~N o o1 &~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25

Regionalisation of Rainfall Depth-Duration-Frequency curves
with different data types in Germany

Bora Shehu'?, Winfried Willems®, Henrike Stockel®, Luisa-Bianca Thiele!, Uwe Haberlandt!

nstitute of Hydrology and Water Resources Management, Leibniz University Hannover Germany
2 Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
3 |AWG, Engineering Hydrology, Applied Water Resources and Geoinformatics, Ottobrunn Germany

Correspondence to: Bora Shehu (bora.shehu@uni-potsdam.de)

Abstract.

Rainfall depth-duration-frequency (DDF) curves are required for the design of several water systems and protection
works. For reliable estimation of such curves, long and dense observation networks are necessary, which in practice are
seldom the case. Usually observations with different accuracy, temporal resolution and density are present. In this study,
we investigate the integration of different observation data sets under different methods for the local and regional
estimation of DDF curves in Germany. For this purpose, two competitive DDF-procedures for local estimation
(Koutsoyiannis et al. 1998, Fischer and Schumann, 2018) and two for regional estimation (kriging theory vs index-based)
are implemented and compared. Available station data from the German Weather Service (DWD) for Germany are
employed, which includes 5000 daily stations with more than 40 years available, 1261 high resolution (1min) recordings
with observations period between 10 and 20 years, and finally 133 high resolution (1min) recordings with 60-70 years of
observations. The performance of the selected approaches is evaluated by cross-validation, where the local DDFs from
the long sub-hourly time series are considered the true reference. The results reveal that the best approach for the
estimation of the DDF curves in Germany is by first deriving the local extreme value statistics based on Koutsoyiannis et
al. 1998 framework, and later using the kriging regionalisation of long sub-hourly time series with the short sub-hourly
time series acting as an external drift. The integration of the daily stations proved to be useful only for DDF values of low

return period (T<10 years), but doesn’t introduce any improvement for higher return periods (T>10 years).
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1. Introduction

Rainfall volumes at varying duration and frequencies are required for the design of water management systems and
facilities, like dams or dikes, spillways, flood retention basins, urban drainage systems, etc. These design precipitation
volumes are also known as IDF (Intensity-Duration-Frequency) or DDF (Depth-Duration-Frequency) curves, and are
derived from an extreme value analysis (EVA) on observed rainfall. For sampling extreme values, either annual maximum
series (AMS) or peak-over-threshold (POT) can be used, however for return periods greater than 10 years, there are hardly
any differences between the two. Often the AMS are preferred over the POT because the methodology is more direct and
easier, whereas the POT method needs a prior assumption on the threshold selection. Afterwards a theoretical probability
distribution (PDF) is fitted to the extreme series of a certain duration, in order to extract design rainfall volumes at specific
frequency (or return periods). Typically, a Generalized Extreme Value (GEV) distribution is fitted for the AMS series
and a Generalised Pareto for the POT series extracted for a fixed duration level. Rainfall extremes of different durations
are strongly related to each other, however if the parameter fitting is done independently to each duration level these
relations may not be kept (Cannon, 2018). Therefore, generalised concepts as in (Koutsoyiannis et al., 1998), simple
scaling (Gupta and Waymire, 1990) or multi scaling Van de Vyver (2015) approaches are used to smooth the extreme
statistics over different duration levels. Finally, since the rainfall observations are mostly point measurements, a
regionalisation procedure of the PDF parameters to un-observed locations is performed. Methodologically, a distinction
can be made between two approaches: a) a direct regionalisation of quantiles, moments or parameters of distribution
functions and b) a regional estimation of distribution functions for homogeneous regions. Borga et al. (2005) suggests the
regionalisation of the parameters instead of the quantiles. For the direct regionalisation of parameters, regressions
(Madsen et al., 2009; Smithers and Schulze, 2001), splines (Johnson and Sharma, 2017) or kriging methods (Ceresetti et
al., 2012; Kebaili Bargaoui and Chebbi, 2009; Uboldi et al., 2014; Watkins et al., 2005) are applied. On the other hand,
the estimation of regional distributions functions based on the index method proposed by Hosking and Wallis (1997), is
one of the most used methods in the literature for the regionalisation of design precipitation (Burn, 2014; Durrans and
Kirby, 2004; Forestieri et al., 2018; De Salas and Fernandez, 2007).

Since the analysis is performed on extreme values, first very long observations are required to ensure a proper fitting of
the GEV parameters, particularly of the shape parameter which is of decisive importance for extremes of high return
period (larger than 20 years return period). For instance, Koutsoyiannis (2004a,b) showed clearly that short time series
(less than 50 years) can choose falsely a shape parameter of zero (Gumbel distribution) and hide the true heavy-tail
behaviour of rainfall extremes (also supported by Papalexiou and Koutsoyiannis (2013) and Papalexiou (2018)). Second,
a dense observation network should be available to ensure an adequate estimation of extreme value statistics also at un-
observed locations. A less denser network would cause for instance that the kriging interpolated values to be less accurate
and the spatial features to be more smoothen in space (Berndt et al., 2014). On the other side, index-based regionalisation
can provide more robust estimation at un-observed locations if larger samples (obtained from denser networks) are used
(Requena et al., 2019). Third, a high-resolution observation network (with 1- or 5- time steps) is as well necessary to
estimate extremes of short durations (at scales of minutes or hours) for catchments that respond quickly to rainfall events
(i.e., urban or mountainous areas prone to flash floods). At the moment, no perfect observation network that fulfils these
three criteria is available, however different networks or datatypes fulfilling two criteria co-exist. For example, daily
observation networks are typically very dense (every 10km) and can have up to 100-150 years of observations, but don’t
capture the extremes at sub-hourly durations. Digital tipping bucket or weighting sensors can measure the rainfall at 1min
time steps and can be dense (every 20-25km), however they are available mostly after 2000 and hence too short for EVA.
Long observations at 1min time steps from analogous Hellmann or tipping buckets may be available from 1900-1950
only at some countries (i.e. Germany, Belgium) but are not as dense as digital or daily measurements (>50km).
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Alternatively, weather radar or satellite data can provide rainfall fields at 1- or 4-km? and 5min time steps, but offer short
observations (less than 20 years) and suffer from high inaccuracies (Marra et al., 2019).

To optimize the DDF estimation, different data types have been combined for instance; Madsen et al., (2017) regionalised
extremes in Denmark from 1min observation with daily interpolated values as a co-variate, Bara et al. (2009) employed
the simple scale principle to derive DDF curves for sub-daily duration levels (5min — 3h) from daily observations in
Slovakia, Goudenhoofdt et al., (2017) used station observations (10min and varying lengths) to correct radar data and
estimate the hourly and daily extremes, Burn (2014) pooled together long and short observations at 5min time steps to
form the DDF curves in Canada. However, care should be taken when combining information from data types that differ
in observation length, temporal and spatial scales. Holesovsky et al. (2016) separated the historical data into groups when
estimating DDF curves for Czech Republic (long series with 35-40 and short series with 11-15 years of observations) and
concluded that the uncertainty at estimating parameters for the short time series is quite high, especially for high return
periods. In the index-based regionalisation, regional L-moments are averaged based on the observation length, which may
lead to more stable results (Burn, 2014; Requena et al., 2019), however the interpolated index may still suffer from high
uncertainties from pooling together short and long time series. This may also be the case when interpolating local GEV
parameters with the kriging theory. The regionalisation of the shape parameter may be not representative if short and long
observations are pooled together with same importance, thus keeping a fix shape parameter may help to mitigate this
problem. Nevertheless, further investigation should be done to ensure if long observations, as more reliable, should have
more importance than the short ones when regionalising extreme value statistics. Regarding the temporal scale difference,
a study from Paixao et al. (2011) performed in Ontario Canada concluded that the scaling factors should not be used for
downscaling daily extremes to durations less or equal to one hour. This is because the extremes at such short durations
are governed by other rainfall mechanisms then the daily extremes, and hence a low dependency exists between the two
extreme groups. Alternative to the scaling principle, disaggregation schemes can be applied to the daily data in order to
obtain adequate extremes (with return period up to 5 years) for sub-hourly durations (Muller and Haberlandt, 2018). On
the other hand, because of the spatial scale inconsistency between weather radar and gauge observations, the weather
radar may not be appropriate to estimate directly extremes of short durations (Marra et al., 2019), however they can still
be useful to extract sub-daily extremes if used to disaggregate daily observations as done by Bardossy and Pegram (2017).
More complex disaggregation procedures that take advantage of the radar information by implementing an extensive
parameter-set as suggested by Lisniak et al. (2013), may also be used to disaggregate daily observation and estimate the
extreme values at sub-hourly durations. Nevertheless, to authors knowledge, there is no study in the literature that
investigates if disaggregated daily time series can be useful in regionalising extreme values statistics when high resolution
data are present, and when so, if they should have the same weights as high-resolution data.

