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Abstract 15 

Accurate spatial-temporal information on evaporation is needed for use in many sectors including hydrology, 

agriculture and climate studies. This would require a dense observation network, which is practically impossible. 

Over the past decades, remotely sensed evaporation models to estimate spatially continuous evaporation have been 

developed. However, deciding which model to use is a challenge as these models vary in complexity and accuracy 

across the different global ecosystems. It is even more challenging for complex African ecosystems that have very 20 

few, or none at all, flux tower observations. In this study, we used the general water balance evaporation ( 𝐸𝑤𝑏) as 

reference to which we compared six models that determine evaporation, i.e., 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵, TerraClimate 

(𝑇𝑀𝐶𝑊𝐵), GLEAM, MOD16, SSEBop and WaPOR, in the Luangwa Basin, a semi-arid catchment in the Miombo 

ecosystem in southern Africa. 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 and 𝑇𝑀𝐶𝑊𝐵 models are calibrated on discharge, while GLEAM, 

MOD16, SSEBop and WaPOR have been validated on evaporation data from flux tower observations. Key focus 25 

is on inter-model performance comparison in the Miombo ecosystem across phenophases and land cover types. 

Results show that major spatial-temporal discrepancies in model performance occur in the forest and open water 

body land surfaces during the dormant and green-up phenophases in the dry season. Compared to 𝐸𝑤𝑏 , annually 

WaPOR consistently overestimated evaporation while GLEAM consistently underestimated evaporation. The rest 

of the models showed biases within the GLEAM and WaPOR boundaries. With reference to annual mean bias 30 

SSEBop and WaPOR showed lowest aggregated 2009 -2020 bias in terms of estimating long-term average annual 

evaporation. It appears that correct understanding of the Miombo vegetation phenology associated moisture 

feedbacks and incorporating these in model structure is likely to improve evaporation estimates in the Luangwa 

Basin and Miombo Woodland ecosystem as a whole. 
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1.0 Introduction 35 

 Miralles et al. (2020) defines evaporation as “the phenomenon by which a substance is converted from 

its liquid into its vapour phase, independently of where it lies in nature”. Instead of the often-used term 

'evapotranspiration', in this paper we use the term evaporation for all forms of terrestrial evaporation, including 

transpiration by leaves, evaporation from intercepted rainfall by vegetation and forest floor, soil evaporation, and 

evaporation from stagnant open water and pools (Miralles et al., 2020; Savenije 2004). Estimates indicate that 40 

through the evaporation process, the land surface transfers about 60 per cent of precipitation back to the atmosphere 

(Oki and Kanae, 2006; Van der Ent et al., 2010). Evaporation, through latent heat transfer, also helps in 

understanding the energy partitioning at the earth’s surface (Trenberth et al., 2009; Fisher et al., 2008). Therefore, 

evaporation is considered a significant factor in the recycling of water available at the land surface (Van der Ent 

et al. 2010; Oki and Kanae, 2006). As a result, accurate estimation of evaporation is important as this allows for 45 

an improved and deepened understanding of water and energy cycles. However, ascertaining evaporation using 

field observations is a tedious, complex and expensive requiring specific devices and accurate measurements of 

various physical variables at different time intervals and spatial scales (Jiménez-Rodríguez et al., 2021; Coenders-

Gerrits et al., 2020; Gerrits et al., 2007; Dyck, 1972). The field observations, which are normally point-based, are 

limited in application due to the shortcomings in the temporal and spatial scale. Furthermore, heterogeneity in the 50 

land surface and the loss of high accuracy of the measured values when upscaling to larger regions also limits its 

application (Dyck, 1972). Currently, assessment of evaporation is mainly from site observations at point scale 

using various approaches including, eddy covariance (Foken, Aubinet, and Leuning, 2012), lysimeters (Trajkovic, 

2010) and the Bowen ratio energy balance (Lakhiar et al., 2018; Schilperoort et al., 2018; Spittlehouse and Black, 

1980; Bowen, 1926). To bridge these gaps there has been accelerated development and application of satellite-55 

based approaches to estimate evaporation at local, regional and global scales. Thus, evaporation estimates based 

on satellite data, largely, are bridging the gaps associated with field data collection, i.e., spatial and temporal 

constraints (McCabe, 2019; Zhang et al., 2016; Kalma et al., 2008; McCabe and Wood, 2006).  

Despite availability of several open-source satellite evaporation models (i.e. Martens et al., 2017; Zhang 

et al., 2016; Miralles et al., 2011; Mu et al., 2011; Savoca et al., 2013; Bastiaanssen et al., 1998) these models 60 

differ in the spatial-temporal estimation of evaporation across land surfaces and scales (Weerasinghe et al., 2020; 

Jiménez et al., 2011; McCabe & Wood, 2006). Additionally, no consensus exists on which of these models is best 

taking into account each has its advantages and disadvantages depending on application (Zhang et al., 2016). To 

explore the relative merits of these models some studies have been done at global and African continent scales 

(i.e., Blatchford et al., 2020; Dile et al., 2020; Weerasinghe et al., 2020; Jiménez et al., 2011; Miralles et al., 2016; 65 

Liu et al., 2016). The overall outcome of these studies is that the accuracy of model estimates is land surface or 

ecosystem dependent and it varies among ecosystems globally. Furthermore, these remote sensing evaporation 

models are validated only on locations where in-situ observations exists. For the African continent, in-situ 

observations are extremely sparse and limited temporally. Additionally, African ecosystems are uniquely diverse 

and thus it is questionable whether performance of evaporation models is valid for these ecosystems.  70 

 Evaluation of models in non-Miombo ecosystems in Africa is not representative for evaporation model 

behaviour in the Miombo Woodland. Furthermore, for Africa, Weerasinghe et al. (2020) recommended that at 

catchment scale detailed assessment of models performance be conducted taking into account the characteristics 

of the specific basin. There is a need to evaluate performance of evaporation models specifically for the Miombo 
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Woodland basins. This is because the Miombo Woodland is Africa’s largest tropical seasonal woodland and is a 75 

dry forest formation that forms a transition zone between tropical rainforest and the African Savannah across 11 

countries. It is an extremely important ecosystem in the food, water and energy nexus of Southern Africa (Gumbo 

et al., 2018; Chidumayo & Gumbo, 2010; Frost, 1996). The Miombo Woodland is also a significant carbon sink 

crucial in climate change mitigation (Pelletier et al. 2018). Also, noteworthy is the plant species diversity that 

defines the Miombo ecosystem across its spatial vastness (Gonçalves et al., 2017; Giliba et al., 2011; Mapaure, 80 

2001; Frost, 1996; Chidumayo, 1987). Different plant species have varying biophysical attributes and interacts 

differently with the hydrological cycle. In the context of the vast Miombo ecosystem, this implies that species 

composition in a given basin influences the evaporation characteristics of that basin. This means that actual 

evaporation patterns at regional or basin scale are simply a summation of compartmentalized local forest and sub 

basin actual evaporation patterns. Therefore, understanding the evaporation pattern at various scales in the Miombo 85 

ecosystem is essential to understanding the overall characteristic of the evaporation dynamics at the ecosystem 

level. Both Pelletier et al. (2018) and Tian et al. (2018) postulated that the functional traits of the Miombo 

Woodlands vegetation species is different from other ecosystems. By implication, the dissimilarities in the 

Miombo Woodland’s ecological processes with other ecosystems in Africa signals the possibility of unique 

evaporation models behaviour in this complex ecosystem. Furthermore, these evaporation models are normally 90 

structured for agricultural purposes. However, crop plant moisture feedbacks are different from natural vegetation 

as they have different physiological attributes and interact differently with changing hydrological regimes. Of the 

few evaluation studies done in Africa (i.e., Blatchford et al., 2020; Dile et al., 2020; Weerasinghe et al., 2020), 

those that included a Miombo Woodlands basin used global scale water balance as reference data. Furthermore, 

the studies did not focus on the potential influence of Miombo Woodland phenological dynamics and plant-water 95 

interaction influence on models’ performance across seasons. However, what is common are the findings of these 

studies that satellite-based evaporation products have a mixed performance across the African ecosystems, as they 

tend to either overestimate or underestimate evaporation. They attribute this behaviour mainly to the uncertainties 

associated with model structure, forcing data, model processes and scaling (Pagán et al., 2019).   

 In the context of the Miombo ecosystem region, making a choice on which open-source evaporation 100 

model to use is extremely difficult due to extremely limited ecosystem specific validation studies. This constraint 

is attributed to very few fluxes observation sites in the region. However, in absence of spatially distributed field 

evaporation observations, it is still possible to assess model performance at catchment level using the general water 

balance approach (precipitation minus surface runoff) (i.e., Weerasinghe et al., 2020; Liu et al., 2016).   

We formulated this study to contribute to bridging the gap in information on satellite-based evaporation 105 

models performance in the Miombo ecosystem. Focus was on the Luangwa sub-basin in the larger Zambezi Basin, 

one of the largest river basins in the Miombo ecosystem. We chose the Luangwa Basin because it is located in a 

sparsely gauged semi-arid region (Beilfuss, 2012) where management of water resources, based on reliable 

information, for various competing uses i.e. hydropower, agriculture, wildlife, industrial and domestic (WARMA, 

2022) is essential. The Luangwa Basin also falls within two of the largest Miombo Woodland sub-groups: dry 110 

southern Miombo Woodlands and wet central Zambezian Miombo Woodlands. The central Zambezian Miombo 

is the largest of the four Miombo sub-groups the other three being the Angolan Miombo, Eastern Miombo, and 

the Southern Miombo (Frost, 1996; White, 1984). It is also located in Zambia, argued to have the highest diversity 

of Miombo Woodland trees and considered centre of endemism for the Miombo Woodlands Brachystegia species 
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(Frost, 1996). These attributes suggest a catchment that is a fair representation of the Miombo Woodlands 115 

conditions and an appropriate site for this type of study. Therefore, our aim was twofold: 

1) Compare performance of six open access and commonly used evaporation models at sub-basin level 

against the general water balance approach in the Luangwa Basin. Focus was to observe models’ 

performance in relation to phenological transitions and land cover types.  

