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Abstract 11 

The double gamma quantile mapping (DGQM) can outperform single gamma quantile 12 

mapping (SGQM) for bias correction of global circulation models (GCMs) using two gamma 13 

functions for two segments based on 90th quantile. However, there are two ambiguous points: 14 

the 90th quantile and considering only the Gamma probability function. Therefore, this study 15 

introduced a flexible dividing point, δ (%), which can be adjusted to the regionally observed 16 

values at the station and considered the combination of various probability distributions, 17 

Weibull, lognormal, and Gamma, for two separate segments. The newly proposed method, 18 

flexible double distribution quantile mapping (F-DDQM), was employed to correct the bias of 19 

8 GCMs of Coupled Model Intercomparison Project Phase 6 (CMIP6) to correct bias at 22 20 

stations in South Korea. The results clearly showed higher performance of F-DDQM than 21 

DGQM and Flexible-DGQM (F-DGQM) by 25% and 5%, respectively, in root mean square 22 

error. The F-DGQM also showed better performance in replicating probability distribution, 23 

spatial variability and extremes of observed precipitation than other methods. This study 24 

contributes to improving the bias correction method for the better projection of extreme values.  25 

 26 

Keywords: Double gamma quantile mapping, Bias correction method, Flexible double gamma 27 

quantile mapping, Flexible double distribution quantile mapping  28 
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1. Introduction 32 

Global circulation models (GCM) provide insight into the historical and possible future climate 33 

variabilities and the occurrence of extreme events (Ahmed et al., 2018; Pour et al., 2018). 34 

Therefore, climate studies generally use GCMs to simulate historical and future climate 35 

conditions (Shiru et al., 2022; Song et al., 2022c; Iqbal et al., 2020). The reliable simulation of 36 

precipitation is important for climatological and hydrological science. However, the GCMs 37 

outputs have biases in the simulation due to imperfect model parameterization, inadequate 38 

reference data, and incomplete knowledge (Wilby and Harris 2006; Woldemeskel et al., 2014). 39 

Besides, the previous studies showed that raw GCMs can not replicate the observed climate of 40 

South Korea due to its complicated geographical characteristics (Song et al., 2021a). Therefore, 41 

various bias correction techniques have been used to correct the bias in GCM simulations 42 

before their use for climatic studies. 43 

The distribution-derived transformations, such as quantile mapping (QM), are most widely 44 

used for bias corrections because of their simplicity and easy employability but higher 45 

proficiency (Ringard et al., 2017; Maraun et al., 2010; Ines and Hansen, 2006; Li et al., 2010). 46 

The QM shows high performance in bias correcting stationary climate variables but low 47 

reliability for nonstationary data. Cannon et al. (2015) proposed a quantile delta mapping 48 

(QDM) method to preserve the relative change in all quantiles to address the nonstationary 49 

issue. Several methods have been developed in recent years based on QDM to enhance the 50 

bias-correction ability, including scaled distribution mapping (Switanek et al., 2017), 51 

multivariate quantile delta mapping (Cannon, 2017), and the occurrence-and intensity bias-52 

adjusting methods (Van de Velde et al., 2020). 53 

The QM method replaces the quantiles of simulated data corresponding to a given probability 54 

and the observed quantile corresponding to the same probability (Cannon, 2008; Piani et al., 55 

2010; Cannon, 2012; Heo et al., 2019). The QM uses different probability distributions for this 56 

purpose, such as Gamma, Weibull, and exponential. Besides, Ye et al. (2018) suggested the 57 

three-parameter Gamma distribution. Nevertheless, QM does not always outperform other 58 

bias-correction methods at all locations (Song et al., 2020). This emphasizes choosing an 59 

appropriate probability distribution function (PDF) for successful bias correction. 60 

In general, the gamma distribution is used in QM. The gamma quantile mapping (GQM) 61 

inflates the extreme precipitations (Cloke et al., 2013, Huang et al., 2014). Several studies have 62 

demonstrated that GQM underestimates the extremes which affects the design precipitation 63 
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(Hundecha et al., 2009; Volosciuk et al., 2017; Vrac and Naveau, 2007; Kim et al., 2018). Yang 64 

et al. (2015) proposed double gamma quantile mapping (DGQM) to efficiently correct the 65 

biases in extreme precipitation, which has demonstrated superior performance to single GQM. 66 

Pasten-Zapata et al. (2020) showed that the bias performance of DGQM is higher than single 67 

GQM. In DGQM, the fixed value, 90th quantile, is popularly used to divide the entire data set 68 

into two segments for two separate GQMs. However, the 90th is not always accurate in 69 

estimating precipitation extremes at all locations because, theoretically, this value is not fixed. 70 

In addition, the gamma distribution function is popularly used for the bias correction in 71 

precipitation. However, the most appropriate distribution can be different for different regions. 72 