Lastly, due to lack of data, in most of the literature, the combination of any two or alternative data types for EVA is
validated on observations that are not dense or long enough (longer than 40-50 years). Therefore, it would be interesting
to test different methods for estimation and regionalisation of DDF curves extracted from different datatypes, on a long
and dense network. The German Weather Service (DWD) has a relatively dense observations network (every 50km) of
1min rainfall data available from 1950 (60-70years), that enables a proper validation of EVA for return periods up to 100
years. Additionally, denser digital observations (every 20km) at 1min time steps (mainly from 2000), very dense (every
10km) daily observations (10-120years) and weather radar observations (from 2000) at 1km? and 5min time steps are as
well available. As multiple data types co-exist in Germany, it is important to investigate the suitability of methods and
data types for the extraction and regionalisation of extreme statistics while validating only at the long and dense
observations. In Germany, studies either use the Koutsoyiannis approach or multi/simple scaling approach of GEV

parameters to generalise the extremes over different durations. To authors knowledge there is no comparison of the two

3



110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127

128

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

approaches in the literature. The Koutsoyiannis approach has been implemented in Germany by Ulrich et al. (2020), but
on a shorter available 1 min dataset (up to 14 years), while Fischer and Schumann (2018) have implemented the multi
scale approach only at a long station (~85 years). Here we investigate which of these methods gives more accurate and
precise estimation of DDF based on the long and 1min rainfall data. The same is true also for the regionalisation
approaches: to authors knowledge there is no comparison between kriging and index-based regionalisation. Naturally, it
is interesting to see which of the methods is more appropriate when validated on a long and high-resolution network, and
where lie the advantages and disadvantages of each method when different data types are integrated, and what
combination brings the best outcome. For this purpose, we investigate here three competitive regionalisation methods
(ordinary kriging, external drift kriging and index-based regionalisation) based on different combination of data types
(long series, short series, disaggregated daily series from weather radar parametrisation), while validating only on the
long and high-resolution observations. At the moment, a revision of the current design storm maps in Germany
(KOSTRA-DWD) is required in order to use additional data and state-of-the-art methodology. Therefore, an additional

aim of this study, is to give the basis for development of the new design storm maps in Germany (KOSTRA-2023).

The paper is structured as follows: first the available data sets for extreme value analysis are introduced in Section 2, then
the methods selected for investigation of the local and regional estimation are presented respectively in Section 3.1 and
3.2, with performance assessment and validation explained in Section 3.3. The results are given for each objective as:
best local estimation of extremes in Section 4.1, best regionalisation technique 4.2.1, best data integration 4.2.2. Finally,

the obtained maps for Germany are discussed in section 4.3 and conclusions are given in Section 5.

2. Study Area and Data

2.1 Available Data

The study area covers Germany and is illustrated in Figure 1. Three rainfall measuring networks are available
from the German Weather Service (DWD); the daily series (DS) — typically Hellman devices recording the rainfall daily,
the long series (LS) — mostly tipping bucket analogue sensors (before 2004) measuring rainfall at 1 min time steps with
0.1mm resolution and 2% uncertainty, and the most recent short series (SS) — digital sensors (after 2004) measuring
rainfall also at 1min timesteps with 0.01mm resolution. The spatial distribution of these data series is shown in Figure 1,
the observation length is given respectively in Figure 2 and the number of stations available for each one is given in
Table 1. The LS dataset is the most appropriate data set for extraction and evaluation of extreme rainfall statistics, since
on average it includes 65 years of observations (as shown in Figure 2— dark blue) and measures the rainfall at very fine
temporal scales. Nevertheless, this network is sparse in comparison to the other two, and only 133 stations in Germany
are available. On the other side the SS dataset measures the rainfall as well at very fine temporal scales and is much denser
than the long series (1261 stations excluding the LS locations), however on average it includes only 18 years of
observations which is not enough for extreme value analysis. Lastly the DS dataset is much denser (with 4068 stations
excluding LS and SS locations) and covers 40 years up to 120 years, but the temporal resolution of rainfall is too coarse

to be useful for sub hourly extreme values analysis.
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Figure 2 Observation length of all stations
grouped according to the three available data
types in Germany: long series (LS), short series
(SS), and daily series (DS).

Table 1 Number of stations for each of the
available data types in Germany: long series
(LS), short series (SS), and daily series (DS)

=S

® SS Resolution 5min 1 day
DS

Figure 1 Available rainfall data types in Germany categorized in Obs. Length | > 41y >10y  >10y

three groups: long series (LS), short series (SS), and daily series (DS).
The black lines illustrate the borders of German Federal States. No. Gauges | 133 +1261  +4068

2.2 Temporal Disaggregation of the Daily Series

The daily dataset (DS) is much denser than both long and short ones and includes even longer observation periods than
the LS dataset. If it is possible to disaggregate these data reliably, this will considerably increase the number of support
points for the regionalisation of DDF curves. For the considerations presented here, the so-called cascade model first
introduced by Olsson (1998) is employed. A more extensive parameterisation is implemented in the method according to
Lisniak et al. (2013) which corresponds to a transfer of the Olsson method to a 3-fold distribution. To generate sub-hourly
data, disaggregation parameters are derived from the RADOLAN weather radar time series of each grid cell (Bartels et
al., 2004), and the daily observed volumes are disaggregated for the given durations as shown in Table 2. It is important
to note that, due to the parameterisation using RADOLAN data, no parameter regionalisation is required, so that the
parameter-rich disaggregation procedure in the Lisniak variant can be used. Moreover 30 realisations of disaggregated
data were generated for each duration, in order to capture the uncertainty due to the disaggregation. It was evaluated that
the relative error doesn’t improve significantly for more than 30 realisations, as also reported in Miiller and Haberlandt

(2018), therefore only 30 realisations of disaggregated data were used in this study.

Table 2 The disaggregation scheme applied to the daily data (DS) to obtain rainfall volumes at the given durations.

Duration 12h 8h 6h 4h 3h 2h 1h 30min 15min

Disaggregation ~ 24h /2 24h/3  24h/22  24h/3/2  24h/23  24h[3/2%  24h/3/23 24h/ 3/2* 24h/ 3/25
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To understand what errors can be introduced to the DDF curves when employing this disaggregation scheme, a direct
comparison was conducted between the long series (LS) and the disaggregated daily series (DS) for the return periods 1,
10, 20, 50 and 100 years. For each station, duration level and return period, the relative error is calculated as the difference
between the disaggregated and the original rainfall quantile. The resulting deviations for all stations are shown in Figure
3. The results indicate that at the longer duration levels (>6 hours), the DDF curves are captured quite well, and the main
disadvantage of the disaggregation model (as expected) is for the very short duration. Below the duration of 4 hours, there
is a clear tendency to underestimate the extremes from LS, up to a median underestimation of 14% at the 30min duration
level. At the duration of 15min, a weakening of the underestimation is observed, which is probably due to the instationarity
in the original series identified in Section 2.4 below, which predominates only at duration levels up to 15min. Thus, it is
expected for the DS disaggregation scheme to be more useful for the longer duration extremes than the short ones,

particularly the extremes at sub-hourly durations.
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Figure 3 The relative error (-) of the disaggregated daily station data (30 realisations) based on radar parametrisation
for different return periods and duration levels: (+) sign indicates overestimation, while (-) sign underestimation of
extremes. Different blue shades indicate the error at different return periods (in years) as shown in the legend (ex. lais

one year return period).

2.3 Annual Maximum Series for Each Dataset

Using the five-minute time series, annual maximum series (AMS) are derived based on the calendar year for the duration
levels 5min, 10min, 15min, 30min, 1h, 2h, 6h, 12h, 1d, 2d, 3d and 7d. A moving window with the length of each duration
level is used to derive the annual maxima, considering a dry duration of 4 hours to ensure that the maxima selected in
December and January of two consecutive years are independent from one another. Additionally, following the guidelines
given by DWA (2012) a scaling of the durations 5, 10 and 15 min AMS with the factors given in Table 3 is performed.
This is done to avoid the systematic underestimation of rainfall extremes at short duration caused by the deviation between
i) the start of the actually largest rainfall sum of duration D, and ii) the fixed starting time of the 5 min time series
(employed here).

Table 3 Correction factors for Annual Maximum Series (AMS) of short duration according to the DWA-531 (DWA,
2012).

Duration level 5min 10min 15min

Correction factor for AMS 1,14 1,07 1,04
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2.4 Homogenisation of Long and Short Dataset

First plausibility and homogeneity checks were performed on the long and short datasets, herein referred to as respectively
long series (LS) and short series (SS). An initial analysis of possible trends based on the quantile regression (Koenker,
2005) was carried out for the monthly 5min maximum intensities of the long series (LS). This method was chosen, as in
comparison to the classical regression is considerably more robust and it allows to obtain regression results for different
non-exceedance probabilities. In Figure 4, the quantiles for the non-exceedance probabilities T = 0.5 (i.e. median), 0.8,
0.9 and 0.95 are considered. Quantile regressions for the four selected T with time as the explanatory variable are
implemented separately for each of the 133 measurement points. Each dashed line corresponds to a measuring station and
each colour to a non-exceedance probability. Trend-like changes in the monthly five-minute maxima are visible with
slopes that increase with 1. To understand why this trend is present in almost all long series, we investigated whether
these instationarities are more trend-like or jump-like, with the latter assuming that the timing of jumps is associated with
sensor changes in the measuring network. In the long series, a total of 19 different sensor types are distinguished simply

by two states: analogue or digital.
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Figure 4 Quantile regression (QR in mm) on monthly maximum 5 min rainfall intensities for the long series (LS) for
different non-exceedance probabilities z (shown in coloured dashed lines and in the legend). The fitted quantile

regression is shown with solid black line.

