
Dear Anonymous Referee #1,

thanks a lot for your positive feedback. We will reply below in detail to your comments. Your
comments are formatted italic; our replies are highlighted bold and bold italic. The line numbers
in red are referring to the manuscript version you reviewed.

Thanks for your time and efforts evaluating our manuscript.

Best regards,
Juliane Mai and co-authors
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Mai et al. present a thorough model-intercomparison for the Great Lakes region.

The manuscript is very extensive, as is the way that the model intercomparison was managed. The
intercomparison is conducted in a very structured manner and clearly was not opportunity-driven;
teams had to create a new model-set up to be consistent with underlying data, and perform a new
calibration. Also the analysis is very thorough and very honest, fairly comparing the performance
of all the models based on different aspects. This is very much appreciated. It also demonstrates
how much information can be gained from such a carefully designed experiment: many conclusions
on different aspects can be drawn. This does make the manuscript quite long and has the risk that
some conclusions might get lost in accompany of all the other conclusions, but the abstract provides
a good summary.

We are really happy that the reviewer was so appreciative of our work and that the
huge effort behind this project was conveyed in the manuscript.

I only have a few minor points:

From the methods-section it is not clear whether the LSTM was also trained with geographic data.
Later I read it was, perhaps this can already be clarified earlier.

That’s a good point. We will add more explicit information to the manuscript right
when the LSTMs are introduced. The added text is highlighted italic; the rest is just
slightly rearranged.

line 219-226: The LSTM setup used in this study is similar to that from Kratzert
et al. [2019], and has been successfully applied for streamflow prediction in a
variety of studies [e.g., Klotz et al., 2021, Gauch et al., 2021, Lees et al., 2021].
The model inputs are nine basin-averaged daily meteorologic forcing data (pre-
cipitation, minimum and maximum temperature, u/v components of wind, etc.)
as well as nine static scalar attributes derived for each basin from these forcings
for the calibration period (mean daily precipitation, fraction of dry days, etc.),
ten attributes derived from the common landcover dataset (fraction of wetlands,
cropland, etc.), six attributes derived from the common soil database (sand, silt,
and clay content, etc.), and five attributes derived from the common digital el-
evation map (mean elevation, mean slope, etc.). The aforementioned data and
attributes are based solely on the common dataset (Sect. 2.2). Streamflow is not
part of the input variables. A full list of attributes used can be found in the Sup-
plementary Material (Sect. S.2.1). The LSTM setup follows a global calibration
strategy, which means that the model was trained for all 141 calibration stations
at the same time, resulting in a single trained model for the entire study domain
that can be run for any (calibration or validation) basin as soon as the required
input variables are available. The LSTM training involved fitting around 300,000
model parameters. This number should, however, not be directly compared to
the number of parameters in traditional hydrological models because the pa-
rameters of a neural network do not explicitly correspond to individual physical
properties.

The donor-basin rule is indeed very basic... and as such I am wondering about the value of the
space-validation. What does it mean when a model is good at simulating a catchment it hasn’t
“seen”, with parameters based on another catchment? Does that make a model “better”? It could
also just be an indication of how sensitive the output of this model is to different forcing / its own
parameters, rather than a value-judgement of its performance. But this is just my thought.

We set out to empirically test how the developed models validate in space. Empir-
ical evidence shows some models with better spatial validation performance and so,
this means the aggregate model and model build decisions (model structure, model
calibration and selected regionalization method taken together) cause these perfor-
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mance differences. So we agree that ‘better’ spatial validation performance does not
strictly mean a better model in terms of model structure (e.g., SWAT better than
WATFLOOD).

As such, we change the manuscript to emphasize that when interpreting spatial val-
idation results, the ‘model’ is in fact the model structure/equations, the calibration
approach and the regionalization strategy all combined. We suggest manuscript ad-
justments as follows (added text highlighted with italic font):

line 463 ff: The spatial validation (C; time period trained but location untrained) can
be regarded to be more difficult especially for locally calibrated models given
that one either needs a global/ regional model setup or a good parameter trans-
fer strategy for ungauged/ uncalibrated locations. The spatio-temporal valida-
tion (D) can be regarded to be the most difficult validation experiment as both
location and time-period were not included in model training. The two latter
validation experiments including the spatial transfer of knowledge provide an
assessment of the combined quality of a ‘model’ which in this context includes
model structure/equations, calibration approach, and regionalization strategy.