This indicates the need for selecting appropriate probability distribution based on study 73 

location to improve the performance of the bias correction method.  74 

This study proposed a new flexible double distribution quantile mapping (F-DDQM) method 75 

considering adjustable dividing points and two individually selected distributions for two 76 

segments. Three PDFs, Weibull, lognormal, and Gamma distributions, were considered for 77 

selecting appropriate PDF for two segments. The dividing point was determined based on the 78 

optimal RMSE of the overall precipitation distribution. The proposed method was employed 79 

for correcting the bias of 8 GCMs of Coupled Model Intercomparison Project 6 (CMIP6) at 22 80 

stations in South Korea. The performance of the proposed was compared with the DGQM and 81 

the Flexible DGQM (F-DGQM) using five evaluation metrics to show its efficacy. Furthermore, 82 

the performance of the proposed method in correcting the bias of extreme precipitation based 83 

on GEV distribution. Besides, the difference between the simulated precipitation distribution 84 

and the observed distribution was compared using Jensen-Shannon (JSD) and Kullback-Leibler 85 

divergence (KLD). This study contributes to improving the bias correction method for the 86 

better projection of extremes.  87 

 88 

2. Study area and data 89 

2.1 Study area 90 

South Korea, located in Asia, lies between Japan and China. The country has four distinct 91 

seasons: winter (DJF), spring (MAM), summer (JJA), and autumn (SON). South Korea has 92 

mountainous topography in more than half of its total area. Therefore, the climate varies 93 

significantly among regions due to large topographical variability. The annual average 94 
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precipitation ranges between 1000 mm and 1600 mm. The majority of precipitation occurs in 95 

summer.  96 

2.2 Dataset and sources 97 

This study used monthly precipitation simulations of 8 GCMs of CMIP6, as listed in Table 1. 98 

The resolutions of the GCMs range from 0.98° to 2.81°. The CMIP6 GCMs selected in this 99 

study are frequently used in East Asia, including South Korea climate studies (China: Wu et 100 

al., 2020; Yue et al., 2021; Lun et al., 2021, South Korea: Song et al., 2021b; Kim et al., 2021; 101 

Chae et al., 2022). Some studies also evaluated the performance of these GCMs in South Korea 102 

(Song et al., 2020). The CMIP6 GCMs outputs were collected from data portals (https://esgf-103 

node.llnl.gov/search/cmip6/). 104 

The monthly precipitation of 22 gauges was used in this study (Figure 1). They were selected 105 

from 96 gauges available in South Korea, considering the availability of monthly rainfall 106 

records without missing data for the historical period (1970-2014). The selected stations are 107 

exposed to several hydrological disasters, such as floods and heavy snow. Therefore, the high 108 

reproducibility of precipitation can improve the accuracy of precipitation projections when 109 

analyzing disasters due to precipitation changes in South Korea. 110 

 111 

Figure 1. Location of the selected stations in South Korea.  112 

  113 
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 114 

Table 1. Information about GCMs used in this study. 115 

Institute Models 

Resolution 

(Longitude × 

Latitude) 

Commonwealth Scientific and Industrial 

Research Organisation, and Bureau of 

Meteorology 

ACCESS-ESM1-5 1.25° × 1.875° 

Canadian Earth System Model version 5, 

Canadian Centre for Climate Modelling and 

Analysis (Canada 

CanESM5 2.81° × 2.81° 

NASA Goddard Institute for Space Studies GISS-E2-1-G 2.0° × 2.5° 

Institute for Numerical Mathematics, Russian 

Academy of Science, (Russia) 
INM-CM4-8 1.5° × 2.0° 

Institut Pierre Simon Laplace IPSL-CM6A-LR 2.5° × 1.26° 

Max Planck Institute for Meteorology (MPI-M) 

(Germany) 
MPI-ESM1-2-LR 1.125° × 1.12° 

Meteorological Research Institute (Japan) MRI-ESM2-0 1.125° × 1.125° 

Norwegian Climate Centre (Norway) NorESM2-MM 1.25° × 0.9375° 

 116 

3. Methodology 117 

3.1 Inverse distance weighted method 118 

The CMIP6 GCMs outputs are in the form of a grid with fixed resolution. The geographical 119 

interpolation methods are used to remove the spatial difference between the GCM simulation 120 

and the observed data. The inverse distance weighted (IDW) method has been widely used for 121 

geographical interpolation (Longley et al., 2005). The concept of IDW is based on Tobler's first 122 

law, in which data from the nearby point are more relevant than distant point (Tobler, 1970). 123 

Equation 1 is used to estimate the CMIP6 GCM precipitation at the observed locations from 124 

their values in nearby locations. Equation 2 computes the interpolation weight for the distance 125 

between the grid and the interpolation points. 126 

𝑃𝑖 = ∑
𝑤𝑠(𝑥)