A test for trend, jump or stationarity based on in-stationary extreme value analysis (Coles, 2001) was performed for
all 133 LS. We tested for linear trend in location parameter vs. jump at date of sensor change from analogue in early years
to digital in the later years in the location parameter vs. stationarity. The decision was based on Akaike Information
Criterion. The results for different duration levels (x-axis) are shown in Figure 5Error! Reference source not found. —
left. It is obvious that the majority of instationarities at short duration levels is better explained as a jump (with mostly
positive sign) in the data. A possible reason could lie in the limited ability of analogue gauges to register abrupt intensity
changes, so that the total amount of precipitation falling in a short time interval may not be fully detected by analogue
sensors, leading to positive jumps at sensor changes from analogue to digital. However, as a counter-argument, the so-
called "step-response-error" that occurs with digital sensors could also be considered (see e.g. Licznar et al. (2015)). Since
the instationarities are usually jumps and not trends, a simple homogenisation of the data to a uniform sensor type is
possible by raising to the mean value of the digital sensor type (DVWK, 1999). This jump correction is applied separately
for each station and duration level. The results of applying the instationarity test to the homogenised series are shown in

7
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Figure 5- right. It can be seen that this approach can eliminate the instationarities at short duration levels significantly.
About 30% of the stations show instationarities (either trend of jump), while the remaining part is considered stationary.

Since only a small part of the stations show instationarities, here a stationary extreme value analysis is performed.
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Figure 5 Number of long series (LS) stations that show stationarity (stat) vs instationarity (either jump- or trend like) at
different duration levels following the instationary extreme value analysis; left) before jump elimination and right) after

jump elimination between analogue and digital sensors.

3. Methods

3.1 Local Estimation of Extreme Value Statistics

3.1.1 Reference Approach

Here, the Generalised Extreme Value (GEV) probability distribution is used for the statistical analysis of extreme

rainfall and the derivation of the local DDF curves, that is described as following:

1
F(x;,u,a,y)zexp{—[1+y@] "3, 1+@>0,y¢0, 1

where p is the location, o the scale and vy the shape parameter. If the shape parameter is greater than zero, heavy-tail
behaviour is present (GEV type I); if the shape parameter is less than zero, then it is the reverse Weibull distribution with
no-tail behaviour (Coles, 2001). The GEV parameters are fitted to the AMS of each duration level and station separately,
based on the L-moments method. For this purpose, the R-package “Imomco” was used (Asquith, 2021). A prior
investigation on our study revealed that the L-moment approach led to more stable results than the method of Maximum
Likelihood. The shape parameter was either estimated or fixed at 0.1 for estimation of return periods up to 100 years,
approximately following the recommendation from Koutsoyiannis (20044a, b) for estimation of return periods up to 100
years (y~0.1) and on a prior analysis conducted on LS series. Based on the parameters obtained the quantiles of return
periods T1a, T10a, T20a, T50a and T100a were derived. Since the AMS-approach tends to underestimate quantiles at low
return periods (Ta < 10 years), a correction of the AMS return periods according to the DWA 531-Regulations with factors
given in Table 4 was performed.

Table 4 Correction of the return periods (Ta) when fitting the GEV to the Annual Maximum Series (AMS) adapted from
DWA (2012).

Return Periods for POT ‘ Ta=1 year Ta=5 years Ta=10 years

Return Periods for AMS ‘ Ta=1.6 years Ta=5.5 years Ta=10.5 years
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Because the parameters are fitted separately on each duration, quantile crossing may occur. Quantile crossing happens
when the extreme rainfall volumes of a fixed probability (Ta=100 years) are not increasing with longer duration levels.
Figure 6 shows for different return periods T1a, T10a, T20a, T50a and T100a the number of stations affected by these
crossings for the empirically calculated quantiles (left) and the quantiles fitted with the General Extreme Value (GEV)
distribution (right). The empirical quantiles are calculated according to Hyndman and Fan (1996). It is clear that the
number of stations with this problem increases significantly for larger return periods. In the empirical quantiles, especially
the SS show quantile crossing at long duration levels (D > 24h). Here, the volumes of the duration D72h and D168h are
lower than the extremes of D24h. With the GEV-fitted quantiles, significantly more stations show quantile crossings than
with the empirically calculated quantiles. These problems occur for all return periods, however are more frequent for the
return periods T50a and T100a. In order to avoid such problems two different methods are applied and compared here:
the approach presented by Koutsoyiannis et al. (1998) and the approach presented by Fischer and Schumann (2018).

These two methods are described below.
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Figure 6 Number of all stations at 5min resolution (for both short and long series) for different return periods (Ta)
showing quantile crossings in the empirically calculated quantiles (left) and the GEV-fitted quantiles (right) with

increasing duration.
3.1.2 Koutsoyiannis Approach

Koutsoyiannis et al. (1998) considers the intensity as a function of the duration level through two parameters (6, n) and
the generalised intensity can be calculated from duration specific intensity as described below:

i=1i4" by withb; = (d+0)", 2
where i is the generalised intensity in mm/h, i, is the intensity in mm/h observed at each duration level, d is the duration
level in hours and O, n are the Koutsoyiannis parameters optimised for each station. Through this relationship a
generalisation of the AMS intensities over all the chosen duration levels is possible. The parameters O (larger than 0) and
n (within the range 0 to 1) are estimated for each station by minimising the Kruskal-Wallis statistic as indicated in
Koutsoyiannis et al. (1998). The advantage of this optimisation method lies in its non-parametric character and robustness,
as the Kruskal-Wallis statistics is not affected by the presence of extreme values in the sample. Once the parameters ©
and m are determined, the generalised intensities from all duration levels are pooled together (as the main assumption is
now that they follow the same distribution) and a GEV distribution is fitted to this sample by the methods of L-moments.
Lastly, to obtain DDF curves, the quantiles at specific return periods are estimated from the fitted GEV distribution, and
are divided by the term by in Equation (2) (dependable on 6, n) parameters and the duration level). This joint estimation of
parameters over all durations should not only avoid the quantile crossings, but also make the estimation of DDF more

robust.
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3.1.3 Fischer/Schumann Approach

In contrast to Koutsoyiannis that treats the intensities of AMS as a function of the duration, Fischer and Schumann (2018)
propose an approach based on the GEV distribution, where the generalised GEV parameters are monotonically dependent
on the GEV parameters determined for each duration level. Thus, as a first step the GEV parameters (as in Equation (1))
are estimated from the L-moment methods for each duration level at each station, and then through a nonlinear regression
(with two parameters a and ) each GEV parameter is related to the different duration levels as indicated by the following

equations:

— — %o g _ .
Ha = —pg) Oa = and L= a+p-d, 3)

where d is the duration level in 5min, p4, 04,y are the GEV parameters of each duration, while « and £ are the regression
coefficients with a,, a;>0, B, B, >-1, f = 0. The parameters are obtained by nonlinear least-square-minimising. In
addition to the shape parameter dependency shown in Equation (3), three alternative approaches are considered: a constant

shape parameter over all durations, a shape parameter fixed at 0.1 and a quadratic relationship as in Equation (4).
E=a+P log(d) +P,- log(d)? (4)

where P; and P are estimated spanning across all stations and a is a station specific optimised parameter.

3.2 Regionalisation of Extreme Value Statistics

The local parameters estimated for each station (GEV parameters and generalisation parameters) make the base data set
for the regionalisation of the extreme rainfall statistics. Each of these parameters is regionalised independently based on
the regionalisation methods explained below, and later on, DDF maps for each duration and return period of interest are
generated. The overall procedure for regionalisation is given in Figure 7-a, and the regionalisation methods are given in
Figure 7-b. The regionalisation approaches were compared only for 4 parameters (see parameters of KO.FIX in Table
5), as these 4 parameters were selected as most appropriate for local DDF estimation in Section 4.1.

