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Abstract. 7 

Rainfall depth-duration-frequency (DDF) curves are required for the design of several water systems and protection 8 

works. These curves are typically generated from the station data by fitting a theoretical distribution to the annual extremes 9 

(AMS). The aim of this study is to investigate the use of different data types and methods for estimating reliable DDF 10 

curves covering whole Germany. The following three questions are investigated for the evaluation and regionalisation of 11 

the DDF curves in Germany: i) which is the best local estimation method, ii) which regionalisation method shows best 12 

performance, and iii) which data sets should be used and how they should be integratedFor reliable estimation of such 13 

curves, long and dense observation networks are necessary, which in practice are seldom the case. Usually observations 14 

with different accuracy, temporal resolution and density are present. .In this study, we investigate the integration of 15 

different observation data sets under different methods for the local and regional estimation of DDF curves in Germany.  16 

For this purpose, two competitive DDF-procedures for local estimation (Koutsoyiannis et al. 1998, Fischer and 17 

Schumann, 2018) and two for regional estimation (kriging theory vs index-based) are implemented and compared. 18 

Available station data from the German Weather Service (DWD) for Germany are employed, which includes; 5000 daily 19 

stations with more than 40 years available, 1261 high resolution (1min) recordings with observations period between 10 20 

and 20 years, and finally 133 high resolution (1min) recordings with 60-70 years of observations. The performance of the 21 

selected approaches is evaluated by cross-validation, where the local DDFs from the long sub-hourly time series are 22 

considered the true reference. The results reveal that the best approach for the estimation of the DDF curves in Germany 23 

is by first deriving the local extreme value statistics based on Koutsoyiannis et al. 1998 framework, and later usinge the 24 

kriging regionalisation of long sub-hourly time series with the short sub-hourly time series acting as an external drift. The 25 

integration of the daily stations proved to be useful only for DDF values of very low return period (T<10 years), but not 26 

doesn’t introduce any improvement for higher return periods (T≥10 years). 27 
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1. Introduction 30 

Rainfall volumes at varying duration and frequencies are required for the design of water management systems and 31 

facilities, like dams or dikes, spillways, flood retention basins, urban drainage systems, etc. These design precipitation 32 

volumes are also known as IDF (Intensity-Duration-Frequency) or DDF (Depth-Duration-Frequency) curves, and are 33 

derived from an extreme value analysis (EVA) on observed rainfall. For sampling extreme values, either annual maximum 34 

series (AMS) or peak-over-threshold (POT) can be used, however for return periods greater than 10 years, there are hardly 35 

any differences between the two. Often the AMS are preferred over the POT because the methodology is more direct and 36 

easier, whereas the POT method needs a prior assumption on the threshold selection. Afterwards a theoretical probability 37 

distribution (PDF) is fitted to the extreme series of a certain duration, in order to extract design rainfall volumes at specific 38 

frequency (or return periods). Typically, a Generalized Extreme Value (GEV) distribution is fitted for the AMS series 39 

and a Generalised Pareto for the POT series extracted for a fixed duration level. Rainfall extremes of different durations 40 

are strongly related to each other, however if the parameter fitting is done independently to each duration level these 41 

relations may not be kept (Cannon, 2018). Therefore, generalised concepts as in (Koutsoyiannis et al., 1998), simple 42 

scaling (Gupta and Waymire, 1990) or multi scaling Van de Vyver (2015) approaches are used to smooth the extreme 43 

statistics over different duration levels. Finally, since the rainfall observations are mostly point measurements, a 44 

regionalisation procedure of the PDF parameters to un-observed locations is performed. Methodologically, a distinction 45 

can be made between two approaches: a) a direct regionalisation of quantiles, moments or parameters of distribution 46 

functions and b) a regional estimation of distribution functions for homogeneous regions. Borga et al. (2005) suggests the 47 

regionalisation of the parameters instead of the quantiles. For the direct regionalisation of parameters, regressions 48 

(Madsen et al., 2009; Smithers and Schulze, 2001), splines (Johnson and Sharma, 2017) or kriging methods (Ceresetti et 49 

al., 2012; Kebaili Bargaoui and Chebbi, 2009; Uboldi et al., 2014; Watkins et al., 2005) are applied. On the other hand, 50 

the estimation of regional distributions functions based on the index method proposed by Hosking and Wallis (1997), is 51 

one of the most used methods in the literature for the regionalisation of design precipitation (Burn, 2014; Durrans and 52 

Kirby, 2004; Forestieri et al., 2018; De Salas and Fernández, 2007).  53 

Rainfall volumes at varying duration and frequencies are required for the design of water management systems and 54 

facilities, like dams or dikes, spillways, flood retention basins, urban drainage systems, etc. These design precipitation 55 

volumes are also known as IDF (Intensity-Duration-Frequency) or DDF (Depth-Duration-Frequency) curves. The main 56 

application of the DDF curves is the derivation of design discharge from design rainfall, when no sufficient discharge 57 

observations are available assuming that both rainfall and discharge events have the same recurrence interval (herein 58 

referred to as return period Ta). For sampling, the annual maximum series (AMS) or peak-over-threshold (POT) can be 59 

used, however for return periods greater than 10 years, there are hardly any differences in the results obtained from each 60 

method. Often the AMS are preferred over the POT because the methodology is more direct and easier, whereas the POT 61 

method needs a prior assumption on the threshold selection. The typical procedure includes fitting a theoretical probability 62 

distribution (PDF) to the observed rainfall extremes at a certain duration level, and based on the obtained PDF, compute 63 

the quantiles corresponding to different return periods. Most common distribution functions are Generalised Extreme 64 

Value (GEV), Gumbel, Log-Pearson-III and Lognormal distributions for AMS, with GEV and Gumbel being the most 65 

popular, and Generalised Pareto for POT. L-moments are primarily used for parameter estimation in  recent national 66 

applications (Johnson and Sharma, 2017). Since the estimation of extreme design rainfall is done locally at each 67 

measurement station (rain-gauge), a regionalisation method, often the index-flood method (herein referred the index 68 

method) is employed to estimate design rainfall depth at ungauged location (Hosking and Wallis, 1997). In Germany, the 69 

Coordinated Heavy Rainfall Regionalisation Evaluation KOSTRA-DWD (Malitz and Ertel, 2015) from the German 70 

Weather Service (DWD) has been providing these design precipitation volumes for different application purposes since 71 
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1980. A revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. 72 

Therefore, it is the aim of this study to investigate the use of different methods for the estimation and regionalisation of 73 

the DDF curves and the best integration of different data types, in order to give the basis for the development of the new 74 

regional design rainfall catalogue for Germany. In this procedure, several research questions arise which are discussed 75 

below: 76 

i) Local estimation 77 

A prominent probability distribution that is frequently used in the statistical analysis of AMS of heavy rainfall is the 78 

Gumbel distribution. The Gumbel distribution is a special case of the three-parameter GEV distribution where the shape 79 

parameter is zero (γ=0) and the distribution follows an exponential tail behaviour. If the shape parameter is greater than 80 

zero, the distribution exhibits a so-called heavy-tail behaviour (also known as GEV type II), whilst if the shape parameter 81 

is less than zero no-tail behaviour is present (also known as GEV type III)(Coles, 2001). The GEV type III is not employed 82 

in rainfall extreme value statistics, as it is bounded from above. The Gumbel and the GEV type II (herein referred to as 83 

simply GEV) are almost similar for low percentiles, nevertheless diverge greatly for high return periods. Therefore, for 84 

the design rainfall at high return periods, the expression of the shape parameter is of decisive importance. Regarding this 85 

issue, extensive investigations were carried out to determine the role of the shape parameter in heavy precipitation data, 86 

both in a theoretical manner and on the basis of empirical findings. For instance, Koutsoyiannis (2004a) investigated the 87 

heavy-tail behaviour of extreme daily rainfall values at 169 worldwide locations with very long observations (100-150 88 

years) and concluded that when only short observations are present (less than 50 years) the heavy-tail characteristics can 89 

be overlooked and the Gumbel distribution is chosen falsely as a good fit. This may be also the reason why for a long 90 

time in the literature mainly the Gumbel distribution was preferred. Koutsoyiannis (2004b) proposed a GEV distribution 91 

with a shape parameter fixed within the range γ=0.1-0.15 for all examined geographical zones (mainly in Europe and 92 

North America). Specifically, he proposes the value of 0.15 if very high return periods are of interest, and the value of 93 

0.1 if the focus is also on low return periods. Later, Papalexiou and Koutsoyiannis (2013) analysed more than 15,000 94 

stations worldwide with observation length from 40 to 160 years, and again the results favoured the implementation of 95 

heavy-tail GEV distribution instead of the Gumbel. A recent study by Papalexiou (2018) on hourly rainfall measurements 96 

in the USA, suggested that also for sub-daily durations, the rainfall extremes exhibit a heavy-tail (sub-exponential), much 97 

heavier than the exponential or the Gamma tails. Mountain areas tend to exhibit heavier tails; however, terrain is not the 98 

dominant factor influencing the tail behaviour. Overall, the analysis suggests that the shape parameter cannot be evaluated 99 

adequately when the station's recordings are short and from a Gumbel distribution, therefore the GEV should be used 100 

instead.  101 

To determine the design rainfall, distribution functions are usually first fitted separately for each of the selected duration 102 

levels. This way, quantile crossing may arise between different duration levels (Cannon, 2018). Quantile crossing here 103 

refers to when the extreme rainfall volumes for a fixed return period (say Ta=100 years) are not increasing with longer 104 

duration levels. Theoretically, the rainfall volume is dependent on the duration and thus another step in the extreme value 105 

analysis is needed, to ensure that the extremes are consistently increasing with the duration levels. An empirical 106 

relationship was first developed by Bernard (1932), where the intensities at different duration levels are generalised by a 107 

power law depending on three location constants. (Koutsoyiannis et al., 1998) proposed a similar mathematical 108 

framework, where the AMS intensities are generalised based on two parameters (θ >0 and 0<η<1) and a probability 109 

distribution function (PDF) is fitted based on these generalised intensities to estimate the quantiles for specific return 110 

periods. The generalised concept suggested by Koutsoyiannis has widely been implemented in the literature (Asikoglu 111 

and Benzeden, 2014; Muller et al., 2008; Ulrich et al., 2021; Van de Vyver, 2015). Ulrich et al. (2021)  implemented such 112 
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a framework in Germany for both monthly and annual IDFs curve, with a constant shape parameter of 0.11 for the annual 113 

estimation. Another alternative application is based on the wide sense scaling theory, where the PDF parameters or 114 

moments of each duration are dependable on a power law (Gupta and Waymire, 1990). Van de Vyver (2015) implemented 115 

a multi-scaling approach, where both the location and the scale parameters of duration specific GEV were related on a 116 

power law with the duration, while the shape parameter was kept constant. Similar approaches were also proposed and 117 

studied by Haktanir et al. (2010), Holešovský et al. (2016), Soulis et al. (2016), and are typically referred to as smoothing 118 

of extreme statistics over the duration levels.  119 

Other solutions build also on the power law relationship between extremes and durations are for instance Bayesian 120 

distribution models (Boukhelifa et al., 2018; Lima et al., 2016; Roksvåg et al., 2021; Van de Vyver, 2018), marginal 121 

probabilities (Veneziano et al., 2007), and artificial intelligence (Cannon, 2018). An alternative approach for achieving a 122 