∑ 𝑤𝑠(𝑥)𝑁
𝑘=1

𝑃𝑖(𝑥𝑠)𝑁
𝑘=1                                                  (1) 127 
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𝑤𝑠(𝑥) =
1

𝐷(𝑥,𝑥𝑠)
𝑐               (2) 128 

where 𝑃𝑖  is the precipitation in the interpolation area, 𝑃𝑖(𝑥𝑠) is the GCM precipitation at 129 

grids surrounding the observed location, 𝑤𝑠 is the interpolation weight, and 𝐷(𝑥,𝑥𝑠) is the 130 

distance between the interpolation and grid point. This study used the Shepard method to 131 

estimate the interpolation weight, and the pattern is interpolated narrowly (0 < 𝐷𝑐 < 1) or 132 

widely (𝐷𝑐 > 1) depending on 𝐷𝑐. This study used 50 grids close to 22 stations for spatial 133 

downscaling. 134 

 135 

3.2 Single & Double gamma quantile mapping 136 

Distribution-derive transformations of QM are bias-correction techniques depending on 137 

distribution parameters. These methods use distribution functions, such as Gamma, Lognormal, 138 

and Weibull, to reduce the differences between the observed and GCM raw data (Piani et al., 139 

2010). The single gamma quantile mapping (SGQM) is most widely used to reduce the 140 

differences between GCM outputs and observed data using their cumulative distribution 141 

function (CDF), as shown in Equation 3. 142 

 143 

𝑃𝑜(𝑡) = 𝐹𝑔
−1(𝐹𝑔(𝑃𝑚(𝑡), 𝛼𝑚, 𝛽𝑚), 𝛼𝑜 , 𝛽𝑜)      (3) 144 

 145 

where 𝑃𝑜(𝑡) denotes the bias-corrected monthly precipitation, 𝑃𝑚(𝑡) represents GCM raw 146 

data, 𝐹𝑔
−1 is the inverse CDF of the observed data to which the gamma function is applied, 147 

and 𝐹𝑔  is the CDF of the GCM outputs. 𝛼𝑜 , 𝛼𝑚 , 𝛽𝑜  and 𝛽𝑚  represent shape and scale 148 

parameters of observed and GCM simulation, respectively.  149 

The SGQM tends to be more inflated than the observed data. Therefore, some studies used 150 

double gamma quantile mapping (DGQM) for bias correction. DGQM is similar in 151 

methodology to SGQM, with the difference being the division of the simulated precipitation 152 

distribution into two segments by 𝛿. However, the bias correction is performed by randomly 153 

determining the criterion of δ in most studies (Pastén-Zapata et al., 2020; Meresa et al., 2021). 154 

Therefore, this study proposed a double distribution bias correction that can flexibly use δ.  155 

 156 

3.3 Flexible double gamma quantile mapping (F-DGQM) 157 
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The F-DGQM is similar to the methodology of DGQM but uses δ to separate the two segments 158 

flexibly. Figure 2 shows the concept of F-DGQM. The upper δ, representing quantiles between 159 

80% and 95%, is selected based on the optimal root mean square error (RMSE). The upper δ 160 

is determine based on optimal RMSE of the distributions of quantiles among 8095%. 161 

 162 

 163 

Figure 2. Concept of flexible double gamma quantile mapping (F-DGQM) based on optimal 164 

RMSE 165 

 166 

3.4 Flexible double distribution quantile mapping 167 

The gamma distribution may not be appropriate for all observed data. Indeed, some studies 168 

have argued that other distributions perform better than Gamma distribution (Gudmundsson et 169 

al., 2012). Therefore, this study proposed determining the appropriate distribution for upper δ 170 

and lower δ based on the RMSE from three distribution functions, Weibull, Lognormal, and 171 

Gamma. The F-DDQM selects the optimal distribution for each segment after determining δ 172 

based on the optimal RMSE, as shown in Figure 3. 173 
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 174 

Figure 3. Concept of flexible double distribution quantile mapping (F-DDQM) based on 175 

RMSE 176 

 177 

The proposed method can be used for bias correction of various climate variables. However, 178 

since the natural variability of precipitation is higher than the other climate variables, this study 179 

considered only precipitation bias correction (Deser et al., 2012; Cannon et al., 2015). 180 

 181 

3.5 Evaluation metrics 182 

This study used five evaluation metrics to evaluate bias corrected monthly precipitation 183 

performance using four distribution quantile mapping methods. The evaluation metrics used 184 

are as follows: normalized root mean square error (NRMSE), the percent bias (Pbias), the 185 

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), a modified index of agreement 186 