6. Regionalisation of Parameters (l, , ©, 1)

1. Data Homogenisation Ordinary Kriging Kriging with External Drift  Index-based
Interpolation (OK) Interpolation (KED) Regionalisation (INDEX)
2. Annual Series per Duration

6.1 Variogram Estimation 6.1 Variogram Estimation % 1l Niemimeifes soites & &g
. . b P
3. Generalisation over Durations per Parameter per Parameter 3 with the index ¥ (mean)

}

(spherical model, automatic fitting) (spherical model, automatic fitting)
4. Fitting GEV Parameters

6.2 OK for each Parameter 6.2 OK interpolation of the 6.2 Growth Curve ~GEV
5. Derive Parameter Set (Ngyic=4, Nyy=24, Ry, =300km) external drift (SS or/and DS) (L-moments averaged per region)

6. Regionalisation of Parameters . &3 Sori by T i

(ng=4, 0, =24, R, =300km) (¥ interpolated with OK or KED)

7. Rain depth per Duration & T,

a) b)
Figure 7 a) The step-by-step methodology applied here from the given point data sets to the final regionalised rainfall
depths over all durations and return periods (T,) in Germany; b) a detailed procedure for Step 6 - Regionalisation (shown
in red) only for the parameters of KO.FIX (see Table 5) carried out with different methods (ordinary kriging — left,
external drift kriging — middle and index-based regionalisation — right). The parameters interpolated are the GEV
(location - u and scale 6) and Koutsoyiannis (6 and n) parameters. For both kriging methods, for each parameter first a
spherical variogram is estimated (step 6.1) and the interpolation is performed (step 6.2 or 6.3) with the given N, N...and

R.. which are the kriging parameters for minimum, maximum number of neighbours and maximum radius for neighbour
10
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search. For index based regionalisation, first the generalised series obtained in step 3 are normalised with the index ¥
(step 6.1), next a regional GEV growth curve for each homogeneous region is derived based on regional L-moments (step

6.2) and finally the quantiles at each duration are re-scaled with the index ¥ (step 6.3).

3.2.1 Ordinary Kriging Interpolation

The regionalisation of extreme value statistics for Germany will first be carried out with Ordinary Kriging (OK)
interpolation. Here, the extreme rainfall parameters are interpolated independently. The flow chart for this interpolation
technique is shown in Figure 7-b. Ordinary Kriging is widely used for interpolation due to its simplicity in comparison
to other kriging methods. The expected value of the random process being investigation (E) is treated as constant in space
(as per Equation (5)), whereas the increase in variance of the target variable at any two locations (u and u+h) depends
only on the distance h. This increase in the variance is represented by the semi-variogram function y(4) (here called
variogram). Therefore, in the first step, the empirical variogram is estimated by discrete point observations according to
Equation (6).

E[Z(u+h)] =E[Z(uw)] =m ®)

Y (h) = Zui—uj:h(Z(ui) - Z(u]-))z, (6)

_r
2N ()

where N is the number of any two observed data pairs (ui and u;) at distance h. Since the empirical variograms are not
continuous functions, theoretical variograms must be fitted to the observed values. To describe the spatial variance of the
data, several theoretical variogram models can be used and fitted to the empirical variogram using the least squares
method. For the interpolation of rainfall extremes a spherical variogram (as per Equation (7)) is chosen as more

appropriate (Kebaili Bargaoui and Chebbi, 2009).

Y= cote- (B-1

a m)forh <aandy(h) = cforh=a , U]
where Cp is the nugget, ¢ the sill and a the range of the variogram. The variogram describes the spatial variability of the
target variable and the average dissimilarity between a known and unknown location. Once the theoretical variogram is
known, it can be used as a basis for interpolating the statistical properties on a 5km grid. This grid resolution was chosen
for two reasons; first it is consistent with the HyRas product from German Weather Service that uses the same resolution,
second it is a compromise between the coarsest and finest legible resolution computed from the given density of long
series (LS) (the reference for this study) following the suggestions of Hengl (2006). The interpolation is done as indicated
in Equation (8), the variable at an unknown location (Z") is estimated by the weighted average of the nearby known

locations (Zu).

n

') = Y - Zw), ®)
where the weights (/I.S:;re derived from the theoretical variogram, and n is the number of selected neighbours. The R-
package "gstat" is used to fit the variograms and interpolate the variables (Pebesma, 2004). An advantage of Ordinary
Kriging interpolation is that the weights are determined in such a way that the difference between the estimate and the
observed values is zero on average. However, this can lead to the interpolated variable being smoothed in space. Different
theoretical variograms were previously investigated, i.e. exponential, gaussian and spherical, with the spherical model
together with a nugget effect showing the best fit for the case study. The fitting of the variogram model parameters for
different data types and experiments is done automatically by weighted least square fit. Since the automatic fit relies on
the initial values of the model parameters, we defined the initial values with trial and error, and accepted a fit that was

adequate qualitatively. Figure 8 illustrates the empirical and theoretical normalised variograms for interpolation of the
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GEV and Koutsoyiannis parameters (after method KO.FIX shown in Table 5) estimated from the three main datasets
available: long series (LS), short series (SS) and 30 realisations of disaggregated daily series (DS). Note that the
variograms are normalised in order to ensure a comparison between the different datasets. From this figure a clear
difference between the spatial dependency of different datasets, due to different station densities and settings, is visible.
The long and short series (LS and SS) exhibits similar relationship with each other for the GEV parameters (i and o) but
distinguish either in the nugget value (c,) or the range (a), whilst the daily disaggregated series clearly exhibit different
nugget (co), range (a) and even sill (c). The differences between the datasets are less visible in the spatial dependencies
of the Koutsoyiannis parameters (6 and p), where the three datasets differ slightly in nugget and range. Particularly the
spatial dependency of the scale parameter is captured quite differently by the three datasets. Here, LS and SS are differing
mainly at the nugget value, where LS has a smaller value than the SS series suggesting that the spatial structure of the
scale parameter from SS is smoother than that of LS. On the other hand, the DS datasets exhibit a completely different
variogram for the scale parameter, suggesting that the extremes of high return period (influenced mainly by the scale

parameter) will have different spatial structures than those of LS and SS series.

— |5 e S5 DS ~ — |5 e S5 Ds < | — |5 e 55 Ds

=3 " Came =3
o] ’/ ]
o - o
™~ L | ™~ L |
= T T T T T T T = T T T T T T T = T T T T T T T = T T T T T T T
0 50 150 250 350 0 50 150 250 350 0 50 150 250 350 0 50 150 250 350
Distance [km] Distance [km] Distance [km] Distance [km]

Figure 8 Empirical (dots) and fitted (solid lines) spherical theoretical variograms for the GEV (U - location and o —
Scale) and Koutsoyiannis (8 and 1) parameters estimated by three different datasets (long series LS in dark blue, short
series SS in light blue and disaggregated daily series DS in grey).

3.2.2 Kriging with External Drift Interpolation

In the Kriging with External Drift (KED), the expected value E of the target variable Z at any location u is linear dependent
on secondary variables Y, and thus the Equation (5) takes the form of the Equation (9). Here the secondary variables (or
the external drifts) reflect the spatial trend of the target variable. Theoretically, the variogram for KED interpolation is
computed from the residuals between the target and the secondary variables. Here, for simplicity the OK variograms are
used instead, since as shown in Delrieu et al. (2014) they can produce very similar results to the KED one.

E[Z(w) 1 (W), Y2 (w), ..., Y ()] = by + Xy biYie (W) 9)
where Y represent k secondary variables from 1 to m that are used as an external drift, bo in the interception of the linear
dependency and by the coefficient for each k drift. For this study different site characteristics (i.e. elevation) were
investigated as external drift, however as indicated by the cross-correlation between the target variables (in this case the
4 parameters describing the local statistics) and the site characteristics, the linear dependency between them is not high
(see in appendix Figure Al). Therefore, here only interpolated local parameters from the short and/or daily series are

used as external drift information.
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3.2.3 Index-based Regionalisation

The regionalisation of extreme rainfall statistics in Germany is as well carried out using the index method according to
Hosking and Wallis (1997). The index method was originally developed for the regionalisation of flood quantiles,
however found a wide application also for the regionalisation of extreme rainfall statistics. By pooling information in
statistically homogeneous regions, a more robust estimate of extreme rainfall statistics can be made and based on each
defined region, the information can be transferred to other unobserved points. A homogeneous region exists if the
distribution functions have the same shape at all points in the region. The homogeneity indicator H; presented by Hosking
and Wallis (1997) is typically used to determine homogeneous regions. If the H; is lower than 1, the region is said to be
homogeneous, if it is between 1 and 2 the region may be heterogeneous, and else, if it is higher than 2, the region is
definitely not homogeneous. Here different site characteristics like the latitude, longitude, elevation, long term annual
average of sunshine duration and mean annual precipitation were used as input to define homogeneous regions. Based on
a k-clustering approach (Ward, 1963) nine homogeneous regions were identified and are shown in Figure 9Error!
Reference source not found.. The obtained homogeneous regions were tested for homogeneity for each data type
combination and, as visible from Figure A2 in appendix, all values are below 1, meaning that the regions selected are
homogeneous and can be used for the index-based regionalisation. Note that the generalised statistics over all the durations
from Section 3.1 are used as input for the homogeneity test. The R-package “nsRFA” is used to obtain the homogeneous
regions (Viglione et al., 2020). In order to find an appropriate number of clusters, different number of clusters between 2
and 20 are tested and compared based on the homogeneity indicator H; and whether they were spatially continuous and
physically reasonable. The maximum number of clusters of 20 was chosen to ensure a sufficient number of stations and

thus a sufficient number of observation years per region (Hosking and Wallis, 1997).