Note that we have clearly stated the need to follow-up on improved regionalization
approaches:

line 755 ff: Unless sophisticated parameter transfer methods are tested and employed,
locally calibrated models are not well suited for simulations in ungauged areas,
due to their lack of spatial robustness. The impact of more sophisticated donor-
basin mapping methods will be evaluated in a follow-up study.

line 1200 ff: Future work will focus (among others) on testing more advanced donor
basin mappings for the locally calibrated models, [...]

It is appreciated that mistakes in the procedures are openly shared, such as about the PET-controlling
constant for LBRM-CC calibration. However, there are no consequences related to this point. For
instance, it is used as an argument to explain lower performance, but a lack of applying a constraint
should actually result in better model performance because during the calibration there was more
freedom to fit this parameter (or in equal model performance because the calibration algorithm did
end up at the correct spot after all). The implications of this error for comparability are not clear.
(same for the other calibration bug with SVS LSS)

Insightful comment here - thanks for that. In our manuscript we need to be careful to
always speak about performance and expected changes in performance with respect
to a specific variable (streamflow or AET in this case). The AET bug in LBRM-CC
surely explains poor AET performance. However, the reviewer is correct that impacts
on streamflow performance of fixing this AET bug are unclear as streamflow could
degrade if PET is more constrained. Hence, we acknowledge the implications of these
errors are not clear and thus make changes in the manuscript to note the following: 1)
We are clear that the expected results upon fixing the bugs are based on the individual
modelling team expectations. 2) The actual implications of these bugs can only be
assessed upon model recalibration with the bugs fixed. 3) We expect to be able to
report on these in the future on the HydroHub website. We did not include revised
model versions in the current study as this would have violated the blind validation
concept of the study (models were calibrated once and afterwards no modification
was allowed to guarantee a fair comparison).

We suggest the following changes in the manuscript (modifications highlighted in italic
font):
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line 257 ff: In addition, the LBRM-CC-lumped modelling team found that an im-
proved representation of the long term average temperatures applied in the PET
formulation improves the AET simulations in some tested watersheds (PET is a
function of the difference between daily temperature and long term average tem-
perature for the day of year). The impact of these bug fixes on the performance
regarding streamflow or other variables like evapotranspiration across the entire
study domain is not yet clear and will need to be confirmed through recalibration
of the model.

line 973 ff: The LBRM-CC-lumped model has the overall weakest performance mostly
due to its lower performance across the Ottawa River basin which is consistent
with the weak performance of this model regarding actual evapotranspiration
discussed earlier. Several avenues have been identified after posting the model
results for LBRM-CC-lumped that may, after recalibration, improve the LBRM-
CC-lumped performance in future studies.

line 676 ff: The main reason why GEM-Hydro-Watroute has a significantly lower per-
formance than MESH-SVS-Raven, despite the former mainly relying on param-
eters calibrated with the latter, is expected believed to be due to a bug that
was present in the MESH-SVS-Raven model and related to the reading of veg-
etation cover from the geophysical files provided to the model. Note that this
bug was not present in previous studies [Gaborit et al., 2017, Mai et al., 2021]
as it was due to the specific NetCDF format used with MESH-SVS-Raven in-
put/output files during this work. This led to the SVS LSS not using the right
information for vegetation cover during calibration, and therefore to calibrated
parameters that were not optimal for SVS inside GEM-Hydro-Watroute, where
the reading of vegetation cover was done properly. It is expected that when the
bug is fixed and MESH-SVS-Raven is recalibrated, both MESH-SVS-Raven and
GEM-Hydro-Watroute will exhibit better scores regarding the auxiliary evapo-
transpiration variable, and that GEM-Hydro-Watroute streamflow performances
will be closer to the performances of MESH-SVS-Raven. A revised version of
both models will be posted on HydroHub when this is done.

