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Abstract. 8 

Rainfall depth-duration-frequency (DDF) curves are required for the design of several water systems and protection 9 

works. For reliable estimation of such curves, long and dense observation networks are necessary, which in practice are 10 

seldom the case. Usually observations with different accuracy, temporal resolution and density are present. In this study, 11 

we investigate the integration of different observation data sets under different methods for the local and regional 12 

estimation of DDF curves in Germany. For this purpose, two competitive DDF-procedures for local estimation 13 

(Koutsoyiannis et al. 1998, Fischer and Schumann, 2018) and two for regional estimation (kriging theory vs index-based) 14 

are implemented and compared. Available station data from the German Weather Service (DWD) for Germany are 15 

employed, which includes 5000 daily stations with more than 40 years available, 1261 high resolution (1min) recordings 16 

with observations period between 10 and 20 years, and finally 133 high resolution (1min) recordings with 60-70 years of 17 

observations. The performance of the selected approaches is evaluated by cross-validation, where the local DDFs from 18 

the long sub-hourly time series are considered the true reference. The results reveal that the best approach for the 19 

estimation of the DDF curves in Germany is by first deriving the local extreme value statistics based on Koutsoyiannis et 20 

al. 1998 framework, and later using the kriging regionalisation of long sub-hourly time series with the short sub-hourly 21 

time series acting as an external drift. The integration of the daily stations proved to be useful only for DDF values of low 22 

return period (T<10 years), but doesn’t introduce any improvement for higher return periods (T≥10 years). 23 
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1. Introduction 26 

Rainfall volumes at varying duration and frequencies are required for the design of water management systems and 27 

facilities, like dams or dikes, spillways, flood retention basins, urban drainage systems, etc. These design precipitation 28 

volumes are also known as IDF (Intensity-Duration-Frequency) or DDF (Depth-Duration-Frequency) curves, and are 29 

derived from an extreme value analysis (EVA) on observed rainfall. For sampling extreme values, either annual maximum 30 

series (AMS) or peak-over-threshold (POT) can be used, however for return periods greater than 10 years, there are hardly 31 

any differences between the two. Often the AMS are preferred over the POT because the methodology is more direct and 32 

easier, whereas the POT method needs a prior assumption on the threshold selection. Afterwards a theoretical probability 33 

distribution (PDF) is fitted to the extreme series of a certain duration, in order to extract design rainfall volumes at specific 34 

frequency (or return periods). Typically, a Generalized Extreme Value (GEV) distribution is fitted for the AMS series 35 

and a Generalised Pareto for the POT series extracted for a fixed duration level. Rainfall extremes of different durations 36 

are strongly related to each other, however if the parameter fitting is done independently to each duration level these 37 

relations may not be kept (Cannon, 2018). Therefore, generalised concepts as in (Koutsoyiannis et al., 1998), simple 38 

scaling (Gupta and Waymire, 1990) or multi scaling Van de Vyver (2015) approaches are used to smooth the extreme 39 

statistics over different duration levels. Finally, since the rainfall observations are mostly point measurements, a 40 

regionalisation procedure of the PDF parameters to un-observed locations is performed. Methodologically, a distinction 41 

can be made between two approaches: a) a direct regionalisation of quantiles, moments or parameters of distribution 42 

functions and b) a regional estimation of distribution functions for homogeneous regions. Borga et al. (2005) suggests the 43 

regionalisation of the parameters instead of the quantiles. For the direct regionalisation of parameters, regressions 44 

(Madsen et al., 2009; Smithers and Schulze, 2001), splines (Johnson and Sharma, 2017) or kriging methods (Ceresetti et 45 

al., 2012; Kebaili Bargaoui and Chebbi, 2009; Uboldi et al., 2014; Watkins et al., 2005) are applied. On the other hand, 46 

the estimation of regional distributions functions based on the index method proposed by Hosking and Wallis (1997), is 47 

one of the most used methods in the literature for the regionalisation of design precipitation (Burn, 2014; Durrans and 48 

Kirby, 2004; Forestieri et al., 2018; De Salas and Fernández, 2007).  49 

Since the analysis is performed on extreme values, first very long observations are required to ensure a proper fitting of 50 

the GEV parameters, particularly of the shape parameter which is of decisive importance for extremes of high return 51 

period (larger than 20 years return period). For instance, Koutsoyiannis (2004a,b) showed clearly that short time series 52 

(less than 50 years) can choose falsely a shape parameter of zero (Gumbel distribution) and hide the true heavy-tail 53 

behaviour of rainfall extremes (also supported by Papalexiou and Koutsoyiannis (2013) and Papalexiou (2018)). Second, 54 

a dense observation network should be available to ensure an adequate estimation of extreme value statistics also at un-55 

observed locations. A less denser network would cause for instance that the kriging interpolated values to be less accurate 56 

and the spatial features to be more smoothen in space (Berndt et al., 2014). On the other side, index-based regionalisation 57 

can provide more robust estimation at un-observed locations if larger samples (obtained from denser networks) are used 58 

(Requena et al., 2019). Third, a high-resolution observation network (with 1- or 5- time steps) is as well necessary to 59 

estimate extremes of short durations (at scales of minutes or hours) for catchments that respond quickly to rainfall events 60 

(i.e., urban or mountainous areas prone to flash floods). At the moment, no perfect observation network that fulfils these 61 

three criteria is available, however different networks or datatypes fulfilling two criteria co-exist. For example, daily 62 

observation networks are typically very dense (every 10km) and can have up to 100-150 years of observations, but don’t 63 

capture the extremes at sub-hourly durations. Digital tipping bucket or weighting sensors can measure the rainfall at 1min 64 

time steps and can be dense (every 20-25km), however they are available mostly after 2000 and hence too short for EVA. 65 

Long observations at 1min time steps from analogous Hellmann or tipping buckets may be available from 1900-1950 66 

only at some countries (i.e. Germany, Belgium) but are not as dense as digital or daily measurements (>50km). 67 
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Alternatively, weather radar or satellite data can provide rainfall fields  at 1- or 4-km2 and 5min time steps, but offer short 68 

observations (less than 20 years) and suffer from high inaccuracies (Marra et al., 2019).  69 

To optimize the DDF estimation, different data types have been combined for instance; Madsen et al., (2017) regionalised 70 

extremes in Denmark from 1min observation with daily interpolated values as a co-variate, Bara et al. (2009) employed 71 

the simple scale principle to derive DDF curves for sub-daily duration levels (5min – 3h) from daily observations in 72 

Slovakia, Goudenhoofdt et al., (2017) used station observations (10min and varying lengths) to correct radar data and 73 

estimate the hourly and daily extremes, Burn (2014) pooled together long and short observations at 5min time steps to 74 

form the DDF curves in Canada. However, care should be taken when combining information from data types that differ 75 

in observation length, temporal and spatial scales. Holešovský et al. (2016) separated the historical data into groups when 76 

estimating DDF curves for Czech Republic (long series with 35-40 and short series with 11-15 years of observations) and 77 

concluded that the uncertainty at estimating parameters for the short time series is quite high, especially for high return 78 

periods. In the index-based regionalisation, regional L-moments are averaged based on the observation length, which may 79 

lead to more stable results (Burn, 2014; Requena et al., 2019), however the interpolated index may still suffer from high 80 

uncertainties from pooling together short and long time series. This may also be the case when interpolating local GEV 81 

parameters with the kriging theory. The regionalisation of the shape parameter may be not representative if short and long 82 

observations are pooled together with same importance, thus keeping a fix shape parameter may help to mitigate this 83 

problem. Nevertheless, further investigation should be done to ensure if long observations, as more reliable, should have 84 

more importance than the short ones when regionalising extreme value statistics. Regarding the temporal scale difference, 85 

a study from Paixao et al. (2011) performed in Ontario Canada concluded that the scaling factors should not be used for 86 

downscaling daily extremes to durations less or equal to one hour. This is because the extremes at such short durations 87 

are governed by other rainfall mechanisms then the daily extremes, and hence a low dependency exists between the two 88 

extreme groups. Alternative to the scaling principle, disaggregation schemes can be applied to the daily data in order to 89 

obtain adequate extremes (with return period up to 5 years) for sub-hourly durations (Müller and Haberlandt, 2018). On 90 

the other hand, because of the spatial scale inconsistency between weather radar and gauge observations, the weather 91 

radar may not be appropriate to estimate directly extremes of short durations (Marra et al., 2019), however they can still 92 

be useful to extract sub-daily extremes if used to disaggregate daily observations as done by Bárdossy and Pegram (2017). 93 

More complex disaggregation procedures that take advantage of the radar information by implementing an extensive 94 

parameter-set as suggested by Lisniak et al. (2013), may also be used to disaggregate daily observation and estimate the 95 

extreme values at sub-hourly durations. Nevertheless, to authors knowledge, there is no study in the literature that 96 

investigates if disaggregated daily time series can be useful in regionalising extreme values statistics when high resolution 97 

data are present, and when so, if they should have the same weights as high-resolution data.  98 

Lastly, due to lack of data, in most of the literature, the combination of any two or alternative data types for EVA is 99 

validated on observations that are not dense or long enough (longer than 40-50 years). Therefore, it would be interesting 100 

to test different methods for estimation and regionalisation of DDF curves extracted from different datatypes, on a long 101 

and dense network. The German Weather Service (DWD) has a relatively dense observations network (every 50km) of 102 