2) We discuss potential underlying factors that could be contributing to the observed discrepancies in 120 

models’ behaviour. 

2.0 Materials and Methods 

2.1 Study approach 

The model performance comparison was done at monthly, seasonal and annual temporal scales. At annual 

scale we compared six evaporation models to the general water balance evaporation (𝐸𝑤𝑏) for the period 2009 - 125 

2020. We deemed the 12 year period sufficient to capture long-term seasonal, monthly and annual variations in 

catchment evaporation. At monthly scale, we intercompared the performance of the six models with focus on the 

rain and dry seasons and the various phenophases in the Luangwa Basin. The six models included 

𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 (Hulsman et al., 2021; Hulsman et al., 2020; Savenije, 2010), TerraClimate Thornthwaite-

Mather Climatic water balance model (𝑇𝑀𝐶𝑊𝐵) (Abatzoglou et al., 2018) and Global Land Evaporation 130 

Amsterdam Model (GLEAM) (Martens et al., 2017; Miralles et al., 2011). The others are the Moderate-resolution 

Imaging Spectrometer (MODIS) MOD16) (Running et al., 2019; Mu et al., 2011; Mu et al., 2007), Operational 

Simplified Surface Energy Balance (SSEBop) (Savoca et al., 2013) and the Water Productivity through Open 

access of Remotely sensed derived data (WaPOR)(FAO 2018). In the absence of field observation of evaporation 

we chose  𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 and  𝑇𝑀𝐶𝑊𝐵 as reference evaporation at monthly scale because they are calibrated on 135 

observed discharge and not on Eddy Covariance tower data from locations outside the Miombo region and 

Luangwa Basin specifically. We selected GLEAM, MOD16, SSEBop and WaPOR because they are open source 

with both historical and real-time data. Additionally, they have desirable spatial-temporal attributes for monitoring 

evaporation and are commonly used products globally with WaPOR being a continental product. 

 Compared to other ecosystems, Pelletier et al. (2018) and Tian et al. (2018) observed that Miombo 140 

Woodland species exhibit distinct behaviour during the dry season. In view of Pelletier et al. (2018) and Tian et 

al. (2018) observations, we ascertained existence of discrepancies in spatial-temporal model performance that 

reflect the distinct behaviour under changing seasons (i.e., dry (May - October) and wet (October – April) seasons) 

and phenological stages of the Miombo Woodland and Luangwa Basin in general. We compared model 

performance during seven Miombo Woodland phenophases. We based the phenophases classification on the 145 

Collection 6 MODIS Land Cover Dynamics (MCD12Q2) Product (Gray et al., 2019), Zimba et al. (2020), as well 

as on own field observations of the Miombo phenology in the Luangwa Basin. Figure 1 highlights the phenophases 

classification. The phenophases include; Green-up, Mid-Green up, Maturity, Peak, Senescence, Green-down, and 

Mid-green down and dormant. For easy of analysis we merged the phenophases into four groups (Figure 1) based 

on dominant activity in each phase.    150 
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Figure 1. Grouping and description of phenophases in relation to seasonality for the Luangwa Basin used in the 

study. 

       165 

The water balance evaporation (𝐸𝑤𝑏) has been estimated using equation 1 where we neglect storage change over 

a year. 

   

  𝐸𝑤𝑏 = 𝑃 − 𝑄                                                                                                                                                            (1)  

 170 

Where, 𝑃 is the catchment precipitation in mm/year and 𝑄 is discharge/catchment surface runoff in mm/year.  

Oki and Kanae (2006) and Zhang et al. (2016) indicated that model inputs are one of the major sources of 

uncertainties in evaporation model performance. For rainfall and discharge, we made use of the TerraClimate 

product, which we validated with local observations. In Appendix Figure A1.1, we show the comparison between 

TerraClimate and observed discharge records. For the simulations the regression between observed and 175 

TerraClimate was used to extend the period of observations from 2009 - 2020. For the precipitation we conducted 

a validation exercise on three precipitation products which included the Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS), Climate Forecast System Reanalysis (CFSR) and TerraClimate 

precipitation. The assessment was done at monthly and annual scales for years with complete field observations.  

The field data was obtained from the SASSCAL WeatherNet at Kabwe and Serenje weather ststaions 180 

(http://www.sasscalweathernet.org) and the ZAMSECUR project field observations (Mpika station). Location of 

the weather stations is shown in Figure 2. The Kabwe and Serenje stations had complete data sets for the period 

2014-2016 and Mpika 2020 -2021. The TerraClimate precipitation product appeard to have the least bias for the 

𝐸𝑤𝑏  reference evaporation. After validating precipitation, we assessed monotonic trends in long-term (2009 – 

2020) mean monthly and annual evaporation datasets (i.e., Weerasinghe et al., 2020; Liu et al., 2016).  185 

Different land surfaces, i.e., forests, grassland, open water body give different evaporation feedbacks 

(Granger and Hedstrom, 2010; Moors, 2012; Makkink, 1957). To this extent, we compared model performances 

based on six major land cover types; dense forest, mixed open forest and grassland, shrub-land, cropland, open 

water body and build up area. We used monthly evaporation averages for the period 2009 – 2020. The six land 

cover classes were purposively selected based on verified field observations of the land cover done between 2018 190 

and 2021 in the Luangwa Basin. We selected areas with minimal potential for land cover class transitioning into 

other classes overtime. For instance, the dense forest land cover was based on a protected natural forest in a 

conservancy region, irrigated crop land cover was based on known established active commercial farmlands that 

have been in existent for over ten years. Rain-fed cropland was selected from areas with established rural 
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settlements and cropland. Build up area/settlement was based on an old and expanding urban settlement.  Shrub-195 

land was selected from a game reserve area. To augment the correct selection of the land-cover types we used high 

resolution google earth platform. We compared the field based land cover data points with the Copernicus 2019 

land cover classification for the Luangwa Basin. The Copernicus land cover product uses high spatial-resolution 

(10 m) Sentinel data for classification with more detail than other products. Special focus was on the comparison 

of models in the dense forest across the phenophases.      200 

 To observe changes in canopy display in Miombo forest we installed a Denver digital camera on a tower 

above the canopy of a known Miombo forest in Mpika (Figure 2). This was done to obtain field imagery to compare 

with the pattern of satellite-based normalised difference vegetation index (NDVI) and evaporation model 

behaviour at different stages of the canopy display pattern. The observations were done for the period January – 

December 2021.           205 

 To establish relationships among variables and assessing accuracy of models we used various statistical 

models.  We checked for monotonic trends and coupled magnitude in evaporation time series using non-parametric 

Mann-Kendall (Helsel et al., 2020) trends test (equation A1-A6 in section A1.1 in the appendices). We tested for 

trends at monthly and annual temporal scales for the period 2009 - 2020. To establish correlation among the models 

the Kendall correlation test (Helsel et al., 2020; Kendall, 1975) (equations A7 in section A1.2 in the appendices) 210 

was used. Correlation was assessed at monthly and annual scales. Model performance assessment was done using 

the coefficient of determination (R2) (Helsel et al., 2020) (equation A8 in section A1.3 in the appendices), root 

mean square error (RMSE) (Helsel et al., 2020) (equation A9 in section A1.3 in the appendices) and the mean bias 

(Helsel et al., 2020) (equation 2).          

 The mean Bias is the measure of the extent to which modelled values deviate from observed values. It 215 

indicates whether there is under or overestimation of values by the model. The interpretation is that the smaller the 

mean Bias value (positive or negative) the less the deviation of the predicted values from the observed values.  

         𝑀𝑒𝑎𝑛 Bias = ∑(𝑋 − �̂�) 𝑁⁄                                                                                   (2) 

 

Where  𝑁 = number of observations, 𝑌 = actual observations time series and 𝑋 is the modelled time series.  220 

Statistical analyses were done for the annual scale, rain and dry seasons and for phenophases.   

2.2 Study site 

The Luangwa is a sub-basin in the larger Zambezi Basin in sub-Saharan Africa in Zambia (Figure 2). It 

is about 159,000 km2 in spatial extent and is largely covered with deciduous forests, herbaceous wetlands, shrubs 

and herbaceous vegetation/savanna (Figure 2; Phiri et al. (2019)). Elevation ranges between 318 – 2327 m above 225 

mean sea level with the central part generally a valley (Figure 2). The Luangwa River, 770 km long, and its 

tributaries drain the basin (Beilfuss 2012). The Luangwa Basin is scarcely gauged and with paucity of data on 

various hydrological aspects. The basin is located in a semi-arid environment characterised by a well-delineated 

wet season, from October to April and a dry season, May to October. Furthermore, the dry season is split into the 

cool-dry (May to August) and hot dry (August to October) seasons. The movements of the inter-tropical 230 

convergence zone (ITCZ) over Zambia between October and April dominate the rainfall activity in the basin. The 

basin has a mean annual precipitation of about 970 mm.yr−1, potential evaporation of about 1560 mm. 

yr−1, and river runoff reaches about 100 mm.yr−1 (Beilfuss, 2012; World Bank, 2010). The key character of 
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the deciduous forests is that they shed off old leaves and acquire new ones during the period May to October in 

the dry season. Frost (1996) revealed that depending on the amounts of rainfall received in the preceding rain 235 

season the leaf fall and leaf flush processes may start early (i.e., in case of low rainfall received) or late (in case of 

high rainfall received) and may go up to November (i.e., in the case of high rainfall received). 