Regions

EESN B pEN EeEaRN|
CENOO A WN =

Figure 9 Nine homogeneous regions implemented here for the index-based regionalisation. The regions shown here

are a generalisation of the k-cluster results to account for spatial consistency.

Once the homogeneous regions are determined, the different local statistics are normalised by a scaling factor, the index.
In contrast to the previous regionalisation techniques discussed so far, the index-based regionalisation has an extra step —

the normalisation of the general intensities with the index (performed at step 3 in Figure 7 — left), which in this case is
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the mean generalised intensity. Next, the local L-moments are estimated on the basis of the normalised annual series and
regional L-moments are derived for each region weighting the local L-moments according to their time series length.
Finally, a GEV growth curve is fitted for each region via the regional L-moments. The R-package “lmomRFA” was
employed for the application of the index method (Hosking and Wallis, 1997). In the final step, by back-scaling the
normalised extreme rainfall for all observed and unobserved points in the homogeneous region, estimates can be made
about the extreme rainfall as a function of the duration (based on regional averaged values of observed 6 and 1) and the
return period (based on regional GEV growth curve). The geostatistical interpolation of the index makes it possible to

transfer the extreme value statistical evaluations to unobserved points within the region.

3.3 Performance Assessment and Comparison
3.3.1 Local Performance Assessment

For the local estimation of the GEV parameters that describe the extreme rainfall over all the selected duration levels, two
different approaches were consulted: from Koutsoyiannis et al. (1998) (herein referred as KO) and from Fischer and
Schumann (2018) (herein referred as FS). Before carrying on with the regionalisation it is important to investigate which
of the methods is more adequate for the estimation of the GEV parameters over all the duration levels. Moreover, the two
methods do not only distinguish in their approach of generalisation across duration, but they also include different
variations on the calculation of the GEV shape parameter (y). A review of the methods and shape parameters is given in
Table 5, together with the respective optimised parameter set for each case. The obtained parameters for different data

sets are shown in the appendix: Figure A3 for KO and in Figure A4 for FS.

Table 5 A review of the methods and the different calculation of the shape parameter investigated for the local statistics,

where KO stands for the Koutsoyiannis and FS for the Fischer and Schumann framework.

Method | Shape Parameter Abbreviation Optimised Parameter
KO is constant per each station, as fitted by L-moments KO.CON W o,v,0,1m

is fixed at all stations as y = 0.1 KO.FIX n, 0,0,

is calculated as proposed by Fischer and Schumann FS.RLM Oy, By, 0o, Bo, a, B
ks is constant over all durations FS.CON oy, By, Ao, Po, ¥

a quadratic dependence on duration specific shape FS.QUA oy, By, do, Po, @

is fixed at all stations as y = 0.1 FS.FIX Oy, By, o, Bo

The performance of the methods and the respective case of shape parameters as illustrated in Table 5 is evaluated only
at the location of the long series (LS) by comparing the normalised quantiles over all durations for return periods Tla,
T10a, T20a, T50a and T100a with the GEV quantiles calculated separately at each duration level. Here the percentage
RMSE (as per Equation (10)) was employed to assess the errors of the selected cases at each duration level and station

with respect to the GEV duration specific quantiles:

J%Z;l(RDgen,st _RDd,st)Z
Percentage RMSE: RMSE s [%] = 100 -

: (10)

RDgst
where i represents each of the 5 selected return period T, varying from 1 to 100 years, st varies from 1 to 133 available
long series, RDgenst COrresponds to the derived rainfall depth from the generalisation method of duration d, RDg the
derived rainfall depth from the GEV quantiles at duration d, and the RD,; is the mean rainfall depth from the GEV
quantiles at a duration d averaged over the return periods. Alternatively, the error for each return period and station can

as well be calculated by Equation (10) by swapping the d with T,, and where RDy, . is the mean rainfall depth from the
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GEV quantiles at return period T, averaged over the duration levels d (from 5min up to 7d, therefore i changes from 1 to
12).

Since the GEV quantiles fitted per each duration level cannot be considered the ground truth, a non-parametric bootstrap
is performed when estimating the parameters of each method, in order to investigate the sampling uncertainty of derived
DDF values. For this purpose, 100 randomisations of the observations were conducted and the uncertainty range of the

derived rainfall depths is computed as following:

Normalised 95% Confidence Interval Width:  nCI95,,;4[—] = —st.d.Ta (11)

Meangt g4 Ta

where nCI95yiqm is the 95% confidence interval width and Mean is the average of rainfall depth obtained from 100
realisations and expressed for each long series (LS) location st, duration level d and return period Ta. The smaller the
uncertainty range, the more robust are the estimated parameters for the high return periods. Based on the two performance
criteria, percentage RMSE and nCI95yiq, all the methods in Table 5 are compared to evaluate the best one for the
estimation of rainfall DDF curves. The best method is selected as the one with the lowest RMSE and nCI195yigi. The

results of this comparison are given in Section 4.1.

3.3.2 Spatial Performance Assessment

In order to check which of the regionalisation approaches provides the best results, a leave-one out cross-validation was
carried out at the locations of the long series (LS 133 stations). For each approach, the rainfall depth (RD) is determined
from the return periods T1la, T10a, T20a, T50a and T100a and the selected duration levels. After regionalisation, the
regionalised rainfall depths are compared with the local generalised GEV quantiles (here assumed to be the truth). The
short series are omitted from the cross-validation, as no reliable extreme value statistics can be carried out for large return
periods due to the very short observation length. The quality of the regionalisation approaches is evaluated using the

following criteria:

1vD . _
Percentage Bias: PBIAS; 1 %) = 100 - B2d=t{"0regionata “RDiocard) (12)
! Zd=1(RDlocal,d)
\/%Zg=1(RDregional,d _RDlocal,d)2 (13)
Percentage RMSE: RMSE; 14[%] = 100 - —— ,
! RDjocal
D . _ 2
Nash-Sutcliffe Criteria: NSCsral—]=1~- Zd=1(RDregionatd ~RPiocald) (14)

D —_—\2 )
Zd=1(RDlocal,d - RDlocaZ)

where the d varies from 1 to D=12 for each duration level between 5min and 7days, Ta the return period, st the respective
long series (LS) station, RDregional COrresponds to the regionalised rainfall depth, RDiecal the locally derived rainfall depth
from the generalised GEV function and the RD,,.4; is the mean local rainfall depth averaged over the durations. The
cross-validation only at the location of the LS makes it possible to investigate the value that the short (SS) and the
disaggregated daily series (DS) are adding to each regionalisation method. For this purpose, the regionalisation methods
are run first only with the LS as input, and the performance of such an application is considered the benchmark for
improvement. Later on, the SS and DS are added stepwise as input to the regionalisation, in order to assess the
improvement, they introduce towards the benchmark. Additionally, one can calculate the expected performance when
only the short or/and the disaggregated daily series are available, and not the long one. An overview of these experiments

and their aim is given at Table 6.
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Table 6 Overview of the experiments performed with different data sets for each regionalisation method, where SS — are

short series, LS — long series and DS — disaggregated daily series.

Input Aim

Only LS Benchmark for improvement

Only SS The expected error from only short series

Only DS The expected error from only disaggregated daily series
LS and SS The added value from the short series
LS and DS The added value from the daily disaggregated series
SSand DS The expected error from short and daily disaggregated series

LS, SS and DS The added value from the short and daily disaggregated series

A directed comparison of the performance criteria between the different experiments and the benchmark is calculated
here as per Equation (15).

(‘Perfnew,Ta + Perfref,Ta)
Perfref,Ta

Perfimpr,Ta [%] = 100- ) (15)

where Perfrer 1ais the performance criteria calculated for each return period Ta as per Equation (12)-(14) from the scenario
with only LS as input, and Perfnew 1a is the performance of any other combination of input data as per Equation (12)-(14).
A positive value for this criterion indicates an improvement in performance in comparison to the only LS scenario, while
a negative value indicates a deterioration. Note that, the signs of the nominator are exchanged in the case of the
improvement of the NSE. It is as well important to emphasise that the scenario ref corresponds to the best regionalisation

method with only LS as input, namely ordinary kriging of LS based on results of Section 4.2.

Finally, based on different combinations of the available series (data types) as external drift in the kriging interpolation
may help to shed light on which combination of the data is more useful for the regionalisation of the rainfall DDF values.
Here the data to be used as external drift are first interpolated with ordinary kriging. A description of these different
combinations for the KED interpolation is given is Table 7. The performance of the different combinations is evaluated
only at the location of the LS, and the best integration is selected based on the highest improvement in comparison to
regionalisation with only LS as input.

