Reply to Editor

Dear Dr. Guadagnini,
many thanks for your recommendation of minor revisions and handling our manuscript.

Below we reply in detail to each of the reviewers’ comments- responses are the same as in the inter-
active discussion with the line numbers adjusted. They are now referring to the revised manuscript.
We provide the revised manuscript (minor changes) and supplementary material (minor changes
incl an added section on a visual explanation of Pareto fronts as requested by reviewer #1). We
also provide both documents with tracked changes to ease comparison with the previous versions.

Please don’t hesitate to reach out in case there are questions or additional points to address.

All the best,
Juliane Mai and co-authors



Reply to Reviewer # 1

Dear Anonymous Referee #1,

thanks a lot for your positive feedback. We will reply below in detail to your comments. Your
comments are formatted italic; our replies are highlighted bold and bold italic. The line numbers
in red are referring to the revised manuscript without tracked changes.

Thanks for your time and efforts evaluating our manuscript.

Best regards,
Juliane Mai and co-authors

Mai et al. present a thorough model-intercomparison for the Great Lakes region.

The manuscript is very extensive, as is the way that the model intercomparison was managed. The
intercomparison is conducted in a very structured manner and clearly was not opportunity-driven;
teams had to create a mew model-set up to be consistent with underlying data, and perform a new
calibration. Also the analysis is very thorough and very honest, fairly comparing the performance
of all the models based on different aspects. This is very much appreciated. It also demonstrates
how much information can be gained from such a carefully designed experiment: many conclusions
on different aspects can be drawn. This does make the manuscript quite long and has the risk that
some conclusions might get lost in accompany of all the other conclusions, but the abstract provides
a good summary.

We are really happy that the reviewer was so appreciative of our work and that the
huge effort behind this project was conveyed in the manuscript.

I only have a few minor points:

From the methods-section it is not clear whether the LSTM was also trained with geographic data.
Later I read it was, perhaps this can already be clarified earlier.

That’s a good point. We added more explicit information to the manuscript right
when the LSTMs are introduced. The added text is highlighted italic; the rest is just
slightly rearranged.

line 224-237: The LSTM setup used in this study is similar to that from Kratzert
et al. [2019], and has been successfully applied for streamflow prediction in a
variety of studies [e.g., Klotz et al., 2021, Gauch et al., 2021, Lees et al., 2021].
The model inputs are nine basin-averaged daily meteorologic forcing data (pre-
cipitation, minimum and mazrimum temperature, u/v components of wind, etc.)
as well as nine static scalar attributes derived for each basin from these forcings
for the calibration period (mean daily precipitation, fraction of dry days, etc.),
ten attributes derived from the common landcover dataset (fraction of wetlands,
cropland, etc.), six attributes derived from the common soil database (sand, silt,
and clay content, etc.), and five attributes derived from the common digital el-
evation map (mean elevation, mean slope, etc.). The aforementioned data and
attributes are based solely on the common dataset (Sect. 2.2). Streamflow is not
part of the input variables. A full list of attributes used can be found in the Sup-
plementary Material (Sect. S.2.1). The LSTM setup follows a global calibration
strategy, which means that the model was trained for all 141 calibration stations
at the same time, resulting in a single trained model for the entire study domain
that can be run for any (calibration or validation) basin as soon as the required



input variables are available. The LSTM training involved fitting around 300,000
model parameters. This number should, however, not be directly compared to
the number of parameters in traditional hydrological models because the pa-
rameters of a neural network do not explicitly correspond to individual physical
properties.

The donor-basin rule is indeed very basic... and as such I am wondering about the value of the
space-validation. What does it mean when a model is good at simulating a catchment it hasn’t
“seen”, with parameters based on another catchment? Does that make a model “better”? It could
also just be an indication of how sensitive the output of this model is to different forcing / its own
parameters, rather than a value-judgement of its performance. But this is just my thought.