 

 

 240 

 

 

 

 

 245 

 

 

 

 

 250 

 

 

 

 

Figure 2. Location of the Luangwa Basin in the Zambezi Basin in Zambia and spatial distribution of elevation with 255 

ASTER digital elevation model. 

 

According to Phiri et al. (2019), the basin is largely covered by primary and secondary deciduous forests. 

Primary forests are parcels of forests without anthropogenic disturbances while secondary forests are 

characteristically regenerated forests after anthropogenic disturbances. The larger component of the forest in the 260 

basin seems to fall under the secondary forest. This is indicative of increased anthropogenic activities such as 

commercial and small-holder agriculture in the basin. Another anthropogenic activity that affects Miombo forest 

and the general Luangwa Basin landscape are the wide spread annual wild fires, which result in large areas getting 

burnt. The fires normally occur between May and November in the dry season (Phiri et al., 2019; Frost,1996).  The 

Luangwa Basin also hosts hydro-power stations located on tributaries (i.e., Lunsemfwa River) to the Luangwa 265 

River (Phiri et al., 2019).  

 

2.3 Meteorological conditions during study period 

Figure 3 shows the spatial (A-D) and temporal (E-H) distribution of average precipitation, temperature, soil 

moisture and net radiation for the study area during the period 2009 – 2020. From Figure 3A we see that the 270 

highlands receive more rainfall than the low lands. In terms of the temporal distribution (Figure 3E), much of the 

precipitation is between December and April. Across the basin, spatial distribution of temperature (Figure 3 B&F) 

varied with lower temperatures observed in high soil moisture content (Figure 3 C & G), high rainfall temperature 
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environments. Like with the air temperature, monthly net radiation (Figure 3 D & H) spatially varies across the 

basin ranging between 100 - 200 W.m-2. High net radiation, of above 150 W.m-2, is observed for period September 275 

- February. Net radiation is lowest during the cool dry season, May - August. 

 

 

 

 280 

 

 

 

 

 285 

Figure 3. (A-D) Spatial distribution of long-term (2009 -2020) TerraClimate precipitation (mm/year) and CFSR 

soil moisture (m3.m-3), air temperature (oC) and net radiation (W.m-2) in the Luangwa Basin. (E-H) Long-term 

(2009 – 2020) averages showing the monthly temporal distribution of precipitation, soil moisture, air temperature 

and net radiation for the Luangwa Basin.  

 290 

2.4 Data sets  

Apart from the 𝐸𝑤𝑏 , we used six evaporation products that included two water balance evaporation 

models (WBM) FLEX-TopoWB and 𝑇𝑀𝐶𝑊𝐵 and four energy balance evaporation models (EBM) GLEAM, 

MOD16, SSEBop and WaPOR (Table 1).  

We used the FLEX-TopoWB because it was structured specifically for the Luangwa Basin landscape and 295 

was calibrated on field observations-based discharge of the basin at a daily temporal scale (Hulsman et al., 2021). 

We forced FLEX-TopoWB model with spatially distributed CHIRPS precipitation and GLEAM potential 

evaporation. Each cell has been discretised into functionally distinct hydrological response units (HRU) based on 

the topography. The model uses a single ground water system within a grid cell to which all HRU are connected. 

It is composed of several storage components representing the interception storage, unsaturated root-zone storage, 300 

as well as fast and slow responding storages. Furthermore, each storage component has been structured as a 

reservoir with matching water balance equations. In terms of performance, with respect to observed discharge, 

calibrated for the period 2004 -2009, the model performed relatively well with the following Nash-Sutcliffe metric; 

NS_Q = 0.66 (using discharge time-series), NS_log (Q) = 0.82 (using logarithmic discharge time-series), NS_FDC 

= 0.91 (using flow duration curve) and NS_log (FDC) = 0.97 (using logarithmic flow duration curve). However, 305 

the limitation with the FLEX-TopoWB was the 27.7 km spatial resolution. Compared to FLEX-TopoWB,  𝑇𝑀𝐶𝑊𝐵 is 

a relatively high spatial resolution water balance product. Like FLEX-TopoWB, it is also calibrated with field 

observations based on the Global Runoff Data Centre (GRDC)  data set (Abatzoglou et al., 2018). It has shown 

good results in ecosystems where it has been validated and compared relatively well with other evaporation 
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products (Abatzoglou et al., 2018). In our study, calibration with basin discharge, the 4 km spatial resolution and 310 

monthly temporal resolution were desirable attributes for use as reference evaporation.  

As evaporation products, GLEAM, MOD16, SSEBop and WaPOR were selected for use in this study 

because they are open -source products with wide usage across Africa and the globe in the case of GLEAM, 

MOD16 and SSEBop. Except GLEAM (with spatial resolution of 27.7 km), these products have high spatial 

resolution (i.e., 500m, 1000m and 250 m for MOD16, SSEBop and WaPOR respectively) and temporal resolution 315 

(daily, 8-day and decadal respectively) which are attributes suitable for our application. GLEAM and WaPOR 

account for interception and vegetation interaction with the root zone storage. These are important aspects in the 

evaporation processes and potentially significant components in the Miombo ecosystem evaporation. Since 

different land cover surfaces have different moisture feedbacks, the use of land cover products in GLEAM, 

MOD16 and WaPOR are likely to give better representation of spatial distribution of moisture feedbacks in the 320 

Miombo ecosystem.  It is an established fact that different land surfaces have specific land surface temperature 

feedbacks (i.e., Rocha et al., 2020; Sun et al., 2016) a principal utilised by SSEBop model to estimate evaporation. 

Since the Miombo ecosystem and the Luangwa Basin in particular is a water limited semi-arid environment the 

use of the land surface temperature feedbacks to estimate evaporation could prove a more reliable approach in this 

ecosystem. In general, we selected these evaporation products based on the potential of the structure and processes 325 

to capture moisture feedbacks in a unique ecosystem in a semi-arid environment.     
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3.0 Results 330 

3.1 Sensitivity of precipitation products and trends analysis of evaporation products 

Figure A1 in the appenidices shows the validation results of the precipitation products. Overall, the 

TerraClimate precipitation showed the least bias and was thus used in the general water balance evaporation 

estimates. Figure A2 in the appendices shows the results of the comparison of TerraClimate runoff data with field 

observations and regression results. The regression results are close to field observations hence the use of the 335 

approach to extend runoff estimates for the period 2009-2020. Table 2 and Table A2 (in the appendices) shows 

annual and monthly descriptive and Mann-Kendall trends analysis statics for the various evaporation products 

used in the study. At both monthly and annual scales, except for the SSEBop with a significant monthly seasonal 

downward trend (Table A1 in the appendices), all other evaporation products showed no significant trend in 

evaporation as the computed Z-test statistics were -1.96 < Z(c) <1.96 and the p-values were greater than the alpha 340 

level 0.05. The non-existent of significant trend in long-term basin evaporation fulfilled the condition for use of 

the general water balance to estimate basin-scale reference evaporation for comparison across different times.  At 

annual scale, except for the 𝐸𝑤𝑏  (14 percent), the rest of the evaporation products showed less than 10 percent 

annual variation in evaporation estimates. However, seasonal monthly evaporation showed variations of up to 60 

percent (i.e., TMC𝑊𝐵and MOD16) (Table A1 in the appendices). The large variability when a wet year follows a 345 

dry year, or vise-versa (as we see between 2014 and 2017 in Figure 4), is due to over-year storage that the water 

balance methods neglects at annual scale.  

 

Table 2. Descriptive and Mann-Kendall trends statics for each model for the period 2009 - 2020 

Statistic No Min Max Mean SD VC Z-test 𝛽 p-value Alpha Decision 

TMC𝑊𝐵. 12 694.87 940.68 808.26 79.01 0.09 0.07 1.37 0.95 0.05 No trend 

FLEX-TopoWB 12 741.57 870.14 801.77 40.79 0.05 -1.44 -7.70 0.15 0.05 No trend 

WaPOR 12 854.61 1039.35 970.78 50.40 0.05 -1.30 -4.46 0.19 0.05 No trend 

SSEBop 12 766.94 919.14 836.91 46.40 0.05 -0.75 -5.70 0.45 0.05 No trend 

GLEAM 12 656.19 772.66 721.44 34.72 0.05 -1.03 -3.12 0.30 0.05 No trend 

MOD16 12 756.16 861.79 806.96 31.55 0.04 0.34 0.68 0.73 0.05 No trend 

𝐸𝑤𝑏  12 644.19 1070.70 821.01 122.72 0.14 0.21 5.10 0.84 0.05 No trend 

Interpretation: No. = number of observation, Min = minimum, Max = maximum, SD = standard deviation, VC = variation coefficient 350 
 

3.2 Temporal variability in evaporation and model performance at annual scale  

Figure 4A shows the annual evaporation and TerraClimate precipitation while Figure 4B gives the annual 

Bias for each model with reference to 𝐸𝑤𝑏  for the period 2009 – 2020. Figure A3 in the appendices shows 

performance statics of the models at annual scale. As mentioned above, the peak and dip in the bias in the period 355 

2014 – 2017 is an artefact of the general water balance method that neglects over-year storage. Across the 

examined period, annual estimates of evaporation varied from model to model with the WaPOR and GLEAM at 

the upper and lower end respectively. It appeared, that except for 𝑇𝑀𝐶𝑊𝐵, the rest of the models did not 

consistently respond appropriately to changes in annual precipitation. With reference to 𝐸𝑤𝑏 , compared to other 

EBM the WaPOR consistently overestimated annual evaporation and GLEAM consistently underestimated annual 360 

evaporation. Between 2009 and 2014, FLEX − Topo𝑊𝐵 , 𝑇𝑀𝐶𝑊𝐵 , MOD16 and SSEBop evaporation pattern 

aligned relatively well with low biases. However, between 2015 and 2020  𝑇𝑀𝐶𝑊𝐵 showed higher evaporation 

estimates than the FLEX − Topo𝑊𝐵 , MOD16 and SSEBop but followed 𝐸𝑤𝑏   pattern (Figure 4). 
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 370 

 

 

 

 

Figure 4. (A) EBM and WBM temporal pattern of average annual evaporation and (B) annual bias evaporation of 375 

models with reference to the general water balance (𝐸𝑤𝑏) for the period 2009 – 2020 in the Luangwa Basin. 