Table 7 Overview of different integration of data types in Kriging with External Drift (KED) interpolation where SS —
are short series, LS — long series and DS — disaggregated daily series. Pooling the data together with same importance

is represented by (+) sign, whereas priority importance (integration through an external drift) is represented by the (|)

sign.
Combination Abbreviation
Interpolate LS with OK[SS] as external drift KEDILS|SS]
Interpolate LS with OK[DS] as external drift KEDI[LS|DS]
Interpolate LS with both OK[SS] and OK[DS] as external drift KEDI[LS|SS+DS]
Interpolate LS and SS with OK[DS] as external drift KED[LS+SS|DS]
Interpolate SS with OK[DS] as external drift KED[SS|DS]
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4. Results

4.1 Local Estimation of Extreme Statistics

Figure 10 illustrates the local percentage RMSE of each method in comparison to the duration specific quantiles (as per
Equation (10)). The upper row of Figure 10 shows the percentage RMSE calculated for each location and duration level
over all the return periods and the lower row of Figure 10 shows the percentage RMSE calculated for each location and
return period over all the duration levels. The results from Figure 10 — upper row indicate that the KO approaches (both
fix and station constant shape parameter) have an almost constant RMSE over all durations under the value 10%. On the
other hand, the FS approaches tend to have similar or little smaller RMSE for the longer duration (median RMSE under
8%), but are not able to represent well enough the very short durations. For the FS approaches, the RMSE median for
duration levels up to 60 min, is higher than 10%, with the 5min RMSE being the highest (between 25-45%). The results
from Figure 10 — lower row illustrate that all the approaches manifest higher errors with higher return period. Both of the
KO approaches (fix and station constant shape) show very similar behaviour. The KO.FIX performs slightly worse (1-
4% higher RMSE) than the KO.CON, but this is expected as the duration GEV fitted per each duration independently
favours the KO.CON (as the shape parameter is let free for the GEV parameter fitting). The FS approaches perform very
similarly to one another, however here contrary to the KO.FIX approach, the performance of the FS.FIX seems better
than the other approaches. Overall, the KO approaches have the priority at shorter durations and they can capture the
volumes at specific durations better than the FS approaches. On the other side, the FS approaches can capture better
extremes at longer durations. A unanimous selection is not yet possible from the obtained results so far, because the local
GEV duration specific parameters may not represent the ground truth.

KO.CON KO.FIX FS.CON FS.QUA FS.RLM FS.FIX
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Figure 10 RMSE (%) performance of the given generalisation methods over all the long series (LS) in comparison to
the duration specific GEV quantiles grouped: upper row - for different duration levels (calculated per station over return
periods Ta), and lower row - for different return periods (calculated per station over duration levels). The overview of

the methods shown here is given in Table 5.
To analyse which approach estimates more stable and representative parameters, a non-parametric bootstrap was

performed (with 100 random realisations), and served as a basis for assessing the 95% confidence interval width of the
obtained DDF values. Figure 11-left shows the normalised 95% confidence interval widths (nCI195yiqm) for the rainfall
depth (as per Equation (11)) estimated for each of the selected approaches. A high value of the nCI95uiqn indicates that
the bootstrap yields very variable rainfall depths, and hence a higher uncertainty is associated with the method. Contrarily
a low value of the nCI195ui4n indicates that the rainfall depths have low variation across the random realisations, and thus
the obtained DDF curves are considered more stable or robust. The results shown in Figure 11 indicate that the KO.FIX
exhibits the lowest variation (median nCI195yign ~0.23), followed up by FS.FIX (~0.25), and by KO.CON, FS.CON,
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FS.QUA with slightly higher variations (respectively ~0.3). Interesting is to see that the FS.RLM has a median nC195ygn
~ 0.3 but can reach extreme values up to 2. Figure 11-right) shows the scatterplot of nC195y;qn obtained from the KO.FIX
(x-axis) and FS.FIX (y-axis) for different duration levels and return periods (shown with different colours) at the LS
locations. Except for very low return periods (T1a), FS.FIX exhibits on average higher values of nC195y;q4n than KO.FIX.
Based on these results, the KO.FIX (Koutsoyiannis framework with shape parameter fixed at 0.1) was chosen as the best
method and was used for the regionalisation of the DDF curves. The advantages of the KO.FIX are that: 1. It represents
all duration levels similarly and fairly, 2. The parameter estimation is more robust than any of the other methods, 3. It
uses a known and well-established method for the estimation of the DDF curves.
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Figure 11 left) comparison of the normalised 95% confidence interval width [-] for the methods and shape parameters
selected for the generalisation of the DDF values over all the durations (see Table 5 for a summary of the methods);
right) a direct comparison of the normalised 95% confidence interval width [-] for KO.FIX (x-axis) with FS.FIX (y-axis)
for each duration D and return period T (shown in different colours).

4.2 Regionalisation of Extreme Statistics

As discussed in the Section 4.1, the AMS at different duration levels were normalised according to Koutsoyiannis
approach and the GEV parameters were fitted to the grouped generalised intensities. The shape parameter was kept fixed
at 0.1. Ordinary Kriging (OK) and index-based (INDEX) regionalisation were run first only with the LR data as input —
to decide about which of the two approaches will serve as a benchmark. A direct comparison based on Equation (15) is
then performed for each of the selected performance criteria (where new is OK and ref is INDEX), to compute the
improvement or deterioration of OK with only LS data compared to the INDEX. The median values for each return period,
performance criteria and method, are given in Table 8. Here it becomes clear that the kriging approach exhibits lower
RMSE for all return periods, worse BIAS for high return periods, and slightly better NSE than the index method. Based
on these results, the kriging with LS as input (KRIGE[LS]) is used as a benchmark for calculating the improvement in
performance by adding additional data types. Apart from the performance, the other advantage of kriging is that it is more
of a “pure” method, as it interpolates independently the 4 parameters, while the index approach is a “mixture” between
the regional growth curve estimation, averaging 6 and 1 parameters, and kriging to interpolate the index. For this reason,
one may prefer the kriging regionalisation, as the errors are mainly from the kriging system, while the index method
includes errors from the kriging system and from regional and averaged parameters.

Table 8 Median performance improvement/deterioration (%) of ordinary kriging (OK) versus index-based (INDEX)

regionalisation calculated for different data as per Equation (15) (where new is OK and ref in INDEX), when only long
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series (LS) are used as input. The performance is obtained by cross-validation over 133 LS stations. The colour green

(+) indicates better performance by OK, red (-) indicates better performance by INDEX.

RMSE (%) PBIAS (%) NSE (%)
Tla TI0a T20a TS0a Tl00a | Tla TI0a T20a TS0a Tl00a | Tla TI0a  T20a  T50a  Tl00a
[ s 5270 1230 -0268 0015 1510 | 2500 -1200 -1440 | 3440 2469 | 0250 0010 0002 0002 0006

4.2.1 Best Regionalisation for Different Data Combination

Kriging and index-based regionalisation was then performed for each data type experiment given in Table 6, and the
cross-validation results for the 133 LS locations were compared to the benchmark (KRIGE[LS]) selected before as the
best regionalisation with only LS as input. To enable an easy comparison between the two regionalisation methods, the
difference between the improvements achieved between the kriging and the index-based regionalisation in comparison to
the benchmark was calculated for each of the 133 LS locations. The median differences (in percent) for each data type
experiment over the 133 locations for each performance criteria and return period are given in Table 9. A positive
difference (dark green shade) means that the improvements reached by the kriging interpolation are higher than the index-
based regionalisation. A negative difference (red shade) means the opposite. The data are combined by two operators:
either (+) referring to pooling of the datasets together with same importance (the parameters and the index are interpolated
with ordinary kriging), and (]) referring to a linear relationship between the datasets (priority importance) where the

parameters and the index are interpolated through external drift kriging.

Table 9 Median difference between kriging and index-based improvements calculated for different data as per Equation
(15). The median is computed from 133 stations. The data used as input are short series (SS), long series (LS) and
disaggregated daily series (DS) and combined either with same importance (+) or with priority importance (]). The
positive difference shown in green shades indicate that kriging introduces bigger improvements towards the benchmark
than the index-based regionalisation. The negative differences shown in red shades indicate that the index-based

regionalisation has the bigger improvements.