1min rainfall data available from 1950 (60-70years), that enables a proper validation of EVA for return periods up to 100 103 

years. Additionally, denser digital observations (every 20km) at 1min time steps (mainly from 2000), very dense (every 104 

10km) daily observations (10-120years) and weather radar observations (from 2000) at 1km2 and 5min time steps are as 105 

well available. As multiple data types co-exist in Germany, it is important to investigate the suitability of methods and 106 

data types for the extraction and regionalisation of extreme statistics while validating only at the long and dense 107 

observations. In Germany, studies either use the Koutsoyiannis approach or multi/simple scaling approach of GEV 108 

parameters to generalise the extremes over different durations. To authors knowledge there is no comparison of the two 109 



4 

 

approaches in the literature. The Koutsoyiannis approach has been implemented in Germany by Ulrich et al. (2020), but 110 

on a shorter available 1 min dataset (up to 14 years), while Fischer and Schumann (2018) have implemented the multi 111 

scale approach only at a long station (~85 years). Here we investigate which of these methods gives more accurate and 112 

precise estimation of DDF based on the long and 1min rainfall data. The same is true also for the regionalisation 113 

approaches: to authors knowledge there is no comparison between kriging and index-based regionalisation. Naturally, it 114 

is interesting to see which of the methods is more appropriate when validated on a long and high-resolution network, and 115 

where lie the advantages and disadvantages of each method when different data types are integrated, and what 116 

combination brings the best outcome. For this purpose, we investigate here three competitive regionalisation methods 117 

(ordinary kriging, external drift kriging and index-based regionalisation) based on different combination of data types 118 

(long series, short series, disaggregated daily series from weather radar parametrisation), while validating only on the 119 

long and high-resolution observations. At the moment, a revision of the current design storm maps in Germany 120 

(KOSTRA-DWD) is required in order to use additional data and state-of-the-art methodology. Therefore, an additional 121 

aim of this study, is to give the basis for development of the new design storm maps in Germany (KOSTRA-2023).  122 

The paper is structured as follows: first the available data sets for extreme value analysis are introduced in Section 2, then 123 

the methods selected for investigation of the local and regional estimation are presented respectively in Section 3.1 and 124 

3.2, with performance assessment and validation explained in Section 3.3. The results are given for each objective as: 125 

best local estimation of extremes in Section 4.1, best regionalisation technique 4.2.1, best data integration 4.2.2. Finally, 126 

the obtained maps for Germany are discussed in section 4.3 and conclusions are given in Section 5. 127 

2. Study Area and Data 128 

2.1 Available Data 129 

The study area covers Germany and is illustrated in Figure 1. Three rainfall measuring networks are available 130 

from the German Weather Service (DWD); the daily series (DS) – typically Hellman devices recording the rainfall daily, 131 

the long series (LS) – mostly tipping bucket analogue sensors (before 2004) measuring rainfall at 1 min time steps with 132 

0.1mm resolution and 2% uncertainty, and the most recent short series (SS) – digital sensors (after 2004) measuring 133 

rainfall also at 1min timesteps with 0.01mm resolution. The spatial distribution of these data series is shown in Figure 1, 134 

the observation length is given respectively in Figure 2 and the number of stations available for each one is given in 135 

Table 1. The LS dataset is the most appropriate data set for extraction and evaluation of extreme rainfall statistics, since 136 

on average it includes 65 years of observations (as shown in Figure 2– dark blue) and measures the rainfall at very fine 137 

temporal scales. Nevertheless, this network is sparse in comparison to the other two, and only 133 stations in Germany 138 

are available. On the other side the SS dataset measures the rainfall as well at very fine temporal scales and is much denser 139 

than the long series (1261 stations excluding the LS locations), however on average it includes only 18 years of 140 

observations which is not enough for extreme value analysis. Lastly the DS dataset is much denser (with 4068 stations 141 

excluding LS and SS locations) and covers 40 years up to 120 years, but the temporal resolution of rainfall is too coarse 142 

to be useful for sub hourly extreme values analysis. 143 
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Figure 1 Available rainfall data types in Germany categorized in 

three groups: long series (LS), short series (SS), and daily series (DS). 

The black lines illustrate the borders of German Federal States. 

 

Table 1 Number of stations for each of the 

available data types in Germany: long series 

(LS), short series (SS), and daily series (DS) 

Resolution 5min 1 day 

Obs. Length > 41y > 10 y >10 y 

No. Gauges 133 +1261 +4068 

 

2.2 Temporal Disaggregation of the Daily Series 144 

The daily dataset (DS) is much denser than both long and short ones and includes even longer observation periods than 145 

the LS dataset. If it is possible to disaggregate these data reliably, this will considerably increase the number of support 146 

points for the regionalisation of DDF curves. For the considerations presented here, the so-called cascade model first 147 

introduced by Olsson (1998) is employed. A more extensive parameterisation is implemented in the method according to 148 

Lisniak et al. (2013) which corresponds to a transfer of the Olsson method to a 3-fold distribution. To generate sub-hourly 149 

data, disaggregation parameters are derived from the RADOLAN weather radar time series of each grid cell (Bartels et 150 

al., 2004), and the daily observed volumes are disaggregated for the given durations as shown in Table 2. It is important 151 

to note that, due to the parameterisation using RADOLAN data, no parameter regionalisation is required, so that the 152 

parameter-rich disaggregation procedure in the Lisniak variant can be used. Moreover 30 realisations of disaggregated 153 

data were generated for each duration, in order to capture the uncertainty due to the disaggregation. It was evaluated that 154 

the relative error doesn’t improve significantly for more than 30 realisations, as also reported in Müller and Haberlandt 155 

(2018), therefore only 30 realisations of disaggregated data were used in this study.   156 

Table 2 The disaggregation scheme applied to the daily data (DS) to obtain rainfall volumes at the given durations. 

Duration 12h 8h 6h 4h 3h 2h 1h 30min 15min 

Disaggregation 24h /2 24h /3 24h/22 24h /3/2 24h/23 24h / 3/ 22 24h/3/23 24h/ 3/24 24h/ 3/25 

Figure 2 Observation length of all stations 

grouped according to the three available data 

types in Germany: long series (LS), short series 

(SS), and daily series (DS). 
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To understand what errors can be introduced to the DDF curves when employing this disaggregation scheme, a direct 157 

comparison was conducted between the long series (LS) and the disaggregated daily series (DS) for the return periods 1, 158 

10, 20, 50 and 100 years. For each station, duration level and return period, the relative error is calculated as the difference 159 

between the disaggregated and the original rainfall quantile. The resulting deviations for all stations are shown in Figure 160 

3. The results indicate that at the longer duration levels (>6 hours), the DDF curves are captured quite well, and the main 161 

disadvantage of the disaggregation model (as expected) is for the very short duration. Below the duration of 4 hours, there 162 

is a clear tendency to underestimate the extremes from LS, up to a median underestimation of 14% at the 30min duration 163 

level. At the duration of 15min, a weakening of the underestimation is observed, which is probably due to the instationarity 164 

in the original series identified in Section 2.4 below, which predominates only at duration levels up to 15min. Thus, it is 165 

expected for the DS disaggregation scheme to be more useful for the longer duration extremes than the short ones, 166 

particularly the extremes at sub-hourly durations. 167 

2.3 Annual Maximum Series for Each Dataset 168 

Using the five-minute time series, annual maximum series (AMS) are derived based on the calendar year for the duration 169 

levels 5min, 10min, 15min, 30min, 1h, 2h, 6h, 12h, 1d, 2d, 3d and 7d. A moving window with the length of each duration 170 

level is used to derive the annual maxima, considering a dry duration of 4 hours to ensure that the maxima selected in 171 

December and January of two consecutive years are independent from one another. Additionally, following the guidelines 172 

given by DWA (2012) a scaling of the durations 5, 10 and 15 min AMS with the factors given in Table 3 is performed. 173 

This is done to avoid the systematic underestimation of rainfall extremes at short duration caused by the deviation between 174 

i) the start of the actually largest rainfall sum of duration D, and ii) the fixed starting time of the 5 min time series 175 

(employed here). 176 

Table 3 Correction factors for Annual Maximum Series (AMS) of short duration according to the DWA-531 (DWA, 

2012). 

