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Abstract: Altitudinal precipitation gradient plays an important role in the interpolation of precipitation
in the Third Pole (TP) region, where the topography is very complex but in-situ data are very sparse.
This study proves that the altitude dependence of precipitation in the TP can be reasonably reproduced
by a high-resolution atmospheric simulation-based dataset called ERA5 _CNN. The precipitation
gradients, including both absolute (APG) and relative gradients (RPG), for 388 sub-basins of the TP
above 2500 m a.s.l. are calculated based on the ERA5 CNN. Results show that most sub-basins have
positive precipitation gradients, and negative gradients are mainly found along the Himalayas, the
Hengduan Mountains and the Western Kunlun. The annual APG and RPG averaged across all
sub-basins of the TP are 0.05 mm.day™.100 m? and 4.25 %.100 m™, respectively. The values of APG
are large in wet seasons but small in dry seasons, while the RPG shows opposite variations. Further
analyses demonstrate that the RPGs have negative correlations with relative humidity but positive
correlations with wind speed, likely because dry air tends to reach saturation at high altitudes, while
stronger wind can bring more humid air to high altitudes. In addition, we find that precipitation
gradients tend to be positive at small spatial scales compared to those at large scales, mainly because
local topography plays a vital role in determining precipitation distribution at small scales. These
findings on the spatiotemporal variations of precipitation gradients provide useful information for
interpolating precipitation in the TP.

Keywords: precipitation gradient; the Third Pole; high-resolution atmospheric simulation;

spatiotemporal variation
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1. Introduction

Gridded precipitation is a key input for many hydrological and ecological models when applied to
regional studies. Typically, the spatial distribution of precipitation in a region can be obtained by
interpolating the in-situ data. In regions with flat terrain and dense rain gauge networks, different
interpolation methods (e.g. Thiessen polygons, inverse distance weighting, Kriging) can result in
similar distributions of precipitation. In mountainous regions, precipitation has great spatial
heterogeneity and sparse rain gauges with limited spatial representativeness make the interpolation of
precipitation challenging in these regions. Relations between precipitation and other environmental
factors (e.g. topography and vegetation) play an important role in the interpolation of precipitation,
especially in mountainous regions. Among the many environmental factors, altitude has a significant
impact on the distribution of precipitation. Several widely-used interpolation models have taken
altitude as a covariant, such as PRISM (Daly et al., 1997) and ANUSPLIN (Hutchinson, 1991).
Therefore, quantifying the precipitation gradient is greatly important in mountainous regions.

As the main source of many large rivers in Asia, the Third Pole (TP) is a typical mountainous
region in the world, characterized by complex terrain and high altitude. Rain gauges in the TP are
sparse and usually located in lowland areas, where the weather conditions are much different from
those in high altitudes (Chen et al., 2012; Daly et al., 2002). Therefore, interpolating in-situ data to
data-sparse high altitudes is essential for hydrometeorological studies in this region, as reported in
many previous studies that taking the precipitation gradient into account in hydrological modeling
results in better simulations (Immerzeel et al., 2014; Li Wang et al., 2018; Zhang et al., 2015).
Currently, studies on the altitude dependence of precipitation are mostly in the eastern TP (Cuo and
Zhang, 2017; Guo et al., 2016) and some sub-regions, such as the Himalaya (Ouyang et al., 2020;
Salerno et al., 2015; Yang et al., 2018), the Qilian Mountains (Chen et al., 2018; Lei Wang et al., 2018),
the Yarlung Tsangpo River Basin (Sun and Su., 2021) and the Hengduan Mountains (Yu et al., 2018).
Moreover, the altitudinal precipitation gradients obtained in these studies are usually based on rain
gauge data, which may misrepresent precipitation gradient due to the poor representativeness of rain
gauges. For most parts of the TP, particularly the central and western TP, the precipitation gradient
remains unknown. Besides, the precipitation gradient may vary with different seasons and years due to
the changes in weather and meteorological conditions, and the temporal variability of the precipitation
gradient in the TP has not been investigated yet.