We set out to empirically test how the developed models validate in space. Empir-
ical evidence shows some models with better spatial validation performance and so,
this means the aggregate model and model build decisions (model structure, model
calibration and selected regionalization method taken together) cause these perfor-
mance differences. So we agree that ‘better’ spatial validation performance does not
strictly mean a better model in terms of model structure (e.g., SWAT better than
WATFLOOD).

As such, we change the manuscript to emphasize that when interpreting spatial val-
idation results, the ‘model’ is in fact the model structure/equations, the calibration
approach and the regionalization strategy all combined. We adjusted the manuscript
as follows (added text highlighted with italic font):

line 483 ff: The spatial validation (C; time period trained but location untrained) can
be regarded to be more difficult especially for locally calibrated models given
that one either needs a global/ regional model setup or a good parameter trans-
fer strategy for ungauged/ uncalibrated locations. The spatio-temporal valida-
tion (D) can be regarded to be the most difficult validation experiment as both
location and time-period were not included in model training. The two latter
validation experiments including the spatial transfer of knowledge provide an
assessment of the combined quality of a ‘model’ which in this context includes
model structure/equations, calibration approach, and regionalization strategy.

Note that we have clearly stated the need to follow-up on improved regionalization
approaches:

line 784 ff: Unless sophisticated parameter transfer methods are tested and employed,
locally calibrated models are not well suited for simulations in ungauged areas,
due to their lack of spatial robustness. The impact of more sophisticated donor-
basin mapping methods will be evaluated in a follow-up study.

line 1229 ff: Future work will focus (among others) on testing more advanced donor
basin mappings for the locally calibrated models, [...]

It is appreciated that mistakes in the procedures are openly shared, such as about the PET-controlling
constant for LBRM-CC' calibration. However, there are no consequences related to this point. For
instance, it is used as an argument to explain lower performance, but a lack of applying a constraint
should actually result in better model performance because during the calibration there was more
freedom to fit this parameter (or in equal model performance because the calibration algorithm did
end up at the correct spot after all). The implications of this error for comparability are not clear.
(same for the other calibration bug with SVS LSS)

Insightful comment here - thanks for that. In our manuscript we need to be careful to
always speak about performance and expected changes in performance with respect



to a specific variable (streamflow or AET in this case). The AET bug in LBRM-CC
surely explains poor AET performance. However, the reviewer is correct that impacts
on streamflow performance of fixing this AET bug are unclear as streamflow could
degrade if PET is more constrained. Hence, we acknowledge the implications of these
errors are not clear and thus make changes in the manuscript to note the following: 1)
We are clear that the expected results upon fixing the bugs are based on the individual
modelling team expectations. 2) The actual implications of these bugs can only be
assessed upon model recalibration with the bugs fixed. 3) We expect to be able to
report on these in the future on the HydroHub website. We did not include revised
model versions in the current study as this would have violated the blind validation
concept of the study (models were calibrated once and afterwards no modification
was allowed to guarantee a fair comparison).

We made the following changes in the manuscript (modifications highlighted in italic
font):

line 267 ff: In addition, the LBRM-CC-lumped modeling team found that an im-
proved representation of the long term average temperatures applied in the PET
formulation improves the AET simulations in some tested watersheds (PET is a
function of the difference between daily temperature and long term average tem-
perature for the day of year). The impact of these bug fixes on the performance
regarding streamflow or other variables like evapotranspiration across the entire

study domain is not yet clear and will need to be confirmed through recalibration
of the model.

line 1002 ff: The LBRM-CC-lumped model has the overall weakest performance mostly
due to its lower performance across the Ottawa River basin which is consistent
with the weak performance of this model regarding actual evapotranspiration
discussed earlier. Several avenues have been identified after posting the model
results for LBRM-CC-lumped that may, after recalibration, improve the LBRM-
CC-lumped performance in future studies.