 

There is weak correlation (r < 0.4) between FLEX − Topo𝑊𝐵  and 𝑇𝑀𝐶𝑊𝐵   (Table A2 in the appendices). 

Except with the WaPOR, FLEX − Topo𝑊𝐵 exhibited strong (r > 0.7) annual correlation with GLEAM, MOD16 

and SSEBop. 𝐸𝑤𝑏 and 𝑇𝑀𝐶𝑊𝐵 showed weak (r< 0.4) correlation with all EBM (Table A2 in the appendices). With 380 

reference to the 𝐸𝑤𝑏  (Figure 4B), except for the years 2016, 2017 and 2019 WaPOR overestimated evaporation 

and showed a bias range of -311 to 245.34 mm.year-1. The rest of the models generally underestimated annual 

evaporation with bias ranges of -434.05 to 117.7 mm.year-1 for FLEX − TopoWB , -346 to 28.70 mm.year-1 for 

𝑇𝑀𝐶𝑊𝐵, -519.59 to 35.34 mm.year-1 for GLEAM, -430.05 to 16.86 mm.year-1 for MOD16 and -430 to 135 

mm.year-1 for SSEBop (Figure 4B and Figure A3 in the appendices). Generally, with reference to 𝐸𝑤𝑏 , the 385 

SSEBop, MOD16 and FLEX − TopoWB appeared to have relatively lower annual biases compared to other models 

especially for the period 2009 – 2015. During the 2016 – 2020 period, the WaPOR appeared similar with other 

models and showed relatively lower bias (Figure 4B). For the entire 12 year period (2009 – 2020) the WaPOR 

showed the least aggregated mean bias of about 50 mm.year-1 (overestimation) followed by the SSEBop with about 

-84 mm.year-1 (underestimation). GLEAM showed the largest aggregated bias of about -200 mm.year-1 390 

(underestimation) (Figure A4 in the appendices). 

 

3.3 Temporal distribution of mean monthly evaporation, correlation and model performance 

Figure 5A shows inter-annual variability in EBM and WBM monthly evaporation. Across the 2009 – 

2020 period, the general pattern in the temporal distribution of evaporation for each model appeared consistent. 395 

Major discrepancies in temporal pattern appear to be seasonal with a clear distinction between the rain and dry 

seasons. Figure 5 B shows long-term (2009 – 2020) aggregated temporal distribution of mean monthly evaporation 

for EBM and WBM. The WBM and EBM models behaviour appear to agree better during the high moisture and 

high canopy cover period in the rainy season between November and April. Model behaviour begins to differ at 

the wet (October –December) and dry (March-May) season boundaries. Significant differences in model behaviour 400 

is exhibited during the dry period of the year between May and October.  
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Figure 5. Comparison of models temporal distribution of mean monthly evaporation: (A) inter-annual temporal 

variations in mean monthly evaporation (B) Aggregated mean monthly evaporation for the rain and dry seasons 

in the Luangwa Basin (2009 – 2020).  

 430 

Overall, during the rainy season the TMCWB model generally exhibit slightly higher values of evaporation 

compared to the other models. Reference to the FLEX-TopoWB, EBMs, with an exception of the WaPOR and 

SSEBop, exhibits relatively lower evaporation estimates during the drier part of the year and the patterns also 

differ. Though WaPOR shows a similar temporal distribution pattern with 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵, its evaporation 

estimates are higher.           435 

 Subjecting the 2009 – 2020 monthly time series to a normality test showed the data was not normally 

distributed which necessitated the use of the non-parametric Kendall correlation test. 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 and 

TMCWB  showed similar correlation coefficients with EBM with Kendall τ > 0.54 ≤ 0.80 (Figure A5 and Table A3 

in the appendices). 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 had strongest correlation with GLEAM (τ = 0.77), followed by MOD16 (τ = 

0.75), WaPOR (τ = 0.66) and SSEBop (τ = 0.54). TMCWB had strongest correlation with GLEAM (τ = 0.73), 440 

followed by WaPOR (τ = 0.62), MOD16 (τ = 0.61) and SSEBop (τ = 0.54). Intercomparison among EBM showed 

highest correlation (τ = 0.80) was between GLEAM and MOD16 while lowest correlation (τ = 0.56) was between 

SSEBop and WaPOR. Figure 6 shows EBM performance statistics with reference to FLEX-TopoWB and TMCWB. 

With reference to FLEX-TopoWB strongest agreement with all EBMs was at the end of rain season during 
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senescence, green-down and Mid-green-down phenophases with R2 range of 0.77 – 0.98 and Bias range 6.13 – 445 

13.41 mm.month-1. The most disagreement of the EBM’s with FLEX-TopoWB was during the dormancy 

phenophase in the dry season with R2 range 0.001 – 0.54 and Bias 8.59 - 26.75 mm.month-1. GLEAM, except 

during Green-up and Mid-green-up, generally underestimated evaporation while WaPOR generally overestimated 

evaporation across phenophases. MOD16 and SSEBop showed mixed performance with general underestimation 

of evaporation during senescence, green-down, Mid-green down and dormant phenophases (Figure 6). With 450 

reference to TMCWB, like with FLEX-TopoWB, strongest agreement with all EBM’s was during senescence and 

Mid-green-down phenophases with R2 range 0.61 – 0.85 and Bias range 1.67- 22.75 mm.month-1. The most 

disagreements, contrary to the observations with FLEX-TopoWB, were during Green-up/ mid-Green-up and 

Maturity/Peak phenophases in the rainy season with R2 range of 0.32 – 0.77; 0.06 – 0.58 respectively. In terms of 

Bias, with an exception of MOD16 all EBM’s generally underestimated evaporation during Maturity and Peak 455 

phenophases.  
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 475 

 

Figure 6 A. Basin scale comparison of mean monthly (2009-2020) EBM with WBM. (A-D) EBM comparison 

with FLEX-TopoWB and (E-H) comparison with TMCWB. Colour code: BLUE= Green-up/Mid-Green-up; BROWN 

= Maturity/Peak; ORANGE = Senescence/Green-down/Mid-Green-down and BLACK = Dormant phenophase. 

 480 

With reference to Bias, MOD16 underestimated evaporation during Green-up and Mid-Green-up 

phenophases but overestimated during the rest of the phenophases with Bias range 6.10 – 31.69 mm.month-1. 

GLEAM, SSEBop and WaPOR showed mixed performance underestimating during Green-up/ mid-Green-up and 

Maturity/Peak phenophases and overestimating evaporation during senescence, Mid-green down and dormant 
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phenophases with Bias range of 1.89 – 37.75 mm.month-1 (Figure 6). With reference to both FLEX-TopoWB and 485 

TMCWB model performance varied depending on season, i.e., rainy or dry season, and phenophase.  

 

3.3 Spatial-temporal evaporation distribution during phenophases and model performance 

Figure 7A shows spatial-temporal distribution of NDVI and evaporation while Figure 7B shows violin 

plots of evaporation across phenophases in the Luangwa Basin. NDVI was used as indicator of spatial-temporal 490 

transitions in vegetation greenness, canopy cover and vegetation water content across phenophases. Spatial and 

temporal distribution of evaporation varied among models across phenophases (Figure 7A and B). During the 

maturity/peak period, the MOD16 and TMC showed spatial patterns different from the NDVI and other 

evaporation models. In terms of distribution of evaporation values, except for MOD16, all models had similar 

pattern and ranged between 250 mm.3-months-1 and 350 mm.3-months-1 (Figure 7A). FLEX-TopoWB, GLEAM and 495 

TMCWB showed very minimal variation in evaporation estimates. MOD16, SSEBop and WaPOR exhibited outliers 

at both end of the distribution. During the senescence/green-down period, spatial distribution of evaporation was 

similar among all models and followed NDVI pattern. During dormant phenophase, except for the SSEBop and 

WaPOR, the rest of the models exhibited similar spatial distribution of evaporation and appeared in tandem with 

NDVI.        500 

 During the maturity/peak phenophases (Figure 7 A), except for the MOD16 and TMC, distribution of 

evaporation estimates was relatively similar among all the models as indicated by the means, standard deviations 

and variation coefficient (Table A4 in the appendices). The maturity/peak phenophases occurs during the wettest 

period of the year i.e., between January and March (Figure 1). In the maturity/peak phenophases, MOD16 exhibited 

the highest bias of about 19 mm.month-1 and 11 mm/month with reference to the FLEX-TopoWB and TMCWB 505 

respectively (Figure 7 A and Table 3). The rest of the EBM showed lower biases. With reference to the FLEX-

TopoWB all EBM showed strong correlation with coefficients (R2) of above 0.85 (Table 3). However, the TMCWB 

showed lower correlation coefficients (R2) with EBMs ranging between 0.45 – 0.85 with least (0.45) correlation 

observed with MOD16 (Table 3). The maturity/peak phenophases exhibited lower biases among models (Table 

3). The Senescence/Mid-Green down phenophases occurs during the transition from the rain to the dry season. 510 

During this period, evaporation distribution exhibited relatively similar means, standard deviations and variation 

coefficients among models. Across the basin all models estimated evaporation in the range 200 – 300 mm.3-

months-1 during this period (Figure 7 and Table A4 in the appendices). In terms of magnitude of evaporation, 

compared to the maturity/peak phenophases the senescence/mid-green-down/greendown phenophases exhibited 

lower estimates, both maximum and minimum estimates. With reference to FLEX-TopoWB and TMCWB high 515 

correlation coefficients of between 0.75 and 0.99, RMSE of between 1.2 and 8.8 mm.month-1, and biases of 

between -7.7 and 22.7 mm.month-1  were noted (Figure 7A, Table 3 and Table A5 in the appendices). Compared 

to the other phenophases, the dormancy phenophase, normally experienced between July and September in the dry 

season, showed the most variations, in terms of evaporation spatial distribution and magnitude (Figure 7A and B). 