(MD) (Willmott, 2013), and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009). The 187 

evaluation metrics in this study are presented in Equations 4-8. In all equations, Xs is the GCM 188 

outputs, Xo is the observed data. 189 

NRMSE =
√

1

n
∑ (Xs−Xo)2n

i=1

Xo̅̅ ̅̅
                                  (4) 190 

The NRMSE is the result after removing the scale of RMSE. The values closer to 0 indicate 191 

higher accuracy. 192 

Pbias =
∑ (Xo−Xs)n

i=1

∑ Xo
n
i=1

                (5) 193 
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Pbias represents the bias in the GCM and observation values. The tendency of overestimation 194 

indicated positive value and vice versa. 195 

NSE = 1 −
∑ (Xs−Xo)2n

i=1

∑ (Xo−Xo̅̅ ̅̅ )2n
i=1

            (6) 196 

NSE determines the relative magnitude of the residual variance in GCM simulations compared 197 

to the variance in the station observation (Nash and Sutcliffe, 1970). 198 

MD =
[1−(∑ 𝑎𝑏𝑠(Xo−Xs))n

i=1 ]      

(∑ 𝑎𝑏𝑠(Xs−X𝑜̅̅ ̅̅ )n
i=1 )+(𝑎𝑏𝑠(Xo−X𝑜̅̅ ̅̅ ))

          (7) 199 

MD estimates the sum and proportional difference between the observed and GCM data 200 

(Willmott, 2013). 201 

𝐾𝐺𝐸 = 1 − √(1 − 𝑟)2 + (1 − 𝛼)2(1 − 𝛽)2                 (8) 202 

KGE is an integrated statistical metric that merges correlations, biases, and variability to assess 203 

associations and errors in the mean and variability of the observed and GCM simulated data. 204 

The optimal value is close to 1 (Gupta et al., 2009). 205 

 206 

3.6 Generalized extreme value 207 

The L-moment better estimates the GEV parameters than the maximum likelihood estimation, 208 

particularly for small data samples (Hosking 1985). Since this study used 45 years of monthly 209 

precipitation, the GEV parameters were estimated using the L-moment method (Hosking 1990). 210 

The CDF of the GEV distribution is given in Equation 9. 211 

𝐺(𝑥) = {− [1 −
𝑘(𝑥−𝜉)

𝑎
]

1/𝑘

}                                               (9)  212 

where 𝜉, 𝑎, 𝑘 are the location, scale, and shape parameters, respectively. The GEV combines 213 

three probability distributions: Fréchet, Weibull, and Gumbel, with different representations of 214 

the distributions depending on the value of the location (𝜉 < 0 is a Weibull; 𝜉 = 0 is a Gumbel, 215 

and 𝜉 > 0 is a Frechet). The GEV corresponds to type I, II, and III, respectively, when the 𝑎 216 

equals 0, greater than 0, and lower than 0 (Coles et al., 2001). This study compared the extreme 217 

values of monthly precipitations bias-corrected using four QM methods considering GEV 218 

distribution. 219 

 220 

3.7 Kullback–Leibler & Jensen-Shannon divergence 221 
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KLD estimates the difference between PDFs based on their relative entropy (Kullback and 222 

Leibler 1951). In other words, it estimates how well the model's simulation values preserve the 223 

amount of information about the observed data. Equation 10 represents the expected value of 224 

the amount of information loss using KLD. 225 

𝐾𝐿𝐷(𝑃‖𝑄) =  ∫ 𝑃(𝑥)
∞

−∞
𝑙𝑜𝑔

𝑃(𝑥)

𝑄(𝑥)
𝑑𝑥                              (10) 226 

where 𝑃(𝑥)  and 𝑄(𝑥)  are the continuous PDF of observed data and model simulation, 227 

respectively, depending on distribution type. KLD is not symmetric for different probability 228 

distributions.  229 

JSD estimates the symmetric relationship and the distance between PDFs (Lin, 1991), as shown 230 

in Equation 11. 231 

𝐽𝑆𝐷(𝑃, 𝑄) =  
1

2
𝐷𝐾𝐿(𝑃‖

𝑃+𝑄

2
) +

1

2
𝐷𝐾𝐿(𝑄‖

𝑃+𝑄

2
)                  (11) 232 

This study compared the difference between the PDFs of observed and the bias-corrected 233 

precipitation using KLD and JSD. 234 

 235 

4. Results 236 

4.1 Flexible double gamma quantile mapping 237 

4.1.1 Estimation results for δ  238 

In this study, the 𝛿  of DGQM was determined according to optimum RMSE. Table S1 239 

presents the estimated δ of F-DGQM based on the RMSE at 22 stations. Overall, most GCMs 240 

showed the highest RMSE at the 80th quantile at 22 stations, except IPSL-CM6A-LR and MRI-241 

