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“Snow Persistence Explains Stream High Flow and Low Flow 

Signatures with Differing Relationships by Aridity and Climatic 

Seasonality” by Le et al. 

Response to Anonymous Referee #2 by Le et al. 
 

Referee #2  comments:  

1. General comments 

Le et al. analysed how well snow persistence (along with aridity and precipitation seasonality) 

can explain a range of flow signatures in over 1000 catchments in North America, using a 19-

year data set. They applied a linear model with interaction term (multilinear regression) and 

visually analysed the influence of snow persistence on each response variable. With a very short 

results section and basically only one figure (Figure 3), they come to significant results, such as 

that snow persistence influences low flow characteristics, and in some climate regions also high 

flow characteristics. Furthermore, the authors established a link between the spatial changes 

observed and future climatic changes, such as how a reduction in snow persistence could change 

flow characteristics. 

In my opinion, the fitted linear models are not able to capture the variance sufficiently to draw 

these essential conclusions. The authors report values for R2 ranging from 0.11 to 0.25 (Table 1). 

Similarly (or as a consequence), the explained effect of snow persistence on the response 

variables is small: the largest values on the y-axes in Fig. 3 cover only 0.1% (for Q95) to 4% (for 

Q5) of the indicated interquartile range in Table 1. The effect is statistically significant, as 

mentioned by the authors, but in my view too small to be relevant. This is a common problem: as 

sample size increases, decreasing effects become statistically significant. The authors need to 

find ways to create models with greater predictive value that are able to produce effects of 

relevant size. In my opinion, the small effect size of the linear models makes this manuscript too 

weak to be considered for publication in HESS. I will explain this in more detail in the next 

section. 

2 Specific comments on the small effect size 

The authors discuss these low R2 values in their “Limitations” section and mention that this is to 

be expected as geological and topographical factors were not included. They cite Addor et al. 

(2018), for example, who considered these factors important. I disagree with this expectation of 

low R2 values and also with the explanation: Addor et al. (2018), a very similar but much more 

comprehensive study (barely cited by Le et al.), concluded “… that climatic attributes are by far 

the most influential predictors for signatures that can be well predicted based on catchment 

attributes”. Instead of simple linear models, they trained Random Forests and found that they 

could explain large parts of the variances of signatures such as Q95 (R
2 >0.8), Q5 (R

2 ~0.6) and 
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BFI (R2 ~0.5) with climatic attributes alone (read from their Figure 5). These values are much 

larger compared to those reported here. Only for the slope of the flow duration curve was a 

similarly small R2 value reported. 

The reasons for the larger R2 values reported by Addor et al. (2018) could be that they used 

• more and other climatic variables 

• more complex models 

•  a longer dataset, limited to the US. 

The first item is important for the aim of the Le et al. manuscript, namely to show the predictive 

value of snowpack persistence (SP). As the authors indicate, snowpack persistence is easier to 

determine compared to snowfall fraction (which was used by Addor et al., 2008) and is therefore 

a very interesting and globally available predictor variable. To show the predictive value of SP, I 

would suggest repeating the Addor et al. (2018) study for the US and Canadian datasets and only 

use their climatic variables, then replace the snowfall fraction with SP and then remove step-wise 

all other climatic variables until the three used here remain (i.e. SP, seasonality of precipitation 

and aridity). With this setup, one can find out what the authors were aiming for, namely (line 

418ff): "how far we can go in explaining detailed streamflow characteristics with a simple, 

widely available and accurate satellite-based snow-related metric" (along with seasonality and 

aridity). 
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Response to Referee #2 Comments:  
We thank the reviewer for taking time reviewing our paper. Please see below 1) our response to 

the reviewer’s comment on effect size, 2-4) our response to the reviewer’s comments on the use 

of an alternative method with a better predictive performance in order to obtain a larger R2, 5) 

scientific importance of the effects sizes of our models, 6) detailed explanation of the use of 

random forest to estimate shape-based streamflow signatures used in our paper, and 7) the 

modifications we are willing to make in the revised manuscript. 

 

1) Response to reviewer’s comments on small effect size and p-value:  

The reviewer argued that the significant p-values we obtained are mostly due to the large sample 

size of our study. We agree with the reviewer that blindly following conclusions based on meeting 

an arbitrary p-value threshold (usually 0.05) can lead to poor scientific conclusions. In part we 

fight against this in our paper by instead considering a much stricter p-value threshold of 0.01 

while also correcting for multiple comparisons. Furthermore, the reviewer argued that the effect 

sizes of our regression models are small, and therefore they are not relevant to make conclusions. 