Duration level 5min 10min 15min 

Correction factor for AMS 1,14 1,07 1,04 

Figure 3 The relative error (-) of the disaggregated daily station data (30 realisations) based on radar parametrisation 

for different return periods and duration levels: (+) sign indicates overestimation, while (-) sign underestimation of 

extremes. Different blue shades indicate the error at different return periods (in years) as shown in the legend (ex. 1a is 

one year return period).  
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2.4 Homogenisation of Long and Short Dataset 177 

First plausibility and homogeneity checks were performed on the long and short datasets, herein referred to as respectively 178 

long series (LS) and short series (SS). An initial analysis of possible trends based on the quantile regression (Koenker, 179 

2005) was carried out for the monthly 5min maximum intensities of the long series (LS). This method was chosen, as in 180 

comparison to the classical regression is considerably more robust and it allows to obtain regression results for different 181 

non-exceedance probabilities. In Figure 4, the quantiles for the non-exceedance probabilities τ = 0.5 (i.e. median), 0.8, 182 

0.9 and 0.95 are considered. Quantile regressions for the four selected τ with time as the explanatory variable are 183 

implemented separately for each of the 133 measurement points. Each dashed line corresponds to a measuring station and 184 

each colour to a non-exceedance probability. Trend-like changes in the monthly five-minute maxima are visible with 185 

slopes that increase with τ. To understand why this trend is present in almost all long series, we investigated whether 186 

these instationarities are more trend-like or jump-like, with the latter assuming that the timing of jumps is associated with 187 

sensor changes in the measuring network. In the long series, a total of 19 different sensor types are distinguished simply 188 

by two states: analogue or digital.  189 

 A test for trend, jump or stationarity based on in-stationary extreme value analysis (Coles, 2001) was performed for 190 

all 133 LS. We tested for linear trend in location parameter vs. jump at date of sensor change from analogue in early years 191 

to digital in the later years in the location parameter vs. stationarity. The decision was based on Akaike Information 192 

Criterion. The results for different duration levels (x-axis) are shown in Figure 5Error! Reference source not found. –193 

left. It is obvious that the majority of instationarities at short duration levels is better explained as a jump (with mostly 194 

positive sign) in the data. A possible reason could lie in the limited ability of analogue gauges to register abrupt intensity 195 

changes, so that the total amount of precipitation falling in a short time interval may not be fully detected by analogue 196 

sensors, leading to positive jumps at sensor changes from analogue to digital. However, as a counter-argument, the so-197 

called "step-response-error" that occurs with digital sensors could also be considered (see e.g. Licznar et al. (2015)). Since 198 

the instationarities are usually jumps and not trends, a simple homogenisation of the data to a uniform sensor type is 199 

possible by raising to the mean value of the digital sensor type (DVWK, 1999). This jump correction is applied separately 200 

for each station and duration level. The results of applying the instationarity test to the homogenised series are shown in 201 

Figure 4 Quantile regression (QR in mm) on monthly maximum 5 min rainfall intensities for the long series (LS) for 

different non-exceedance probabilities τ (shown in coloured dashed lines and in the legend). The fitted quantile 

regression is shown with solid black line. 
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Figure 5– right. It can be seen that this approach can eliminate the instationarities at short duration levels significantly. 202 

About 30% of the stations show instationarities (either trend of jump), while the remaining part is considered stationary. 203 

Since only a small part of the stations show instationarities, here a stationary extreme value analysis is performed.   204 

3. Methods 205 

3.1 Local Estimation of Extreme Value Statistics  206 

3.1.1 Reference Approach 207 

Here, the Generalised Extreme Value (GEV) probability distribution is used for the statistical analysis of extreme 208 

rainfall and the derivation of the local DDF curves, that is described as following: 209 

 𝐹(𝑥; 𝜇, 𝜎, 𝛾) =𝑒𝑥𝑝 { − [1 + 𝛾
(𝑥+𝜇)

𝜎
]

−
1

𝛾
 }, 1 +

𝛾(𝑥−𝜇)

𝜎
> 0, 𝛾 ≠ 0,  210 

where μ is the location, σ the scale and γ the shape parameter. If the shape parameter is greater than zero, heavy-tail 211 

behaviour is present (GEV type II); if the shape parameter is less than zero, then it is the reverse Weibull distribution with 212 

no-tail behaviour (Coles, 2001). The GEV parameters are fitted to the AMS of each duration level and station separately, 213 

based on the L-moments method. For this purpose, the R-package “lmomco” was used (Asquith, 2021). A prior 214 

investigation on our study revealed that the L-moment approach led to more stable results than the method of Maximum 215 

Likelihood. The shape parameter was either estimated or fixed at 0.1 for estimation of return periods up to 100 years, 216 

approximately following the recommendation from Koutsoyiannis (2004a, b) for estimation of return periods up to 100 217 

years (γ~0.1) and on a prior analysis conducted on LS series. Based on the parameters obtained the quantiles of return 218 

periods T1a, T10a, T20a, T50a and T100a were derived. Since the AMS-approach tends to underestimate quantiles at low 219 

return periods (Ta < 10 years), a correction of the AMS return periods according to the DWA 531-Regulations with factors 220 

given in Table 4 was performed.   221 

Table 4 Correction of the return periods (Ta) when fitting the GEV to the Annual Maximum Series (AMS) adapted from 

DWA (2012). 

Return Periods for POT Ta=1 year Ta=5 years Ta=10 years 

Return Periods for AMS Ta=1.6 years Ta=5.5 years Ta=10.5 years 

(1) 

Figure 5 Number of long series (LS) stations that show stationarity (stat) vs instationarity (either jump- or trend like) at 

different duration levels following the instationary extreme value analysis; left) before jump elimination and right) after 

jump elimination between analogue and digital sensors. 
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Because the parameters are fitted separately on each duration, quantile crossing may occur. Quantile crossing happens 222 

when the extreme rainfall volumes of a fixed probability (Ta=100 years) are not increasing with longer duration levels. 223 

Figure 6 shows for different return periods T1a, T10a, T20a, T50a and T100a the number of stations affected by these 224 

crossings for the empirically calculated quantiles (left) and the quantiles fitted with the General Extreme Value (GEV) 225 

distribution (right). The empirical quantiles are calculated according to Hyndman and Fan (1996). It is clear that the 226 

number of stations with this problem increases significantly for larger return periods. In the empirical quantiles, especially 227 

the SS show quantile crossing at long duration levels (D ≥ 24h). Here, the volumes of the duration D72h and D168h are 228 

lower than the extremes of D24h. With the GEV-fitted quantiles, significantly more stations show quantile crossings than 229 

with the empirically calculated quantiles. These problems occur for all return periods, however are more frequent for the 230 

return periods T50a and T100a. In order to avoid such problems two different methods are applied and compared here: 231 

the approach presented by Koutsoyiannis et al. (1998) and the approach presented by Fischer and Schumann (2018). 232 

These two methods are described below.  233 

3.1.2 Koutsoyiannis Approach  234 

Koutsoyiannis et al. (1998) considers the intensity as a function of the duration level through two parameters (θ, η) and 235 

the generalised intensity can be calculated from duration specific intensity as described below:   236 

𝑖 = 𝑖𝑑 ∙  𝑏𝑑    𝑤𝑖𝑡ℎ 𝑏𝑑 =  (𝑑 + 𝜃)𝜂 , 237 

where i is the generalised intensity in mm/h, id is the intensity in mm/h observed at each duration level, d is the duration 238 

level in hours and ϴ, η are the Koutsoyiannis parameters optimised for each station. Through this relationship a 239 

generalisation of the AMS intensities over all the chosen duration levels is possible. The parameters ϴ (larger than 0) and 240 

η (within the range 0 to 1) are estimated for each station by minimising the Kruskal-Wallis statistic as indicated in 241 

Koutsoyiannis et al. (1998). The advantage of this optimisation method lies in its non-parametric character and robustness, 242 

as the Kruskal-Wallis statistics is not affected by the presence of extreme values in the sample. Once the parameters ϴ 243 

and η are determined, the generalised intensities from all duration levels are pooled together (as the main assumption is 244 

now that they follow the same distribution) and a GEV distribution is fitted to this sample by the methods of L-moments. 245 

Lastly, to obtain DDF curves, the quantiles at specific return periods are estimated from the fitted GEV distribution, and 246 

are divided by the term bd in Equation (2) (dependable on θ, η parameters and the duration level). This joint estimation of 247 

parameters over all durations should not only avoid the quantile crossings, but also make the estimation of DDF more 248 

robust. 249 

(2) 

Figure 6 Number of all stations at 5min resolution (for both short and long series) for different return periods (Ta) 

showing quantile crossings in the empirically calculated quantiles (left) and the GEV-fitted quantiles (right) with 

increasing duration. 
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3.1.3 Fischer/Schumann Approach  250 

In contrast to Koutsoyiannis that treats the intensities of AMS as a function of the duration, Fischer and Schumann (2018) 251 

propose an approach based on the GEV distribution, where the generalised GEV parameters are monotonically dependent 252 

on the GEV parameters determined for each duration level. Thus, as a first step the GEV parameters (as in Equation (1)) 253 

are estimated from the L-moment methods for each duration level at each station, and then through a nonlinear regression 254 

(with two parameters α and β) each GEV parameter is related to the different duration levels as indicated by the following 255 

equations:  256 

  𝜇𝑑 =
𝛼𝜇

𝑑𝛽𝜇
, 𝜎𝑑 =  

𝛼𝜎

𝑑𝛽𝜎
  𝑎𝑛𝑑 

𝜎

𝛾
=  𝛼 + 𝛽 ⋅ 𝑑,   257 

where d is the duration level in 5min, 𝜇𝑑 , 𝜎𝑑, 𝛾  are the GEV parameters of each duration, while α and β are the regression 258 

coefficients with  𝛼𝜇 , 𝛼𝜎> 0,  𝛽𝜇 , 𝛽𝜎  > -1, 𝛽 ≥ 0.  The parameters are obtained by nonlinear least-square-minimising. In 259 

addition to the shape parameter dependency shown in Equation (3), three alternative approaches are considered: a constant 260 

shape parameter over all durations, a shape parameter fixed at 0.1 and a quadratic relationship as in Equation (4). 261 

                 𝜉 =  𝑎 + 𝑃1 ⋅𝑙𝑜𝑔 (𝑑)  + 𝑃2 ⋅ 𝑙𝑜𝑔 (𝑑) 2,  262 

where P1 and P2 are estimated spanning across all stations and a is a station specific optimised parameter.  263 

3.2 Regionalisation of Extreme Value Statistics  264 

The local parameters estimated for each station (GEV parameters and generalisation parameters) make the base data set 265 

for the regionalisation of the extreme rainfall statistics. Each of these parameters is regionalised independently based on 266 

the regionalisation methods explained below, and later on, DDF maps for each duration and return period of interest are 267 

generated. The overall procedure for regionalisation is given in Figure 7-a, and the regionalisation methods are given in 268 