RMSE (%) PBIAS (%) NSE (%)

Tla Ti0a  T20a Ts0a T100a | Tla Ti0a  T20a Ts0a T100a | Tla Ti0a  T20a  TS0a  T100a

ss 15.1 8.2 9.6 0.1 04 6.5 10.4 48 1.5 23 -0.1 0.6 0.0 0.0 0.1
DS 19.4 48 6.1 10.1 122 26 2.9 8.0 115 118 04 03 08 08 0.9
LS+SS 83 36 6.4 23 038 8.0 35 02 6.7 -114 03 02 02 02 0.1
LS|SS 55 116 123 98 108 13.0 8.6 36 6.1 6.0 02 03 05 05 0.5
Ls+Ds | 1012 904 753 773 769 | 1575 1629 1547 1341 1305 10.1 10.0 10.1 10.1 10.0
LS|SS 20.7 16.6 16.1 15.5 12.8 27.6 12.6 10.5 3.9 14 0.7 04 04 0.4 03
ss+Ds | 1110 975 825 79.0 826 | 1760 1946 1887 1572 1508 103 98 938 98 94
SS|DS 10.6 6.8 8.8 40 5.1 9.9 34 2.8 23 5.9 02 04 03 03 02
LS+SSDS| 59.8 441 455 433 414 1104 1326 1418 1097 1073 5.1 46 44 44 41
Ls+ssps | 131 122 132 10.6 119 104 2.0 08 1.0 28 02 0.5 05 05 0.5
Ls|ss+Ds [ 201 133 115 6.1 33 182 8.1 3.1 02 19 0.5 03 02 02 0.1

The results from the Table 9 indicate that for most of the cases the kriging interpolation brings higher improvements to
the benchmark than the index-based regionalisation. Exceptions are the regionalisation with only SS, LS+SS, SS|DS,
LS+SS|DS and LS|SS+DS where the index-based regionalisation exhibits on median 2-12% higher PBIAS improvement
for higher return periods than the kriging interpolation. However, for these cases, the RMSE and the NSE improvements
are much higher for the kriging regionalisation. Therefore, it can be concluded that overall, the kriging interpolation yields
better results than the index-based regionalisation (lower RMSE and higher NSE), but may suffer depending on the
combination of data types from slightly higher PBIAS. Also, it has to be mentioned, that when grouping the daily
disaggregated time series directly (operator +) with the other data types (either LS and SS), the kriging performs up to
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100% better than the index-based regionalisation. This suggests that the parameters from the disaggregation do not follow
the same regions or growth curve as the high-resolution data (LS and SS), thus a kriging interpolation seems a more

reasonable choice for integrating daily disaggregated series (DS).

The results of Table 9 give a direct comparison between kriging and index-based regionalisation, nevertheless as they
are relative to each case, do not give any information if ordinary kriging or external drift kriging is yielding better
regionalisation results. For this purpose, the difference of improvements between KED and OK were calculated and
shown as median over the 133 LS locations in Table 10. A positive difference (green shade) means that the improvements
reached by KED are higher than the OK interpolation. A negative difference (red shade) means otherwise. The results
show that overall, the KED exhibits higher RMSE and NSE improvements than the OK, but the KED tends to have lower
PBIAS improvements than the OK. When only the high-resolution data sets are present (LS and SS), the KED behaves
better than OK mainly for high return periods (50-100a), when LS and DS are present, KED clearly outperforms the OK.
For all the remaining cases the OK outperforms the KED only for the PBIAS of high return periods.

Table 10 Median difference between external drift kriging (KED) and ordinary kriging (OK) improvements calculated
for different data as per Equation (15). The median is computed from 133 stations. The data used as input are short series
(SS), long series (LS) and disaggregated daily series (DS) and combined either with same importance (+) or with priority
importance (]). The positive difference shown in green shades indicate that KED introduces bigger improvements towards
the benchmark than the OK. The negative differences shown in red shades indicate that the OK regionalisation has the

bigger improvements.

RMSE (%) PBIAS (%) NSE (%)
Tla TI0a  T20a TS0a Tl00a | Tla Ti0a  T20a TS0a TI00a | Tla TI0a  T20a  TS0a  T100a
LSandSS | -6.4 2.0 -1.9 7.8 8.8 -13 49 -5.2 12 62 0.5 02 0.1 0.1 0.5
LSandDS | 3564 41.0 394 329 30.2 57.6 30.5 207 14.5 132 2.5 1.7 16 1.6 1.5
SSandDS | 464 305 272 263 278 37.1 1.0 8.1 113 -149 1.9 14 13 13 14
Ls+sSSDS | 422 202 19.7 174 202 393 05 160  -186  -19.9 18 12 1.0 1.0 12
LS|SS+DS | 40.0 206 163 16.4 16.4 37.0 25 215 -168  -17.7 1.6 1.0 0.9 0.9 1.0

4.2.2 Best Data Integration for Regionalisation

So far, the external drift kriging interpolation has shown superiority for regionalising DDF curves in comparison to the
index-based and ordinary kriging regionalisation. Nevertheless, the question still remains, what is the best combination
of the data sets for regionalising the DDF curves in Germany. Here it is interesting to see if all the three available data
sets are useful for regionalisation, or if single or dual networks are enough. For this purpose, the performance
improvement exhibited by different combinations of the data types in KED (as per Table 7) in comparison to the
benchmark are visualised in Figure 12. Note that since there are 30 realisation of DS data, a boxplot is illustrating the
performance spread over these 30 realisations. This affects regionalisation methods where DS data is present, otherwise
a single line indicates the performance of the regionalisation. For very low return periods (T1a), the integration of all data
types of the form KED[LS+SS|DS] brings the best performance, with RMSE and BIAS up to 20% smaller and NSE 0.7%
higher. For return period T10a, the KED[LS|SS], KED[LS|DS] and KED[LS+SS|DS] perform very similar: some random
realisation from the disaggregated daily series (DS) introduce high improvement but as well low values, even though the
median over the 30 realisation is at the same level as the KED[LS|SS] one. For high return periods (T100a), KED[LS|SS]
introduces the highest improvement in all three performance criteria. Actually KED[LS|DS] is the second-best option,
however the median over the 30 realisations is either lower or equal to the performance of the KED[LS|SS]. There are
few realisations that introduce the highest improvements for RMSE and BIAS, nevertheless the computation time for the
disaggregation scheme and the fitting of the Koutsoyiannis approach is also a disadvantage of using the DS dataset. So

finally, the kriging interpolation of the long network (LS) with the short network (SS) as an external drift, is chosen as an
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optimal method for the regionalisation of the GEV and Koutsoyiannis parameters. Table 11 indicates the median
performance criteria (RMSE, PBIAS, NSE) for different return periods reached by this method (KED[LS|SS]). Expected
deterioration in performance when the long series are not present in comparison to the best method selected for
regionalisation (KED[LS|SS]) are given in Figure A5 in the appendix.

Table 11 Median cross-validation performance over 133 long series (LS) stations for the final selected regionalisation
method (KEDI[LS|SS]) at different return periods Ta.

Tla T10a T20a T50a T100a
KEDILSJSS]
RMSE (%) 8.11 8.06 8.24 8.46 8.86
PBIAS (%0) 1.00 1.10 0.80 1.00 0.80
NSE (-) 0.982 0.981 0.979 0.979 0.980
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Figure 12 Median performance improvements towards the benchmark from regionalising on different data
combinations, as per Table 7, in kriging with external drift; where SS are short series, LS long series (LS) and DS

disaggregated daily series, combined either with same importance (+) or with priority importance (|).

The three different data sets implemented here, distinguish from one another based on the parameter values (as shown in
Figure A3 of the appendix) also on the spatial dependency, variograms, shown in Figure 8. When fixing the shape
parameter to 0.1, the location and Koutsoyiannis parameters of LS and SS, are in similar range, and the main difference
is seen at the scale parameter (where the SS has high values of the scale parameter than LS). This gives a tendency of the
short durations to estimate bigger rainfall volumes for higher return periods. This behaviour is also in agreement reported
by Madsen et al. (2017) which used a Generalised Pareto distribution also with a fix shape parameter. Typically, this is
treated by index-based regionalisation, where extremes within a region are pooled together to estimate the DDF curves at
an unknown location as done in Requena et al. (2019). However, we show here that integrating the LS and SS with
external drift kriging, hence accounting for the spatial dependency of the extremes, delivers better performance than
grouping them together in the index-based regionalisation (also valid for the LS and DS integration).
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4.3 Final Product and Discussion

The obtained maps, on a 5km raster, for the four regionalised parameters (location parameter — p, scale parameter o,
Koutsoyiannis 6 and n parameters) with the KED[LS|SS] approach, are illustrated in Figure 13. Here the shape parameter
is fixed to 0.1 for whole Germany, which is very similar to results obtained by Ulrich et al. (2021) (shape parameter as
0.11 from the annual GEV approach) and validates our approach. The spatial distribution of the location GEV parameter
() follows partly the elevation information, with higher values in the southeast, where the German Alps are located. The
scale GEV parameter (o) values are independent of the elevation, with a high localised value near to Miinster city. In
2014, there was a very extreme event in Minster which has affected the statistics of the station located in the vicinity.
Currently it is not clear how to handle these singular extraordinary events in extreme value analysis in an optimal way.
Both Koutsoyiannis parameters (6 and n) show similar spatial patterns with lower values in the Alp and other mountainous
regions, as well as on the northern-west coast. These parameters exhibit higher variability in space than the GEV location
or scale parameters. Overall, the spatial distribution of n parameter follows the spatial structure of the annual rainfall sum

in Germany, the distribution of the location (p) parameter follows the information from the elevation, while the scale (o)

n
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Figure 13 Obtained interpolated maps from the KED[LS|SS] for each of the parameter: location parameter - 4, scale
parameter - o, Koutsoyiannis 6 and 5 parameters. The shape parameter y is kept constant at 0.1. The black lines illustrate

the borders of German Federal States.
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and 6 parameter don’t seem to be influenced by any climatologic or site characteristic. This is also seen at VVan De Vyver
(2012), where annual rainfall and elevation is concluded as important covariates, mainly for the location (p) parameter,
while the scale (o) parameter didn’t have meaningful covariates and the shape parameter didn’t show any spatial structure
but was kept constant over Belgium. These results agree to a certain extend with the results obtained here. However, the
rainfall statistics extracted from short or daily series are considered as more important than the annual rainfall (which
itself is an interpolation from point observation). Thus, interpolation of long datasets, should include extreme statistics

from short or daily series rather than annual rainfall as an additional information.
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Figure 14 Obtained design rainfall [mm] maps for whole Germany from the KED[LS|SS] regionalisation approach
derived for different durations (D=5min, 60min and 1440min): first row — return period Ta=1-year, second row — return
period Ta=10 years and third row — return period Ta=100 years. The black lines illustrate the borders of German Federal

States.