line 701 ff: The main reason why GEM-Hydro-Watroute has a significantly lower per-
formance than MESH-SVS-Raven, despite the former mainly relying on parame-
ters calibrated with the latter, is believed to be due to a bug that was present in
the MESH-SVS-Raven model and related to the reading of vegetation cover from
the geophysical files provided to the model. Note that this bug was not present
in previous studies [Gaborit et al., 2017, Mai et al., 2021] as it was due to the
specific NetCDF format used with MESH-SVS-Raven input/output files during
this work. This led to the SVS LSS not using the right information for vegetation
cover during calibration, and therefore to calibrated parameters that were not
optimal for SVS inside GEM-Hydro-Watroute, where the reading of vegetation
cover was done properly. It is expected that when the bug is fixred and MESH-
SVS-Raven is recalibrated, both MESH-SVS-Raven and GEM-Hydro-Watroute
will exhibit better scores regarding the auxiliary evapotranspiration variable, and
that GEM-Hydro-Watroute streamflow performances will be closer to the per-
formances of MESH-SVS-Raven. A revised version of both models will be posted
on HydroHub when this is done.

In any case, the results of improved model version will then be made available on
the website (hydrohub.org) if they are made available by the modelling teams. This is
indicated in the manuscript:

line 658 ff: Additional models might be added at a later point to this website. New cal-
tbration and validation results produced with revisions to these GRIP-GL models



will be posted on HydroHub if the respective modelling teams decide to recalibrate
their models.

line 712 ff: However, new results for both models could be added to the website in
the near future.

line 1232 f: [...] adding additional models to the website once they become available,

[...]

It is nice that the majority of the models applied the same calibration algorithm, but all used slightly
different settings. Was this determined based on expert judgment?

Yes, it is. The models are very different in nature. Some run extremely fast and allow
for more model evaluations and even several independent calibration trials from which
the best was picked in the end. Other models have runtimes of several hours and can
only be calibrated with smaller budgets to be feasible. In majority of cases, these
teams relied on a common algorithm based on their individual experiences using it in
past studies. We did not enforce the algorithm choice on anyone. We did not want to
restrict the models’ performance by enforcing same budgets. The task for the experts
was to provide the best model setup they can deliver with a given set of inputs. The
rest was up to their judgment. We thank the reviewer for the question and added the
following statement to the manuscript (addition highlighted in italic font):

line 207 ff: The first group is the Machine-Learning based model which happens to
be also the only model with a global setup (Section 2.4.1), the second group is
comprised of the seven models that are locally calibrated (Section 2.4.2) and the
third group is the five models that followed a regional calibration strategy (Sec-
tion 2.4.3). The calibration strategy (local, regional, global) and calibration setup
(algorithm, objective, budget) was subject to expert judgment of each modeling
team. The main goal of this project was to deliver the best possible model setup
under a given set of inputs; the standardization and enforcement of calibration
procedures would have limited this significantly due to the wide range of model
complexity and runtimes. The models are briefly described below including a
short definition of these three calibration strategies.

Some models were calibrated regionally, other locally. It is unclear why which models where used in
one way or the other. I guess because this fits the general philosophy of this model / its common
use. Maybe this can be clarified in Ch 2.

This is correct; some models allow for a regional calibration because they are actually
setup of entire domains and then evaluated at specific locations (streamflow gauging
stations) while other models are only setup for the domains corresponding to exactly
one streamflow gauging location. The latter can hence only be locally calibrated.
However, models that can be setup for entire regions can also be calibrated locally
only (as done, for example, for VIC-Raven). Models with regional and global setups
usually have much longer runtimes and are therefore computationally more expensive
to calibrate.

We thank the reviewer for highlighting that this might not be clear to the readers.
We added more information to the manuscript. Since it was nicely related to the
previous comment, we added the information at the same place (see reply to previous
comment):

line 207 ff: The first group is the Machine-Learning based model which happens to
be also the only model with a global setup (Section 2.4.1), the second group is
comprised of the seven models that are locally calibrated (Section 2.4.2) and the



third group is the five models that followed a regional calibration strategy (Sec-
tion 2.4.3). The calibration strategy (local, regional, global) and calibration setup
(algorithm, objective, budget) was subject to expert judgment of each modeling
team. The main goal of this project was to deliver the best possible model setup
under a given set of inputs; the standardization and enforcement of calibration
procedures would have limited this significantly due to the wide range of model
complexity and runtimes. The models are briefly described below including a
short definition of these three calibration strategies.