DDF based on data from example of such implementation in Germany was proposed by Fischer and Schumann (2018), 123 

where location and scale parameters are obtained by a regression model (based on a nonlinear least squares method), and 124 

the shape parameter is estimated indirectly by quantifying first the normalised scale/shape ratio with a robust linear 125 

regression. Here we consider the two approaches of Koutsoyiannis et al. (1998) and Fischer and Schumann (2018), as 126 

they have successfully been tested in Germany. Here, the question remains whether a homogenisation of intensities or a 127 

smoothing of GEV parameters across different duration levels is more appropriate for the estimation of the DDF curves 128 

in Germany. 129 

ii) Regionalisation methods  130 

Regionalisation of the design DDF curves provides estimation for unobserved locations, but also contributes to a more 131 

robust estimation, e.g. by using larger samples (Requena et al., 2019). Methodologically, a distinction can be made 132 

between two approaches: a) a direct regionalisation of quantiles, moments or parameters of distribution functions and b) 133 

a regional estimation of distribution functions for homogeneous regions. A direct regionalisation of quantiles may lead 134 

as well to quantile crossing across durations, and therefore mostly regionalisation of parameters is performed. Furthermore 135 

Borga et al. (2005) suggests the regionalisation of the parameters instead of the quantiles. For the direct regionalisation 136 

of parameters, regressions (Madsen et al., 2009; Smithers and Schulze, 2001), splines (Johnson and Sharma, 2017) or 137 

geostatistical methods (Ceresetti et al., 2012; Kebaili Bargaoui and Chebbi, 2009; Uboldi et al., 2014; Watkins et al., 138 

2005) are applied. On the other hand, the estimation of regional distributions functions based on the index method 139 

proposed by Hosking and Wallis (1997), is one of the most used methods in the literature for the regionalisation of design 140 

precipitation (Burn, 2014; Durrans and Kirby, 2004; Forestieri et al., 2018; De Salas and Fernández, 2007). Many 141 

countries have actually employed the index-based regionalisation for estimation of regional IDF/DDF curves, for instance 142 

Canada (Burn, 2014), Denmark (Madsen et al., 2009) and  USA (Perica et al., 2019). However, prior to the application 143 

of the index method, it is important to define adequately homogeneous regions where the rainfall statistics are similar, 144 

which can be a challenging task (De Salas and Fernández, 2007). Hosking and Wallis, (1997) recommend that site 145 

characteristics should be used for the identification of homogeneous regions instead of site statistics. Therefore, the second 146 

objective of this paper is to investigate whether a direct kriging interpolation of the GEV parameters or the application of 147 

the index-method on homogeneous regions is more suitable for the estimation of regional DDF curves in Germany.  148 

iii) Combination of available datasets with different temporal resolution and observation length  149 

As stated in Koutsoyiannis (2004a,b) short time series can choose Gumbel parameters falsely and hide the true heavy-tail 150 

behaviour of rainfall extremes. Thus, care should be taken when combining different statistics from different observation 151 

lengths. Madsen et al., (2017) investigated the IDF curves with long stations (more than 40 years) and short stations (less 152 

than 30 years) based on Generalised Pareto distribution with fix shape parameter, and concluded that the statistics are 153 
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changing from one case to the other, with short series giving large estimates of the extreme intensities. This of course can 154 

be attributed to the non-stationarity of the IDF curves. Holešovský et al. (2016) separated the historical data into groups 155 

when estimating IDF curves for Czech Republic (long series with 35-40 and short series with 11-15 years of observations), 156 

and concluded that the uncertainty at estimating parameters for the short time series is quite high, especially for high 157 

return periods. In the index-based regionalisation, regional L-moments are averaged based on the observation length, 158 

which may lead to more stable results (Burn, 2014; Requena et al., 2019), however the interpolated index may still suffer 159 

from high uncertainties from pooling together short and long time series. This may also be the case when interpolating 160 

local GEV parameters with the kriging theory. Therefore, it is important to investigate which is the best combination of 161 

time series with different observation length: even though the short time series may be not adequate for high return period 162 

quantiles, they are much denser than the longer time series. Hence their information may be helpful in trading space for 163 

time.  164 

In Addition to the high resolution (1-5min) network, the daily one is much denser and as well with very long observation 165 

lengths. Nevertheless, the temporal resolution is too coarse for the estimation of sub-hourly to sub-daily extremes. In such 166 

cases, GEV parameters for the sub-daily duration can be scaled from the GEV parameters of the daily extremes following 167 

the scale invariance principle of precipitation extremes. Bara et al. (2009) employed the scale invariance principle to 168 

derive DDF curves for sub-daily duration levels (5min – 3h) from daily observations in Slovakia, while Borga et al. (2005) 169 

applied two different scaling factors one for duration levels less than 1 hour and one for longer than 1 hour in northern-170 

eastern Italy. A later study from Paixao et al. (2011) performed in Ontario Canada concluded that the scaling factors 171 

should not be used for reliable downscaling of daily extremes to durations less or equal to one hour. This is because the 172 

extremes at such short durations are governed by other rainfall mechanisms then the daily extremes, and hence a low 173 

dependency exists between the two extreme groups. Alternative to the scale invariance principle, disaggregation schemes 174 

can be applied to the daily data in order to obtain high resolution data. Various model approaches for disaggregation are 175 

described in the literature, and they mostly consist of a so-called cascade model (Müller and Haberlandt, 2018). Weather 176 

radar data can be used to estimate the probabilities in the individual levels and to derive the extensive parameter-sets 177 

suggested by Lisniak et al. (2013) for the disaggregation scheme. Therefore, the third objective of the paper is to 178 

investigate the value and the best combination of data from the long, short and disaggregated daily series for the 179 

regionalisation of the DDF curves in Germany. 180 

Since the analysis is performed on extreme values, first very long observations are required to ensure a proper fitting of 181 

the GEV parameters, particularly of the shape parameter which is of decisive importance for extremes of high return 182 

period (larger than 20 years return period). For instance, Koutsoyiannis (2004a,b) showed clearly that short time series 183 

(less than 50 years) can choose falsely a shape parameter of zero (Gumbel distribution) and hide the true heavy-tail 184 

behaviour of rainfall extremes (also supported by Papalexiou and Koutsoyiannis (2013) and Papalexiou (2018)). Second, 185 

a dense observation network should be available to ensure an adequate estimation of extreme value statistics also at un-186 

observed locations. A less denser network would cause for instance that the kriging interpolated values to be less accurate 187 

and the spatial features to be more smoothen in space (Berndt et al., 2014). On the other side, index-based regionalisation 188 

can provide more robust estimation at un-observed locations if larger samples (obtained from denser networks) are used 189 

(Requena et al., 2019). Third, a high-resolution observation network (with 1- or 5- time steps) is as well necessary to 190 

estimate extremes of short durations (at scales of minutes or hours) for catchments that respond quickly to rainfall events 191 

(i.e. urban or mountainous areas prone to flash floods). At the moment, no perfect observation network that fulfils these 192 

three criteria is available, however different networks or datatypes fulfilling two criteria co-exist. For example, daily 193 

observation networks are typically very dense (every 10km) and can have up to 100-150 years of observations, but don’t 194 

capture the extremes at sub-hourly durations. Digital tipping bucket or weighting sensors can measure the rainfall at 1min 195 

Field Code Changed
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time steps and can be dense (every 20-25km), however they are available mostly after 2000 and hence too short for EVA. 196 

Long observations at 1min time steps from analogous Hellmann or tipping buckets may be available from 1900-1950 197 

only at some countries (i.e. Germany, Belgium) but are not as dense as digital or daily measurements (>50km). 198 

Alternatively, weather radar or satellite data can provide rainfall fields  at 1- or 4-km2 and 5min time steps, but offer short 199 

observations (less than 20 years) and suffer from high inaccuracies (Marra et al., 2019).  200 

To optimize the DDF estimation, different data types have been combined for instance; Madsen et al., (2017) regionalised 201 

extremes in Denmark from 1min observation with daily interpolated values as a co-variate, Bara et al. (2009) employed 202 

the simple scale principle to derive DDF curves for sub-daily duration levels (5min – 3h) from daily observations in 203 

Slovakia, Goudenhoofdt et al., (2017) used station observations (10min and varying lengths) to correct radar data and 204 

estimate the hourly and daily extremes, Burn (2014) pooled together long and short observations at 5min time steps to 205 

form the DDF curves in Canada. However, care should be taken when combining information from data types that differ 206 

in observation length, temporal and spatial scales. Holešovský et al. (2016) separated the historical data into groups when 207 

estimating DDF curves for Czech Republic (long series with 35-40 and short series with 11-15 years of observations), 208 

and concluded that the uncertainty at estimating parameters for the short time series is quite high, especially for high 209 

return periods. In the index-based regionalisation, regional L-moments are averaged based on the observation length, 210 

which may lead to more stable results (Burn, 2014; Requena et al., 2019), however the interpolated index may still suffer 211 

from high uncertainties from pooling together short and long time series. This may also be the case when interpolating 212 

local GEV parameters with the kriging theory. The regionalisation of the shape parameter may be not representative if 213 

short and long observations are pooled together with same importance, thus keeping a fix shape parameter may help to 214 

mitigate this problem. Nevertheless, further investigation should be done to ensure if long observations, as more reliable, 215 

should have more importance than the short ones when regionalising extreme value statistics. Regarding the temporal 216 

scale difference, a study from Paixao et al. (2011) performed in Ontario Canada concluded that the scaling factors should 217 

not be used for downscaling daily extremes to durations less or equal to one hour. This is because the extremes at such 218 

short durations are governed by other rainfall mechanisms then the daily extremes, and hence a low dependency exists 219 

between the two extreme groups. Alternative to the scaling principle, disaggregation schemes can be applied to the daily 220 

data in order to obtain adequate extremes (with return period up to 5 years) for sub-hourly durations (Müller and 221 