Figure 7-b. The regionalisation approaches were compared only for 4 parameters (see parameters of KO.FIX in Table 269 

5), as these 4 parameters were selected as most appropriate for local DDF estimation in Section 4.1. 270 

 271 

a)                                                                                            b) 272 

Figure 7 a) The step-by-step methodology applied here from the given point data sets to the final regionalised rainfall 

depths over all durations and return periods (Ta) in Germany; b) a detailed procedure for Step 6 - Regionalisation (shown 

in red) only for the parameters of KO.FIX (see Table 5) carried out with different methods (ordinary kriging – left, 

external drift kriging – middle and index-based regionalisation – right). The parameters interpolated are the GEV 

(location - µ and scale σ) and Koutsoyiannis (θ and η) parameters. For both kriging methods, for each parameter first a 

spherical variogram is estimated (step 6.1) and the interpolation is performed (step 6.2 or 6.3) with the given nmin, nmax and 

Rmax which are the kriging parameters for minimum, maximum number of neighbours and maximum radius for neighbour 

 (3) 

(4) 
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search. For index based regionalisation, first the generalised series obtained in step 3 are normalised with the index Ψ 

(step 6.1), next a regional GEV growth curve for each homogeneous region is derived based on regional L-moments (step 

6.2) and finally the quantiles at each duration are re-scaled with the index Ψ (step 6.3).  

3.2.1 Ordinary Kriging Interpolation  273 

The regionalisation of extreme value statistics for Germany will first be carried out with Ordinary Kriging (OK) 274 

interpolation. Here, the extreme rainfall parameters are interpolated independently. The flow chart for this interpolation 275 

technique is shown in Figure 7-b. Ordinary Kriging is widely used for interpolation due to its simplicity in comparison 276 

to other kriging methods. The expected value of the random process being investigation (E) is treated as constant in space 277 

(as per Equation (5)), whereas the increase in variance of the target variable at any two locations (u and u+h) depends 278 

only on the distance h. This increase in the variance is represented by the semi-variogram function γ(h) (here called 279 

variogram). Therefore, in the first step, the empirical variogram is estimated by discrete point observations according to 280 

Equation (6). 281 

𝐸[𝑍(𝑢 + ℎ)] = 𝐸[𝑍(𝑢)] = 𝑚         282 

𝛾 (ℎ) =
1

2𝑁(ℎ)
 ∑ (𝑍(𝑢𝑖) − 𝑍(𝑢𝑗))2

𝑢𝑖−𝑢𝑗=ℎ , 283 

where N is the number of any two observed data pairs (ui and uj) at distance h. Since the empirical variograms are not 284 

continuous functions, theoretical variograms must be fitted to the observed values. To describe the spatial variance of the 285 

data, several theoretical variogram models can be used and fitted to the empirical variogram using the least squares 286 

method. For the interpolation of rainfall extremes a spherical variogram (as per Equation (7)) is chosen as more 287 

appropriate (Kebaili Bargaoui and Chebbi, 2009).  288 

𝛾 (ℎ) =  𝑐0 + 𝑐 ∙  (
3ℎ

2𝑎
−

ℎ3

2𝑎3)  𝑓𝑜𝑟 ℎ ≤ 𝑎 𝑎𝑛𝑑 𝛾 (ℎ) =  𝑐 𝑓𝑜𝑟 ℎ = 𝑎  , 289 

where c0 is the nugget, c the sill and a the range of the variogram. The variogram describes the spatial variability of the 290 

target variable and the average dissimilarity between a known and unknown location. Once the theoretical variogram is 291 

known, it can be used as a basis for interpolating the statistical properties on a 5km grid. This grid resolution was chosen 292 

for two reasons; first it is consistent with the HyRas product from German Weather Service that uses the same resolution, 293 

second it is a compromise between the coarsest and finest legible resolution computed from the given density of long 294 

series (LS) (the reference for this study) following the suggestions of Hengl (2006). The interpolation is done as indicated 295 

in Equation (8), the variable at an unknown location (Z') is estimated by the weighted average of the nearby known 296 

locations (Zui). 297 

𝑍′(𝑢𝑜) =  ∑ 𝜆𝑖 ∙ 𝑍(𝑢𝑖),   

𝑛

𝑖=1

 298 

where the weights (λi) are derived from the theoretical variogram, and n is the number of selected neighbours. The R-299 

package "gstat" is used to fit the variograms and interpolate the variables (Pebesma, 2004). An advantage of Ordinary 300 

Kriging interpolation is that the weights are determined in such a way that the difference between the estimate and the 301 

observed values is zero on average. However, this can lead to the interpolated variable being smoothed in space. Different 302 

theoretical variograms were previously investigated, i.e. exponential, gaussian and spherical, with the spherical model 303 

together with a nugget effect showing the best fit for the case study. The fitting of the variogram model parameters for 304 

different data types and experiments is done automatically by weighted least square fit. Since the automatic fit relies on 305 

the initial values of the model parameters, we defined the initial values with trial and error, and accepted a fit that was 306 

adequate qualitatively. Figure 8 illustrates the empirical and theoretical normalised variograms for interpolation of the 307 

(5) 

(8) 

(6) 

(7) 
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GEV and Koutsoyiannis parameters (after method KO.FIX shown in Table 5) estimated from the three main datasets 308 

available: long series (LS), short series (SS) and 30 realisations of disaggregated daily series (DS). Note that the 309 

variograms are normalised in order to ensure a comparison between the different datasets. From this figure a clear 310 

difference between the spatial dependency of different datasets, due to different station densities and settings, is visible. 311 

The long and short series (LS and SS) exhibits similar relationship with each other for the GEV parameters (μ and σ) but 312 

distinguish either in the nugget value (co) or the range (a), whilst the daily disaggregated series clearly exhibit different 313 

nugget (c0), range (a) and even sill (c). The differences between the datasets are less visible in the spatial dependencies 314 

of the Koutsoyiannis parameters (θ and μ), where the three datasets differ slightly in nugget and range. Particularly the 315 

spatial dependency of the scale parameter is captured quite differently by the three datasets. Here, LS and SS are differing 316 

mainly at the nugget value, where LS has a smaller value than the SS series suggesting that the spatial structure of the 317 

scale parameter from SS is smoother than that of LS. On the other hand, the DS datasets exhibit a completely different 318 

variogram for the scale parameter, suggesting that the extremes of high return period (influenced mainly by the scale 319 

parameter) will have different spatial structures than those of LS and SS series.      320 

3.2.2 Kriging with External Drift Interpolation  321 

In the Kriging with External Drift (KED), the expected value E of the target variable Z at any location u is linear dependent 322 

on secondary variables Y, and thus the Equation (5) takes the form of the Equation (9). Here the secondary variables (or 323 

the external drifts) reflect the spatial trend of the target variable. Theoretically, the variogram for KED interpolation is 324 

computed from the residuals between the target and the secondary variables. Here, for simplicity the OK variograms are 325 

used instead, since as shown in Delrieu et al. (2014) they can produce very similar results to the KED one. 326 

𝐸[𝑍(𝑢) ∣ 𝑌1(𝑢), 𝑌2(𝑢), . . . . , 𝑌𝑚(𝑢)] = 𝑏0 + ∑ 𝑏𝑘𝑌𝑘(𝑢)𝑚
𝑘=1       327 

where Y represent k secondary variables from 1 to m that are used as an external drift, b0 in the interception of the linear 328 

dependency and bk the coefficient for each k drift. For this study different site characteristics (i.e. elevation) were 329 

investigated as external drift, however as indicated by the cross-correlation between the target variables (in this case the 330 

4 parameters describing the local statistics) and the site characteristics, the linear dependency between them is not high 331 

(see in appendix Figure A1). Therefore, here only interpolated local parameters from the short and/or daily series are 332 

used as external drift information.  333 

(9) 

Figure 8 Empirical (dots) and fitted (solid lines) spherical theoretical variograms for the GEV (µ - location and σ – 

scale) and Koutsoyiannis (θ and η) parameters estimated by three different datasets (long series LS in dark blue, short 

series SS in light blue and disaggregated daily series DS in grey). 
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3.2.3 Index-based Regionalisation 334 

The regionalisation of extreme rainfall statistics in Germany is as well carried out using the index method according to 335 

Hosking and Wallis (1997). The index method was originally developed for the regionalisation of flood quantiles, 336 

however found a wide application also for the regionalisation of extreme rainfall statistics. By pooling information in 337 

statistically homogeneous regions, a more robust estimate of extreme rainfall statistics can be made and based on each 338 

defined region, the information can be transferred to other unobserved points. A homogeneous region exists if the 339 

distribution functions have the same shape at all points in the region. The homogeneity indicator H1 presented by Hosking 340 

and Wallis (1997) is typically used to determine homogeneous regions. If the H1 is lower than 1, the region is said to be 341 

homogeneous, if it is between 1 and 2 the region may be heterogeneous, and else, if it is higher than 2, the region is 342 

definitely not homogeneous. Here different site characteristics like the latitude, longitude, elevation, long term annual 343 

average of sunshine duration and mean annual precipitation were used as input to define homogeneous regions. Based on 344 

a k-clustering approach (Ward, 1963) nine homogeneous regions were identified and are shown in Figure 9Error! 345 