In any case, the results of improved model version will then be made available on
the website (hydrohub.org) if they are made available by the modelling teams. This is
indicated in the manuscript:

line 634 ff: Additional models might be added at a later point to this website. New cal-
ibration and validation results produced with revisions to these GRIP-GL models
will be posted on HydroHub if the respective modelling teams decide to recalibrate
their models.

line 683 ff: However, new results for both models could be added to the website in
the near future.

line 1203 ff: [...] adding additional models to the website once they become available,
[...]

It is nice that the majority of the models applied the same calibration algorithm, but all used slightly
different settings. Was this determined based on expert judgment?

Yes, it is. The models are very different in nature. Some run extremely fast and allow
for more model evaluations and even several independent calibration trials from which
the best was picked in the end. Other models have runtimes of several hours and can
only be calibrated with smaller budgets to be feasible. In majority of cases, these
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teams relied on a common algorithm based on their individual experiences using it in
past studies. We did not enforce the algorithm choice on anyone. We did not want to
restrict the models’ performance by enforcing same budgets. The task for the experts
was to provide the best model setup they can deliver with a given set of inputs. The
rest was up to their judgment. We thank the reviewer for the question and will add
the following statement to the manuscript (addition highlighted in italic font):

line 208 ff: The first group is the Machine-Learning based model which happens to
be also the only model with a global setup (Section 2.4.1), the second group is
comprised of the seven models that are locally calibrated (Section 2.4.2) and the
third group is the five models that followed a regional calibration strategy (Sec-
tion 2.4.3). The calibration strategy (local, regional, global) and calibration setup
(algorithm, objective, budget) was subject to expert judgment of each modeling
team. The main goal of this project was to deliver the best possible model setup
under a given set of inputs; the standardization and enforcement of calibration
procedures would have limited this significantly due to the wide range of model
complexity and runtimes. The models are briefly described below including a
short definition of these three calibration strategies.

Some models were calibrated regionally, other locally. It is unclear why which models where used in
one way or the other. I guess because this fits the general philosophy of this model / its common
use. Maybe this can be clarified in Ch 2.

This is correct; some models allow for a regional calibration because they are actually
setup of entire domains and then evaluated at specific locations (streamflow gauging
stations) while other models are only setup for the domains corresponding to exactly
one streamflow gauging location. The latter can hence only be locally calibrated.
However, models that can be setup for entire regions can also be calibrated locally
only (as done, for example, for VIC-Raven). Models with regional and global setups
usually have much longer runtimes and are therefore computationally more expensive
to calibrate.

We thank the reviewer for highlighting that this might not be clear to the readers.
We will add more information to the manuscript. Since it was nicely related to the
previous comment, we will add the information at the same place (see reply to previous
comment):

line 208 ff: The first group is the Machine-Learning based model which happens to
be also the only model with a global setup (Section 2.4.1), the second group is
comprised of the seven models that are locally calibrated (Section 2.4.2) and the
third group is the five models that followed a regional calibration strategy (Sec-
tion 2.4.3). The calibration strategy (local, regional, global) and calibration setup
(algorithm, objective, budget) was subject to expert judgment of each modeling
team. The main goal of this project was to deliver the best possible model setup
under a given set of inputs; the standardization and enforcement of calibration
procedures would have limited this significantly due to the wide range of model
complexity and runtimes. The models are briefly described below including a
short definition of these three calibration strategies.

l. 487-490 (p19) unclear what is meant here.

The paragraph referred to here is part of Sect. 2.6 on “Model evaluation setup and
datasets”:

line 487-490: It is not known if models have been trained in previous studies against
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any of such data and, for example, model structures or process formulations
might have been informed by such a preliminary training.

What is meant here, is that during the initial model development (potentially many
of years ago), the model structure and process formulation of, for example, snow
processes or evapotranspiration was informed by previous model evaluations regarding
the same datasets. So, it might be that some models benefit from the fact that we
picked exactly the datasets we picked and not, for example, station datasets for snow
surveys or evapotranspiration.

We intend to replace the paragraph with the following hoping that this is more clear:

line 487-490: It is not known if models have been trained in previous studies against
any of the observations we use for validation or model evaluation. Any model
previously using such data to inform model structure or process formulations
might have an advantage relative to another model whose structural development
did not involve testing in this region.

l. 604 (p23) not very clearly explained.. I guess it also depends on the shape of your pareto front
(if it exists at all). It would be nice to see it somehow in a 2D-version (e.g. for two variables only),
or a 3D version.