Haberlandt, 2018). On the other hand, because of the spatial scale inconsistency between weather radar and gauge 222 

observations, the weather radar may not be appropriate to estimate directly extremes of short durations (Marra et al., 223 

2019), however they can still be useful to extract sub-daily extremes if used to disaggregate daily observations as done 224 

by Bárdossy and Pegram (2017). More complex disaggregation procedures that take advantage of the radar information 225 

by implementing an extensive parameter-set as suggested by Lisniak et al. (2013), may also be used to disaggregate daily 226 

observation and estimate the extreme values at sub-hourly durations. Nevertheless, to authors knowledge, there is no 227 

study in the literature that investigates if disaggregated daily time series can be useful in regionalising extreme values 228 

statistics when high resolution data are present, and when so, if they should have the same weights as high-resolution 229 

data.  230 

Lastly, due to lack of data, in most of the literature, the combination of any two or alternative data types for EVA is 231 

validated on observations that are not dense or long enough (longer than 40-50 years). Therefore, it would be interesting 232 

to test different methods for estimation and regionalisation of DDF curves extracted from different datatypes, on a long 233 

and dense network. The German Weather Service (DWD) has a relatively dense observations network (every 50km) of 234 

1min rainfall data available from 1950 (60-70years), that enables a proper validation of EVA for return periods up to 100 235 

years. Additionally, denser digital observations (every 20km) at 1min time steps (mainly from 2000), very dense (every 236 

10km) daily observations (10-120years) and weather radar observations (from 2000) at 1km2 and 5min time steps are as 237 Formatted: Superscript
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well available. As multiple data types co-exist in Germany, it is important to investigate the suitability of methods and 238 

data types for the extraction and regionalisation of extreme statistics while validating only at the long and dense 239 

observations. In Germany, studies either use the Koutsoyiannis approach or multi/simple scaling approach of GEV 240 

parameters to generalise the extremes over different durations. To authors knowledge there is no comparison of the two 241 

approaches in the literature. The Koutsoyiannis approach has been implemented in Germany by (Ulrich et al. (, 2020), 242 

but on a shorter available 1 min dataset (up to 14 years), while Fischer and Schumann (2018) have implemented the multi 243 

scale approach only at a long station (~85 years). Here we investigate which of these methods gives more accurate and 244 

precise estimation of DDF based on the long and 1min rainfall data. The same is true also for the regionalisation 245 

approaches: to authors knowledge there is no comparison between kriging and index-based regionalisation. Naturally, it 246 

is interesting to see which of the methods is more appropriate when validated on a long and high-resolution network, and 247 

where lie the advantages and disadvantages of each method when different data types are integrated, and what 248 

combination brings the best outcome. For this purpose, we investigate here three competitive regionalisation methods 249 

(ordinary kriging, external drift kriging and index-based regionalisation) based on different combination of data types 250 

(long series, short series, disaggregated daily series from weather radar parametrisation), while validating only on the 251 

long and high-resolution observations. At the moment, a revision of the current design storm maps in Germany 252 

(KOSTRA-DWD) is required in order to use additional data and state-of-the-art methodology. Therefore, an additional 253 

aim of this study, is to give the basis for development of the new design storm maps in Germany (KOSTRA-2023).  254 

The paper is structured as follows: first the available data sets for extreme value analysis are introduced in Section 2, then 255 

the methods selected for investigation of the local and regional estimation are presented respectively in Section 3.1 and 256 

3.2, with performance assessment and validation explained in Section 3.3. The results are given for each objective as: 257 

best local estimation of extremes in Section 4.1, best regionalisation technique 4.2.1, best data integration 4.2.2. Finally, 258 

the obtained maps for Germany are discussed in section 4.3 and conclusions are givendes in Section 5. 259 

2. Study Area and Data 260 

2.1 Available Data 261 

The study area covers Germany and is illustrated in Figure 1Figure 1. Three rainfall measuring networks are 262 

available from the German Weather Service (DWD); the daily network series (DS) – typically Hellman devices recording 263 

the rainfall daily, the long network series (LS) – mostly tipping bucket analogue sensors (before 2004) measuring rainfall 264 

at 1 min time steps with 0.1mm resolution and 2% uncertainty, and the most recent short network series (SS) – digital 265 

sensors (after 2004) measuring rainfall also at 1min timesteps with 0.01mm resolution. The spatial distribution of these 266 

networks data series is shown in Figure 1Figure 1, the observation length is given respectively in Figure 2Figure 2 and 267 

the number of stations available for each network one is given in Table 1Table 1. The longLS dataset network  is the 268 

most appropriate data set for extraction and evaluation of extreme rainfall statistics, since on average it includes 65 years 269 

of observations (as shown in Figure 2Figure 2– dark blue) and measures the rainfall at very fine temporal scales. 270 

Nevertheless, this network is sparse in comparison to the other two, and only 133 stations in the whole Germany are 271 

available. On the other side the short network SS dataset measures the rainfall as well at very fine temporal scales and is 272 

much denser than the long network series (1261 stations excluding the LS locations), however on average it includes only 273 

18 years of observations which is not enough for extreme value statisticsanalysis. Lastly the DS dataset daily network is 274 

much denser (with 4068 stations excluding LS and SS locations) and covers 40 years up to 120 years, but the temporal 275 

resolution of rainfall is too coarse to be useful for sub hourly extreme values analysis. 276 
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Figure 1 Available rainfall networks data types in Germany for 
different temporal resolution. The black lines illustrate the borders of 
German Federal States. 

 

Table 1 Number of stations for each of the 
available networks data types in Germany. 

Resolution 5min 1 day 

Obs. Length > 41y > 10 y >10 y 

No. Gauges 133 +1261 +4068 
 

2.2 Temporal Disaggregation of the Daily NetworkSeries 277 

The daily network dataset (DS) is much denser than both long and short networks ones and includes even longer 278 

observation periods than the LS datasetlong network. If it is possible to disaggregate these data reliably, this will 279 

considerably increase the number of support points for the regionalisation of DDF curves. For the considerations presented 280 

here, the so-called cascade model first introduced by Olsson (1998) is employed. A more extensive parameterisation is 281 

implemented in the method according to Lisniak et al. (2013) which corresponds to a transfer of the Olsson method to a 282 

3-fold distribution. To generate sub-hourly data, disaggregation parameters are derived from the RADOLAN weather 283 

radar time series of each grid cell (Bartels et al., 2004), and the daily observed volumes are disaggregated for the given 284 

durations as shown in Table 2Table 2. It is important to note that, due to the parameterisation using RADOLAN data, no 285 

parameter regionalisation is required, so that the parameter-rich disaggregation procedure in the Lisniak variant can be 286 

used. Moreover 30 realisations of disaggregated data were generated for each duration, in order to capture the uncertainty 287 

due to the disaggregation. It was evaluated that the relative error doesn’t improve significantly for more than 30 288 

realisations, as also reported in (Müller and Haberlandt (, 2018), therefore only 30 realisations of disaggregated data were 289 

used in this study.   290 

Table 2 The disaggregation scheme applied to the daily network data (DS) to obtain rainfall volumes at the given 
durations. 

Duration 12h 8h 6h 4h 3h 2h 1h 30min 15min 

Figure 2 Observation length of all stations 
grouped according to the three available 
networks data types in Germany. 
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Disaggregation 24h /2 24h /3 24h/22 24h /3/2 24h/23 24h / 3/ 22 24h/3/23 24h/ 3/24 24h/ 3/25 

To understand what errors can be introduced to the DDF curves when employing this disaggregation scheme, a direct 291 

comparison was conducted between the long series (LS) and the disaggregated series (DS) for the return periods 1, 10, 292 

20, 50 and 100 years. For each station, duration level and return period, the relative error is calculated as the difference 293 

between the disaggregated and the original rainfall quantile. The resulting deviations for all stations are shown in Figure 294 

3Figure 3. The results indicate that at the longer duration levels (>6 hours), the DDF curves are captured quite well, and 295 

the main disadvantage of the disaggregation model (as expected) is for the very short duration. Below the duration of 4 296 

hours, there is a clear tendency to underestimate the extremes from LS,. up to a median underestimation of 14% at the 297 

30min duration level. At the duration of 15min, a weakening of the underestimation is observed, which is probably due 298 

to the instationarity in the original series identified in Section 2.4 below, which predominates only at duration levels up 299 

to 15min. Thus, it is expected for the DS disaggregation scheme to be more useful for the longer duration extremes than 300 

the short ones,. This is  particularly true for the extremes at very short duration (5min) as the disaggregation scheme 301 

estimates volumes only down to 15 min durations.sub-hourly durations., where the extremes from DS are underestimated 302 

with more than 10% (not shown in).  303 

2.3 Annual Maximum Series for Each Dataset 304 

Using the five-minute time series, annual maximum series (AMS) are derived based on the calendar year for the duration 305 

levels 5min, 10min, 15min, 30min, 1h, 2h, 6h, 12h, 1d, 2d, 3d and 7d. A moving window with the length of each duration 306 

level is used to derive the annual maxima, considering a dry duration of 4 hours to ensure that the maxima selected in 307 

December and January of two consecutive years are independent from one another. Additionally, following the guidelines 308 

given by DWA (2012) a scaling of the durations 5, 10 and 15 min AMS with the factors given in Table 3Table 3 is 309 

performed. This is done to avoid the systematic underestimation of rainfall extremes at short duration caused by the 310 

deviation between i) the start of the actually largest rainfall sum of duration D, and ii) the fixed starting time of the 5 min 311 

time series (employed here). 312 

Table 3 Correction factors for the short duration AMS according to the DWA-531(DWA, 2012). 