Reference source not found.. The obtained homogeneous regions were tested for homogeneity for each data type 346 

combination and, as visible from Figure A2 in appendix, all values are below 1, meaning that the regions selected are 347 

homogeneous and can be used for the index-based regionalisation. Note that the generalised statistics over all the durations 348 

from Section 3.1 are used as input for the homogeneity test. The R-package “nsRFA” is used to obtain the homogeneous 349 

regions (Viglione et al., 2020). In order to find an appropriate number of clusters, different number of clusters between 2 350 

and 20 are tested and compared based on the homogeneity indicator H1 and whether they were spatially continuous and 351 

physically reasonable. The maximum number of clusters of 20 was chosen to ensure a sufficient number of stations and 352 

thus a sufficient number of observation years per region (Hosking and Wallis, 1997). 353 

Once the homogeneous regions are determined, the different local statistics are normalised by a scaling factor, the index. 354 

In contrast to the previous regionalisation techniques discussed so far, the index-based regionalisation has an extra step – 355 

the normalisation of the general intensities with the index (performed at step 3 in Figure 7 – left), which in this case is 356 

Figure 9 Nine homogeneous regions implemented here for the index-based regionalisation. The regions shown here 

are a generalisation of the k-cluster results to account for spatial consistency. 
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the mean generalised intensity. Next, the local L-moments are estimated on the basis of the normalised annual series and 357 

regional L-moments are derived for each region weighting the local L-moments according to their time series length. 358 

Finally, a GEV growth curve is fitted for each region via the regional L-moments. The R-package “lmomRFA” was 359 

employed for the application of the index method (Hosking and Wallis, 1997). In the final step, by back-scaling the 360 

normalised extreme rainfall for all observed and unobserved points in the homogeneous region, estimates can be made 361 

about the extreme rainfall as a function of the duration (based on regional averaged values of observed θ and η) and the 362 

return period (based on regional GEV growth curve). The geostatistical interpolation of the index makes it possible to 363 

transfer the extreme value statistical evaluations to unobserved points within the region. 364 

3.3 Performance Assessment and Comparison  365 

3.3.1 Local Performance Assessment  366 

For the local estimation of the GEV parameters that describe the extreme rainfall over all the selected duration levels, two 367 

different approaches were consulted: from Koutsoyiannis et al. (1998) (herein referred as KO) and from Fischer and 368 

Schumann (2018) (herein referred as FS). Before carrying on with the regionalisation it is important to investigate which 369 

of the methods is more adequate for the estimation of the GEV parameters over all the duration levels. Moreover, the two 370 

methods do not only distinguish in their approach of generalisation across duration, but they also include different 371 

variations on the calculation of the GEV shape parameter (γ). A review of the methods and shape parameters is given in 372 

Table 5, together with the respective optimised parameter set for each case. The obtained parameters for different data 373 

sets are shown in the appendix: Figure A3 for KO and in Figure A4 for FS.  374 

Table 5 A review of the methods and the different calculation of the shape parameter investigated for the local statistics, 

where KO stands for the Koutsoyiannis and FS for the Fischer and Schumann framework.  

Method  Shape Parameter  Abbreviation Optimised Parameter 

KO is constant per each station, as fitted by L-moments  KO.CON μ, σ, γ, θ, η 

is fixed at all stations as γ = 0.1 KO.FIX μ, σ, θ, η 

FS 
is calculated as proposed by Fischer and Schumann 

(2018) 

FS.RLM αμ, βμ, ασ, βσ, α, β 

is constant over all durations FS.CON αμ, βμ, ασ, βσ, γ 

a quadratic dependence on duration specific shape 

parameters 

FS.QUA αμ, βμ, ασ, βσ, a 

is fixed at all stations as γ = 0.1 FS.FIX αμ, βμ, ασ, βσ 

The performance of the methods and the respective case of shape parameters as illustrated in Table 5 is evaluated only 375 

at the location of the long series (LS) by comparing the normalised quantiles over all durations for return periods T1a, 376 

T10a, T20a, T50a and T100a with the GEV quantiles calculated separately at each duration level. Here the percentage 377 

RMSE (as per Equation (10)) was employed to assess the errors of the selected cases at each duration level and station 378 

with respect to the GEV duration specific quantiles:  379 

Percentage RMSE:  𝑅𝑀𝑆𝐸𝑑,𝑠𝑡[%] = 100 ∙
√

1

5
∑ (𝑅𝐷𝑔𝑒𝑛,𝑠𝑡 −𝑅𝐷𝑑,𝑠𝑡)

25
𝑖=1

𝑅𝐷𝑑,𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅
 ,  380 

where i represents each of the 5 selected return period Ta varying from 1 to 100 years, st varies from 1 to 133 available 381 

long series, RDgen,st  corresponds to the derived rainfall depth from the generalisation method of duration d, RDd,st the 382 

derived rainfall depth from the GEV quantiles at duration d, and the 𝑅𝐷𝑑,𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅  is the mean rainfall depth from the GEV 383 

quantiles at a duration d averaged over the return periods. Alternatively, the error for each return period and station can 384 

as well be calculated by Equation (10) by swapping the d with Ta, and where 𝑅𝐷𝑇𝑎,𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean rainfall depth from the 385 

(10) 
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GEV quantiles at return period Ta averaged over the duration levels d (from 5min up to 7d, therefore i changes from 1 to 386 

12).  387 

Since the GEV quantiles fitted per each duration level cannot be considered the ground truth, a non-parametric bootstrap 388 

is performed when estimating the parameters of each method, in order to investigate the sampling uncertainty of derived 389 

DDF values. For this purpose, 100 randomisations of the observations were conducted and the uncertainty range of the 390 

derived rainfall depths is computed as following: 391 

 Normalised 95% Confidence Interval Width:       𝑛𝐶𝐼95𝑤𝑖𝑑𝑡ℎ[−] =
𝐶𝐼95𝑠𝑡, 𝑑, 𝑇𝑎

𝑀𝑒𝑎𝑛𝑠𝑡, 𝑑, 𝑇𝑎
 392 

where nCI95width is the 95% confidence interval width and Mean is the average of rainfall depth obtained from 100 393 

realisations and expressed for each long series (LS) location st, duration level d and return period Ta. The smaller the 394 

uncertainty range, the more robust are the estimated parameters for the high return periods. Based on the two performance 395 

criteria, percentage RMSE and nCI95width, all the methods in Table 5 are compared to evaluate the best one for the 396 

estimation of rainfall DDF curves. The best method is selected as the one with the lowest RMSE and nCI95width. The 397 

results of this comparison are given in Section 4.1. 398 

3.3.2 Spatial Performance Assessment  399 

In order to check which of the regionalisation approaches provides the best results, a leave-one out cross-validation was 400 

carried out at the locations of the long series (LS 133 stations). For each approach, the rainfall depth (RD) is determined 401 

from the return periods T1a, T10a, T20a, T50a and T100a and the selected duration levels. After regionalisation, the 402 

regionalised rainfall depths are compared with the local generalised GEV quantiles (here assumed to be the truth). The 403 

short series are omitted from the cross-validation, as no reliable extreme value statistics can be carried out for large return 404 

periods due to the very short observation length. The quality of the regionalisation approaches is evaluated using the 405 

following criteria: 406 

Percentage Bias:    𝑃𝐵𝐼𝐴𝑆𝑠𝑡,𝑇𝑎[%] = 100 ∙
1

𝐷
∑ (𝑅𝐷𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙,𝑑 −𝑅𝐷𝑙𝑜𝑐𝑎𝑙,𝑑)𝐷

𝑑=1

∑ (𝑅𝐷𝑙𝑜𝑐𝑎𝑙,𝑑)𝐷
𝑑=1

 ,                                    407 

Percentage RMSE:   𝑅𝑀𝑆𝐸𝑠𝑡,𝑇𝑎[%] = 100 ∙
√

1

𝐷
∑ (𝑅𝐷𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙,𝑑 −𝑅𝐷𝑙𝑜𝑐𝑎𝑙,𝑑)

2𝐷
𝑑=1

𝑅𝐷𝑙𝑜𝑐𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 ,  408 

Nash-Sutcliffe Criteria:        𝑁𝑆𝐶𝑠𝑡,𝑇𝑎[−] = 1 −  
∑ (𝑅𝐷𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙,𝑑 −𝑅𝐷𝑙𝑜𝑐𝑎𝑙,𝑑)

2𝐷
𝑑=1

 ∑ (𝑅𝐷𝑙𝑜𝑐𝑎𝑙,𝑑 − 𝑅𝐷𝑙𝑜𝑐𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝐷

𝑑=1

,  409 

where the d varies from 1 to D=12 for each duration level between 5min and 7days, Ta the return period, st the respective 410 

long series (LS) station, RDregional corresponds to the regionalised rainfall depth, RDlocal the locally derived rainfall depth 411 

from the generalised GEV function and the 𝑅𝐷𝑙𝑜𝑐𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean local rainfall depth averaged over the durations. The 412 

cross-validation only at the location of the LS makes it possible to investigate the value that the short (SS) and the 413 

disaggregated daily series (DS) are adding to each regionalisation method. For this purpose, the regionalisation methods 414 

are run first only with the LS as input, and the performance of such an application is considered the benchmark for 415 

improvement. Later on, the SS and DS are added stepwise as input to the regionalisation, in order to assess the 416 

improvement, they introduce towards the benchmark. Additionally, one can calculate the expected performance when 417 

only the short or/and the disaggregated daily series are available, and not the long one. An overview of these experiments 418 

and their aim is given at Table 6. 419 

(11) 

(12) 

(13) 

(14) 
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Table 6 Overview of the experiments performed with different data sets for each regionalisation method, where SS – are 

short series, LS – long series and DS – disaggregated daily series. 