ESM2.0. IPSL-CM6A-LR showed the highest RMSE at 86th quantile and MRI-ESM2-0 at 93rd 242 

quantile at 22 stations. This study compared the RMSE of 8 CMIP6 GCMs depending on the 243 

change in δ. Figure 4 presents the calculated RMSE according to δ at Seoul station. The most 244 

selected quantile was the 80th, followed by the 90th at the Seoul station. 245 

 246 
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 247 

Figure 4. Comparison of RMSE of 8 CMIP6 GCMs depending on δ at the Seoul station. 248 

 249 

The δ selected at 22 stations is presented using a heatmap in Figure 5. Overall, the selected δ 250 

was 80th quantile at most stations, followed by 95th quantile. The lowest selected quantiles were 251 

between 87th and 89th. Therefore, the appropriate δ was selected at both extremes of each 252 

quantile, whereas the 89-91% for δ was the opposite. 253 
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  254 

Figure 5. The heatmap shows the number of selected δ for F-DGQM depending on RMSE at 255 

22 stations  256 

 257 

4.1.2 Evaluation of results  258 

This study compared the performance of F-DGQM with SGQM and DGQM. Figure 6 presents 259 

the methods' performances at 22 gages using box plots. The NRMSE for F-DGQM was the 260 

lowest (median < 0.1) among the QM methods, and the median NRMSE of F-DGQM was 261 

calculated below 0.1. The medians of F-DGQM Pbias was closer to the optimal value, whereas 262 

the SGQM overestimated and DGQM underestimated the observation. The median NSE of F-263 

DGQM was higher than those for SGQM and DGQM. Besides, the median MD and KGE of 264 

F-DGQM were close to the optimum value. The results indicate better performance of F-265 

DGQM than DGQM in all evaluation metrics. 266 

https://doi.org/10.5194/hess-2022-107
Preprint. Discussion started: 29 March 2022
c© Author(s) 2022. CC BY 4.0 License.



13 

 

 267 

Figure 6. Performance of three QM methods in correcting GCM simulated monthly 268 

precipitation bais at 22 stations in South Korea. 269 

 270 

Figure 7 shows the performance of PDFs and CDFs of bias-corrected precipitations of SGQM, 271 

DGQM, and F-DGQM at 22 stations based on KLD and JSD. Overall, the PDFs and CDFs of 272 

F-DGQM were most similar to the observation than the other two methods. In contrast, the 273 

PDFs and CDFs of SGQM showed the largest difference from the observation. The results 274 

indicate the better reproducibility of observed precipitation PDF and CDF using F-DGQM. 275 
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 276 

Figure 7. Comparison of bias-corrected monthly precipitation of 8 CMIP6 GCMs at 22 277 

stations using three QM methods based on Kullback–Leibler and Jensen-Shannon 278 

divergence. 279 

 280 

The scatter plots of the bias-corrected monthly precipitation using the methods against 281 

observations are shown in Figure 8. Overall, the scatter plots showed a remarkable 282 

improvement in F-DGQM bias-corrected precipitation in association with observation. The 283 

SGQM tended to inflate or underestimate observation significantly. Although the difference 284 

between F-DGQM and DGQM was not high, the F-DGQM showed a more improvement in 285 

precipitation reproducibility. 286 
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 287 

Figure 8. Performance comparison of three quantile mapping methods in correcting bias in 8 288 

CMIP6 GCMs at 22 stations based on scatter plot 289 

 290 

4.1.3 Comparison at each station 291 

Figure 9 presents the average RMSE in bias-corrected precipitation of 8 GCMs at 22 stations 292 

using different QM methods. The figure shows that the performance of F-DGQM was higher 293 

than the other two methods at all stations. DGQM showed a better performance than SGQM 294 

but lower than F-DGQM at all locations.  295 
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 296 

Figure 9. The RMSE in bias-corrected monthly precipitation of 8 CMIP6 GCMs using three 297 

quantile mapping methods at 22 stations.  298 

 299 

This study also compared the performance improvement using other five statistical metrics 300 

listed in the method section and presented in Table S2. Overall, the performance of F-DGQM 301 

was higher than DGQM and SGQM in all metrics. F-DGQM showed a higher improvement in 302 

bias-corrected precipitation at Jinju, where the precipitation is relatively low (Average 303 

improvement 55%). Furthermore, the average improvement using F-DGQM compared to 304 

DGQM in all stations was 16%. The results indicate that a flexible quantile division location 305 

significantly improves the bias correction performance. 306 

 307 

4.2 Flexible double distribution quantile mapping  308 

4.2.1 Results of 𝜹 and distribution selection  309 

The performance of the QM method by selecting the appropriate distribution fitted on two parts 310 

divided based on optimum δ is presented in this section. The best distributions determined for 311 

above and below of the selected δ at 22 stations are provided in Table S3. Overall, the Weibull 312 

exhibited the best performance for below δ for GCMs and observed precipitation (110 times), 313 

followed by Gamma (61 times) and Lognormal (5 times). The Weibull was also the best in 314 

fitting GCMs and observed data above δ (112 times), followed by Gamma (59 times) and 315 