Duration level 5min 10min 15min 

Correction factor for AMS 1,14 1,07 1,04 

Figure 3 The relative error of the disaggregated daily station data (30 realisations) based on radar parametrisation for 

different return periods and duration levels: (+) sign indicates overestimation, while (-) sign underestimation of 
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2.4 Homogenisation of Long and Short NetworkDataset 313 

First plausibility and homogeneity checks were performed on the long and short data sets, herein referred to as 314 

respectively long series (LS) and short series (SS). An initial analysis of possible trends based on the quantile regression 315 

(Koenker, 2005) was carried out for the monthly 5min maximum intensities of the long series (LS). This method was 316 

chosen, as in comparison to the classical regression it is considerably more robust and it allows to obtain regression results 317 

for different non-exceedance probabilities. In Figure 4Figure 4, the quantiles for the non-exceedance probabilities τ = 318 

0.5 (i.e. median), 0.8, 0.9 and 0.95 are considered. Quantile regressions for the four selected τ with time as the explanatory 319 

variable are implemented separately for each of the 133 measurement points. Each dashed line corresponds to a measuring 320 

station and each colour to a non-exceedance probability. Trend-like changes in the monthly five-minute maxima are 321 

visible with slopes that increase with τ. To understand why this trend is present in almost all long series, we investigated 322 

whether these instationarities are more trend-like or jump-like, with the latter assuming that the timing of jumps is 323 

associated with sensor changes in the measuring network. In the long networkseries, a total of 19 different sensor types 324 

are distinguished simply by two states: analogue or digital.  325 

 A test for trend, jump or stationarity based on in-stationary extreme value analysis (Coles, 2001) was performed for 326 

all 133 LS. We tested for linear trend in location parameter vs. jump at date of sensor change from analogue in early years 327 

to digital in the later years in the location parameter vs. stationarity. The decision was based on Akaike Information 328 

Criterion. The results for different duration levels (x-axis) are shown in Figure 5Figure 5 –left. It is obvious that the 329 

majority of instationaritiesy at short duration levels is better explained as a jump (with mostly positive sign) in the data. 330 

A possible reason could lie in the limited ability of analogue gauges to register abrupt intensity changes. , so that the total 331 

amount of precipitation falling in a short time interval may not be fully detected by analogue sensors, leading to positive 332 

jumps at sensor changes from analogue to digital. However, as a counter-argument, the so-called "step-response-error" 333 

that occurs with digital sensors could also be considered (see e.g. (Licznar et al. (, 2015)). Since the instationarities are 334 

usually jumps and not trends, a simple homogenisation of the data to a uniform sensor type is possible by raising to the 335 

mean value of the digital sensor type (DVWK, 1999). This jump correction is applied separately for each station and 336 

duration level. The results of applying the instationarity test to the homogenised series are shown in Figure 5Figure 5– 337 

right. It can be seen that this approach can eliminate the instationarities at short duration levels significantly. About 30% 338 

Figure 4 Quantile regression on monthly maximum 5 min rainfall intensities for the long series (LS) for different non-

exceedance probabilities (shown in coloured dashed lines). The fitted quantile regression is shown with solid black line. 
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of the stations show instationarities (either trend of jump), while the remaining part is considered stationary. Since only 339 

a small part of the stations show instationarities, here a stationary extreme value analysis is performed.   340 

Figure 5 Trend vs Jump Analysis (%) for left) - before jump elimination, right) after jump elimination.  
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3. Methods 341 

3.1 Local Estimation of Extreme Value Statistics  342 

3.1.1 Reference Approach 343 

Here, the Generalised Extreme Value (GEV) probability distribution is used for the statistical analysis of extreme 344 

rainfall and the derivation of the local DDF curves, that is described as following: 345 

 𝐹(𝑥; 𝜇, 𝜎, 𝛾) =𝑒𝑥𝑝 { − 1 + 𝛾
( )

 }, 1 +
( )

> 0, 𝛾 ≠ 0,  346 

where μ is the location, σ the scale and γ the shape parameter. If the shape parameter is greater than zero, heavy-tail 347 

behaviour is present (GEV type II); if the shape parameter is less than zero, then it is the reverse Weibull distribution with 348 

no-tail behaviour (Coles, 2001). The GEV parameters are fitted to the AMS of each duration level and station separately, 349 

based on the L-moments method. For this purpose, the R-package “lmomco” was used (Asquith, 2021). A prior 350 

investigation on our study revealed that the L-moment approach led to more stable results than the method of Maximum 351 

Likelihood. The shape parameter was either estimated or fixed at 0.1 for estimation of return periods up to 100 years, 352 

approximately following the recommendation from Koutsoyiannis (2004a, b) for estimation of return periods up to 100 353 

years (γ~0.1) and on a prior analysis conducted on LSR series.  Based on the parameters obtained the quantiles of return 354 

periods T1a, T10a, T20a, T50a and T100a were derived. Since the AMS-approach tends to underestimate quantiles at low 355 

return periods (Ta < 10 years), a correction of the AMS return periods according to the DWA 531-Regulations with factors 356 

given in Table 4Table 4 was performed.   357 

Table 4 Correction of the Return Periods when fitting the GEV to the AMS adapted from (DWA, 2012). 

Return Periods for POT Ta=1 year Ta=5 years Ta=10 years 

Return Periods for AMS Ta=1.6 years Ta=5.5 years Ta=10.5 years 

 As discussed previously in the introduction, bBecause the parameters are fitted separately on each duration, quantile 358 

crossing may occur. Quantile crossing happens when the extreme rainfall volumes of a fixed probability (Ta=100 years) 359 

are not increasing with longer duration levels. Figure 6Figure 6 shows for different return periods T1a, T10a, T20a, T50a 360 

and T100a the number of stations affected by these crossings for the empirically calculated quantiles (left) and the 361 

quantiles fitted with the General Extreme Value (GEV) distribution (right). The empirical quantiles are calculated 362 

according to Hyndman and Fan (1996). It is clear that the number of stations with this problem increases significantly for 363 

larger return periods. In the empirical quantiles, especially the short seriesSS show quantile crossing at the long duration 364 

levels (D ≥ 24h). Here, the extremes volumes of the duration levels D72h and D168h are lower than the extremes of the 365 

duration level D24h. With the GEV-fitted quantiles, significantly more stations show quantile crossings than with the 366 

(1)

Figure 6 Number of stations for different return periods showing quantile crossings in the empirically calculated quantiles 

(left) and the GEV-fitted quantiles (right) with increasing duration. 
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empirically calculated quantiles. These problems occur for all return periods, however are more frequent for the return 367 

periods T50a and T100a.  368 

In order to avoid such problems two different methods are applied and compared here: the approach presented by 369 

Koutsoyiannis et al. (1998) and the approach presented by Fischer and Schumann (2018). These two methods are 370 

described below.  371 

3.1.2 Koutsoyiannis Approach  372 

Koutsoyiannis et al. (1998) considers the intensity as a function of the duration level through two parameters (θ, η) and 373 

the generalised intensity can be calculated from duration specific intensity as described below:   374 

𝑖 = 𝑖 ∙  𝑏     𝑤𝑖𝑡ℎ 𝑏 =  (𝑑 + 𝜃) , 375 

where i is the generalised intensity in mm/h, id is the intensity in mm/h observed at each duration level, d is the duration 376 

level in hours and ϴ, η are the Koutsoyiannis parameters optimised for each station. Through this relationship a 377 

generalisation of the AMS intensities over all the chosen duration levels is possible. The parameters ϴ (larger than 0) and 378 

η (within the range 0 to 1) are estimated for each station by minimising the Kruskal-Wallis statistic as indicated in 379 

Koutsoyiannis et al. (1998). The advantage of this optimisation method lies in its non-parametric character and robustness, 380 

as the Kruskal-Wallis statistics is not affected by the presence of extreme values in the sample. Once the parameters ϴ 381 

and η are determined, the generalised intensities from all duration levels are pooled together (as the main assumption is 382 

now that they follow the same distribution) and a GEV distribution is fitted to this sample by the methods of L-moments. 383 

Lastly, to obtain DDF curves, the quantiles at specific return periods are estimated from the fitted GEV distribution, and 384 

are divided by the term bd in Equation (2) (dependable on θ, η parameters and the duration level). This joint estimation of 385 

parameters over all durations should not only avoid the quantile crossings, but also make the estimation of DDF more 386 

robust. 387 

3.1.3 Fischer/Schumann Approach  388 

In contrast to Koutsoyiannis that treats the intensities of AMS as a function of the duration, Fischer and Schumann (2018) 389 

propose an new approach based on the GEV distribution, where the generalised GEV parameters are monotonically 390 

dependent on the GEV parameters determined for each duration level. Thus, as a first step the GEV parameters (as in 391 

Equation (1) are estimated from the L-moment methods for each duration level at each station, and then through a 392 

nonlinear regression (with two parameters α and β) each GEV parameter is related to the different duration levels as 393 

indicated by the following equations:  394 

  𝜇 = , 𝜎 =    𝑎𝑛𝑑 =  𝛼 + 𝛽 ⋅ 𝑑,   395 

where d is the duration level in 5min, 𝜇 , 𝜎 , 𝛾  are the GEV parameters of each duration, while α and β are the regression 396 

coefficients with  𝛼 , 𝛼 > 0,  𝛽 , 𝛽  > -1, 𝛽 ≥ 0.  The parameters are obtained by nonlinear least-square-minimising. In 397 

addition to the shape parameter dependency shown in Equation (3), three alternative approaches are considered: a constant 398 

shape parameter over all durations, a shape parameter fixed at 0.1 and a quadratic relationship as in Equation (4). 399 

                 𝜉 =  𝑎 + 𝑃 ⋅𝑙𝑜𝑔 (𝑑)  + 𝑃 ⋅ 𝑙𝑜𝑔 (𝑑) ,  400 

where P1 and P2 are estimated spanning across all stations and a is a station specific optimised parameter.  401 

3.2 Regionalisation of Extreme Value Statistics  402 

 (3)

(4)

(2)
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The local parameters estimated for each station (GEV parameters and generalisation parameters) make the base data set 403 

for the regionalisation of the extreme rainfall statistics. Each of these parameters is regionalised independently based on 404 

the regionalisation methods explained below, and later on, DDF maps for each duration and return period of interest are 405 

generated. The overall procedure for regionalisation is given in Figure 7Figure 7-a, and the regionalisation methods are 406 

given in Figure 7Figure 7-b. The regionalisation approaches were compared only for 4 parameters (see parameters of 407 

KO.FIX in Table 5), as these 4 parameters were selected as most appropriate for local DDF estimation in Section 4.1. 408 

 409 

a)                                                                                            b) 410 

Figure 7 a) Overall methodology from the given data sets to DDF maps for Germany, b) a short description of the 

regionalisation methods applied here only for the KO.FIX (see Table 5) local estimation of DDF; where RD is short for 

rainfall depth, and nmin, nmax and Rmax are respectively the kriging parameters for minimum, maximum number of neighbours 

and maximum radius for neighbour search. 