Input Aim 

Only LS Benchmark for improvement 

Only SS The expected error from only short series  

Only DS The expected error from only disaggregated daily series 

LS and SS The added value from the short series 

LS and DS The added value from the daily disaggregated series 

SS and DS The expected error from short and daily disaggregated series 

LS, SS and DS The added value from the short and daily disaggregated series 

A directed comparison of the performance criteria between the different experiments and the benchmark is calculated 420 

here as per Equation (15).  421 

𝑃𝑒𝑟𝑓𝑖𝑚𝑝𝑟,𝑇𝑎  [%] = 100 ∙
(−𝑃𝑒𝑟𝑓𝑛𝑒𝑤,𝑇𝑎 + 𝑃𝑒𝑟𝑓𝑟𝑒𝑓,𝑇𝑎)

𝑃𝑒𝑟𝑓𝑟𝑒𝑓,𝑇𝑎
, 422 

where Perfref,Ta is the performance criteria calculated for each return period Ta as per Equation (12)-(14) from the scenario 423 

with only LS as input, and Perfnew,Ta is the performance of any other combination of input data as per Equation (12)-(14). 424 

A positive value for this criterion indicates an improvement in performance in comparison to the only LS scenario, while 425 

a negative value indicates a deterioration. Note that, the signs of the nominator are exchanged in the case of the 426 

improvement of the NSE. It is as well important to emphasise that the scenario ref corresponds to the best regionalisation 427 

method with only LS as input, namely ordinary kriging of LS based on results of Section 4.2. 428 

Finally, based on different combinations of the available series (data types) as external drift in the kriging interpolation 429 

may help to shed light on which combination of the data is more useful for the regionalisation of the rainfall DDF values. 430 

Here the data to be used as external drift are first interpolated with ordinary kriging. A description of these different 431 

combinations for the KED interpolation is given is Table 7. The performance of the different combinations is evaluated 432 

only at the location of the LS, and the best integration is selected based on the highest improvement in comparison to 433 

regionalisation with only LS as input.    434 

Table 7 Overview of different integration of data types in Kriging with External Drift (KED) interpolation where SS – 

are short series, LS – long series and DS – disaggregated daily series. Pooling the data together with same importance 

is represented by (+) sign, whereas priority importance (integration through an external drift) is represented by the (|) 

sign. 

Combination Abbreviation 

Interpolate LS with OK[SS] as external drift KED[LS|SS] 

Interpolate LS with OK[DS] as external drift KED[LS|DS] 

Interpolate LS with both OK[SS] and OK[DS] as external drift KED[LS|SS+DS] 

Interpolate LS and SS with OK[DS] as external drift KED[LS+SS|DS] 

Interpolate SS with OK[DS] as external drift KED[SS|DS] 

435 

(15) 
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4. Results 436 

4.1 Local Estimation of Extreme Statistics  437 

Figure 10 illustrates the local percentage RMSE of each method in comparison to the duration specific quantiles (as per 438 

Equation (10)). The upper row of Figure 10 shows the percentage RMSE calculated for each location and duration level 439 

over all the return periods and the lower row of Figure 10 shows the percentage RMSE calculated for each location and 440 

return period over all the duration levels. The results from Figure 10 – upper row indicate that the KO approaches (both 441 

fix and station constant shape parameter) have an almost constant RMSE over all durations under the value 10%. On the 442 

other hand, the FS approaches tend to have similar or little smaller RMSE for the longer duration (median RMSE under 443 

8%), but are not able to represent well enough the very short durations. For the FS approaches, the RMSE median for 444 

duration levels up to 60 min, is higher than 10%, with the 5min RMSE being the highest (between 25-45%). The results 445 

from Figure 10 – lower row illustrate that all the approaches manifest higher errors with higher return period. Both of the 446 

KO approaches (fix and station constant shape) show very similar behaviour. The KO.FIX performs slightly worse (1-447 

4% higher RMSE) than the KO.CON, but this is expected as the duration GEV fitted per each duration independently 448 

favours the KO.CON (as the shape parameter is let free for the GEV parameter fitting). The FS approaches perform very 449 

similarly to one another, however here contrary to the KO.FIX approach, the performance of the FS.FIX seems better 450 

than the other approaches. Overall, the KO approaches have the priority at shorter durations and they can capture the 451 

volumes at specific durations better than the FS approaches. On the other side, the FS approaches can capture better 452 

extremes at longer durations. A unanimous selection is not yet possible from the obtained results so far, because the local 453 

GEV duration specific parameters may not represent the ground truth.  454 

To analyse which approach estimates more stable and representative parameters, a non-parametric bootstrap was 455 

performed (with 100 random realisations), and served as a basis for assessing the 95% confidence interval width of the 456 

obtained DDF values. Figure 11-left shows the normalised 95% confidence interval widths (nCI95width) for the rainfall 457 

depth (as per Equation (11)) estimated for each of the selected approaches. A high value of the nCI95width indicates that 458 

the bootstrap yields very variable rainfall depths, and hence a higher uncertainty is associated with the method. Contrarily 459 

a low value of the nCI95width indicates that the rainfall depths have low variation across the random realisations, and thus 460 

the obtained DDF curves are considered more stable or robust. The results shown in Figure 11 indicate that the KO.FIX 461 

exhibits the lowest variation (median nCI95width ~0.23), followed up by FS.FIX (~0.25), and by KO.CON, FS.CON, 462 

Figure 10 RMSE (%) performance of the given generalisation methods over all the long series (LS) in comparison to 

the duration specific GEV quantiles grouped: upper row - for different duration levels (calculated per station over return 

periods Ta), and lower row - for different return periods (calculated per station over duration levels). The overview of 

the methods shown here is given in Table 5. 
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FS.QUA with slightly higher variations (respectively ~0.3). Interesting is to see that the FS.RLM has a median nCI95width 463 

~ 0.3 but can reach extreme values up to 2. Figure 11-right) shows the scatterplot of nCI95width obtained from the KO.FIX 464 

(x-axis) and FS.FIX (y-axis) for different duration levels and return periods (shown with different colours) at the LS 465 

locations. Except for very low return periods (T1a), FS.FIX exhibits on average higher values of nCI95width than KO.FIX. 466 

Based on these results, the KO.FIX (Koutsoyiannis framework with shape parameter fixed at 0.1) was chosen as the best 467 

method and was used for the regionalisation of the DDF curves. The advantages of the KO.FIX are that: 1. It represents 468 

all duration levels similarly and fairly, 2. The parameter estimation is more robust than any of the other methods, 3. It 469 

uses a known and well-established method for the estimation of the DDF curves.  470 

 471 

 472 

Figure 11 left) comparison of the normalised 95% confidence interval width [-] for the methods and shape parameters 

selected for the generalisation of the DDF values over all the durations (see Table 5 for a summary of the methods); 

right) a direct comparison of the normalised 95% confidence interval width [-] for KO.FIX (x-axis) with FS.FIX (y-axis) 

for each duration D and return period T (shown in different colours). 

4.2 Regionalisation of Extreme Statistics  473 

As discussed in the Section 4.1, the AMS at different duration levels were normalised according to Koutsoyiannis 474 

approach and the GEV parameters were fitted to the grouped generalised intensities. The shape parameter was kept fixed 475 

at 0.1. Ordinary Kriging (OK) and index-based (INDEX) regionalisation were run first only with the LR data as input – 476 

to decide about which of the two approaches will serve as a benchmark. A direct comparison based on Equation (15) is 477 

then performed for each of the selected performance criteria (where new is OK and ref is INDEX), to compute the 478 

improvement or deterioration of OK with only LS data compared to the INDEX. The median values for each return period, 479 

performance criteria and method, are given in Table 8. Here it becomes clear that the kriging approach exhibits lower 480 

RMSE for all return periods, worse BIAS for high return periods, and slightly better NSE than the index method. Based 481 

on these results, the kriging with LS as input (KRIGE[LS]) is used as a benchmark for calculating the improvement in 482 

performance by adding additional data types. Apart from the performance, the other advantage of kriging is that it is more 483 

of a “pure” method, as it interpolates independently the 4 parameters, while the index approach is a “mixture” between 484 

the regional growth curve estimation, averaging θ and η parameters, and kriging to interpolate the index. For this reason, 485 

one may prefer the kriging regionalisation, as the errors are mainly from the kriging system, while the index method 486 

includes errors from the kriging system and from regional and averaged parameters.  487 

Table 8 Median performance improvement/deterioration (%) of ordinary kriging (OK) versus index-based (INDEX) 

regionalisation calculated for different data as per Equation (15) (where new is OK and ref in INDEX), when only long 
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series (LS) are used as input. The performance is obtained by cross-validation over 133 LS stations. The colour green 

(+) indicates better performance by OK, red (-) indicates better performance by INDEX. 