In addition, this is the period the basin spatially experiences lowest NDVI values (Figure 7A). During dormancy 520 

phenophase, all EBM and WBM showed the lowest evaporation, exhibited distinct individual patterns and, with 

reference to the FLEX-TopoWB, showed the largest range of correlation (R2) (0.54 – 0.97) (Figure 7A, Table 3 and 

Table A6 in the appendices). The green-up and Mid-green up phenophases, normally occur between October and 

December. The start of greening up is before the start of the rains in October. In all model estimates, evaporation 
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magnitude begins to increase at the start of the green-up phenophase. However, there seem to be significant 525 

observable differences in the evaporation pattern, both in terms of distribution and magnitude. With reference to 

the TMCWB all EBM exhibited lower maximum values though the means for WaPOR and SSEBop were relatively 

of similar magnitude. All EBM showed strong correlation with the TMCWB, correlation coefficient range of 0.75 

to 0.94, but seem to underestimate evaporation with a bias range of 1.9 to 31.7 mm.month-1 (Figure 7A, Table 3 

and Table A4 in the appendices).  530 

 Generally, reference to the FLEX-TopoWB and TMCWB, and depending on the phenological stage, all EBM 

showed a mixed performance of underestimating and overestimating evaporation. With reference to the FLEX-

TopoWB, with an exception of WaPOR, underestimation of evaporation appeared more pronounced in the transition 

period from the rainy to the dry season (i.e., Senescence/Mid-Green down phenophases) and during the dry season 

(Dormancy phenophase). With reference to the TMCWB, all EBM, with an exception of MOD16 (during the 535 

maturity/peak phenophases), appeared to underestimate evaporation during the green-up/mid-green up and the 

Maturity/peak phenophases in the rainy season (Figure 7B and Table 3). In terms of distribution of magnitude of 

evaporation, it appeared to vary with model spatial resolution. Models with relatively finer spatial resolution (i.e., 

MOD16, SSEBop and WaPOR) showed a wider spread of evaporation values than those with coarser resolution 

(i.e., FLEX-TopoWB, GLEAM and TMCWB (Figure 7 B). 540 

           (a)                                                                                      (b)    

         

 

 

 545 

 

  

 

 

 550 

 

Figure 7. (A) Spatial-temporal distribution of NDVI and models evaporation (mm.3-months-1) across phenophases 

for the year 2020 and (B) Violin plots showing variations in models’ evaporation across phenophases for the year 

2020 in the Luangwa Basin. Violins represent the distribution of the evaporation with indication of the median 

(white dot), interquartile range (thick line), and 95% interval (thin line). 555 

 

3.4 Land-cover based evaporation and model performance  

Figure 8A and Table 3 show the 2019 Copernicus land cover map with locations of the land cover types 

used in this study. Figure 8B shows Google earth images of the land cover types and the number of pixels used in 
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the study for each evaporation model. Average monthly values of evaporation for the period 2009 – 2020 for each 560 

land cover type were obtained based on pixels in a defined area (i.e., polygons) that covered the land cover of 

interest.  

Figure 9 shows plots of the evaporation across land cover types for each model. The evaporation pattern 

based on the land cover type is very distinctive but appears to follow the basin energy and water variability cycles 

(Figure 3). The most notable difference in land-cover based evaporation estimates by the models was observed in 565 

the classes’ dense forest and open water body. In these two environments, the WaPOR and SSEBop showed a 

different upward pattern and higher evaporation values compared to the rest of the models especially in the dry 

season (Figure 9 A and F). In irrigated cropland the 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵, SSEBop and WaPOR appears to respond 

to irrigation activities in August during the dry season. All three models show a decline in evaporation in 

September with 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 continuing to decline to October while SSEBop and WaPOR showed an upward 570 

movement after September. However, all models show a similar pattern in the rain-fed cropland in the dry season 

though WaPOR exhibits relatively higher values (Figure A6 in the appendices).  

Tables A6 and A7 in the appendices show the calculated statistics for each land cover. Most notable 

differences statically were in the class dense forest. In dense forested environment, the WaPOR and the SSEBop 

showed the least standard deviations (less than 14 mm.month-1) and coefficients of variation (less than 13%) 575 

(Tables A4 and A5 in the appendices). The rest of the models showed relatively higher standard deviations and 

coefficients of variations of above 40 percent but not exceeding 65 percent (Table A5 in the appendices). With 

regard to the mixed open forest and grassland area the overall pattern for all models was similar and exhibited high 

correlations exceeding Kendall correlation coefficient of 0.8 among all models (Figure 9 B and Table A5 (ii) in 

the appendices). 580 

Overall, the WaPOR and SSEBop appeared to have similar patterns of evaporation across the land cover types 

with strong Kendall correlation coefficients of above 0.5 across land-cover types (Tables A5 and A6 in the 

appendices). 

Since the dense forest class showed the most notable difference in vegetated land cover classes, we 

statistically analysed the observed differences for each phenophase. Figure 10 shows regression plots and statistics 585 

for each phenophase. When compared to both 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 and TMCWB, GLEAM showed the highest 

correlation range (R2 = 0.26 – 0.92) and least bias (Bias range = 0 – 11.31 mm.month-1) (Figure 10 A) across 

phenophases while SSEBop and WaPOR showed the least correlation (R2 = 0 – 0.58) and highest bias (Bias range 

= 1.79 – 56.01 mm.month-1) (Figure 10 C, D, G, H). MOD16 compared well with 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵  across 

phenophases (R2 = 0.41 – 0.81; Bias = 6.23 – 26.93 mm.month-1) but not so much with TMCWB (R2 = 0.38- 0.76; 590 

Bias range = 4.82 -38 mm.month-1) (Figure 10 B and F).  Generally, most model disagreements were observed 

during green-up/mid-green-up and dormant phenophases.  
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Table 3. Location of field verified land cover types              (b) 
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Figure 8.  Verified locations (Table 3) of land cover types on the Copernicus 2019 land cover map (A) for the 

extraction of evaporation values for each model.  

Land cover type Latitude Longitude 

Build up area -14.42 28.45 

Cropland (Rain-fed) -14.31 31.49 

Cropland (Irrigated) -13.80 29.24 

Dense forest (Miombo forest) -12.39 31.16 

Open water body -12.96 30.75 

Shrubland -12.51 31.70 

Sparse forest (Open Miombo/grassland) -14.43 29.56 

Luangwa Basin. © Google earth (B) was used to generate polygons based on the field verified locations for 
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Figure 9. Land cover type dependent temporal distribution of long-term (2009-2020) mean monthly evaporation 

in the Luangwa Basin. Major differences, in evaporation temporal patter and magnitude between WBM and EBM 660 

as well as among EBM, seem to occur in natural vegetation i.e., Dense Miombo Woodland in the dry season (May 

– October). 
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Figure 10. Relationship of EBM and WBM mean monthly (2009-2020) evaporation across seasons and 

phenophases in dense Miombo Woodland in the Luangwa Basin. (A-D) EBM comparison with FLEX-TopoWB and 690 

(E-H) comparison with TMCWB. Colour code: BLUE= Green-up/Mid-Green-up; BROWN = Maturity/Peak; 

ORANGE = Senescence/Green-down/Mid-Green-down and BLACK = Dormant phenophase. 

4.0 Discussion 

The objectives of this study were to evaluate evaporation models performance in the Luangwa Basin 

and to discuss the potential underlying factors to the observations. We discuss differences in spatial and temporal 695 

model performance and highlight potential underlying factors to the observed discrepancies.    

4.1 Observations in model’s performance in terms of spatial-temporal distribution of evaporation 

Across seasons and phenophases, we have observed discrepancies in spatial-temporal models’ 

performance. Precipitation and forest cover have been shown to be the main determinants of water availability at 

catchment level through actual evaporation rather than the potential evaporation ( Zhang et al., 2001). For instance, 700 

forested areas tend to have higher evaporation than non-forested or grassland areas and this is dependent on the 

age and health of the trees (Teuling, 2018). In agreement with Teuling (2018) and Zhang et al. (2001) results of 

this study show significant land cover dependent differences in the spatial and temporal distribution of evaporation. 

Forested areas showed the most discrepancies in the spatial-temporal distribution pattern of evaporation in all 

models with the WaPOR and SSEBop exhibiting visibly distinct patterns from the other models in the dry season. 705 

Furthermore, in periods with high soil moisture and high canopy cover (i.e., maturity/peak and senescence/Green-

down/mid-green down) all models performed similar. However, significant diversion in model behaviour was 

more pronounced during periods of limited soil moisture and low canopy cover (i.e., dormancy and green-up/mid-
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green up phenophases). Documented coefficient of variation in Miombo Woodland canopy cover (i.e., as proxied 

by the leaf area index and normalised difference vegetation index) is about 30 percent (Zimba et al., 2020; Frost, 710 

1996). Furthermore, Miombo species leaf colour transitions and leaf fall does not occur at the same time but varies 

among species (i.e., Figure 11) and also depends on the amount of rainfall received in the preceding season (Frost, 

1996). The field observations we made in 2021 at Mpika (Figures 2 and 11) confirmed and illustrates the 

differences in leaf fall/flush, leaf colour transitions and green-up at Miombo local forest level.  