3.2.1 Ordinary Kriging Interpolation  411 

The regionalisation of extreme value statistics for Germany will first be carried out with Ordinary Kriging (OK) 412 

interpolation. Here, the extreme rainfall parameters are interpolated independently. The flow chart for this interpolation 413 

technique is shown in Figure 7Figure 7-b. Ordinary Kriging is widely used for interpolation due to its simplicity in 414 

comparison to other kriging methods. The expected value of the random process being investigation (E) is treated as 415 

constant in space (as per Equation (5)), whereas the increase in variance of the target variable at any two location (u and 416 

u+h) depends only on the distance h. This increase in the variance is represented by the semi-variogram function γ(h) 417 

(5)

(6)

Commented [BS1]: I need to change the “und” to 
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(here called variogram). Therefore, in the first step, the empirical variogram is estimated by discrete point observations 418 

according to Equation (6). 419 

𝐸[𝑍(𝑢 + ℎ)] = 𝐸[𝑍(𝑢)] = 𝑚         420 

𝛾 (ℎ) =
( )

 ∑ (𝑍(𝑢 ) − 𝑍 𝑢 ) , 421 

where N is the number of any two observed data pairs (ui and uj) at distance h. Since the empirical variograms are not 422 

continuous functions, theoretical variograms must be fitted to the observed values. To describe the spatial variance of the 423 

data, several theoretical variogram models can be used and fitted to the empirical variogram using the least squares 424 

method. For the interpolation of rainfall extremes a spherical variogram (as per Equation (7)) is chosen as more 425 

appropriate (Kebaili Bargaoui and Chebbi, 2009).  426 

𝛾 (ℎ) =  𝑐 + 𝑐 ∙  −  𝑓𝑜𝑟 ℎ ≤ 𝑎 𝑎𝑛𝑑 𝛾 (ℎ) =  𝑐 𝑓𝑜𝑟 ℎ = 𝑎  , 427 

where c0 is the nugget, c the sill and a the range of the variogram. The variogram describes the spatial variability of the 428 

target variable and the average dissimilarity between a known and unknown location. Once the theoretical variogram is 429 

known, it can be used as a basis for interpolating the statistical properties on a 5km m2 grid. This grid resolution was 430 

chosen for two reasons; first it is consistent with the HyRas product from German Weather Service that uses the same 431 

resolution, second it is a compromise between the coarsest and finest legible resolution computed from the given density 432 

of long series (LS) (the reference for this study) following the suggestions of (Hengl, (2006). HereThe interpolation is 433 

done, as indicated in Equation (8), the variable at an unknown location (Z') is estimated by the weighted average of the 434 

nearby known locations (Zui). 435 

𝑍 (𝑢 ) =  𝜆 ∙ 𝑍(𝑢 ),    436 

where the weights (λi) are derived from the theoretical variogram, and n is the number of selected neighbours. The R-437 

package "gstat" is used to fit the variograms and interpolate the variables (Pebesma, 2004). An advantage of Ordinary 438 

Kriging interpolation is that the weights are determined in such a way that the difference between the estimate and the 439 

observed values is zero on average. However, this can lead to the interpolated variable being smoothed in space.  440 

 441 

Different theoretical variograms were previously investigated, i.e. exponential, gaussian and spherical, with the spherical 442 

model together with a nugget effect showing the best fit for the case study. The fitting of the variogram model parameters 443 

for different data types and experiments is done automatically by weighted least square fit. Since the automatic fit relies 444 

on the initial values of the model parameters, we defined the initial values with trial and error, and accepted a fit that was 445 

adequate qualitatively. Figure 8 illustrates the empirical and theoretical normalised variograms for interpolation of the 446 

GEV and Koutsoyiannis parameters (after method KO.FIX shown in Table 5) estimated from the three main datasets 447 

available: long series (LS), short series (SS) and 30 realisations of disaggregated daily series (DS). Note that the 448 

variograms are normalised in order to ensure a comparison between the different datasets. From this figure a clear 449 

difference between the spatial dependency of different datasets, due to different station densities and settings, is visible. 450 

(8)

(7)

Figure 8 Empirical and fitted spherical theoretical variograms for the GEV parameters and Koutsoyiannis parameters 

estimated by three different datasets (LS in dark blue, SS in light blue and DS in grey). 
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The long and short series (LS and SS) exhibits similar relationship with each other for the GEV parameters (μ and σ) but 451 

distinguish either in the nugget value (co) or the range (a), whilst the daily disaggregated series clearly exhibit different 452 

nugget (c0), range (a) and even sill (c). The differences between the datasets are less visible in the spatial dependencies 453 

of the Koutsoyiannis parameters (θ and μ), where the three datasets differ slightly in nugget and range. Particularly the 454 

spatial dependency of the scale parameter is captured quite differently by the three datasets. Here, LS and SS are differing 455 

mainly at the nugget value, where LS has a smaller value than the SS series suggesting that the spatial structure of the 456 

scale parameter from SS is smoother than that of LS. On the other hand, the DS datasets exhibit a completely different 457 

variogram for the scale parameter, suggesting that the extremes of high return period (influenced mainly by the scale 458 

parameter) will have different spatial structures than those of LS and SS series.      459 

3.2.2. Kriging with External Drift Interpolation  460 

In the Kriging with External Drift (KED), the expected value E of the target variable Z at any location u is linear dependent 461 

on secondary variables Y, and thus the Equation (5) takes the form of the Equation (9). Here the secondary variables (or 462 

the external drifts) reflect the spatial trend of the target variable. Theoretically, the variogram for KED interpolation is 463 

computed from the residuals between the target and the secondary variables. Here, for simplicity the OK variograms are 464 

used instead, since as shown in (Delrieu et al., (2014) Delrieu et al. (2014) they can produce very similar results to the 465 

KED one. 466 

𝐸[𝑍(𝑢) ∣ 𝑌 (𝑢), 𝑌 (𝑢), . . . . , 𝑌 (𝑢)] = 𝑏 + ∑ 𝑏 𝑌 (𝑢)      467 

where Y represent the k secondary variables from 1 to m that is are used as an external drift, and b0 in the interception of 468 

the linear dependency and bk the coefficient for each k drift.  For this study different site characteristics (i.e. elevation) 469 

were investigated as external drift, however as indicated by the cross-correlation between the target variables (in this case 470 

the 4 parameters describing the local statistics) and the site characteristics, the linear dependency between them is not 471 

high (see in appendix Figure A1). Therefore, here only interpolated local parameters from the short and/or daily network 472 

series are used as external drift information.  473 

3.2.3 Index-based Regionalisation 474 

The regionalisation of extreme rainfall statistics in Germany is as well carried out using the index method according to 475 

Hosking and Wallis (1997). The index method was originally developed for the regionalisation of flood quantiles, 476 

however found a wide application also for the regionalisation of extreme rainfall statistics. By pooling information in 477 

statistically homogeneous regions, a more robust estimate of extreme rainfall statistics can be made and on the basis of 478 

the regions the informationbased on each defined region, the information can be transferred to other unobserved points. 479 

A homogeneous region exists if the distribution functions have the same shape at all points in the region. The homogeneity 480 

indicator H1 presented by Hosking and Wallis (1997) is typically used to determine homogeneous regions. If the H1 is 481 

lower than 1, the region is said to be homogeneous, if it is between 1 and 2 the region may be heterogeneous, and else, if 482 

it is higher than 2, the region is definitely not homogeneous. Here different site characteristics like the latitude, longitude, 483 

elevation, long term annual average of sunshine duration and mean annual precipitation were used as input to define 484 

homogeneous regions. Based on a k-clustering approach (Ward, 1963) 9 homogeneous regions were identified and are 485 

shown in Figure 9Figure 8. The obtained homogeneous regions were tested for homogeneity for each data type 486 

combination and, as visible from Figure A2 in appendix, all values are below 1, meaning that the regions selected are 487 

homogeneous and can be used for the index-based regionalisation. Note that the generalised statistics over all the durations 488 

from Section 3.1 are used as input for the homogeneity test. The R-package “nsRFA” is used to obtain the homogeneous 489 

regions (Viglione et al., 2020). In order to find an appropriate number of clusters, different number of clusters between 2 490 

(9)
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and 20 are tested and compared based on the homogeneity indicator H1 and whether they were spatially continuous and 491 

physically reasonable. The maximum number of clusters of 20 was chosen to ensure a sufficient number of stations and 492 

thus a sufficient number of observation years per region (Hosking and Wallis, 1997). 493 

Once the homogeneous regions are determined, the different local statistics are normalised by a scaling factor, the index. 494 

In contrast to the previous regionalisation techniques discussed so far, the index-based regionalisation has an extra step – 495 

the normalisation of the general intensities with the index (performed at step 3 in Figure 7 – left), which in this case is 496 

the mean generalised intensity. Next, the local L-moments are estimated on the basis of the normalised annual series and 497 

regional L-moments are derived for each region weighting the local L-moments according to their time series length. 498 

Finally, a GEV growth curve is fitted for each region and duration level via the regional L-moments. The R-package 499 

“lmomRFA” was employed for the application of the index method (Hosking and Wallis, 1997). In the final step, by 500 

back-scaling the normalised extreme rainfall for all observed and unobserved points in the homogeneous region, estimates 501 

can be made about the extreme rainfall as a function of the duration (based on regional averaged values of observed θ and 502 

η) and the return period (based on regional GEV growth curve). The geostatistical interpolation of the index makes it 503 

possible to transfer the extreme value statistical evaluations to unobserved points within the region. 504 

 505 
Figure 98 Nine homogeneous regions implemented here for the index-based regionalisation. The regions shown here 

are a generalisation of the k-cluster results to account for spatial consistency. 

3.3 Performance Assessment and Comparison  506 

3.3.1 Local Performance Assessment  507 

For the local estimation of the GEV parameters that describe the extreme rainfall over all the selected duration levels, two 508 

different approaches were consulted: from Koutsoyiannis et al. (1998) (herein referred as KO) and from Fischer and 509 

Schumann (2018) (herein referred as FS). Before carrying on with the regionalisation it is important to investigate which 510 

of the methods is more adequate for the estimation of the GEV parameters over all the duration levels. Moreover, the two 511 

methods do not only distinguish in their approach of generalisation across duration, but they also include different 512 

variations on the calculation of the GEV shape GEV parameter (γ). A review of the methods and shape parameters is 513 

given in Table 5Table 5, together with the respective optimised parameter set for each case. The obtained parameters for 514 

different data sets are shown in the appendix: Figure A3 for KO and in Figure A4 for FS.  515 

Table 5 A review of the methods and the different calculation of the shape parameter investigated for the local statistics. 