I. 487-490 (p19) unclear what is meant here.

The paragraph referred to here is part of Sect. 2.6 on “Model evaluation setup and
datasets”:

line 487-490 (previous version): It is not known if models have been trained in pre-
vious studies against any of such data and, for example, model structures or
process formulations might have been informed by such a preliminary training.

What is meant here, is that during the initial model development (potentially many
of years ago), the model structure and process formulation of, for example, snow
processes or evapotranspiration was informed by previous model evaluations regarding
the same datasets. So, it might be that some models benefit from the fact that we
picked exactly the datasets we picked and not, for example, station datasets for snow
surveys or evapotranspiration.

We replaced the paragraph with the following hoping that this is more clear:

line 509 ff: It is not known if models have been trained in previous studies against
any of the observations we use for validation or model evaluation. Any model
previously using such data to inform model structure or process formulations
might have an advantage relative to another model whose structural development
did not involve testing in this region.

l. 604 (p23) not very clearly explained.. I guess it also depends on the shape of your pareto front
(if it exists at all). It would be nice to see it somehow in a 2D-version (e.g. for two variables only),
or a 8D version.

The paragraph referred to here is part of Sect. 2.9 on “Multi-objective multi-variable
model analysis”:

line 603-604 (previous version): When multiple models A, B, C, ..., M are under con-
sideration, model A is dominated when there is at least one other model that
dominates model A otherwise model A is non-dominated (e.g., no model is ob-
jectively superior to model A).

We apologize for the unclear explanation. We agree that the concept of non-dominance/
dominance in multi-objective analyses is challenging. We agree with the reviewer that
a more detailed description and a visualization based on the reviewer’s suggestion is
a helpful addition to the Supplementary Material. We therefore added the following
subsection and figure to the Supplements just after the current subsection S.1:

line 25 ff (supplements): S.2 Visual depiction of the multi-objective multi-
variable model analysis

The concept of non-dominance/ dominance in multi-objective analyses is used
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Figure S2: The concept of non-dominance and dominance of multi-objective problems. The ex-
ample of a two-dimensional calibration problem is chosen. Both objectives (x-axis and y-axis) are
assumed to be minimized and hence the “Utopia” point is located at the origin for simplicity. For
demonstration purposes the first objective is chosen to be 1 -KGEq where KGEq is the model per-
formance regarding streamflow and the second objective is set to be 1 — KGEagT where KGEagT
is the model performance regarding actual evapotranspiration. The circle markers in each panel
indicates one of the twelve models evaluated. (A) A model (dark gray marker) is dominating other
models (light gray markers) if it is superior for all objectives. (B) A model is dominated by all
models that are better in all objectives. (C) A model is non-dominated if it is not dominated by
any model, i.e. all other models are worse in at least one of the objectives. (D) There might be
several non-dominated models (red markers) which (E) form the so-called Pareto front (red line).
To obtain results in Fig. 8 of the main manuscript the analysis is performed for each of the 212
catchments of the study. The number of times a model is part of the pareto front (red dot in panel
E) is used as the measure in Fig. 8.

for the multi-objective multi-variate model analysis (Sec. 2.9 main manuscript).
This refers to the classic definition of that concept which is independent of the
shape of the pareto front. Fig. S2 is provided as a visual explanation of what it
means that a model dominates other models (panel A), a model is dominated
by another model (panel B), a model that is not dominated by other models
(panel C), the entire set of non-dominated models (panel D) forming the Pareto
front (panel E). We visualized this in 2D picking two objective functions (here
KGE regarding streamflow and AET) for demonstration purposes. In the study
itself only 3D or 4D pareto fronts were evaluated and reported on in Fig. 8
of the main manuscript. The 3D and 4D examples would, however, be harder
to visualize intuitively. All these concepts can (mathematically) be applied for
n-dimensional problems though.