 715 
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 735 

 

 

 

Figure 11. MODIS LAI, NDVI, and the Miombo Forest canopy display pattern for the year 2021 at Mpika station. 

 740 

The field observations of Miombo canopy display dynamics agreed with the MODIS based LAI and 

NDVI pattern for the year 2021 (Figure 11). LAI and NDVI differed at the start of rise with LAI starting early in 

August indicating increase in leaf flush activity. Unlike the LAI, NDVI begins to rise in September indicating a 

delay resulting from the leaf colour transitions as exhibited in Figure 11. Implication of the leaf colour transitions, 

variations in the time for leaf fall and the variation coefficient in canopy display is that during the dry season the 745 

Miombo Woodland, at forest/catchment level, is not completely leafless as it returns 70 percent of the canopy 

display (i.e., Figure 11). Tian et al. (2018) showed that while transpiration co-varies with canopy cover (i.e., leaf 

area index (LAI)) in the Miombo Woodland the water storage in the root zone and the body of the vegetation tends 
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to increase towards the end of the rain season remaining relatively constant during the dry season until the LAI 

begins to increase again. Further, Tian et al. (2018) observed that the Miombo Plants tend to rely on the deep root 750 

zone water during the dry period of the year. Vinya et al.(2018) showed that the stem water storage dynamics 

strongly influence canopy display. Pelletier et al. (2018) and Tian et al. (2018), using different approaches, deduced 

how different the Miombo Woodlands species traits are from other ecosystems; how they store water and their 

interaction with the root zone storage during the dry season. Their findings, largely, could possibly explain the 

differences we observed in the model’s spatial temporal distribution of evaporation during the dry season. Forest 755 

cover strongly influences catchment evaporation during the dry season ( Zhang et al., 2001; Teuling, 2018). The 

Luangwa Basin is largely covered by the Miombo Woodland (Sustainable Management of Miombo Woodlands, 

2018; Frost, 1996 ). Miombo Woodland species unique attributes, i.e., stem water storage, canopy display 

behaviour and interaction with root zone storage (Pelletier et al., 2018; Tian et al., 2018; Vinya et al., 2018) 

probably accounts for the observed spatial-temporal evaporation distribution patterns by the different models in 760 

this study. 

A key underlying factor for the observed discrepancies in spatial distribution of evaporation by models is 

the difference in the land cover products used. For instance, MOD16 heavily relies on a global land-cover product 

(Gray et al., 2019b; Running et al., 2019) known to misclassify certain  land cover types and showing low user 

accuracy in certain regions (i.e., Leroux et al., 2014). WaPOR uses the Copernicus land cover product but adds 765 

the distinction between irrigated and rain-fed areas (FAO, 2018). For vegetation fraction, GLEAM uses the 

MODIS MOD44B product (Martens et al., 2017; Miralles et al., 2011). Dissimilarities in the land cover products 

possibly reflect in differences in the models spatial distribution of evaporation. 

 

4.2 Potential underlying factors in model performance in the Luangwa Basin 770 

 In this section, we look at model architecture and observed evaporation estimates in relation to Miombo 

Woodland attributes and how this potentially explains models’ performance in the Luangwa Basin.  

In this study, although GLEAM consistently underestimated annual evaporation for the period 2009 – 

2020, it agreed well with the  𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 and 𝑇𝑀𝐶𝑊𝐵 during the rain season. This suggests that the 

underestimation observed at annual scale could be because of GLEAM behaviour during the dry season. Firstly, 775 

GLEAM assumes a maximum root-zone soil moisture depth of 250 cm for tall vegetation i.e., the Miombo forest. 

However, Miombo species in deep soils have been shown to have tap roots exceeding 5 m depth and lateral roots 

covering between 15 – 25 m (Frost, 1996). Different ecosystems and land-cover types have different root zone 

storage capacities to buffer drought periods (Wang-Erlandsson et al., 2016). Pelletier et al. (2018) and Tian et al. 

(2018) showed that Miombo Woodland species potentially access ground water for various physiological activities 780 

during the dry season. Vinya et al. (2018) showed linkage between changes in canopy display and Miombo plants 

stem water storage in the dry season. The Miombo Forest largely retains its canopy cover during the dry season 

(i.e., Figure 11; Zimba et al., 2020; Frost 1996). Therefore, with capacity to tap into ground water reservoirs and 

stem water storage mechanisms, depending on the species, it is likely that Miombo plants continues transpiring 

throughout the dry season. Additionally, use of the net precipitation for the running water balance to determine 785 

root zone soil moisture implies that GLEAM evaporation is sensitive to precipitation regimes. This, in our study, 

is augmented by observations in the temporal pattern of GLEAM (Figure 5) as it showed relatively, i.e., compared 

to 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 , and MOD16, higher evaporation at the commencement of the rainy season during the green-
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up and Mid-green-up phenophases. It also means that the quality of the rainfall product used to parameterise root-

zone soil moisture affects evaporation estimates. Luangwa Basin is in a sparsely gauged semi-arid environment in 790 

Africa for which some precipitation products show large bias (Oki and Kanae, 2006). Therefore, it is likely that 

GLEAM does not effectively capture the Miombo Woodland evaporation in the dry season. 

With reference 𝐸𝑤𝑏 , MOD16 showed relatively low annual bias. In addition, MOD16 showed low bias 

and high correlation with the 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵  and 𝑇𝑀𝐶𝑊𝐵 at monthly scale for the period 2009 -2020. MOD16 

showed mixed performance across phenophases depending on the water balance model compared with. With  795 

𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 the MOD16 showed underestimation in the dry season and overestimation in the rainy season. 

With the  𝑇𝑀𝐶𝑊𝐵 the MO16 showed overestimation in the dry and underestimation in the rainy season. Like with 

the other models the major discrepancy was in dry season during the dormant and green-up phenophases, most 

significantly in the dense forest-land cover. During the rainy season potential sources of 

overestimation/underestimation, with 𝐹𝐿𝐸𝑋 − 𝑇𝑜𝑝𝑜𝑊𝐵 and 𝑇𝑀𝐶𝑊𝐵, could be that the precipitation product used 800 

in MOD16 either overestimates or underestimates precipitation (Oki and Kanae, 2006) in the Luangwa Basin. For 

the MOD16 performance in the dry season, especially in forested areas, potential underlying factors for this 

behaviour could be attributed to model phenophases characterisation and stomatal conductance thresholds. It is 

possible the stomatal conductance thresholds are not correctly adjusted (i.e., low or higher than actual threshold 

value) for the Miombo ecosystem. In addition, arid and semi-arid ecosystems, like the Miombo ecosystem in the 805 

Luangwa Basin, are driven by moisture in the soil (Verstraeten et al., 2008; Makkeasorn et al., 2006). MOD16 

does not couple canopy transpiration with soil moisture which is a potential source of underestimation especially 

in view of the already discussed Miombo species interaction with root zone soil moisture during the dry season. 

Discrepancy in spatial distribution of MOD16 with other models could be a result of the classification accuracy of 

the land cover product used that may or may not correctly characterise the land cover in the Luangwa Basin. 810 

Generally, other than the model structure, sources of error in MOD16 are likely also to be from model inputs like 

the LAI, accuracy of the land cover map used, especially with regard to classification of forest cover in the Miombo 

region, and meteorological data.  

At annual scale, with reference to 𝐸𝑤𝑏 , the SSEBop showed relatively low bias (Figure 4B). SSEBop 

major spatial and temporal digression from other models was in the dry season in between the senescence and the 815 

green-up phenophases. In contrast to other models, SSEBop showed an upward movement in evaporation starting 

from August in the dormant phenophase in the dry season. The rest of the models showed a start of increase in 

evaporation at the commencement of the green-up phenophase (Figure 5). In addition, with an exception of 

WaPOR, the SSEBop had the second highest evaporation during the driest part of the dry season (September-

October). Three observations, in relation to model structure, that aid explanation for SSEBop spatial-temporal 820 

behaviour (Figures 5B, 7, 9 and 12 A) in the Luangwa Basin include the model’s land-cover based (i.e., Dense 

Forest and Open water body) performance, spatial-temporal pattern of LST (Figure 12 B) and the area burnt by 

fire (Figure 12 C). SSEBop depends on LST to distinguish hot and cold pixels for estimation of evaporation 

(Savoca et al., 2013). Under water limited conditions, compared to non-evaporating surfaces evaporating land 

surfaces tend to have lower LST (Rocha et al., 2020; Akinyemi, Ikanyeng, and Muro, 2019; Sun et al., 2016). The 825 

start of rise in LST in August is preceded by a cool dry season with low net radiation (Figure 3) to aid evaporation 

in both open water body and dense forested areas. The start of increase in SSEBop evaporation and LST in August 

(i.e., Figure 12 D) corresponds to start in rise in both air temperature and radiation. This provides energy for 
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evaporation (Heck et al. 2020) from open water bodies and dense forests as demonstrated in Figure 9A & F. Dry 

land surfaces such as dry grassland, burnt area and built up surfaces tend to have high LST which the SSEBop 830 

classify as non-evaporating hot pixels.  