Method  Shape Parameter  Abbreviation Optimised Parameter 

is constant per each station, as fitted by L-moments  KO.CON μ, σ, γ, θ, η 
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KO is fixed at all stations as γ = 0.1 KO.FIX μ, σ, θ, η 

FS 
is calculated as proposed by Fischer and Schumann FS.RLM αμ, βμ, ασ, βσ, α, β 

is constant over all durations FS.CON αμ, βμ, ασ, βσ, γ 

a quadratic dependence on duration specific shape FS.QUA αμ, βμ, ασ, βσ, a 

is fixed at all stations as γ = 0.1 FS.FIX αμ, βμ, ασ, βσ 

The performance of the methods and the respective case of shape parameters as illustrated in Table 5Table 5 is evaluated 516 

only at the location of the long series (LS) by comparing the normalised quantiles over all durations for return periods 517 

T1a, T10a, T20a, T50a and T100a with the GEV quantiles calculated separately at each duration level. Here the percentage 518 

RMSE (as per Equation (10)) was employed to assess the errors of the selected cases at each duration level and station 519 

with respect to the GEV duration specific quantiles:  520 

Percentage RMSE:  𝑅𝑀𝑆𝐸 , [%] = 100 ∙
∑ ,  ,

,
 ,  521 

where i represents each of the 5 selected return period Ta varying from 1 to 100 years, st varies from 1 to 133 available 522 

long series, RDgen,st  corresponds to the derived rainfall depth from the generalisation method of duration d, RDd,st the 523 

derived rainfall depth from the GEV quantiles at duration d, and the 𝑅𝐷 ,  is the mean rainfall depth from the GEV 524 

quantiles at a duration d averaged over the return periods. Alternatively, the error for each return period and station can 525 

as well be calculated by Equation (10) by swapping the d with Ta, and where 𝑅𝐷 ,  is the mean rainfall depth from the 526 

GEV quantiles at return period Ta averaged over the duration levels d (from 5min up to 7d, therefore i changes from 1 to 527 

12).  528 

Since the GEV quantiles fitted per each duration level cannot be considered the ground truth, a non-parametric bootstrap 529 

is performed when estimating the parameters of each method, in order to investigate the sampling uncertainty of derived 530 

DDF values. For this purpose, 100 randomisations of the observations were conducted and the uncertainty range of the 531 

derived rainfall depths is computed as following: 532 

 Normalised 95% Confidence Interval Width:       𝑛𝐶𝐼95 𝑛𝐶𝐼95 [− −] = 100 , , 

, , 
 533 

where nCI95width is the 95% confidence interval width and Mean is the average of rainfall depth obtained from 100 534 

realisations and expressed for each LS location st, duration level d and return period Ta. The smaller the uncertainty range, 535 

the more robust are the estimated parameters for the high return periods. Based on the two performance criteria, percentage 536 

RMSE and nCI95width, all the methods in Table 5Table 5 are compared in order to evaluate the best one for the estimation 537 

of rainfall DDF curves. The best method is selected as the one with the lowest RMSE and nCI95width. The results of this 538 

comparison are given in Section 4.1. 539 

3.3.2 Spatial Performance Assessment  540 

In order to check which of the regionalisation approaches provides the best results, a leave-one out cross-validation was 541 

carried out at the locations of the long series (LS 133 stations). For each approach, the rainfall depth (RD) is determined 542 

from the return periods T1a, T10a, T20a, T50a and T100a and the selected duration levels. After regionalisation, the 543 

regionalised rainfall depths are compared with the local generalised GEV quantiles (here assumed to be the truth). The 544 

short series are omitted from the cross-validation, as no reliable extreme value statistics can be carried out for large return 545 

periods due to the very short observation length. The quality of the regionalisation approaches is evaluated using the 546 

following criteria: 547 

(10)

(11)
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Percentage Bias:    𝑃𝐵𝐼𝐴𝑆 , [%] = 100 ∙
∑ ,  ,

∑ ,
 ,                                    548 

Percentage  RMSE:   𝑅𝑀𝑆𝐸 , [%] = 100 ∙
∑ ,  ,

 ,  549 

Nash-Sutcliffe Criteria:        𝑁𝑆𝐶 , [−] = 1 −  
∑ ,  ,

 ∑ ,   
,  550 

where the d is the selected duration levelvaries from 1 to D=12 for each duration level between 5min and 7days, Ta the 551 

return period, st the respective LS, RDregional corresponds to the regionalised rainfall depth, RDlocal the locally derived 552 

rainfall depth from the normalised generalised GEV function and the 𝑅𝐷  RDlocal is the mean local rainfall depth 553 

averaged over the 133 locations. The cross-validation only at the location of the LS makes it possible to investigate the 554 

value that the short (SS) and the disaggregated daily network series (DS) are adding to each regionalisation method. For 555 

this purpose, the regionalisation methods are run first only with the LS as input, and the performance of such an application 556 

is considered the benchmark for improvement. Later on, the SS and DS are added stepwise as input to the regionalisation, 557 

in order to assess the improvement, they introduce towards the benchmark. Additionally, one can calculate the expected 558 

performance when only the short or/and the disaggregated daily networks series are available, and not the automatic long 559 

one. An overview of these experiments and their aim is given at Table 6Table 6. 560 

Table 6 Overview of the experiments performed with different data sets for each regionalisation method. 

Input Aim 

Only LS Benchmark for improvement 

Only SS The expected error from only short networkseries  

Only DS The expected error from only disaggregated daily networkseries 

LS and SS The added value from the short networkseries 

LS and DS The added value from the daily disaggregated networkseries 

SS and DS The expected error from short and daily disaggregated seriesdaily network 

LS, SS and DS The added value from the short and daily disaggregated seriesdaily network 

A directed comparison of the performance criteria between the different experiments and the benchmark is calculated 561 

here as per Equation (15).  562 

𝑃𝑒𝑟𝑓 ,  [%] = 100 ∙
,   ,

,
, 563 

where Perfref,Ta is the performance criteria calculated for each return period Ta as per Equation (12)-(14) from the scenario 564 

with only LS as input, and Perfnew,Ta is the performance of any other combination of input data as per Equation (12)-(14). 565 

A positive value for this criterion indicates an improvement in performance in comparison to the only LS scenario, while 566 

a negative value indicates a deterioration. Note that, the signs of the nominator are exchanged in the case of the 567 

improvement of the NSE. It is as well important to emphasise that the scenario ref corresponds to the best regionalisation 568 

method with only LS as input, namely ordinary kriging of LS based on results of Section 4.2. 569 

Finally, based on different combinations of the available network series (data types) as external drift in the kriging 570 

interpolation may help to shed light on which combination of the data is more useful for the regionalisation of the rainfall 571 

DDF values. Here the data to be used as external drift are first interpolated with ordinary kriging (also in cross-validation 572 

mode). A description of these different combinations for the KED interpolation is given is Table 7Table 7. The 573 

(12)

(13)

(14)

(15)
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performance of the different combinations is evaluated only at the location of the LS, and the best integration is selected 574 

based on the highest improvement in comparison to regionalisation with only LS as input.    575 

Table 7 Overview of different integration of data types in the interpolation with KED. Pooling the data together with 

same importance is represented by (+) sign, whereas integration through an external drift (linear dependence) is 

represented by the (|) sign. 

Combination Abbreviation 

Interpolate LS with OK[SS] as external drift KED[LS|SS] 

Interpolate LS with OK[DS] as external drift KED[LS|DS] 

Interpolate LS with both OK[SS] and OK[DS] as external drift KED[LS|SS+DS] 

Interpolate LS and SS with OK[DS] as external drift KED[LS+SS|DS] 

Interpolate SS with OK[DS] as external drift KED[SS|DS] 

576 
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4. Results 577 

4.1 Local Estimation of Extreme Statistics  578 

Figure 10Figure 9 illustrates the local percentage RMSE of each method in comparison to the duration specific quantiles 579 

(as per Equation (10)). The upper row of Figure 10Figure 9 shows the percentage RMSE calculated for each location 580 

and duration level over all the return periods and the lower row of Figure 10Figure 9 shows the percentage RMSE 581 

calculated for each location and return period over all the duration levels. The results from Figure 10Figure 9 – upper 582 

row indicate that the KO approaches (both fix and station constant shape parameter) have an almost constant RMSE over 583 

all durations under the value 10%. On the other hand, the FS approaches tend to have similar or little smaller RMSE for 584 

the longer duration (median RMSE under 8%), but are not able to represent well enough the very short durations. For the 585 

FS approaches, the RMSE median for duration levels up to 60 min, is higher than 10%, with the 5min RMSE being the 586 

highest (between 25-45%). The results from Figure 10Figure 9 – lower row illustrate that all the approaches manifest 587 

higher errors with higher return period. Both of the KO approaches (fix and station constant shape) show very similar 588 

behaviour. The KO.FIX performs slightly worse (1-4% higher RMSE) than the KO.CON, but this is expected as the 589 

duration GEV fitted per each duration independently favours the KO.CON (as the shape parameter is let free for the GEV 590 

parameter fitting). The FS approaches perform very similarly to one another, however here contrary to the KO.FIX 591 

approach, the performance of the FS.FIX seems better than the other approaches. Overall, the KO approaches have the 592 

priority at shorter durations and they can capture the volumes at specific durations better than the FS approaches. On the 593 

other side, the FS approaches can capture better extremes at longer durations. A unanimous selection is not yet possible 594 

from the obtained results so far, because the local GEV duration specific parameters may not represent the ground truth.  595 

To analyse which approach estimates more stable and representative parameters, a non-parametric bootstrap was 596 

performed (with 100 random realisations), and served as a basis for assessing the 95% confidence interval width of the 597 

obtained DDF values. Figure 11Figure 10-left shows the normalised 95% confidence interval widthss (nCI95width) for 598 

the rainfall depth (as per Equation (11)) estimated for each of the selected approaches. A high value of the nCI95width 599 

indicates that the bootstrap yields very variable rainfall depths, and hence a higher uncertainty is associated with the 600 

method. Contrarily a low value of the nCI95width indicates that the rainfall depths have low variation across the random 601 

realisations, and thus the obtained DDF curves are considered more stable or robust. The results shown in Figure 602 

11Figure 10 indicate that the KO.FIX exhibits the lowest variation (median nCI95width ~0.23), followed up by FS.FIX 603 

Figure 109 RMSE (%) performance of the given generalisation methods over all the long stations (LS) in comparison 

to the duration specific GEV quantiles grouped: upper row - for different duration levels (calculated per station over 

return periods), and lower row - for different return periods (calculated per station over duration levels). 
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(~0.25), and by KO.CON, FS.CON, FS.QUA with slightly higher variations (respectively ~0.3). Interesting is to see that 604 

the FS.RLM has a median nCI95width ~ 0.3, but can reach extreme values up to 2. Figure 11Figure 10-right) shows the 605 

scatterplot of nCI95width obtained from the KO.FIX (x-axis) and FS.FIX (y-axis) for different duration levels and return 606 

periods (shown with different colours) at the LS locations. Except for very low return periods (T1a), FS.FIX exhibits on 607 

average higher values of nCI95width than KO.FIX. Based on these results, the KO.FIX was chosen as the best method and 608 

was used for the regionalisation of the DDF curves. The advantages of the KO.FIX are that: 1. It represents all duration 609 

levels similarly and fairly, 2. The parameter estimation is more robust than any of the other methods, 3. It uses a known 610 

and well-established method for the estimation of the DDF curves.  611 

 612 

 613 

Figure 1110 left) comparison of confidence interval robustness for the methods and shape parameters selected for the 

generalisation of the DDF values over all the durations; right) a direct comparison of the confidence interval robustness 

for KO.FIX (x-axis) with FS.FIX (y-axis) for each duration and return period (shown in different colours). 