Lognormal (5 times).  316 
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Table S4 presents the δ of F-DDQM based on the RMSE results at 22 stations. Figure 10 317 

presents the number of δ selected at 22 stations based on the RMSE using a heatmap. The most 318 

selected δ for CMIP6 GCMs was 80th and 95th quantiles. However, most GCMs had closer to 319 

optimum RMSE for higher quantiles (88%-95%) than the lower quantiles (80%-87%). For 320 

example, the most δ of GISS-E2-1-G, INM-CM4-8, IPSL-CM6A-LR, and MRI-ESM2-0 was 321 

95th quantile. On the other hand, the most δ of ACCESS-ESM1-5, CanESM5, MPI-ESM1-2-322 

LR, and NorESM2-MM was 80th quantile. Therefore, the 80th and 95th quantiles were the best 323 

δ for the GCMs, whereas the 89th quantile was never chosen. 324 

 325 

Figure 10. The heatmap shows the number of selected δ depending on RMSE  326 

 327 

4.2.2 Evaluation results for double distribution quantile mapping  328 

The precipitation of 8 CMIP6 GCMs was bias-corrected at 22 stations using F-DDQM with 329 

selected δ and distributions. 330 

The performance of the bias-corrected precipitation using F-DDQM, F-DGQM and DGQM at 331 

22 stations based on five evaluation metrics is presented in Figure 11. The results showed that 332 

the median NRMSE of bias-corrected precipitation using F-DDQM was higher than the other 333 

https://doi.org/10.5194/hess-2022-107
Preprint. Discussion started: 29 March 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

two methods. The Pbias showed that DGQM and F-DGQM underestimated, whereas the F-334 

DDQM overestimated the monthly precipitation. The median Pbias of F-DDQM and F-DGQM 335 

was closer to the optimal value. The median NSE of F-DDQM was closer to the optimal value 336 

than that for F-DGQM and DGQM. In addition, the median MD of F-DDQM was the highest. 337 

The median KGE of F-DDQM was also slightly higher than F-DGQM.  338 

 339 

Figure 11. The performance of DGQM, F-DGQM, and F-DDQM in correcting GCM 340 

simulated monthly precipitation bais at 22 stations based on five statistical metrics. 341 

 342 

The performance of the methods based on JSD and KLD is shown in Figure 12. Both metrics 343 

showed that PDF and CDF of F-DDQM corrected precipitation were closer to the observation. 344 

F-DGQM performed better than DGQM but much lower than F-DDQM. 345 

 346 
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 347 

Figure 12. Comparison of DGQM, F-DGQM, and F-DDQM methods in bias correcting 348 

monthly precipitation of 8 CMIP6 GCMs at 22 stations using Kullback–Leibler and Jensen-349 

Shannon divergence. 350 

 351 

4.2.3 Comparison of performance at each station 352 

Figure 13 presents the average RMSE in bias-corrected precipitation of 8 CMIP6 GCMs at 22 353 

stations. The figure shows lower RMSE for F-DDQM at all stations than the other two methods. 354 

The performance of the methods based on other statistical metrics is presented in Table S6. 355 

The results showed average improvement using F-DDQM was 1.1% and 3.3% in RMSE 356 

compared to F-DGQM and DGQM. These results indicate an improvement in precipitation 357 

bias correction using F-DDQM at different locations having diverse climates.  358 

 359 
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 360 

Figure 13. The RMSE in bias-corrected monthly precipitation of 8 CMIP6 GCMs at the 22 361 

stations using F-DGQM, F-DDQM, and DGQM.  362 

 363 

Figure 14 shows the relative performance of F-DGQM and F-DDQM in correcting 364 

precipitation using scatter plots. Overall, F-DDQM improved precipitation performance than 365 

F-DGQM. The correlation between F-DDQM corrected and observed precipitation was 366 

slightly higher than that obtained for F-DGQM for all GCMs.  367 
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 368 

Figure 14. Performance comparison of F-DGQM, F-DDQM, and DGQM methods in 369 

correcting bias in 8 CMIP6 GCMs at 22 stations based on scatter plot 370 

 371 

4.3 Performance comparison based spatial precipitation indices 372 

The performance of bais corrected precipitation using F-DGQM, F-DDQM, DGQM and 373 

SGQM in simulating the spatial distribution of observed maximum precipitation, median 374 

precipitation and standard deviation of precipitation are presented in Figure 15 (a), (b), and (c), 375 

respectively. Overall, the spatial distribution of maximum precipitation estimated using F-376 