We refer to this material in the main manuscript as follows:

line 629 ff: Theoretically, any number between 1 to M models can form the Pareto
front. A visual depiction of Pareto fronts in a 2D example can be found in the
Supplementary Material Sec. S.2 and Fig. S2.

The link to the website is now mentioned quite late. It is a very nice feature, would be nice if it
would be mentioned earlier in the text.

The link is actually hidden in the reference [Mai, 2022] and therefore cited much



earlier, i.e. line 88. But we fully agree that this is likely not the best way. We adjusted
the first citations of this reference and added the link directly. For example:

line 87 ff: Note that this work is accompanied by an extensive supplementary mate-
rials document, primarily providing more details for model setups, and an inter-
active website (http://www.hydrohub.org/mips_introduction.html) [Mai, 2022] for
sharing and exploring comparative results.

In the conclusion it is clearly stated that gridded evaluation might be preferred over basin evaluation
(both could demonstrate different results). This is not mentioned as such in the abstract, where only
the difference between the two is mentioned.

Great point. We adjusted the abstract as follows (adjustment is highlighted in italic
font):

line 21 ff: (4) Comparisons of additional model outputs (AET, SSM, SWE) against
gridded reference datasets show that aggregating model outputs and the refer-
ence dataset to basin scale can lead to different conclusions than a comparison
at the native grid scale. The latter is deemed preferable; especially for variables
with large spatial variability such as SWE.



Reply to Reviewer # 2

Dear Dr. Giuliani,

thanks a lot for your positive feedback. We very much appreciate the time and effort you made to
evaluate our manuscript. We happily reply below in detail to your comments. Your comments are
formatted italic; our replies are highlighted bold and bold italic. The line numbers in red are
referring to the revised manuscript without tracked changes.

Many thanks,
Juliane Mai and co-authors

The paper contributes a comprehensive model intercomparison across 13 hydrologic models, includ-
ing Machine Learning based, conceptual, and physically based models. The analysis is run over the
Great Lakes region looking at the model’s ability to simulate streamflow, actual evapotranspiration,
surface soil moisture, and snow water equivalent. The comparison is performed looking at simulated
output aggregated to basin-scale as well as at grid-level, considering temporal and spatial validation.
The study is extremely well designed and it provides a solid contribution to the existing literature.
The manuscript is also well written and definitely interesting for HESS readership. I only have a
few comments that I would recommend addressing before accepting the paper for publication.

Thanks so much for this positive evaluation of our manuscript. We are happy that the
work is making a contribution to the existing literature. Thanks again for your time
and effort to go through this extensive and long manuscript.

1. The model intercomparison reads extremely solid in terms of using consistent data, forcing,
etc. as well as in terms of the adopted calibration-validation scheme. Yet, the description
of the different models’ calibrations in Section 2 seems to introduce quite some variability
whose potential implications are not discussed. Although most models have been calibrated
using the same algorithm, it is not clear whether the different modeling teams had some
guidelines/constraints about the calibration effort to somehow harmonize it across models.
Since it does not seem there was any limit on the number of model evaluations run (or on
the total time spent) during the calibration, I'm wondering whether some results could be
explained by better/worse calibration results. This aspect could also be an interesting finding
of the analysis, but to be fair it should be derived by coordinating the calibration efforts. For
example, the LSTM model involves 300,000 parameters, and being a data-driven model is by
definition more flexible than the other models considered. This LSTM model was calibrated in
2.75 hours; how about the other models? Is the effort of running 300 iterations for calibrating
the 9 parameters of the LBRM-CC-lumped model comparable?