4.2 Regionalisation of Extreme Statistics  614 

As discussed in the Section 4.1, the AMS at different duration levels were normalised according to Koutsoyiannis 615 

approach and the GEV parameters were fitted to the grouped generalised intensities. The shape parameter was kept fixed 616 

at 0.1. Ordinary Kriging (OK) and index-based (INDEX) regionalisation were run first only with the LR data as input – 617 

to decide about which of the two approaches will serve as a benchmark. A direct comparison based on Equation (15) is 618 

then performed for each of the selected performance criteria (where new is OK and ref is INDEX), to compute the 619 

improvement or deterioration of OK with only LS data compared to the INDEX. The median values for each return period, 620 

performance criteria and method, are given in Table 8Table 8. Here it becomes clear that the kriging approach exhibits 621 

lower RMSE for all return periods, worse BIAS for high return periods, and slightly better NSE than the index method. 622 

Based on these results, the kriging with LS as input (KRIGE[LS]) is used as a benchmark for calculating the improvement 623 

in performance by adding additional data types. Apart from the performance, the other advantage of kriging is that, it is 624 

more of a “pure” method, as it interpolates independently the 4 parameters, while the index approach is a “mixture” 625 
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between the regional growth curve estimation, averaging θ and η parameters, and kriging to interpolate the index. For this 626 

reason, one may prefer the kriging regionalisation, as the errors are mainly from the kriging system, while the index 627 

method includes errors from the kriging system and from regional and averaged parameters.  628 

Table 8 Median performance improvement/deterioration (%) of ordinary kriging (OK) versus index-based (INDEX) 

interpolated calculated for different data as per Equation (15) (where new is OK and ref in INDEX), when only LS dataset 

is used as input. The performance is obtained by cross-validation over 133 LS stations. The colour green (+) indicates 

better performance by OK, red (-) indicates better performance by INDEX. 

 629 

4.2.1 Best Regionalisation for Different Data Combination 630 

Kriging and index-based regionalisation was then performed for each data type experiment given in Table 6Table 6, and 631 

the cross-validation results for the 133 LS locations were compared to the benchmark (KRIGE[LS]) selected before as 632 

the best regionalisation with only LS as input. To enable an easy comparison between the two regionalisation methods, 633 

the difference between the improvements achieved between the kriging and the index-based regionalisation in comparison 634 

to the benchmark was calculated for each of the 133 LS locations. The median differences (in percent) for each data type 635 

experiment over the 133 locations for each performance criteria and return period are given in Table 9Table 9. A positive 636 

difference (dark green shade) means that the improvements reached by the kriging interpolation are higher than the index-637 

based regionalisation. A negative difference (red shade) means vice versathe opposite. The data are combined by two 638 

operators: either (+) referring to pooling of the datasets together and the parameters and the index are interpolated with 639 

ordinary kriging, and (|) referring to a linear relationship between the datasets and the parameters and the index are 640 

interpolated through external drift kriging.  641 

 642 

The results from the Table 9Table 9 indicate that for the majority of the cases the kriging interpolation brings higher 643 

improvements to the benchmark than the index-based regionalisation. Exception are the regionalisation with only SS, 644 

LS+SS, SS|DS, LS+SS|DS and LS|SS+DS where the index-based regionalisation exhibits on median 2-12% higher 645 

PBIAS improvement for higher return periods than the kriging interpolation. However, for these cases, the RMSE and 646 

the NSE improvements are much higher for the kriging regionalisation. Therefore, it can be concluded that overall the 647 

Table 9 Median difference between kriging and index-based improvements calculated for different data as per Equation 

(15). The median is computed from 133 stations. The positive difference shown in green shades indicate that kriging 

introduces bigger improvements towards the benchmark than the index-based regionalisation. The negative differences 

shown in red shades indicate that the index-based regionalisation has the bigger improvements. 
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kriging interpolation yields better results than the index-based regionalisation (lower RMSE and higher NSE), but may 648 

suffer depending on the combination of data types from slightly higher PBIAS.  Also, it has to be mentioned, that when 649 

grouping the daily disaggregated time series directly (operator +) with the other data types (either LS and SS), the kriging 650 

performs up to 100% better than the index-based regionalisation. This suggests that the parameters from the 651 

disaggregation do not follow the same regions or growth curve as the high-resolution data (LS and SS), thus a kriging 652 

interpolation seems to be more reasonable when for including these data as well. 653 

The results of Table 9Table 9 give a direct comparison between kriging and index-based regionalisation, nevertheless as 654 

they are relative to each case, do not give any information if ordinary kriging or external drift kriging is yielding better 655 

regionalisation results. For this purpose, the difference of improvements between KED and OK were calculated and 656 

shown as median over the 133 LS locations in Table 10Table 10. A positive difference (green shade) means that the 657 

improvements reached by KED are higher than the OK interpolation. A negative difference (red shade) means otherwise. 658 

The results show that overall the KED exhibits higher RMSE and NSE improvements than the OK, but the KED tends to 659 

have lower PBIAS improvements than the OK. When only the high-resolution data sets are present (LS and SS), the KED 660 

behaves better than OK mainly for high return periods (50-100a), when LS and DS are present, KED clearly outperforms 661 

the OK. For all the remaining cases the OK outperforms the KED only for the PBIAS of high return periods.   662 

Table 10 Median difference between external drift kriging (KED) and ordinary kriging (OK) improvements calculated 

for different data as per Equation (15). The median is computed from 133 stations. The positive difference shown in green 

shades indicate that KED introduces bigger improvements towards the benchmark than the OK. The negative differences 

shown in red shades indicate that the OK regionalisation has the bigger improvements. 

 663 

4.2.2 Best Data Integration for Regionalisation 664 

So far, the external drift kriging interpolation has shown superiority for regionalising DDF curves in comparison to the 665 

index-based and ordinary kriging regionalisation. Nevertheless, the question still remains, what is the best combination 666 

of the data sets for regionalising the DDF curves in Germany. Here it is interesting to see if all the three available data 667 

sets are useful for regionalisation, or if single or dual networks are enough. For this purpose, the performance 668 

improvement exhibited by different combinations of the data types in KED (as per Table 7Table 7) in comparison to the 669 

benchmark are visualised in Figure 12Figure 11. Note that since there are 30 realisation of DS data, a boxplot is 670 

illustrating the performance spread over these 30 realisations. This affects regionalisation methods where DS data is 671 

present, otherwise a horizontal single line indicates the performance of the regionalisation. For very low return periods 672 

(T1a), the integration of all data types of the form KED[LS+SS|DS] brings the best performance, with RMSE and BIAS 673 

up to 20% smaller and NSE 0.7% higher. For return period T10a, the KED[LS|SS], KD[LS|DS] and KED[LS+SS|DS] 674 

perform very similar: some random realisation from the disaggregated daily network (DS) introduce high improvement 675 

but as well low values, even though the median over the 30 realisation is at the same level as the KED[LS|SS] one. For 676 

high return periods (T100a), KED[LS|SS] introduces the highest improvement in all three performance criteria. Actually 677 

KED[LS|DS] is the second-best option, however the median over the 30 realisations is either lower or equal to the 678 

performance of the KED[LS|SS]. There are few realisations that introduce the highest improvements for RMSE and BIAS, 679 

nevertheless the computation time for the disaggregation scheme and the fitting of the Koutsoyiannis approach is also a 680 
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disadvantage of using the DS data type. So finally, the kriging interpolation of the long network (LS) with the short 681 

network (SS) as an external drift, is chosen as an optimal method for the regionalisation of the GEV and Koutsoyiannis 682 

parameters. Table 11Table 11 indicates the median performance criteria (RMSE, PBIAS, NSE) for different return 683 

periods reached by this method (KED[LS|SS]). Expected deterioration in performance when the long series are not present 684 

in comparison to the best method selected for regionalisation (KED[LS|SS]) are given in Figure A5 in the appendix.    685 

Table 11 Median cross-validation performance over 133 stations for the final selected regionalisation method. 686 

  T1a T10a T20a T50a T100a 

KED[LS|SS] 

RMSE (%) 8.11 8.06 8.24 8.46 8.86 

PBIAS (%) 1.00 1.10 0.80 1.00 0.80 

NSE (-) 0.982 0.981 0.979 0.979 0.980 

The three different data sets implemented here, distinguish from one another based on the parameter values (as shown in 687 

Figure A3 of the appendix) also on the spatial dependency, variograms, shown in Figure 8. When fixing the shape 688 

parameter to 0.1, the location and Koutsoyiannis parameters of LS and SS, are in similar range, and the main difference 689 

is seen at the scale parameter (where the SS has high values of the scale parameter than LS). This gives a tendency of the 690 

short durations to estimate bigger rainfall volumes for higher return periods. This behaviour is also in agreement reported 691 

by Madsen et al. (2017) which used a Generalised Pareto distribution also with a fix shape parameter. Typically, this is 692 

treated by index-based regionalisation, where extremes within a region are pooled together to estimate the DDF curves at 693 

an unknown location as done in Requena et al. (2019). However, we show here that integrating the LS and SS with 694 

external drift kriging, hence accounting for the spatial dependency of the extremes, delivers better performance than 695 

grouping them together in the index-based regionalisation (also valid for the LS and DS integration).  696 

Figure 1211 Median performance improvements towards the benchmark from regionalising on different data 

combinations, as per Table 7Table 7, in kriging with external drift. 
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 4.3 Final Product and Discussion 697 

 The obtained maps, on a 5 by 5 by 5 km raster, for the four regionalised parameters (location parameter – μ, scale 698 

parameter σ, Koutsoyiannis θ and η parameters) with the KED[LS|SS] approach, are illustrated in Figure 13Figure 12. 699 

Here the shape parameter is fixed to 0.1 for whole Germany, which is very similar to results obtained by (Ulrich et al., 700 

(2021) (shape parameter as 0.11 from the annual GEV approach) and validates our approach. The spatial distribution of 701 

the location GEV parameter (μ) s follows partly the elevation information, with higher values in the south east, where the 702 

