an external drift
is chosen as an optimal method for the regionalisation of the
GEV and Koutsoyiannis parameters. Table 11 indicates the
median performance criteria (RMSE, PBIAS, NSE) for dif- 40

ferent return periods reached by this method (KED[LS|SS]).
The expected deterioration in performance when the long se-
ries is not present in comparison to the best method selected
for regionalisation (KED[LS|SS]) is given in Table A1 in the
Appendix. 45

The three different datasets implemented here are distin-
guished from one another based on the parameter values (as
shown in Fig. A3 of the Appendix) and on the spatial depen-
dency and variograms, as shown in Fig. 8. When fixing the
shape parameter to 0.1, the location and Koutsoyiannis pa- 50

rameters of LS and SS are in a similar range, and the main
difference is seen at the scale parameter (where the SS has
higher values of the scale parameter than LS). This gives a
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Table 10. Median difference between external drift kriging (KED) and ordinary kriging (OK) improvements calculated for different data as
per Eq. (15). The median is computed from 133 stations. The data used as input are short series (SS), long series (LS) and disaggregated daily
series (DS) and combined either with same importance (+) or with priority importance (|). The positive difference shown in green shades
indicates that KED introduces bigger improvements towards the benchmark than the OK. The negative differences shown in red shades
indicate that the OK regionalisation has the bigger improvements.

Figure 12. Median performance improvements towards the benchmark from regionalising on different data combinations, as per Table 7, in
kriging with external drift, where SS is the short series, LS is the long series and DS is the disaggregated daily series, combined either with
the same importance (+) or with priority importance (|).

Table 11. Median cross-validation performance over 133 long se-
ries (LS) stations for the final selected regionalisation method
(KED[LS|SS]) at different return periods (T[a]).

T1a T10a T20a T50a T100a

KED[LS|SS]

RMSE (%) 8.11 8.06 8.24 8.46 8.86
PBIAS (%) 1.00 1.10 0.80 1.00 0.80
NSE (–) 0.982 0.981 0.979 0.979 0.980

tendency of the short durations to estimate bigger rainfall
volumes for higher return periods. This behaviour is also in
agreement with that reported by Madsen et al. (2017) who
used a generalised Pareto distribution also with a fixed shape

parameter. Typically, this is treated by index-based regionali- 5

sation, where extremes within a region are pooled together to
estimate the DDF curves at an unknown location as done in
Requena et al. (2019). However, we show here that integrat-
ing the LS and SS with external drift kriging, hence account-
ing for the spatial dependency of the extremes, delivers better 10

performance than grouping them together in the index-based
regionalisation (also valid for the LS and DS integration).

4.3 Final product and discussion

The obtained maps, on a 5 km raster, for the four region-
alised parameters (location parameter µ, scale parameter σ , 15

Koutsoyiannis θ and η parameters) with the KED[LS|SS] ap-
proach are illustrated in Fig. 13. Here the shape parameter is
fixed to 0.1 for the whole of Germany, which is very similar
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to results obtained by Ulrich et al. (2021) (shape parameter as
0.11 from the annual GEV approach), and it validates our ap-
proach. The spatial distribution of the location GEV param-
eter (µ) follows partly the elevation information, with higher
values in the southeast where the German Alps are located.5

The scale GEV parameter (σ ) values are independent of the
elevation, with a high localised value near to Münster city. In
2014, there was a very extreme event in Münster which has
affected the statistics of the station located in the vicinity.
Currently it is not clear how to handle these singular extraor-10

dinary events in extreme value analysis in an optimal way.
Both Koutsoyiannis parameters (θ and η) show similar spa-
tial patterns with lower values in the Alps and other moun-
tainous regions and on the northwestern coast. These param-
eters exhibit higher variability in space than the GEV loca-15

tion or scale parameters. Overall, the spatial distribution of η
parameter follows the spatial structure of the annual rainfall
sum in Germany, the distribution of the location (µ) parame-
ter follows the information from the elevation, while the scale
(σ ) and θ parametera do not seem to be influenced by any20

climatologic or site characteristic. This is also seen in Van
De Vyver (2012), where annual rainfall and elevation is con-
cluded as important covariates, mainly for the location (µ)
parameter, while the scale (σ ) parameter did not have mean-
ingful covariates, and the shape parameter did not show any25

spatial structure but was kept constant over Belgium. These
results agree to a certain extent with the results obtained here.
However, the rainfall statistics extracted from short or daily
series are considered as more important than the annual rain-
fall (which itself is an interpolation from point observation).30

Thus, interpolation of long datasets should include extreme
statistics from short or daily series rather than annual rainfall
as additional information.