Thanks for the comment. The models are very different in nature. Some run extremely
fast and allow for more model evaluations and even several independent calibration
trials from which the best was picked in the end. Other models have runtimes of several
hours and can only be calibrated with smaller budgets to be feasible. In majority of
cases, these teams relied on a common algorithm based on their individual experiences
using it in past studies. We did not enforce the algorithm choice on anyone. We did
not want to restrict the models’ performance by enforcing same budgets. The task
for the experts was to provide the best model setup they can deliver with a given set
of inputs. The rest was up to their judgment. We thank the reviewer for the question
and added the following statement to the manuscript (addition highlighted in italic



font):

line 207 ff: The first group is the Machine-Learning based model which happens to
be also the only model with a global setup (Section 2.4.1), the second group is
comprised of the seven models that are locally calibrated (Section 2.4.2) and the
third group is the five models that followed a regional calibration strategy (Sec-
tion 2.4.3). The calibration strategy (local, regional, global) and calibration setup
(algorithm, objective, budget) was subject to expert judgment of each modeling
team. The main goal of this project was to deliver the best possible model setup
under a given set of inputs; the standardization and enforcement of calibration
procedures would have limited this significantly due to the wide range of model
complexity and runtimes. The models are briefly described below including a
short definition of these three calibration strategies.

2. One of the key assumptions of the analysis is considering only streamflow gauges in low-
human impacted watersheds. While the authors clearly motivate this choice, I believe the
paper would benefit from some further elaboration around this point given the somehow limited
number of “pristine” river basins worldwide, see for example Belletti et al. [2020]. Which type
of bias we could expect in using these models in a human-impacted basin? Are these biases
consistent across models, or can some categories better capture human inference even if not
explicitly described? I believe this type of reasoning could be a good addition to the model
discussion, which could be perhaps potentially supported by looking at the model performance
in some sampled stations currently excluded from the analysis.

We are sorry that we caused a misunderstanding here. The basins we have picked are
indeed NOT all low-human impact; only the basins classified under “Objective 1” are
low-human impact (see for example Tab. S15 in the Supplementary Material). The
table caption actually states “[...] The objective for each basin is assigned to be 1 if
the watershed is of low-human impact while it is assigned to 2 if the gauge station is
most downstream to one of the five lakes or the Ottawa River.[...]”. All basins that
are objective 2 and not objective 1 are considered to be not low-human impact.

In summary:

[station tagged as “objective 1” only|: The watershed is low-human impact and not
most downsteam to one of the five lakes or the Ottawa River. There are 66-
29=37 such calibration and 33-14=19 such validation stations.

[station tagged as “objective 1” and “objective 2”]: The watershed is low-human im-
pact and most downsteam to one of the five lakes or the Ottawa River. There
are 29 such calibration and 14 such validation stations.

[station tagged as “objective 2” only]: The watershed is most downstream to one of
the five lakes or the Ottawa River but is not low-human impact. There are 104-
29=75 such calibration and 52-14=38 such validation stations.

The numbers of stations in each of the three categories listed above are already given
in the caption of figure 1:

Caption Fig. 1: [...] Panel A shows the location of stations used for calibration regard-
ing stream- flow: 66 of them are downstream of a low-human impact watershed
(objective 1; large black dots) and 104 stations are most downstream draining
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into one of the five lakes or the Ottawa River (objective 2; smaller dots with
white center). In total, there are 141 stations used for calibration as 29 stations
are both low-human impact and most downstream (large black dots with white
center; 141 = 66 + 104 - 29). Panel B shows the 71 validation stations of which
33 are low human impact, 52 are most downstream and 14 are both low human
impact as well as most downstream (71 = 33 + 52 - 14). [...]