 488 

4.2.1 Best Regionalisation for Different Data Combination 489 

Kriging and index-based regionalisation was then performed for each data type experiment given in Table 6, and the 490 

cross-validation results for the 133 LS locations were compared to the benchmark (KRIGE[LS]) selected before as the 491 

best regionalisation with only LS as input. To enable an easy comparison between the two regionalisation methods, the 492 

difference between the improvements achieved between the kriging and the index-based regionalisation in comparison to 493 

the benchmark was calculated for each of the 133 LS locations. The median differences (in percent) for each data type 494 

experiment over the 133 locations for each performance criteria and return period are given in Table 9. A positive 495 

difference (dark green shade) means that the improvements reached by the kriging interpolation are higher than the index-496 

based regionalisation. A negative difference (red shade) means the opposite. The data are combined by two operators: 497 

either (+) referring to pooling of the datasets together with same importance (the parameters and the index are interpolated 498 

with ordinary kriging), and (|) referring to a linear relationship between the datasets (priority importance) where the 499 

parameters and the index are interpolated through external drift kriging.  500 

 501 

The results from the Table 9 indicate that for most of the cases the kriging interpolation brings higher improvements to 502 

the benchmark than the index-based regionalisation. Exceptions are the regionalisation with only SS, LS+SS, SS|DS, 503 

LS+SS|DS and LS|SS+DS where the index-based regionalisation exhibits on median 2-12% higher PBIAS improvement 504 

for higher return periods than the kriging interpolation. However, for these cases, the RMSE and the NSE improvements 505 

are much higher for the kriging regionalisation. Therefore, it can be concluded that overall, the kriging interpolation yields 506 

better results than the index-based regionalisation (lower RMSE and higher NSE), but may suffer depending on the 507 

combination of data types from slightly higher PBIAS. Also, it has to be mentioned, that when grouping the daily 508 

disaggregated time series directly (operator +) with the other data types (either LS and SS), the kriging performs up to 509 

Table 9 Median difference between kriging and index-based improvements calculated for different data as per Equation 

(15). The median is computed from 133 stations. The data used as input are short series (SS), long series (LS) and 

disaggregated daily series (DS) and combined either with same importance (+) or with priority importance (|). The 

positive difference shown in green shades indicate that kriging introduces bigger improvements towards the benchmark 

than the index-based regionalisation. The negative differences shown in red shades indicate that the index-based 

regionalisation has the bigger improvements. 
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100% better than the index-based regionalisation. This suggests that the parameters from the disaggregation do not follow 510 

the same regions or growth curve as the high-resolution data (LS and SS), thus a kriging interpolation seems a more 511 

reasonable choice for integrating daily disaggregated series (DS). 512 

The results of Table 9 give a direct comparison between kriging and index-based regionalisation, nevertheless as they 513 

are relative to each case, do not give any information if ordinary kriging or external drift kriging is yielding better 514 

regionalisation results. For this purpose, the difference of improvements between KED and OK were calculated and 515 

shown as median over the 133 LS locations in Table 10. A positive difference (green shade) means that the improvements 516 

reached by KED are higher than the OK interpolation. A negative difference (red shade) means otherwise. The results 517 

show that overall, the KED exhibits higher RMSE and NSE improvements than the OK, but the KED tends to have lower 518 

PBIAS improvements than the OK. When only the high-resolution data sets are present (LS and SS), the KED behaves 519 

better than OK mainly for high return periods (50-100a), when LS and DS are present, KED clearly outperforms the OK. 520 

For all the remaining cases the OK outperforms the KED only for the PBIAS of high return periods.   521 

Table 10 Median difference between external drift kriging (KED) and ordinary kriging (OK) improvements calculated 

for different data as per Equation (15). The median is computed from 133 stations. The data used as input are short series 

(SS), long series (LS) and disaggregated daily series (DS) and combined either with same importance (+) or with priority 

importance (|). The positive difference shown in green shades indicate that KED introduces bigger improvements towards 

the benchmark than the OK. The negative differences shown in red shades indicate that the OK regionalisation has the 

bigger improvements.  

 522 

4.2.2 Best Data Integration for Regionalisation 523 

So far, the external drift kriging interpolation has shown superiority for regionalising DDF curves in comparison to the 524 

index-based and ordinary kriging regionalisation. Nevertheless, the question still remains, what is the best combination 525 

of the data sets for regionalising the DDF curves in Germany. Here it is interesting to see if all the three available data 526 

sets are useful for regionalisation, or if single or dual networks are enough. For this purpose, the performance 527 

improvement exhibited by different combinations of the data types in KED (as per Table 7) in comparison to the 528 

benchmark are visualised in Figure 12. Note that since there are 30 realisation of DS data, a boxplot is illustrating the 529 

performance spread over these 30 realisations. This affects regionalisation methods where DS data is present, otherwise 530 

a single line indicates the performance of the regionalisation. For very low return periods (T1a), the integration of all data 531 

types of the form KED[LS+SS|DS] brings the best performance, with RMSE and BIAS up to 20% smaller and NSE 0.7% 532 

higher. For return period T10a, the KED[LS|SS], KED[LS|DS] and KED[LS+SS|DS] perform very similar: some random 533 

realisation from the disaggregated daily series (DS) introduce high improvement but as well low values, even though the 534 

median over the 30 realisation is at the same level as the KED[LS|SS] one. For high return periods (T100a), KED[LS|SS] 535 

introduces the highest improvement in all three performance criteria. Actually KED[LS|DS] is the second-best option, 536 

however the median over the 30 realisations is either lower or equal to the performance of the KED[LS|SS]. There are 537 

few realisations that introduce the highest improvements for RMSE and BIAS, nevertheless the computation time for the 538 

disaggregation scheme and the fitting of the Koutsoyiannis approach is also a disadvantage of using the DS dataset. So 539 

finally, the kriging interpolation of the long network (LS) with the short network (SS) as an external drift, is chosen as an 540 
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optimal method for the regionalisation of the GEV and Koutsoyiannis parameters. Table 11 indicates the median 541 

performance criteria (RMSE, PBIAS, NSE) for different return periods reached by this method (KED[LS|SS]). Expected 542 

deterioration in performance when the long series are not present in comparison to the best method selected for 543 

regionalisation (KED[LS|SS]) are given in Figure A5 in the appendix.    544 

Table 11 Median cross-validation performance over 133 long series (LS) stations for the final selected regionalisation 545 

method (KED[LS|SS]) at different return periods Ta. 546 

  T1a T10a T20a T50a T100a 

KED[LS|SS] 

RMSE (%) 8.11 8.06 8.24 8.46 8.86 

PBIAS (%) 1.00 1.10 0.80 1.00 0.80 

NSE (-) 0.982 0.981 0.979 0.979 0.980 

The three different data sets implemented here, distinguish from one another based on the parameter values (as shown in 547 

Figure A3 of the appendix) also on the spatial dependency, variograms, shown in Figure 8. When fixing the shape 548 

parameter to 0.1, the location and Koutsoyiannis parameters of LS and SS, are in similar range, and the main difference 549 

is seen at the scale parameter (where the SS has high values of the scale parameter than LS). This gives a tendency of the 550 

short durations to estimate bigger rainfall volumes for higher return periods. This behaviour is also in agreement reported 551 

by Madsen et al. (2017) which used a Generalised Pareto distribution also with a fix shape parameter. Typically, this is 552 

treated by index-based regionalisation, where extremes within a region are pooled together to estimate the DDF curves at 553 

an unknown location as done in Requena et al. (2019). However, we show here that integrating the LS and SS with 554 

external drift kriging, hence accounting for the spatial dependency of the extremes, delivers better performance than 555 

grouping them together in the index-based regionalisation (also valid for the LS and DS integration).  556 

Figure 12 Median performance improvements towards the benchmark from regionalising on different data 

combinations, as per Table 7, in kriging with external drift; where SS are short series, LS long series (LS) and DS 

disaggregated daily series, combined either with same importance (+) or with priority importance (|). 
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 4.3 Final Product and Discussion 557 

The obtained maps, on a 5km raster, for the four regionalised parameters (location parameter – μ, scale parameter σ, 558 

Koutsoyiannis θ and η parameters) with the KED[LS|SS] approach, are illustrated in Figure 13. Here the shape parameter 559 

is fixed to 0.1 for whole Germany, which is very similar to results obtained by Ulrich et al. (2021) (shape parameter as 560 

0.11 from the annual GEV approach) and validates our approach. The spatial distribution of the location GEV parameter 561 

(μ) follows partly the elevation information, with higher values in the southeast, where the German Alps are located. The 562 

scale GEV parameter (σ) values are independent of the elevation, with a high localised value near to Münster city. In 563 

2014, there was a very extreme event in Münster which has affected the statistics of the station located in the vicinity. 564 

Currently it is not clear how to handle these singular extraordinary events in extreme value analysis in an optimal way. 565 

Both Koutsoyiannis parameters (θ and η) show similar spatial patterns with lower values in the Alp and other mountainous 566 

regions, as well as on the northern-west coast. These parameters exhibit higher variability in space than the GEV location 567 

or scale parameters. Overall, the spatial distribution of η parameter follows the spatial structure of the annual rainfall sum 568 

in Germany, the distribution of the location (μ) parameter follows the information from the elevation, while the scale (σ) 569 

Figure 13 Obtained interpolated maps from the KED[LS|SS] for each of the parameter: location parameter - 𝜇, scale 

parameter - 𝞂, Koutsoyiannis θ and η parameters. The shape parameter ɣ is kept constant at 0.1. The black lines illustrate 

the borders of German Federal States.  
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and θ parameter don’t seem to be influenced by any climatologic or site characteristic. This is also seen at Van De Vyver 570 

(2012), where annual rainfall and elevation is concluded as important covariates, mainly for the location (μ) parameter, 571 

while the scale (σ) parameter didn’t have meaningful covariates and the shape parameter didn’t show any spatial structure 572 

but was kept constant over Belgium. These results agree to a certain extend with the results obtained here. However, the 573 

rainfall statistics extracted from short or daily series are considered as more important than the annual rainfall (which 574 

itself is an interpolation from point observation). Thus, interpolation of long datasets, should include extreme statistics 575 

from short or daily series rather than annual rainfall as an additional information.  576 

 577 

Figure 14 Obtained design rainfall [mm] maps for whole Germany from the KED[LS|SS] regionalisation approach 

derived for different durations (D=5min, 60min and 1440min): first row – return period Ta=1-year, second row – return 

period Ta=10 years and third row – return period Ta=100 years. The black lines illustrate the borders of German Federal 

States. 