With these four interpolated maps, together with the shape
parameter fixed at 0.1, DDF curves can be obtained for35

any location in Germany. A few examples of design rainfall
maps for duration levels 5 min, 1 h and 1 d, and return period
T[a]= 1, 10 and 100 years, are given in Fig. 14. For short du-
rations (i.e.D = 5 min), the spatial distribution of rainfall ex-
tremes is independent from the elevation and becomes more40

erratic with higher return periods. This is in accordance with
the fact that the convective extreme events can happen any-
where and are very low correlated with the orography. With
increasing duration level, the relationship between orogra-
phy and extreme rainfall becomes stronger. As for instance in45

D = 1 h, the influence of the alpine regions is visible, which
becomes even stronger for the duration of D = 1 d. In the
existing KOSTRA maps, all durations are dependent on el-
evation. Here, the elevation itself did not show much effect
on the scale (σ ) and θ parameter, only to some extent on the50

location (µ) and η parameter. This means that the extremes
of longer duration (affected by the η parameter) and of low
return period (affected by the location parameter) will show
a pattern resembling the elevation. This is not true for short
durations (affected by the θ parameter) and high return peri-55

Figure 13. Obtained interpolated maps from the KED[LS|SS] for
each of the parameters: location parameter µ, scale parameter σ ,
Koutsoyiannis θ and η parameters. The shape parameter γ is kept
constant at 0.1. The black lines illustrate the borders of German
federal states.

ods (affected by the scale parameter). This also agrees with
other studies that report a weak dependence of short duration
rainfall (shorter than 1 or 2 h) with the elevation in Germany
(Lengfeld et al., 2019). Lastly, the kriging interpolation as
implemented here opens the possibility to capture better un- 60

certainty – not only the sample uncertainty, which is typi-
cally done by bootstrapping the points statistics, but also ac-
counting for the spatial structure of extremes by considering
spatial simulations. Following this study and the best cho-
sen method here, an extensive uncertainty analysis is given 65

in Shehu and Haberlandt (2022), whose results propose that
DDF estimates with KED[LS|SS] are more precise near to
the location of long series (LS) and less precise in regions far
from long series (LS).

5 Conclusions 70

In this study, the use of three ground measuring types in
Germany was investigated for the estimation of design rain-
fall maps. These data types included a long high-resolution
dataset with long observations at 5 min time steps from 60–
70 years, a short high-resolution dataset with short observa- 75

tions also at 5 min time steps from 10 to 20 years, and a daily
dataset with observations varying from 10 to 100 years. The
purpose of the work was to review different methods for the
estimation and regionalisation of the DDF curves and to in-
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Figure 14. Obtained design rainfall (mm) maps for the whole of Germany from the KED[LS|SS] regionalisation approach derived for
different durations (D = 5, 60 and 1440 min): first row – return period T[a]= 1 year, second row – return period T[a]= 10 years and third
row – return period T[a]= 100 years. The black lines illustrate the borders of German federal states.

vestigate the value and the best integration of different data
types for estimating DDF curves in unobserved locations.
The results will provide the basis for a new update of the de-
sign storm maps for Germany, the KOSTRA-2023. First, the
long analogous and recent digital high-resolution networks5

were homogenised by performing a jump correction, with the
jumps coinciding with sensor type changes. Second, the daily
dataset was disaggregated to sub-hourly durations based on
a cascade model parameterised according to Olsson (1998)
and Lisniak et al. (2013) from the RADOLAN data in Ger-10

many. Third, annual maximum series (AMS) were derived
for each station available in the three datasets for duration
levels ranging from 5 min to 7 d. This represents the main
database for the present investigation. Two methods were
investigated for local estimation of rainfall extreme statis-15

tics, adopted from Koutsoyiannis et al. (1998), and Fischer
and Schumann (2018), and three different regionalisation ap-
proaches (ordinary kriging, external drift kriging and index-
based regionalisation) were investigated for the spatial esti-
mation of DDF curves in Germany. The conclusions derived, 20

by considering the long high-resolution dataset as the truth,
are summarised as follows.