‘We made the description of the objectives and the distinction of the three cases more
clear in the manuscript (suggested addition highlighted in italic font):

line 456 ff: [...] streamflow gauges need to be either downstream of a low-human im-
pact watershed (objective 1) or most downstream of areas draining into one of
the five Great Lakes or into the Ottawa River (objective 2). If a watershed is
most downstream and human impacts are low, the station would hence be clas-
sified as both objective 1 and 2. Objective 1 was defined to give all models —
especially the ones without the possibility to account for watershed management
rules — to perform well. Objective 2 was chosen since the ultimate goal of many
operational models in this region is to estimate the flow into the lakes (or the
Ottawa River). This classification of gauges was a part of the study design that
ends up not being evaluated in this paper. This is because each of the modeling
teams decided to build their models using all Obj. 1 and Obj. 2 stations treated
the same way. As such our results do not distinguish performance differences for
these two station types. The information is included here so follow-up studies by
our team and others can evaluate this aspect of the results.

3. The temporal validation of the models is based on model simulations over the period 2011-
2017, with the models calibrated over 2001-2010. This looks certainly good, but I was then
expecting the authors to somehow comment/discuss the role of nonstationary forcing as I
expect that data (e.g. temperature) could show some trends over these 17 years. If this is the
case, how did you handle such trends? Were the data de-trended or did you use the raw obser-
vations? Moreover, what are the authors’ recommendations for developing hydrologic models
under such evolving conditions? Again, are there any class of models more prone/robust to
possible extrapolation biases induced by global warming?

We indeed know that the calibration period (2000-2010) is a dry period while the vali-
dation period (2011-2017) is known to be very wet. This is reported, for example, here:
https://www.lre.usace.army.mil/Portals/69/docs/GreatLakesInfo/docs/UpdateArticles/
update206.pdf 7ver=2020-07-01-115844-313. We added the following to the manuscript:

line 452 ff: It is known that the calibration period (2001-2010) is a dry period while
the validation period (2011-2017) is known to be very wet [US Army Corps of
Engineers: Detroit District, 2020]. This might have an impact on model perfor-
mances - especially in temporal validation experiments. In this study no specific
method has been applied to account for these trends in the meteorologic forcings.

This is certainly something that one might want to take into account while model
building and training. We however did not. The very good performance of the LSTM-
lumped model in temporal validation (median KGE of 0.82 compared to median KGE
of 0.97 in calibration; Fig. 3C vs. Fig. 3A) shows that it might not even be necessary
in order to achieve good performance. The larger impact on model performance has a
transfer in space (rather than time) as can be seen in spatial validation (median KGE
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of 0.76 compared to median KGE of 0.97 in calibration; Fig. 3B vs. Fig. 3A).

Essentially, all these questions/suggestions are good but were not addressed and are
out of scope for us. They might be worth a future inspection to see if the model
performance could be improved by de-trending the forcings; a longer forcing dataset
might be required though.

4. Lastly, as the authors probably know the paper is quite lengthy and it does require substan-
tial commitment to get to the end. I think the authors did already a good effort in guiding
readers using a good structure and providing summaries of each section, but I would suggest
- if feasible - to further shortening the paper in order to facilitate a complete read. I don’t
have clear recommendations on how to do this; perhaps an idea could be to move the model
description of section 2.4 into an appendiz keeping only a summary in the main text?

We totally agree with the reviewer that this is a very long manuscript. We were
hoping that the clear structure and brief description of subsections at the beginning
of each section would be helpful for the reader to navigate through the manuscript
and directly skip to the sections of interest. We tried to keep the sections as brief
as possible without removing any detail that is required to follow the main analyses
and conclusions. We do not want to move the (brief) model descriptions to the Sup-
plements as this seems integral for a model intercomparison study. All details that
are not regarding the following specifics have been already moved to the Supplements
(the following list of bullet points was given to each collaborator contributing a section
describing their model):

e introductory sentence including major references for model and aim of model
e model resolution (spatial, temporal)
e used forcings and derived basin attributes

e calibration method (algorithm, objective, iterations/budget, independent trials,
parameters go to Supplements)

e validation: donor basin mapping or regional/global setup?

e evaluation: model outputs AET, SSM, SWE (maybe add the actual model vari-
able that is dumped to the output file; make note about SSM how this is modeled
and why it was important to show only standardized SSM (i.e., only using cor-
relation))

We hope it is ok if we do not make any adjustments to the manuscript here.
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