The paragraph referred to here is part of Sect. 2.9 on “Multi-objective multi-variable
model analysis”:

line 603-604: When multiple models A, B, C, ..., M are under consideration, model
A is dominated when there is at least one other model that dominates model A
otherwise model A is non-dominated (e.g., no model is objectively superior to
model A).

We apologize for the unclear explanation. We agree that the concept of non-dominance/
dominance in multi-objective analyses is challenging. We agree with the reviewer that
a more detailed description and a visualization based on the reviewer’s suggestion
would be a helpful addition to the Supplementary Material. We therefore suggest
adding the following subsection and figure to the Supplements just after the current
subsection S.1:

line 25 ff (supplements): S.2 Visual depiction of the multi-objective multi-
variable model analysis

The concept of non-dominance/ dominance in multi-objective analyses is used
for the multi-objective multi-variate model analysis (Sec. 2.9 main manuscript).
This refers to the classic definition of that concept which is independent of the
shape of the pareto front. Fig. S2 is provided as a visual explanation of what it
means that a model dominates other models (panel A), a model is dominated
by another model (panel B), a model that is not dominated by other models
(panel C), the entire set of non-dominated models (panel D) forming the Pareto
front (panel E). We visualized this in 2D picking two objective functions (here
KGE regarding streamflow and AET) for demonstration purposes. In the study
itself only 3D or 4D pareto fronts were evaluated and reported on in Fig. 8
of the main manuscript. The 3D and 4D examples would, however, be harder
to visualize intuitively. All these concepts can (mathematically) be applied for
n-dimensional problems though.

We will refer to this material in the main manuscript as follows:
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Figure S2: The concept of non-dominance and dominance of multi-objective problems. The ex-
ample of a two-dimensional calibration problem is chosen. Both objectives (x-axis and y-axis) are
assumed to be minimized and hence the “Utopia” point is located at the origin for simplicity. For
demonstration purposes the first objective is chosen to be 1−KGEQ where KGEQ is the model per-
formance regarding streamflow and the second objective is set to be 1−KGEAET where KGEAET

is the model performance regarding actual evapotranspiration. The circle markers in each panel
indicates one of the twelve models evaluated. (A) A model (dark gray marker) is dominating other
models (light gray markers) if it is superior for all objectives. (B) A model is dominated by all
models that are better in all objectives. (C) A model is non-dominated if it is not dominated by
any model, i.e. all other models are worse in at least one of the objectives. (D) There might be
several non-dominated models (red markers) which (E) form the so-called Pareto front (red line).
To obtain results in Fig. 8 of the main manuscript the analysis is performed for each of the 212
catchments of the study. The number of times a model is part of the pareto front (red dot in panel
E) is used as the measure in Fig. 8.

line 606 ff: Theoretically, any number between 1 to M models can form the Pareto
front. A visual depiction of Pareto fronts in a 2D example can be found in the
Supplementary Material Sec. S.2 and Fig. S2.

The link to the website is now mentioned quite late. It is a very nice feature, would be nice if it
would be mentioned earlier in the text.

The link is actually hidden in the reference [Mai, 2022] and therefore cited much
earlier, i.e. line 88. But we fully agree that this is likely not the best way. We will
adjust the first citations of this reference and add the link directly. For example:

line 86 ff: Note that this work is accompanied by an extensive supplementary mate-
rials document, primarily providing more details for model setups, and an inter-
active website (http://www.hydrohub.org/mips_introduction.html) [Mai, 2022] for
sharing and exploring comparative results.

In the conclusion it is clearly stated that gridded evaluation might be preferred over basin evaluation
(both could demonstrate different results). This is not mentioned as such in the abstract, where only
the difference between the two is mentioned.

Great point. We will adjust the abstract as follows (adjustment is highlighted in italic
font):

line 21 ff: (4) Comparisons of additional model outputs (AET, SSM, SWE) against
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gridded reference datasets show that aggregating model outputs and the refer-
ence dataset to basin scale can lead to different conclusions than a comparison
at the native grid scale. The latter is deemed preferable; especially for variables
with large spatial variability such as SWE.
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