 

 

 

 835 

 

 

 

 

 840 

 

 

 

 

 845 

 

 

Figure 12. (A) 2020 annual SSEBop evaporation distribution, (B) annual MODIS 2020 spatial land surface 

temperature distribution, (C) MODIS burned area distribution and (D) monthly temporal distribution pattern of 

SSEBop evaporation and MODIS LST for the year 2020 in the Luangwa Basin. 850 

 

This explains the spatial pattern of SSEBop evaporation during the dormant phenophases (Figure 7A) 

with dense forest areas and open water bodies showing high evaporation values while dry croplands, dry grassland 

and burnt areas show low or no evaporation (Figure 9). LST is also used as indicator of plant water condition and 

soil water condition (Sun et al., 2019; Zhang et al., 2014). The SSEBop temporal behaviour in the dry season 855 

seems to confirm that Miombo plants have a water storage mechanism and interacts with ground water systems 

that facilitate the observed evaporation pattern.       

 With reference to 𝐸𝑤𝑏 , the WaPOR consistently overestimated annual evaporation from 2009 to 2020 

with exception of 2016, 2017 and 2019 (Figure 4B). Analysis at seasonal level showed that the observed 

overestimation at annual scale was due to the distinct model behaviour during the dry season. During the rainy 860 

season, i.e., December to March in the Mid-green-up, maturity and peak phenophases, the WaPOR was 

consistently similar with other models and relatively underestimated evaporation (compared to MOD16 

and 𝑇𝑀𝐶𝑊𝐵) (Figure 5). Overestimation started at the commencement of the downward movement in soil moisture 

at the end of the rainy season. This behaviour remained consistent throughout the dry season across the different 

Luangwa Basin phenophases and land-cover types. Spatial-temporal patterns (Figures 5, 7 and 9) showed WaPOR 865 

performed distinctly differently from other models especially in dense forest areas and open water bodies. The 

Luangwa Basin is largely forested (Phiri et al., 2019; Figures 8 and 13) with a diverse plant species composition 

but largely Miombo Woodland species (Frost 1996; White 1984). The 2019 Copernicus land cover classification, 
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80 percent user accuracy and forest classification accuracy of about 75% (Buchhorn et al., 2020; Martins et al., 

2020), showed that 77 % of the Luangwa Basin’s 159,000 km2  total basin area is forest (dense and open forest). 870 

The deep plant rooting depth of up to about to 25 m in some Miombo species (Frost 1996) evidences the capacity 

of the plants to access ground water resources in deep soils in the dry season. Retention of about 70 percent of 

canopy cover and the variations in time for leaf fall, leaf flush and leaf colour transitions among the Miombo 

species in the dry season (Zimba et al., 2020; Vinya et al., 2018, Frost, 1996) implies availability of an evaporative 

surface (i.e., leaves for transpiration). Forest cover is therefore a major influence on the basins hydrological 875 

feedbacks. Use of land-cover and phenology data sets and coupling of canopy transpiration with soil moisture in 

the root zone potentially explains the behaviour of the model in the dry season. By incorporating these aspects in 

its structure, the WaPOR is able to track the Miombo vegetation canopy display and phenological transitions as 

well as dynamic vegetation interaction with the root-zone soil moisture. The WaPOR’s Miombo Woodland 

evaporation spatial-temporal pattern could be a correct representation of the ecosystem’s moisture feedbacks. 880 

However, the question is whether the quantities estimated are correct. 
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Figure 13. Copernicus 2019 land cover composition (%) in the Luangwa Basin. 

 

Generally, there is a need to obtain land-cover specific field measurements of evaporation and associated 900 

model inputs such as precipitation, relative humidity, leaf area index, net radiation, air temperature, land surface 

temperature and validation of land cover maps in the Miombo ecosystem. Models performance and satellite-based 

model inputs can be benchmarked against the field measurements after which influence of models architecture and 

inputs can effectively be evaluated.  

5.0 Conclusions 905 

This study aimed at comparing performance of open-source evaporation products in the Luangwa Basin, a 

semi-arid largely Miombo ecosystem, across phenological phases. Selecting an evaporation product for use in 

Miombo Woodland river basins, especially at local catchment level, is difficult due to limited validation studies 
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in the region albeit with an increasingly large pool of models from which to pick. This study contributes to 

availability of information on performance of evaporation products in the Miombo Woodland. With the data sets 910 

used in this study, major conclusions drawn are that: 

 

(i) Model performance varies across seasons and phenophases with significant discrepancy in 

evaporation model performance occurring during water limited dormant and green-up phenophases. 

The characteristics of the phenological phases of vegetation, such as the reduction in chlorophyll, 915 

reduction in metabolic activities, leaf fall, leaf flush and leaf colour transitions coupled with 

vegetation interaction with the root-zone storage during these two phenophases appear to influence 

model performance. 

(ii) With reference to land-cover types and evaporation estimates, it appears the forest cover, in this case 

Miombo forest, plays a significant role manifested in the differences in model performance in dense 920 

Miombo forest compared to the performance in other land cover types during the dormant and green-

up phenophases. It is clear that the Miombo Woodland plant-water dynamics influences model 

performance.  

 

(iii) Model structure and forcing data appear to influence the spatial-temporal pattern of evaporation 925 

estimates especially during the dormant and green-up phenophases. This is clearly demonstrated by 

the differences in the quantities of evaporation estimates, the start of rise/increase in evaporation and 

the spatial pattern that appear to reflect model input behaviour especially in the dry season.  

 

(iv) Since moisture feedbacks are land surface dependent a conclusive understanding of the underlying 930 

factors for the discrepancies in model behaviour is only possible with field measurements of 

evaporation on various specific land cover types in the Luangwa Basin in particular and the Miombo 

ecosystem in general.  

 

(v) In general, our study agrees with previous studies in other African ecosystems that performance of 935 

evaporation products varies. Since evaporation products used in this study were not the same as those 

in the studies done in the larger Zambezi Basin, our model performance assessment is not 

comparable. Our study based on aggregated annual mean bias, with reference to the annual general 

water balance, showed the SSEBop and the WaPOR to have relatively lower aggregated bias 

compared to other models. However, with the uncertainties in the water balance forcing data such as 940 

underestimation and overestimation of precipitation, there is a clear need for field measurements of 

evaporation in the Miombo ecosystem to compare with the different evaporation products. The water 

balance approach likely underestimated evaporation especially in the dry season, due to storage 

effects. Based on individual model structure and the observed performance it is highly likely that 

SSEBop and WaPOR captures more correctly the Miombo vegetation moisture feedbacks than the 945 

other products in the dormant and green-up phenophases. However, these assumptions need 

verification with field measurements of evaporation, espacially in the Miombo forest.  
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6.0 Appendices 

 970 

A1.0 Statistical approaches used in this study  

 

A1.1 Analysis of trends catchment evaporation time series 

The Mann-Kendall trends test (Helsel et al. 2020) (equations A1 –A6) is a commonly used non-parametric 

test that ascertains monotonic trends in time series data. The advantage is that it does not require the data to be 975 

normally distributed and is not responsive to abrupt changes in the time series. The null hypothesis is that there is 

no trend in the series while the alternative hypothesis is that there is a trend in the series. 

 

𝑆 =∑ ∑ 𝑆𝑔𝑛

𝑛

𝑗=𝑖+1

(𝑥𝑗 − 𝑥𝑖
𝑛−1

𝑖=1
)                                                                                                                                        (𝐴1) 

 980 

Where n is the number of observations, 𝑥𝑗 and 𝑥𝑖 are the jth and ith observations respectively, and j > 1. Equation 

3 defines the sign function 𝑆𝑔𝑛 between consecutive x values: 

 

𝑆𝑔𝑛(𝑥𝑗 − 𝑥𝑖) =  {

+1;  𝑥𝑗 > 𝑥𝑖
0; 𝑥𝑗 = 𝑥𝑖
−1; 𝑥𝑗 < 𝑥𝑖

                                                                                                            (A2) 

The variance is expressed by equation 4: 985 
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𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖 𝑖(𝑖 − 1)(2𝑖 + 5)

𝑛
𝑗=1

18
                                                                                     (𝐴3) 

 

The modified variance (Var*(S)) expressed as equation 5:   

𝑉𝑎𝑟∗(𝑆) = 𝑉𝑎𝑟(𝑆).
𝑛

𝑛∗
                                                                                                                                                    (𝐴4) 990 

Where 
𝑛

𝑛∗
 is the correction factor. 

The test statistic Z (c) is computed by equation 6: 

 

𝑍(𝑐) =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟∗(𝑆)
, 𝑆 > 0

0,                         𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟∗(𝑆)
,       𝑆 < 0

                                                                                                                                 (𝐴4) 

 995 

If Z > 0, it indicates an increasing trend, and vice versa. Given a significant level of α = 0.05, the null hypothesis 

of a non-existent trend is accepted if -1.96 < Z(c) <1.96, for a two-tailed test. 

The magnitude of each model time series trend was evaluated by a simple non-parametric procedure 

developed by Sen (Sen 1968; Theil 1950).  

 1000 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
) , 𝑗 > 𝑖                                                                                                                                   (𝐴6) 

Where 𝛽 is Sen’s slope estimate. 𝛽 > 0 indicates upward trend in a time series and 𝛽 < 0 indicates downward trend 

during the period.  

A1.2 Analysis of correlation in evaporation time series 

Hydrological data is known to be non-normal in distribution (Helsel et al. 2020) thus assessing correlation 1005 

among hydrological variables is normally done using non-parametric test. In this study, we used the Kendall 

correlation statistic (Helsel et al. 2020; Kendall, 1975) to assess relationships among the various evaporation 

products at monthly and annual scales. Kendall’s Tau is a correlation parameter that measures the strength of the 

relationship between variables. Kendall's Tau is performed on the ranks of the data. This implies that for each 

specific variable the values are put in order and numbered for instance, 1 for the lowest value, 2 for the next lowest 1010 

until the 𝑛𝑡ℎ value is numbered. As is the case with other measures of correlation, Kendall's Tau takes values 

between -1 and +1, in which a positive correlation indicates that the ranks of both variables increase together while 

a negative correlation denotes opposite directions in the ranks of the variables (rank of one variable increases, the 

other decreases). In essence, Kendall’s Tau represents a difference between the probability that the observed data 

are in the same order versus the probability that the observed data are not in the same order. Kendall Tau statistic 1015 

is given by equation A7. 