We disagree with the reviewer in this regard and we argue that our conclusions based on the effect 

size are relevant, and we focus on this for the remainder of response # 1. As recently explained by 

Anderson, Slater, Dadson, Blum, and Prosdocimi (2022), in a methodologically similar paper as 

our paper, a small effect size can be very important (“…a 1%-point increase in catchment urban 

area results in a small (0.6%–0.7%), but highly significant increase……” see the abstract of the 

paper). Note that the effect sizes in Figure 3 of our paper are referring to impacts on transformed 

streamflow signatures and once we consider the impacts on untransformed signatures these effect 

sizes are larger for most of signatures than what is shown in Figure 3. More importantly, the 

decision on whether the effect size is relevant or not should consider the possible ranges of the 

covariates. As will be explained in detail below (response # 5), our results show that a probable 

change in snow persistence could decrease BFI from 0.62 to 0.55, could increase the slope of flow 

duration curve at low flow condition from 2.34 to 3.67 (57% increase in the slope of flow duration 

curve at low flow condition), and could pronouncedly decrease low flow event duration in each 

year from 57 days to 25 days. So, the effect sizes of our model show a large influence of snow 

persistence on low flow stability and duration, suggesting large impacts of climate change on low 

flow variation and stability. Also, we have to clarify that interquartile ranges in Table 1 represent 

the range of untransformed attributes/signatures, but Figure 3 (in the original under review paper) 

shows the impacts on transformed signatures.   

 

2) Response to reviewer’s comment on the use of random forests  

The reviewer argued that our R2  values are small and we could have obtained a much larger R2 as 

done in Addor et al. (2018) using random forests. First, we have to clarify that we did not evaluate 

Q5 and Q95 in our paper. Q5 and Q95 are magnitude-based signatures and are easily predictable 

using climatic attributes as shown in Addor et al. (2018) for the catchments across the United 

States. Instead, we evaluated Normalized Q5 and Normalized Q95 in our paper, which are shape-

based signatures and reflect the functionality of catchments and refer to flashiness of streamflow 

hydrographs. These signatures are hard to predict using climatic attributes alone and refer to the 

ratio between Q5 (or Q95) and average flow. They depend on the presence of macro-pores and 

soil and bedrock properties and other catchment internal processes controlling streamflow 

generation during low-flow and high-flow. Please refer to Janssen and Ameli (2021) and  
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McMillan (2021) for details on the differences between magnitude-based versus shape-based 

signatures and different mechanisms (and attributes) controlling these signatures. What the 

reviewer suggested (i.e. the use of random forest) was already done in our previous paper (Janssen 

& Ameli, 2021) and we obtained small cross validation R2s for Normalized Q5 and Normalized 

Q95 with climatic attributes (including snow fraction) and using random forests (see point # 6). 

Indeed, the R2 values with random forest would be only slightly larger than what we obtained here 

using our simple 6-term statistical model (21% versus 12% for normalized Q5 & 24% versus 11% 

for normalized Q95 & 27% versus 23% for Base Flow Index). We have to clarify that the range of 

our R2 for different shape-based streamflow signatures will be between 11% to 51% in the revised 

manuscript, after adding two signatures (i.e. Low Flow Event Duration & High Flow Event 

Duration) that the other reviewer suggested. 
 

3) Response to reviewer’s comment on small R2  

The reviewer suggested that the authors need to find ways to create models with greater predictive 

performance in order to show the predictive value of snow persistence.  However, in this 

manuscript, our goal is inference and not prediction. See Efron (2020) and Shmueli (2010) for 

detailed discussions on the differences between the two statistical goals of estimation (or 

explanation or inference or description) versus prediction. As Shmueli (2010) clarified, the correct 

model that reflects the data generating process may actually have worse predictions compared to 

a strongly predictive model. When the goal is inference, unbiased models are preferred, but random 

forests increase predictive capability compared to linear regression by increasing bias while 

decreasing variance. Again, referring to Anderson et al. (2022), in a methodologically similar 

paper as our paper, they did not even show R2 or any other performance measure of their model. 