With these 4 interpolated maps, together with the shape parameter fixed at 0.1, DDF curves can be obtained for any 578 

location in Germany. Few examples of design rainfall maps for duration levels 5min, 1 hour and 1 day, and return period 579 

Ta=1,10,100 years, are given in Error! Reference source not found.. For short durations (i.e. D=5 min) the spatial 580 
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distribution of rainfall extremes is independent from the elevation and becomes more erratic with higher return periods. 581 

This is in accordance with the fact that the convective extreme events can happen anywhere and are very low correlated 582 

with the orography. With increasing duration level, the relationship between orography and extreme rainfall becomes 583 

stronger. As for instance in D=1h, the influence of the alpine regions is visible, which becomes even stronger for the 584 

duration of D=1d. In the existing KOSTRA maps, all durations are dependent on elevation. Here, the elevation itself 585 

didn’t show much effect on the scale (σ) and θ parameter, only to some extend on the location (μ) and η parameter. This 586 

means that the extremes of longer duration (affected by the η parameter) and of low return period (affected by the location 587 

parameter) will show a pattern resembling the elevation. This is not true for short durations (affected by the θ parameter) 588 

and high return periods (affected by the scale parameter). This as well agrees with other studies, that report a weak 589 

dependence of short duration rainfall (shorter than 1 or 2 hours) with the elevation in Germany (Lengfeld et al., 2019). 590 

Lastly, the kriging interpolation as implemented here, opens the possibility to capture better the uncertainty – not only 591 

the sample uncertainty, which is typically done by bootstrapping the points statistics, but accounting as well the spatial 592 

structure of extremes by considering spatial simulations. Following this study and the best chosen method here, an 593 

extensive uncertainty analysis is given at (Shehu and Haberlandt, 2022), whose result propose that DDF estimates with 594 

KED[LS|SS] are more precise near to the location of long series (LS), and less precise in regions far from long series 595 

(LS).  596 

5. Conclusions 597 

In this study the use of three ground measuring types in Germany was investigated for the estimation of design rainfall 598 

maps. These data types included the long high-resolution dataset, with long observations at 5 min time steps from 60-70 599 

years, the short high-resolution dataset with short observation also at 5 min time steps from 10 to 20 years, and the daily 600 

dataset with observations varying from 20 to 100 years. The purpose of the work was to review different methods for the 601 

estimation and regionalisation of the DDF curves and to investigate the value and the best integration of different data 602 

types for estimating DDF curves in unobserved locations. The results will provide the basis for a new update of the design 603 

storm maps for Germany, the KOSTRA-DWD2023. First, the long analogous and recent digital high-resolution networks 604 

were homogenised by performing a jump correction, with the jumps coinciding with sensor type changes. Second the 605 

daily dataset was disaggregated to sub hourly durations based on a cascade model parameterised according to Olsson, 606 

(1998) and Lisniak et al. (2013) from the RADOLAN data in Germany. Third, Annual Maximum Series (AMS) were 607 

derived for each station available in the three datasets for duration levels ranging from 5 min to 7 days. This represents the 608 

main database for the present investigation. Two methods were investigated for local estimation of rainfall extreme 609 

statistics, adopted from Koutsoyiannis et al. (1998), and Fischer and Schumann (2018), and three different regionalisation 610 

approaches (ordinary kriging, external drift kriging and index-based regionalisation) were investigated for the spatial 611 

estimation of DDF curves in Germany. The conclusions derived, by considering the long high-resolution dataset as the 612 

truth, are summarised as:  613 

• Both methods for local estimation of the rainfall extreme statistics behave quite similarly in capturing the 614 

local duration specific rainfall depths. Nevertheless, the estimation of parameters through the 615 

Koutsoyiannis approach is more robust in terms of data sampling uncertainties. Particularly the 616 

Koutsoyiannis approach combined with a Generalised Extreme Value (GEV) distribution with a fixed 617 

shape parameter value at 0.1 exhibited the highest robustness with tolerable decline in precision. 618 

Therefore, 4 parameters were used to describe the local statistics of extreme rainfall: the location and 619 

scale GEV parameters and the two Koutsoyiannis parameters θ and η. These 4 parameters represent the 620 

basis for the testing of different scenarios and regionalisation approaches.  621 
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• When only the long high-resolution dataset is present, both ordinary kriging and index-based 622 

regionalisation perform similarly, with ordinary kriging showing slightly better median performance. 623 

This result remains true as well for other data combination settings, with kriging methods exhibiting lower 624 

RMSE and NSE, but slightly higher PBIAS than the index-based regionalisation. The only case where 625 

the index-based regionalisation has superiority against kriging, is when only short high-resolution series 626 

are present.  627 

• When more than two datatypes are available, kriging with external drift seems more adequate for the 628 

parameter interpolation than ordinary kriging, at least regarding the RMSE and NSE performance.   629 

• A combination of long and short high-resolution series improves the performance of regionalisation 630 

considerably (up to 15% for Ta=100 years), but only when the data sets are combined with external drift 631 

kriging. Here the parameters from the short series are first interpolated with ordinary kriging, which later 632 

on, serve as an external drift for the kriging interpolation of the parameters from the long series. This 633 

combination gave overall the best results at least for return periods higher than 10 years.  634 

• A combination of the long high-resolution and daily dataset improves the performance of regionalisation 635 

up to 10% being the second-best method for regionalisation. Here as well the best regionalisation was the 636 

external drift kriging, with the ordinary kriging interpolation of daily parameters serving as an external 637 

drift. 638 

• A combination of the three data types improves the regionalisation considerably (up to 20%) only for low 639 

return periods (shorter or equal than 10 years).  640 

• Overall, the best method for the regionalisation of the DDF curves in Germany, was the kriging 641 

interpolation of the long sub hourly stations, with the short sub hourly stations as an external drift. On 642 

average, this approach exhibited 8-9% RMSE (increasing with the return period) and up to 1% BIAS 643 

(decreasing with the return period) when compared to the locally estimated DDF curves.  644 

The cross-validation implemented here can only describe the accuracy of the regionalisation methods when compared to 645 

the local estimation, but it does not say much about the precision of the predictions. Thus, it is important to perform an 646 

uncertainty analysis, which should include not only the local estimation of sample statistics (briefly discussed here) but 647 

as well the spatial uncertainty of the kriging interpolation. The integration of spatial uncertainty in the DDF design storms 648 

of Germany is investigated and discussed in Shehu and Haberlandt (2022). Further improvements of the methodology 649 

might include the validation of the methods on distinguished region. It has to be noted that the majority of the reference 650 

stations in Germany are located in the lowlands, thus the mountainous areas may be under-represented. It would be 651 

interesting to investigate if daily data or other site characteristics (like the elevation) are improving the performance of 652 

the chosen method in these regions. However, should one decide to perform region specific regionalisation, special care 653 

should be paid to the continuity of DDF values at the borders of the regions. Lastly, these conclusions are valid mainly 654 

for Germany, where dense networks are present. The advantage of each data set or approach may still change depending 655 

on the station density or study area location.   656 

6. Data Availability  657 

The daily and the short sub-daily network, as well as the other meteorological variables, are made publicly available by 658 

the German Weather Service (DWD) and can be accessed at https://opendata.dwd.de/climate_environment/CDC/. The 659 

https://opendata.dwd.de/climate_environment/CDC/
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12. Appendix 789 

 790 

 791 

 792 

Appendix 12.1 Cross-correlation between the selected local parameters (Koutsoyiannis and GEV parameters) 

for regionalisation and useful site characteristics that might act as an external drift information.  
Figure A1 Cross-correlation between the selected local parameters (Koutsoyiannis and GEV parameters) for 

regionalisation and useful site characteristics that might act as an external drift information. Mu is the GEV location 

parameter, sigma the GEV scale parameter, theta and eta the Koutsoyiannis parameters, ELEV is short for elevation 

information, SUN is short for long term average of annual sunshine duration, PCP is short for long term average of 

annual rainfall amount, and TEMP is short for the long-term average of annual mean temperature.   

Figure A2 The homogeneity index (H1) computed for each of the 9th selected regions for each of the dataset 

combinations. 
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Appendix 12.4 Fischer/Schuman parameters obtained for each data set (LS in dark blue, SS in light blue and DS 

in grey) when fixing the shape parameter to 0.1 (FIX) or letting it free (FREE). 

Figure A3 Koutsoyiannis parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) when 

fixing the shape parameter to 0.1 for all stations (FIX) or constant over all durations per each station (CON). 

Figure A4 Fischer/Schumann parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) 

when fixing the shape parameter to 0.1 (FIX) or constant over all durations per each station (CON). 

Figure A5 Obtained Deterioration (-) or Improvement (+) towards the best regionalisation technique (KED[LS|SS]) 

when no long series are available (LS) and the regionalisation is performed based on short series (SS), disaggregated 

daily series (DS), or on both SS and DS.   