DDQM was closer to the observation. The maximum precipitation obtained using SGQM 377 
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tended to inflate in the northwest, where extreme precipitation occurs more, whereas it 378 

underestimated maximum precipitation in the south. The error in DGQM maximum 379 

precipitation was narrower than SGQM, but it overestimated maximum precipitation in some 380 

regions. F-DGQM captured maximum precipitation in the central region similar to DGQM. In 381 

contrast, F-DDQM showed the smallest difference with the observation in most regions and 382 

the highest performance.  383 

The precipitation median estimated by SGQM was higher than the observation in the 384 

western region. DGQM estimated a smaller precipitation median than SGQM in most regions, 385 

whereas overestimated it in the southwest region. F-DGQM showed a negligible difference 386 

with observed median precipitation (less than 5 mm in most regions). However, the smallest 387 

difference with the observed median precipitation was obtained using F-DDQM.  388 

The difference in precipitation standard deviation between SGQM corrected and 389 

observed precipitation was the largest (above 5 mm in most regions) compared to other 390 

methods. The DGQM showed a smaller difference than SGQM, but it overestimated the 391 

standard deviation in some regions. In contrast, F-DGQM showed the lowest difference with 392 

observed precipitation standard deviation in most regions (the difference was close to zero). 393 

These results indicated better performance of F-DGQM and F-DDQM in caption spatial 394 

distribution of precipitation indices. However,  F-DDQM showed slightly better performance 395 

than F-DGQM. 396 
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 397 

(a) Maximum 398 

 399 
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 400 

(b) Median 401 
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 402 

(c) Standard Deviation  403 

Figure 15. Performance of different bias correction methods in reconstructing the spatial 404 

distribution of three precipitation metrics: (a) maximum precipitation; (b) median 405 

precipitation; and (c) standard deviation of precipitation for the base period 1970-2014 406 

 407 

The average error in estimating the spatial distribution of three precipitation metrics by the bias 408 

correction methods is presented in Table 2. Overall, F-DDQM showed the lowest variance with 409 

respect to observation in all metrics. The difference between the F-DDQM corrected and 410 

observations maximum precipitation was 50.6 mm, median precipitation was 4.5 mm, and 411 

standard deviation was 1.2, which were the lowest among all methods.  412 

 413 

Table 2. Errors (mm) in estimating observed precipitation metrics using different bias 414 

correction methods. 415 

Metrics SGQM DGQM F-DGQM F-DDQM 
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SD 10.7 2.2 1.3 1.2 

Max 151.2 82.7 70.2 50.6 

Median 8.2 6.1 4.9 4.5 

 416 

4.4 Generalized extreme value of the bias corrected precipitation 417 

This study compared the extreme values of historical bias-corrected precipitation four QM 418 

methods based on GEV distribution. The precipitation for above the 95th percentiles are 419 

presented in Figure 16. L-moment was used to estimate the GEV parameters of bias-corrected 420 

GCMs using four QM methods. Overall, the PDF of F-DDQM was the most similar to the 421 

observed PDF. Although the extreme precipitation of MRI-ESM2-0 was slightly higher than 422 

the observed, most GCMs showed similar extreme precipitation to the observed. F-DGQM 423 

estimated extreme precipitation was closer to observed than DGQM and SGQM, but its 424 

performance was lower than F-DDQM. The results indicate F-DDQM is the best in correcting 425 

bias in precipitation extremes. 426 

 427 

Figure 16. Comparison of PDF above the 95th percentile based on GEV distribution at 22 428 

stations estimated using four QM methods. 429 
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 430 

The differences between the observed and bias-corrected precipitation GEV distributions were 431 

estimated using KLD and JSD. The obtained results for all the GCMs are presented using 432 

boxplots Figure 17. Overall, the GEV distribution of the F-DDQM for both divergences was 433 

the closest to the observed in PDF and CDF, followed by F-DGQM, DGQM and SGQM. The 434 

again proves the capability of F-DDQM in correcting bias in precipitation extremes. 435 

 436 

Figure 17. Differences in GEV distribution between the observed and bias-corrected GCMs' 437 

precipitation at 22 stations using KLD and JSD. 438 

. 439 
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5. Discussion 440 

Although the QM algorithms can effectively eliminate biases and errors in GCM simulations, 441 

the performance is dependent on the QM method, such as non-parametric transformation, 442 

parametric transformation, and distribution derived transformations (Song et al., 2020). The 443 

distribution-derived transformation was developed by combining distribution functions like 444 

Bernoulli-Gamma. Various functions have been applied to improve its performance 445 

(Gudmundsson et al., 2012; Cannon et al., 2015). Nevertheless, the general QM can artificially 446 

impair trends in future projections (Cannon et al., 2015). Therefore, improving the GCM's 447 

extreme precipitation bias correction method is important. DGQM was the proposed method 448 

to solve this problem. However, there is no clear reason for determining 90% or 95% (Pastén-449 