Paying less attention to model’s fit in inference (or explanation) studies is fairly routine when 

investigating hydrological behaviour (and in other disciplines), and researchers frequently publish 

high impact papers in high impact journals with R2 smaller than 0.05. Again, we emphasize that 

the goal of this study is inference, not prediction. In other words, our goal is to quantify the 

functional relationship between the covariate (snow persistence) and response (streamflow 

signatures), and not to quantify the proportion of the response variance explained by the covariates 

(which is what the R2 value measures). To further illustrate this difference, we consider a simple 

simulation of two datasets (see Figure 1 below): both datasets are generated from the same linear 

model but have different error variances. In Figure 1, for both cases, we plot the data, the true 

regression slope and estimated regression slope (inferred from data) and its confidence intervals. 

In both cases, there is a small but non-zero (and statically significant) effect which we can correctly 

estimate, but the R2 values are 0.81 vs. 0.01. Small R2 only shows that there is unexplained variance 

in the response. The p-value of the functional relationship tells us how much evidence we are 

seeing in our data for a significant functional relationship. The figure clarifies that a model with 

very poor predictions could lead to an accurate (and statistically significant) estimation of a 

functional relationship between a covariate and response. The unexplained variance could be due 

to other covariates not included in the model or could be purely random noise.  We already knew 

that our shape-based signatures are hard to predict using climatic data alone based on our random 

forest analyses conducted in Janssen and Ameli (2021) (see responses # 2 & 6 for more details). 

These signatures are dependent on the presence of macro-pores and soil and bedrock properties 

and other catchment internal processes. We only have highly uncertain data about these attributes 

and processes even in extensively studied regions. These points were clarified in the discussion 

section of the under-review paper and will be further clarified in the revised version.  
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The goal of our paper was to explore the functional relationship between globally available snow 

persistence data (Hammond, Saavedra, & Kampf, 2018) and shape-based signatures at different 

levels of aridity and seasonality, and not quantifying the predictive power of snow persistence. 

Our results show that for some signatures, snow persistence is strongly related to signatures and 

for some others snow persistence is moderately related to signatures (see response #1), regardless 

of R2 values. More importantly, our results emphasized that this widely available data (i.e. snow 

persistence) can be used for inferring the climate change impacts on shape-based signatures across 

the globe, as climate change strongly impacts the timing of snow presence on the ground. There 

might be other climatic attributes, available in some regions, with a larger predictive power than 

snow persistence. However, the advantage of snow persistence is that it is widely available through 

satellite data, and our results further showed that it can provide direct insight about the impact of 

snow presence/loss on streamflow hydrograph shape/flashiness.  Therefore, despite we could not 

obtain a much larger R2 using more complicated machine learning model as explained in response 

# 2, we believe that a larger or smaller R2 does not impact our inferences and interpretations in the 

way that we formulated and stated such inferences in our paper (and we will further clarify this in 

the revised version).  

 
Figure 1: Illustration of the estimation of true beta value (i.e. functional relationship between covariate and response) using 

simple linear regression. Here we consider a simple simulation of two datasets, where both datasets are generated from the 

same linear model but have different error variances. In both cases, there is a small but non-zero effect which we correctly 

estimate but the R2 values are 0.81 vs. 0.01. This figure clarifies that a model with very poor predictions could lead to an 

accurate estimation of a functional relationship between a covariate and response. The code for this simulation study can 

be found at https://github.com/hgwm. 

 

4) Response to reviewer’s comment on the use of an alternative method  

We believe that our statistical analysis adequately addresses the objectives of our paper. We 

designed a statistical experiment based on background knowledge and based on the objective to 

be explored. Our objective is: investigate how snow persistence interacts with climatic aridity and 

seasonality to impact shape-based signatures. This objective is clear throughout the paper 

including in the title, abstract, introduction, discussion and conclusion. A complicated random 

https://github.com/hgwm
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forest model with many, somewhat arbitrarily chosen, parameters and terms cannot explore our 

objectives as explained in detail in the discussion section of  Janssen and Ameli (2021) (see section 

5.2 of the cited paper). Generally, advanced machine learning models generate several 

intermediate functions which may not be interpretable and scientifically supported. Janssen and 

Ameli (2021) opened the black box of random forest used for the prediction of shape-based 

signatures (the same signatures used in the under-review paper) and explained that there is no 

scientific support for several of the interaction terms that random forests identified. Here, we are 

using a simple 6-term model. Despite its simplicity, the model was designed to sufficiently and 

directly incorporate and test the objectives of the paper i.e.  the interactive behaviours amongst 

snow persistence, climatic aridity and climatic seasonality. Paraphrasing Einstein, “the maxim is: 

make a model as simple as possible, but not simpler than that” (Savenije, 2010). It is the philosophy 

that we followed in design of our statistical models. We have to acknowledge that this research 

was funded by the grant awarded by Canadian Statistical Sciences Institute. We believe that the 

design of the statistical experiments in our paper leveraged the state-of-the-art techniques in 

statistical inference and we selected the most appropriate statistical and visualization tools to 

explore our objectives. 
 