With these 4 interpolated maps, together with the shape parameter fixed at 0.1, DDF curves can be obtained for any
location in Germany. Few examples of design rainfall maps for duration levels 5min, 1 hour and 1 day, and return period
Ta=1,10,100 years, are given in Error! Reference source not found.. For short durations (i.e. D=5 min) the spatial
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distribution of rainfall extremes is independent from the elevation and becomes more erratic with higher return periods.
This is in accordance with the fact that the convective extreme events can happen anywhere and are very low correlated
with the orography. With increasing duration level, the relationship between orography and extreme rainfall becomes
stronger. As for instance in D=1h, the influence of the alpine regions is visible, which becomes even stronger for the
duration of D=1d. In the existing KOSTRA maps, all durations are dependent on elevation. Here, the elevation itself
didn’t show much effect on the scale (o) and 6 parameter, only to some extend on the location () and n parameter. This
means that the extremes of longer duration (affected by the n parameter) and of low return period (affected by the location
parameter) will show a pattern resembling the elevation. This is not true for short durations (affected by the 6 parameter)
and high return periods (affected by the scale parameter). This as well agrees with other studies, that report a weak
dependence of short duration rainfall (shorter than 1 or 2 hours) with the elevation in Germany (Lengfeld et al., 2019).
Lastly, the kriging interpolation as implemented here, opens the possibility to capture better the uncertainty — not only
the sample uncertainty, which is typically done by bootstrapping the points statistics, but accounting as well the spatial
structure of extremes by considering spatial simulations. Following this study and the best chosen method here, an
extensive uncertainty analysis is given at (Shehu and Haberlandt, 2022), whose result propose that DDF estimates with
KEDI[LS|SS] are more precise near to the location of long series (LS), and less precise in regions far from long series
(LS).

5. Conclusions
In this study the use of three ground measuring types in Germany was investigated for the estimation of design rainfall
maps. These data types included the long high-resolution dataset, with long observations at 5 min time steps from 60-70
years, the short high-resolution dataset with short observation also at 5 min time steps from 10 to 20 years, and the daily
dataset with observations varying from 20 to 100 years. The purpose of the work was to review different methods for the
estimation and regionalisation of the DDF curves and to investigate the value and the best integration of different data
types for estimating DDF curves in unobserved locations. The results will provide the basis for a new update of the design
storm maps for Germany, the KOSTRA-DWD?2023. First, the long analogous and recent digital high-resolution networks
were homogenised by performing a jump correction, with the jumps coinciding with sensor type changes. Second the
daily dataset was disaggregated to sub hourly durations based on a cascade model parameterised according to Olsson,
(1998) and Lisniak et al. (2013) from the RADOLAN data in Germany. Third, Annual Maximum Series (AMS) were
derived for each station available in the three datasets for duration levels ranging from 5 min to 7 days. This represents the
main database for the present investigation. Two methods were investigated for local estimation of rainfall extreme
statistics, adopted from Koutsoyiannis et al. (1998), and Fischer and Schumann (2018), and three different regionalisation
approaches (ordinary kriging, external drift kriging and index-based regionalisation) were investigated for the spatial
estimation of DDF curves in Germany. The conclusions derived, by considering the long high-resolution dataset as the
truth, are summarised as:
¢ Both methods for local estimation of the rainfall extreme statistics behave quite similarly in capturing the
local duration specific rainfall depths. Nevertheless, the estimation of parameters through the
Koutsoyiannis approach is more robust in terms of data sampling uncertainties. Particularly the
Koutsoyiannis approach combined with a Generalised Extreme Value (GEV) distribution with a fixed
shape parameter value at 0.1 exhibited the highest robustness with tolerable decline in precision.
Therefore, 4 parameters were used to describe the local statistics of extreme rainfall: the location and
scale GEV parameters and the two Koutsoyiannis parameters 6 and n. These 4 parameters represent the

basis for the testing of different scenarios and regionalisation approaches.
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e When only the long high-resolution dataset is present, both ordinary kriging and index-based
regionalisation perform similarly, with ordinary kriging showing slightly better median performance.
This result remains true as well for other data combination settings, with kriging methods exhibiting lower
RMSE and NSE, but slightly higher PBIAS than the index-based regionalisation. The only case where
the index-based regionalisation has superiority against kriging, is when only short high-resolution series

are present.

e When more than two datatypes are available, kriging with external drift seems more adequate for the

parameter interpolation than ordinary kriging, at least regarding the RMSE and NSE performance.

e A combination of long and short high-resolution series improves the performance of regionalisation
considerably (up to 15% for Ta=100 years), but only when the data sets are combined with external drift
kriging. Here the parameters from the short series are first interpolated with ordinary kriging, which later
on, serve as an external drift for the kriging interpolation of the parameters from the long series. This

combination gave overall the best results at least for return periods higher than 10 years.

e A combination of the long high-resolution and daily dataset improves the performance of regionalisation
up to 10% being the second-best method for regionalisation. Here as well the best regionalisation was the
external drift kriging, with the ordinary kriging interpolation of daily parameters serving as an external
drift.

e A combination of the three data types improves the regionalisation considerably (up to 20%) only for low

return periods (shorter or equal than 10 years).

e Overall, the best method for the regionalisation of the DDF curves in Germany, was the kriging
interpolation of the long sub hourly stations, with the short sub hourly stations as an external drift. On
average, this approach exhibited 8-9% RMSE (increasing with the return period) and up to 1% BIAS

(decreasing with the return period) when compared to the locally estimated DDF curves.

The cross-validation implemented here can only describe the accuracy of the regionalisation methods when compared to
the local estimation, but it does not say much about the precision of the predictions. Thus, it is important to perform an
uncertainty analysis, which should include not only the local estimation of sample statistics (briefly discussed here) but
as well the spatial uncertainty of the kriging interpolation. The integration of spatial uncertainty in the DDF design storms
of Germany is investigated and discussed in Shehu and Haberlandt (2022). Further improvements of the methodology
might include the validation of the methods on distinguished region. It has to be noted that the majority of the reference
stations in Germany are located in the lowlands, thus the mountainous areas may be under-represented. It would be
interesting to investigate if daily data or other site characteristics (like the elevation) are improving the performance of
the chosen method in these regions. However, should one decide to perform region specific regionalisation, special care
should be paid to the continuity of DDF values at the borders of the regions. Lastly, these conclusions are valid mainly
for Germany, where dense networks are present. The advantage of each data set or approach may still change depending

on the station density or study area location.

6. Data Availability
The daily and the short sub-daily network, as well as the other meteorological variables, are made publicly available by

the German Weather Service (DWD) and can be accessed at https://opendata.dwd.de/climate_environment/CDC/. The
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long sub-daily network has been digitalised and provided by the DWD. All R-codes can be provided by the corresponding

authors upon request.
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Figure Al Cross-correlation between the selected local parameters (Koutsoyiannis and GEV parameters) for

regionalisation and useful site characteristics that might act as an external drift information. Mu is the GEV location

parameter, sigma the GEV scale parameter, theta and eta the Koutsoyiannis parameters, ELEV is short for elevation

information, SUN is short for long term average of annual sunshine duration, PCP is short for long term average of

annual rainfall amount, and TEMP is short for the long-term average of annual mean temperature.
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Figure A2 The homogeneity index (Hi) computed for each of the 9th selected regions for each of the dataset

combinations.
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Figure A3 Koutsoyiannis parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) when

fixing the shape parameter to 0.1 for all stations (FIX) or constant over all durations per each station (CON).
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Figure A4 Fischer/Schumann parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey)

when fixing the shape parameter to 0.1 (FIX) or constant over all durations per each station (CON).

RMSE (%) PBIAS (%) NSE (%)

Tla T10a  T20a  T50a  T100a | Tla Ti0a  T20a  TS50a  T100a | Tla Ti0a  T20a  T50a  T100a
ss 8.3 0.4 0.5 8.1 -12.0 03 8.1 5.1 12 6.1 0.1 0.4 03 03 0.6
DS 531 422 409 364 343 | 593 | 357 266 258 212 26 -18 18 -18 -18
SS + DS 9.6 -1.0 0.6 3.3 5.0 29 3.9 -1.6 56 8.8 0.5 02 0.1 0.1 0.3

Figure A5 Obtained Deterioration (-) or Improvement (+) towards the best regionalisation technique (KED[LS|SS])

when no long series are available (LS) and the regionalisation is performed based on short series (SS), disaggregated
daily series (DS), or on both SS and DS.
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