Both methods for local estimation of the rainfall ex-
treme statistics behave quite similarly in capturing the local
duration-specific rainfall depths. Nevertheless, the estimation 25

of parameters through the Koutsoyiannis approach is more
robust in terms of data sampling uncertainties. Particularly,
the Koutsoyiannis approach combined with a generalised ex-
treme value (GEV) distribution with a fixed shape parameter
value at 0.1 exhibited the highest robustness with tolerable 30
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decline in precision. Therefore, four parameters were used
to describe the local statistics of extreme rainfall: the loca-
tion and scale GEV parameters and the two Koutsoyiannis
parameters θ and η. These four parameters represent the ba-
sis for the testing of different scenarios and regionalisation5

approaches.
When only the long high-resolution dataset is present,

both ordinary kriging and index-based regionalisation per-
form similarly, with ordinary kriging showing slightly better
median performance. This result remains true also for other10

data combination settings, with kriging methods exhibiting
lower RMSE and NSE, but slightly higher PBIAS than the
index-based regionalisation. The only case where the index-
based regionalisation has superiority against kriging is when
only short high-resolution series are present.15

When more than two data types are available, kriging with
external drift seems more adequate for the parameter inter-
polation than ordinary kriging, at least regarding the RMSE
and NSE performance.

A combination of long and short high-resolution series im-20

proves the performance of regionalisation considerably (up
to 15 % for T[a]= 100 years), but only when the datasets
are combined with external drift kriging. Here the parame-
ters from the short series are first interpolated with ordinary
kriging, which later on serve as an external drift for the krig-25

ing interpolation of the parameters from the long series. This
combination gave overall the best results at least for return
periods higher than 10 years.

A combination of the long high-resolution and daily
dataset improves the performance of regionalisation up to30

10 % being the second-best method for regionalisation. Here
also the best regionalisation was the external drift kriging,
with the ordinary kriging interpolation of daily parameters
serving as an external drift.

A combination of the three data types improves the region-35

alisation considerably (up to 20 %) only for low return peri-
ods (shorter or equal to 10 years).

Overall, the best method for the regionalisation of the DDF
curves in Germany was the kriging interpolation of the long
sub-hourly stations with the short sub-hourly stations as an40

external drift. On average, this approach exhibited 8 %–9 %
RMSE (increasing with the return period) and up to 1 %
BIAS (decreasing with the return period) when compared to
the locally estimated DDF curves.

The cross-validation implemented here can only describe 45

the accuracy of the regionalisation methods when compared
to the local estimation, but it does not say much about the
precision of the predictions. Thus, it is important to per-
form an uncertainty analysis, which should include not only
the local estimation of sample statistics (briefly discussed 50

here) but also the spatial uncertainty of the kriging inter-
polation. The integration of spatial uncertainty in the DDF
design storms of Germany is investigated and discussed in
Shehu and Haberlandt (2022). Further improvements of the
methodology might include the validation of the methods on 55

a distinguished region. It has to be noted that the majority
of the reference stations in Germany are located in the low-
lands, thus the mountainous areas may be under-represented.
It would be interesting to investigate if daily data or other
site characteristics (like the elevation) are improving the per- 60

formance of the chosen method in these regions. However,
should one decide to perform region-specific regionalisation,
special care should be paid to the continuity of DDF values at
the borders of the regions. Lastly, these conclusions are valid
mainly for Germany, where dense networks are present. The 65

advantage of each dataset or approach may still change de-
pending on the station density or study area location.
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Appendix A

Figure A1. Cross-correlation between the selected local parameters (Koutsoyiannis and GEV parameters) for regionalisation and useful site
characteristics that might act as an external drift information. µ (mu) is the GEV location parameter, σ (sigma) the GEV scale parameter, and
θ (theta) and η (eta) the Koutsoyiannis parameters. ELEV is short for elevation information, SUN is short for long-term average of annual
sunshine duration, PCP is short for long-term average of annual rainfall amount, and TEMP is short for the long-term average of annual
mean temperature.

Table A1. Obtained deterioration (–) or improvement (+) towards the best regionalisation technique (KED[LS|SS]) when no long series are
available (LS) and the regionalisation is performed based on short series (SS), disaggregated daily series (DS), or on both SS and DS.
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Figure A2. The homogeneity index (H1) computed for each of the ninth selected regions for each of the dataset combinations.

Figure A3. Koutsoyiannis parameters obtained for each dataset (LS in dark blue, SS in light blue and DS in grey) when fixing the shape
parameter to 0.1 for all stations (FIX) or constant over all durations per station (CON).
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Figure A4. Fischer–Schumann parameters obtained for each dataset (LS in dark blue, SS in light blue and DS in grey) when fixing the shape
parameter to 0.1 (FIX) or constant over all durations per station (CON).
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