5) Evaluating the scientific importance of our models’ effects sizes (details & examples) 

Here, we build on our statistical model results, and evaluate and explain how much a probable 

change in snow persistence can alter four shape-based streamflow signatures used in our paper 

(the same interpretation can be conducted on the rest of the signatures used in our paper as we will 

conduct in the revised manuscript). Multiple studies have reported an earlier snowmelt timing 

across Canada and the U.S. over the past several decades, and have projected earlier snowmelt for 

future periods (Clow, 2010; Hodgkins & Dudley, 2006; Musselman, Clark, Liu, Ikeda, & 

Rasmussen, 2017; Semmens & Ramage, 2013; Stewart, Cayan, & Dettinger, 2005). More recently, 

Broadbent et al. (2021) showed that snowmelt is predicted to occur 50-130 days earlier in alpine 

climate regions due to climate change by the end of the century. Or as Harpold and Brooks (2018) 

showed in Colorado, snow is already melting as much as a month earlier than the historical norm. 

Now let’s consider a 60-day decline in snow presence on the ground in an Alpine / sub-Alpine 

region of North America (e.g., across the Rocky Mountains) in the future. In this region, Fig. 2 (in 

the original under review paper) shows a current long-term average of 75% snow persistence, 

seasonality index of ~ 0.09, and aridity index of ~ 0.72 (Ln(AI) = -0.32). The 60-day decline in 

snow presence on ground would imply a change in snow persistence from 75% to 42%. In the 

remainder of this section, we build on our statistical results and explore how much a change in 

snow persistence from 75% to 42% (with a fixed seasonality index of 0.09 & Ln(AI) = -0.32) alters 

a) BFI, b) Low-FDC, c) Low Flow Event Duration, d) Normalized Q5. Note that other regions with 

a more seasonal climate (e.g., SI=0.29) than what we consider here in this example, could show 

larger effects sizes of snow persistence on streamflow signatures based on our statistical results. 

So, the below examples, do not reflect the interpretation of our results for a region where our model 

shows the largest effects sizes of snow persistence on streamflow signatures.  
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I. BFI 

The upper-middle panel of Figure 2 below shows that a potential change in snow 

persistence from 75% to 42% (60 days decrease in the presence of snow on the ground) 

could decline BFI from 0.62 to 0.55. For moderate to large catchments across the Rocky 

Mountains this implies a large decrease in the volume of available water in late spring and 

early summer in the future. 

 
Figure 2. Effect of Snow Persistence (SP) on BFI. Upper panels (a): show the estimated relationship between SP and BFI 

for three levels of Aridity index, shown in continuous and dashed lines, and three levels of seasonality index shown by three 

panels from left to right. Lower panels (b): shows the estimated effect of SP on BFI as a function of aridity index (AI) and 

seasonality index (SI), using Johnson-Neyman interaction plots. Blue indicates areas of statistical significance (p < 0.01), 

while red indicates areas that do not contain statistically significant relationships (p >= 0.01).  
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II. Slope of the flow duration curve at low flow condition (Low-FDC) 

The upper-middle panel of Figure 3 below shows that a potential change in snow 

persistence from 75% to 42% (60 days decrease in the presence of snow on ground) could 

increase Low-FDC slope from 2.34 to 3.67 (after transforming back the Ln-transformed 

Low-FDC). This implies a large (57%) increase in the variability and instability of low-

flow conditions. Indeed, average streamflow could transition to extreme low streamflow at 

57% faster rate for the given change in snow persistence.  
 

 
Figure 3. Effect of Snow Persistence (SP) on transformed slope of flow duration curve at low flow condition (Low-FDC). 

Upper panels (a): show the estimated relationship between SP and Ln-transformed Low-FDC for three levels of Aridity 

index, shown in continuous and dashed lines, and three levels of seasonality index shown by three panels from left to right. 