German Alps are located. The scale GEV parameter (σ) values are independent of the elevation, with a high localised 703 

value near to Münster city. RecentlyIn 2014, there was has been a very extreme event in Münster which has affected the 704 

statistics of the station located in the vicinity. Currently it is not clear how to handle these singular extraordinary events 705 

in extreme value analysis in an optimal way. Both Koutsoyiannis parameters (θ and η) show similar spatial patterns with 706 

lower values in the Alp and other mountainous regions, as well as on the northern-west coast. These parameters exhibit 707 

higher variability in space than the GEV location or scale parameters. Overall, the spatial distribution of η parameter 708 

follows the spatial structure of the annual rainfall sum in Germany, the distribution of the location (μ) parameter follows 709 

the information from the elevation, while the scale (σ) and θ parameter don’t seem to be influences by any climatologic 710 

or site characteristic. This is also seen at (Van De Vyver (, 2012), where annual rainfall and elevation is concluded as 711 

important covariates, mainly for the location (μ) parameter, while the scale (σ) parameter didn’t have meaningful 712 

covariates and the shape parameter didn’t show any spatial structure but was kept constant over Belgium. These results 713 

agree to a certain extend with the results obtained here. However, the rainfall statistics extracted from short or daily series 714 

are considered as more important than the annual rainfall (which itself is an interpolation from point observation). Thus, 715 

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto



27 
 

interpolation of long datasets, should include extreme statistics from short or daily series rather than annual rainfall as an 716 

additional information.With these 4 interpolated maps, together with the shape parameter fixed at 0.1, DDF curves can 717 

be obtained for any location in Germany. Few examples of design rainfall maps for duration levels 5min, 1 hour and 1 718 

day, and return period Ta=1,10,100 years, are given in Figure 13. For short durations (i.e. D=5 min) the spatial 719 

distribution of rainfall extremes is independent from the elevation and becomes more erratic with higher return periods. 720 

This is in accordance with the fact that the convective extreme events can happen anywhere and are very low correlated 721 

with the orography. With increasing duration level, the relationship between orography and extreme rainfall becomes 722 

stronger. As for instance in D=1h, the influence of the alpine regions is visible, which becomes even stronger for the 723 

duration of D=1d. 724 

Figure 1312 Obtained interpolated maps from the KED[LS|SS] for each of the parameter: location parameter - 𝜇, scale 

parameter - 𝞂, Koutsoyiannis θ and η parameters. The shape parameter ɣ is kept constant at 0.1. 
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  725 

With these 4 interpolated maps, together with the shape parameter fixed at 0.1, DDF curves can be obtained for any 726 

location in Germany. Few examples of design rainfall maps for duration levels 5min, 1 hour and 1 day, and return period 727 

Ta=1,10,100 years, are given in Figure 14. For short durations (i.e. D=5 min) the spatial distribution of rainfall extremes 728 

is independent from the elevation and becomes more erratic with higher return periods. This is in accordance with the 729 

fact that the convective extreme events can happen anywhere and are very low correlated with the orography. With 730 

increasing duration level, the relationship between orography and extreme rainfall becomes stronger. As for instance in 731 

D=1h, the influence of the alpine regions is visible, which becomes even stronger for the duration of D=1d. In the existing 732 

KOSTRA maps, all durations are dependent on elevation. Here, the elevation itself didn’t show much effect on the scale 733 

(σ) and θ parameter, only to some extend on the location (μ) and η parameter. This means that the extremes of longer 734 

duration (affected by the η parameter) and of low return period (affected by the location parameter) will show a pattern 735 

resembling the elevation. This is not true for short durations (affected by the θ parameter) and high return periods (affected 736 

by the scale parameter). This as well agrees with other studies, that report a weak dependence of short duration rainfall 737 

(shorter than 1 or 2 hours) with the elevation in Germany (Lengfeld et al., 2019). Lastly, the kriging interpolation as 738 

implemented here, opens the possibility to capture better the uncertainty – not only the sample uncertainty which is 739 

typically done by bootstrapping the points statistics, but accounting as well the spatial structure of extremes by considering 740 

spatial simulations. This results in estimates that will be more precise near to the location of long time series, and less 741 

precise in regions far from long time series (Shehu and Haberlandt, 2022).  742 
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743 
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 744 

Figure 1413 Obtained design rainfall [mm] maps for whole Germany from the KED[LS|SS] regionalisation approach 

derived for different durations: first row – return period Ta=1-year, second row – return period Ta=10 years and third 

row – return period Ta=100 years. 

  745 
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5. Conclusions 746 

In this study the use of three ground measuring networks types in Germany was investigated for the estimation of design 747 

rainfall maps. These networks data types included the long high-resolution networkdataset, with long observations at 5 748 

min time steps from 60-70 years, the short high-resolution network dataset with short observation also at 5 min time steps 749 

from 10 to 20 years, and the daily network dataset with observations varying from 20 to 100 years. The purpose of the 750 

work was to review different methods for the estimation and regionalisation of the DDF curves and to investigate the 751 

value and the best integration of different data types for estimating DDF curves in ungauged unobserved locations. The 752 

results will provide the basis for a new update of the design storm maps for Germany, the KOSTRA-DWD2023. First, 753 

the long analogous and short recent digital high-resolution networks were homogenised by performing a jump correction, 754 

with the jumps coinciding with sensor type changes. Second the daily network dataset was disaggregated to sub hourly 755 

durations based on a cascade model parameterised according to Olsson, (1998) and Lisniak et al. (2013) from the 756 

RADOLAN data in Germany. Third, Annual Maximum Series (AMS) were derived for each station available in the three 757 

networks datasets for duration levels ranging from 5 min to 7 days. This represents the main database for the present 758 

investigation. Two methods were investigated for local estimation of rainfall extreme statistics, adopted from 759 

Koutsoyiannis et al. (1998), and Fischer and Schumann (2018), and three different regionalisation approaches (ordinary 760 

kriging, external drift kriging and index-based regionalisation) were investigated for the spatial estimation of DDF curves 761 

in Germany. The conclusions derived, by considering the long high-resolution network dataset as the truth, are 762 

summarised as:  763 

 Both methods for local estimation of the rainfall extreme statistics behave quite similarly in capturing the 764 

local duration specific rainfall depths.  765 

 Nevertheless, the estimation of parameters through the Koutsoyiannis approach is more robust in terms 766 

of data sampling uncertainties. Particularly the Koutsoyiannis approach combined with a Generalised 767 

Extreme Value (GEV) distribution with a fixed shape parameter value at 0.1 exhibited the highest 768 

robustness with tolerable decline in precision. Therefore, 4 parameters were used to describe the local 769 

statistics of extreme rainfall: the location and scale GEV parameters and the two Koutsoyiannis 770 

parameters θ and η. These 4 parameters represent the basis for the testing of different scenarios and 771 

regionalisation approaches.  772 

 When only the long high-resolution network dataset is present, both ordinary kriging and index-based 773 

regionalisation perform similarly, with ordinary kriging showing slightly better median performance. 774 

This result remains true as well for other data combination settings, with kriging methods exhibiting lower 775 

RMSE and NSE, but slightly higher PBIAS than the index-based regionalisation. The only case where 776 

the index-based regionalisation has slight superiority against kriging, is when only short high-resolution 777 

series are present.  778 

 When more than two networks datatypes are available, kriging with external drift seems more adequate 779 

for the parameter interpolation than ordinary kriging, at least regarding the RMSE and NSE 780 

performance.   781 

 A combination of long and short networks high resolution series improves the performance of 782 

regionalisation considerably (up to 15% for Ta=100 years), but only when the data sets are combined 783 

with external drift kriging. Here the digital parameters from the short series are network is first 784 

interpolated with ordinary kriging, which later on, serves as an external drift for the kriging interpolation 785 
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of the parameters from the long networkseries. This combination gave overall the best results at least for 786 

return periods higher than 10 years.  787 

 A combination of the long high-resolution and daily networks dataset improves the performance of 788 

regionalisation up to 10% being the second-best method for regionalisation. Here as well the best 789 

regionalisation was the external drift kriging, with the ordinary kriging interpolation of daily network 790 

parameters serving as an external drift. 791 

 A combination of the three networks data types improves the regionalisation considerably (up to 20%) 792 

only for low return periods (shorter or equal than 10 years).  793 

 Overall, the best method for the regionalisation of the DDF curves in Germany, was the kriging 794 

interpolation of the long sub hourly stations, with the short sub hourly stations as an external drift. On 795 

average, this approach exhibited 8-9% RMSE (increasing with the return period) and up to 1% BIAS 796 

(decreasing with the return period) when compared to the locally estimated DDF curves.  797 

The cross-validation implemented here can only describe the accuracy of the regionalisation methods when compared to 798 

the local estimation, but it does not say much about the precision of the predictions. Thus, it is important to perform an 799 

uncertainty analysis, which should include not only the local estimation of sample statistics (briefly discussed here) but 800 

as well the spatial uncertainty of the kriging interpolation. An investigation is currently going on for the integration of 801 

spatial uncertainty in the DDF design storms of Germany, as discussed in Shehu and Haberlandt (2022).. Further 802 

improvements of the methodology, might include the validation of the methods on distinguished region. It has to be noted 803 

that the majority of the reference stations in Germany are located in the lowlands, thus the mountainous areas may be 804 

under-represented. It would be interesting to investigate if daily data or other site characteristics (like the elevation) are 805 

improving the performance of the chosen method in these regions. However, should one decide to perform region specific 806 

regionalisation, special care should be paid to the continuity of DDF values at the borders of the regions. Lastly, these 807 

conclusions are valid mainly for Germany, where dense networks are present. The advantage of each data set or approach 808 

may still change depending on the station density or study area location.   809 
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12. Appendix 941 

 942 

 943 

 944 

Figure A1 Cross-correlation between the selected local parameters (Koutsoyiannis and GEV parameters) for 

regionalisation and useful site characteristics that might act as an external drift information. Mu is the location 

parameter, sigma the scale parameter, theta and eta the Koutsoyiannis parameters, ELEV is short for elevation 

information, SUN is short for long term average of annual sunshine duration, PCP is short for long term average of 

annual rainfall amount, and TEMP is short for the long-term average of annual mean temperature.   

Figure A2 The homogeneity index (H1) computed for each of the 9th selected regions for each of the dataset 

combinations. 
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 945 

 946 

   947 

 948 

Figure A3 Koutsoyiannis parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) when 

fixing the shape parameter to 0.1 (FIX) or letting it free (FREE). 

Figure A4 Fischer/Schumann parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) 

when fixing the shape parameter to 0.1 (FIX) or letting it free (FREE). 

Figure A54 Fischer/Schumann parameters obtained for each data set (LS in dark blue, SS in light blue and DS in grey) 

when fixing the shape parameter to 0.1 (FIX) or letting it free (FREE).Obtained Deterioration (-) or Improvement (+) 

towards the best regionalisation technique (KED[LS|SS]) when no long data series are available (LS) and the 

regionalisation is performed based on short series (SS), disaggregated daily series (DS), or on both SS and DS.   Formatted: Font: Bold, Check spelling and grammar