Zapata et al., 2020; Yang et al., 2010) as the dividing point. Furthermore, the gamma 450 

probability function is generally used to fit two divided segments, but it is not the most 451 

appropriate probability distribution function at all locations. Therefore, this study presented F-452 

DGQM and F-DDQM that determines 𝛿  according to optimum RMSE, considering two 453 

independent probability distributions for two divided segments. 454 

The δ of F-DGQM was the 80th quantile in this study based on the RMSE at most 455 

stations. Conversely, the second-highest performing 𝛿 was the 95th quantile. It means that the 456 

suitable δ is different at different stations depending on the scale and shape of the GCM 457 

precipitation distribution. Therefore, the determination of 𝛿 can affect the difference between 458 

extreme and mean precipitation. Therefore, it was reasonable to use RMSE to determine double 459 

distribution. 460 

The bias correction performance of F-DGQM showed a large improvement, as shown 461 

in Figure 6, in all evaluation metrics compared to DGQM and SGQM. The PDFs and CDFs of 462 

the bias-corrected precipitation using three QM methods were compared with the observed 463 

PDF and CDF using JSD and KLD. F-DGQM showed better performances than DGQM and 464 

SGQM. However, only δ determination does not guarantee the superior performance of F-465 

DGQM than other methods. The Gamma distribution may not show the best performance at all 466 

stations and all GCMs. The combination of different distributions proposed by Gudmundsson 467 

et al. (2012) can improve the bias correction performance over a single distribution. Therefore, 468 

this study proposed F-DDQM, considering suitable distributions for two individual segments.  469 

The performance of F-DDQM showed better performance than F-DGWM because of 470 

considering three probability distributions for two individual segments. The most selected δ in 471 
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F-DDQM showed that the high percentiles (88%-95%) were selected more than the low 472 

percentiles (80%-87%). Therefore, it can be remarked that a suitable δ can be selected at a 473 

relatively high quantile. Furthermore, the Weibull distribution performed best for below δ. 474 

Furthermore, Weibull performed best for above δ, followed by Gamma. These results prove 475 

that the Lognormal PDF is not proper in analyzing the monthly precipitation of South Korea. 476 

The performance of F-DDQM was higher than F-DGQM in all evaluation metrics. Furthermore, 477 

the performance improvement using F-DDQM was more than F-DGQM at all stations.  478 

This study also presented the spatial differences between the observed and the bias-479 

corrected monthly precipitation metrics (Figure 15). Overall, the performance of F-DDQM was 480 

the highest. The F-DDQM estimated spatial distribution of all three metrics very similar to 481 

observation at all regions of South Korea. On the other hand, SGQM overestimated the 482 

maximum precipitation, and thus, the corrected precipitation tends to be inflated for the most 483 

frequent values (Cannon et al. al., 2015; Teng et al., 2015; Yang et al., 2010). The results clearly 484 

showed that the F-DGQM and F-DDQM improved the performance of the existing versions of 485 

QM bias correction methods. The performance of F-DDQM is the best among all. Furthermore, 486 

uncertainty in F-DDQM corrected bias is relatively low.  487 

The GEV distribution of F-DDGM precipitation was also more similar to the observed 488 

precipitation compared to the others. The JSD and KLD also showed that F-DDGM corrected 489 

precipitation PDF and CDF are closest to the observed PDF and CDF at all stations. The results 490 

indicate the higher performance of F-DDQM in various aspects. 491 

 492 

6. Conclusions 493 

In this study, two new bias correction methods were proposed to improve the performance of 494 

double gamma quantile mapping, F-DGQM and F-DDQM. F-DGQM determines δ based on 495 

RMSE to distinguish two segments of the gamma distribution for bias correction. F-DDQM 496 

uses the optimal probability distribution for two segments defined by δ to improve bias 497 

correction. Furthermore, the performance of F-DGQM and F-DDQM, proposed in this study, 498 

was compared with two existing QM methods, DGQM and SGQM, which have been widely 499 

used in different regions for correcting bias in monthly precipitation. This study concluded the 500 

following: First, the performance of F-DGQM is generally higher than SGQM and DGQM at 501 

all stations. Second, the δ (dividing point) of F-DGQM and F-DDQM varies from station to 502 

station, indicating a constant δ at all stations is not optimal for bias correction. Third, the 503 
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judicious selection of the dividing point improves the performance for bias correction. Fourth, 504 

F-DDQM corrected precipitation has lower uncertainty than other methods. Fifth, F-DDQM 505 

performs best in correcting bias in extreme precipitation. 506 

This study contributes to technological development by suggesting a new bias 507 

correction method that can be used more flexibly than the existing DGQM for reliable 508 

correction of GCM biases. 509 

 510 
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