Lower panels (b): shows the estimated effect of SP on Ln-transformed Low-FDC as a function of aridity index (AI) and 

seasonality index (SI), using Johnson-Neyman interaction plots. Blue indicates areas of statistical significance (p < 0.01), 

while red indicates areas that do not contain statistically significant relationships (p >= 0.01). 
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III. Average Low Flow Event Duration 

The upper-middle panel of Figure 4 below shows that the average number of consecutive 

days during which a low flow event occurs in a typical year decreases from 57 days to 25 

days (after transforming back the SQRT-transformed Low Flow Event Duration) due to a 

potential change in snow persistence from 75% to 42%. This implies a large (~56%) 

decline in the duration of low flow events in a typical year. Note that this signature was 

added to the list of our signatures based on the suggestion of the first reviewer.   

 

 

Figure 4. Effect of Snow Persistence (SP) on transformed average Low Flow Event Duration. Upper panels (a): show the 

estimated relationship between SP and SQRT-transformed Low Flow Duration for three levels of Aridity index, shown in 

continuous and dashed lines, and three levels of seasonality index shown by three panels from left to right. Lower panels 

(b): shows the estimated effect of SP on SQRT-transformed Low Flow Duration as a function of aridity index (AI) and 

seasonality index (SI), using Johnson-Neyman interaction plots. Blue indicates areas of statistical significance (p < 0.01), 

while red indicates areas that do not contain statistically significant relationships (p >= 0.01). 
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IV. Normalized Q5 

The upper-middle panel of Figure 5 below shows that a potential change in snow 

persistence from 75% to 42% could decrease Normalized Q5 from 0.14 to 0.10 (after 

transforming back the CBRT-transformed Normalized Q5). This shows a ~20% decrease 

in Normalized Q5, implying a flashier hydrograph with a faster decline from average flow 

to low flow.  
 

 

Figure 5. Effect of Snow Persistence (SP) on transformed Normalized Q5 . Upper panels (a): show the estimated relationship 

between SP and CBRT-transformed Normalized Q5 for three levels of Aridity index, shown in continuous and dashed lines, 

and three levels of seasonality index shown by three panels from left to right. Lower panels (b): shows the estimated effect 

of SP on CBRT-transformed Normalized Q5 as a function of aridity index (AI) and seasonality index (SI), using Johnson-

Neyman interaction plots. Blue indicates areas of statistical significance (p < 0.01), while red indicates areas that do not 

contain statistically significant relationships (p >= 0.01). 
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6) What would have been the predictive performance of models (R2), if we had used 

Random Forests 

 

Janssen and Ameli (2021) used Random Forests to predict Low-FDC, High-FDC, Normalized Q5, 

Normalized Q95 across a subset of catchments used in the under-review paper, using three climatic 

indices, including Aridity Index, Seasonality Index and Snow Fraction. As we see in Fig. 6 below, 

the calculated R2s from cross validation for predicting the four shape-based signatures are small. 

For the same set of catchments across Canada and USA, they also obtained a R2 of 0.27 for 

predicting Base Flow Index (not shown in the paper due to high correlation with other streamflow 

signatures as explained in Sec. 3.4 of Janssen and Ameli (2021)).  

 

 
Figure 6. R2 values of random forests in predicting streamflow signatures using a framework of input predictors 

including aridity index, seasonality index and snow fraction. (a) Shape-based streamflow signatures (top panel). (b) 

Magnitude-based streamflow signatures (bottom panel). Modified from Figure 6 of Janssen and Ameli (2021). 
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7) Modifications we will aim to make in the revised manuscript 

a) We will clarify that Figure 3 of the original under review paper shows the effect of snow 

persistence on transformed values of signatures for most streamflow signatures. 

b) We will use the upper panels of the above Figures 2-5 as a new figure to be added to the 

paper. We believe that this figure will help readers to obtain an explicit and direct 

understanding of the relationships between snow persistence and streamflow signatures.   

c) We will assign a full sub-section in the discussion section to explain the scientific 

importance of the estimated effect sizes for different streamflow signatures at different 

climatic settings of North America (an extended version of response # 5 above). We will 

add a table that shows, in different climatic regions, the percentage of change in each 

signature for a given alternation in snow persistence.  

d) We will further clarify that our paper focuses on inference (or estimation) and not 

prediction. We will also briefly discuss the differences between these two types of 

statistical methods.  

e) We will further clarify that the streamflow signatures used in our paper are shape-based 

signatures and are hard to predict even using complicated machine learning models. In 

doing so, we will refer to previous experimental, theoretical, and empirical (e.g., machine 

learning) studies. 
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