 

𝜏 =
𝑛𝑐 − 𝑛𝑑

𝑛(𝑛 − 1) 2⁄
                                                                                                                                                        (𝐴7) 
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where 𝑛𝑐 denotes concordant pairs and 𝑛𝑑 are discordant pairs. When the rank of the second variable is greater 1020 

than the rank of the former variable the pair is said to be concordant. When the rank of the second variable is equal 

to or less than the rank of the first variable, the pair is considered discordant (Hirsch and Helsel, 2002). There were 

no tied values in the evaporation time series. 

 

A1.3  Assessment of model performance 1025 

To assess how close to the reference data the EBM evaporation were we used three statistical parameters; 

the coefficient of determination (R2), the root mean square error (RMSE) and the bias. 

The coefficient of determination (R2) is the proportion of the difference in the modelled data that is predictable 

from the observed data. It is a statistical measure of how well the modelled estimates approximate the observed 

data. The closer to 1 the R2 is the better the performance of the mode. R2 is estimated using equation A8. 1030 

𝑅2 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)

2
𝑖=1

∑ (�̅� − 𝑌𝑖)
2

𝑖=1

                                                                                                                                      (𝐴8) 

 

Where, 𝑋𝑖 is the predicted ith value, and the 𝑌𝑖  element is the actual ith value. 

The RMSE is the square root of the summation of the square of the difference(s) between the observed 

and modelled values over the total number of observations (Equation 10). The RMSE quantifies the deviation of 1035 

the predicted values from the observed values. The closer to zero the RMSE value is the better the model 

prediction(s). RMSE is estimated using equation A9.                             

                        

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖−𝑋�̂�)

2𝑁
𝑖=1

𝑁
                                                                                                                          (𝐴9)         

                 1040 

Where 𝑖 = variable𝑖, 𝑁 = number of observations, 𝑌 = actual observations time series and 𝑋 is the modelled time series.  

 

 

 

 1045 

 

 

 

 

 1050 

 

 

Figure A1. Comparison of observed precipitation with satellite precipitation products TerraClimate, CHIRPS 

and CFSR at (A) Kabwe weather station, (B) Mpika weather station and (c) Serenje weather station  in the 

Luangwa Basin. D- F shows the aggregated annual bias for each model. 1055 
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Figure A2. Comparison of TerraClimate and regression-based runoff with observed runoff for the period 1981-

1990 for the Luangwa Basin.  

 1065 

 

 

 

 

 1070 

Figure A3. Comparison of 𝐸𝑤𝑏 with (a) FLEX-TopoWB (red) and TMCWB (black), (b) GLEAM, (c) MOD16, (d) 

SSEBop and (e) WaPOR for the period 2009 -2020. 
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 1080 

Figure A4. Comparison aggregated annual mean bias for models for the period 2009 -2020. The WaPOR showed 

the least overestimation aggregated bias while the SSEBop showed the least underestimation bias.  
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 Table A1. Monthly descriptive and seasonal Mann-Kendall trends test statistics for the period 2009 -2020 1085 

MODEL No. Min Max Mean SD VC Kendall's tau p-value  alpha Decision 

TMC 144 8.27 150.30 67.36 40.93 0.61 0.05 0.70 0.05 No trend 

Flex-Topo 144 17.47 107.75 66.81 25.79 0.38 -0.13 0.11 0.05 No trend 

WaPOR 144 40.51 127.90 80.90 21.09 0.26 -0.14 0.11 0.05 No trend 

SSEBop 144 26.46 111.14 69.74 26.21 0.37 -0.29 0.01 0.05 downward trend 

GLEAM 144 9.09 107.64 60.12 32.25 0.53 -0.10 0.23 0.05 No trend 

MOD16 144 11.76 145.72 67.25 40.58 0.60 0.03 0.78 0.05 No trend 

         Interpretation: No. = number of observation, Min = minimum, Max = maximum, SD = standard deviation, VC = variation coefficient 

 

          Table A2. Annual Pearson correlation statistics 

Model TMC Flex-Topo WaPOR SSEBop GLEAM MOD16 Ewb 

Flex-Topo 0.37      
 

WaPOR 0.14 0.32     
 

SSEBop -0.03 0.74 0.46    
 

GLEAM 0.15 0.77 0.57 0.84   
 

MOD16 0.34 0.74 0.17 0.64 0.81  
 

Ewb 0.98 0.28 0.09 -0.14 0.03 0.20   

Values in bold are different from 0 with a significance level alpha=0.05   
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 1105 

Figure A5. Kendall correlation statistics of models mean monthly evaporation for the period 2009 – 2020 in the 

Luangwa Basin. 
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Table A3. Kendall correlation staticts  for mean monthly evaporation  
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Figure A6. Mean monthly model evaporation estimates in rain-fed cropland for the period 2009 – 2020 in the 1125 

Luangwa Basin. 

 

 
 

 1130 
 

 

 

Model TMC WaPOR SSEbop GLEAM FLEX-Topo MOD16 

TMC 1           

WaPOR 0.62 1.00     

SSEBop 0.54 0.56 1.00    

GLEAM 0.73 0.76 0.64 1.00   

FLEX-Topo 0.56 0.66 0.54 0.77 1.00  

MOD16 0.61 0.70 0.58 0.80 0.75 1.00 

Values in bold are different from 0 with a significance level alpha=0.05 
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Table A5. Calculated statistics for land cover based evaporation. Table 1 A(i) are calculated statistics for the 

class dense forest, Table 1A(ii) for the class mixed forest and grassland, Table  A(iii)for cropland, Table 1135 
A(iv) for shrub-land, Table A(v) for open water body and Table A(vi) for built up area. 

 

(i) Dense forest 

Statistic TMC FLEX-Topo WaPOR SSEBop GLEAM MOD16 

No. of observations 144.00 144.00 144.00 144.00 144.00 144.00 

Minimum 17.38 4.00 83.09 86.77 25.44 37.02 

Maximum 112.37 103.00 126.24 125.00 108.44 149.27 

Mean 61.90 58.17 107.40 103.18 66.74 87.67 

Standard deviation  36.29 37.87 13.58 11.90 33.15 37.11 

Variation coefficient 0.56 0.62 0.12 0.11 0.48 0.41 

(ii) Mixed forest and grassland 

Statistic TMC FLEX-Topo WaPOR SSEBop GLEAM MOD16 

No. of observations 144.00 144.00 144.00 144.00 144.00 144.00 

Minimum 10.62 0.00 31.86 4.09 10.50 25.65 

Maximum 106.22 80.00 89.31 98.59 98.48 131.02 

Mean 58.85 39.67 66.19 53.95 57.48 76.56 

Standard deviation  36.17 32.96 20.88 31.13 33.08 35.87 

Variation coefficient 0.59 0.80 0.30 0.55 0.55 0.45 

(iii) Crop land 

Statistic TMC FLEX-Topo WaPOR SSEBop GLEAM MOD16 

No. of observations 144.00 144.00 144.00 144.00 144.00 144.00 

Minimum 4.01 0.00 15.65 0.16 4.69 8.06 

Maximum 126.22 86.00 99.14 93.39 95.81 116.24 

Mean 53.19 38.08 53.24 32.28 48.83 49.90 

Standard deviation 48.41 37.75 30.87 34.62 38.31 40.01 

Variation coefficient 0.87 0.95 0.56 1.03 0.75 0.77 

(iv) Shrub-Land 

Statistic TMC FLEX-Topo WaPOR SSEBop MOD16 GLEAM 

No. of observations 144.00 144.00 144.00 144.00 144.00 144.00 

Minimum 4.73 0.00 42.59 1.14 4.98 7.08 

Maximum 139.52 84.00 106.30 132.31 113.64 107.12 

Mean 60.68 34.58 76.67 51.87 49.29 56.77 

Standard deviation 55.20 36.73 23.63 50.70 43.05 41.18 

Variation coefficient 0.87 1.02 0.30 0.94 0.84 0.69 

 

(v) Open water body 

Statistic TMC FLEX-Topo WaPOR SSEBop GLEAM MOD16 

No. of observations 144.00 144.00 144.00 144.00 144.00 144.00 

Minimum 23.34 5.00 57.68 86.07 15.61 21.20 

Maximum 112.23 84.00 108.31 232.82 96.75 91.74 

Mean 63.78 50.08 78.08 136.76 60.20 55.59 

Standard deviation 29.31 26.64 16.23 45.76 29.74 25.72 

Variation coefficient 0.44 0.51 0.20 0.32 0.47 0.44 

 

https://doi.org/10.5194/hess-2022-114
Preprint. Discussion started: 25 April 2022
c© Author(s) 2022. CC BY 4.0 License.



34 
 

(vi) Build-up land 

Statistic TMC FLEX-Topo WaPOR SSEBop GLEAM MOD16 

No. of observations 144.00 144.00 144.00 144.00 144.00 144.00 

Minimum 4.51 3.00 14.18 3.25 3.46 9.59 

Maximum 112.68 78.00 54.22 62.37 92.87 103.64 

Mean 52.93 47.75 34.62 29.74 50.73 49.25 

Standard deviation 41.38 27.10 12.72 19.80 36.62 35.73 

Variation coefficient 0.75 0.54 0.35 0.64 0.69 0.69 

  1140 

 

Table A6. Matrix of calculated Kendall correlation statistics for land cover based evaporation: (i) calculated 

statistics for the class dense forest, (ii) for the class mixed forest and grassland, (iii) for cropland, (iv) for 

shrub-land, (v) for open water body and (vi) for built up area. 

 1145 
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