In previous studies, satellite precipitation products have also been used to calculate the

precipitation gradient in the TP (Liu et al., 2011). However, satellite products tend to contain large
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uncertainties and are less accurate in complex-terrain regions (Derin and Yilmaz, 2014; Henn et al.,
2018; Shen et al., 2014; Xu et al., 2017). In the western TP, where solid precipitation is dominated, the
satellite products cannot reproduce the actual spatial variability of precipitation (Li et al., 2020).
Therefore, obtaining the precipitation gradient based on satellite products seems to be undesirable in
these regions.

Recently, high-resolution atmospheric simulations have made great progress in the TP and its
surroundings and many atmospheric simulation-based precipitation datasets have been arising
(Maussion et al., 2014; Pan et al., 2012; Y. Wang et al., 2020; Zhou et al., 2021). The atmospheric
simulations are constrained by a set of physical processes and thus can well represent the influence of
topography on precipitation distribution when integrated with high resolution (Lundquist et al., 2019; Y.
Wang et al., 2018). Previous studies have demonstrated the potential of atmospheric simulations
(especially convective-permitting simulations) in capturing spatial variability of precipitation in the TP,
e.g. Zhou et al. (2021) found that the dynamically downscaled precipitation of ~3 km horizontal
resolution has high correlations with observations in the TP; Gao et al. (2020) found that a
convective-permitting simulation could better reproduce the precipitation distribution and further result
in better snow cover simulation than satellite-based products in the southeastern TP. Similar results
were also reported in the Himalayas (Collier and Immerzeel, 2015; Ouyang et al., 2021) and western
TP (Pritchard et al., 2019). These studies indicate that high-resolution atmospheric simulations can be
alternative sources for obtaining the precipitation gradient in the TP, particularly in regions like the
western TP with almost no rain gauges located.

Therefore, the main objective of this study is to obtain the altitudinal precipitation gradient for
different sub-basins of the TP based on a high-resolution atmospheric simulation-based dataset, which
can be used for assisting interpolation of in-situ data, especially in regions where rain gauges are sparse.
In addition, some studies observed remarkable seasonal variations of precipitation gradient (Li and Fu,
1984; Putkonen, 2004; Wulf et al., 2010; Zhao et al., 2011), which implies that precipitation gradient
can be related to weather conditions. However, very limited works have been done to investigate their
relationships. Therefore, this study also investigates the relations between precipitation gradients and
two meteorological factors (i.e. humidity and wind speed), to explore whether these factors can provide

potential auxiliary information for adjusting the precipitation gradient in a region.

2. Description of datasets

2.1. Precipitation datasets

The dataset used to quantify the precipitation gradients is produced by Jiang et al. (2021). It covers
4
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the whole TP and is generated by combing the ERA5 reanalysis (Hersbach et al., 2021) with the
high-resolution simulated precipitation produced by Zhou et al. (2021). Three main steps are involved
to produce this dataset. First, a short-term high-resolution WRF (Skamarock et al., 2008) simulation
with a horizontal resolution of 1/30< is conducted and the short-term simulation covers two
representative years (2013 and 2018). Second, the precipitation from ERAS5 is corrected with the
high-resolution simulated precipitation using a CDF (Cumulative Distribution Function) matching
method. Third, the high-resolution simulation is resampled to the spatial resolution of ERA5 and a
convolutional neural network-based model is trained using the resampled precipitation as the input and
the original high-resolution simulated precipitation as the target, and then the corrected ERA5
precipitation is downscaled to a resolution of 1/30< using the trained model. This downscaled
precipitation shows similar performance in describing the spatial variability of precipitation to the WRF
simulations produced by Zhou et al. (2021), while it has a wide temporal coverage spanning 39 years
from 1980 to 2018, which allows us to investigate the interannual variations of precipitation gradients
in the TP. For convenience, this downscaled precipitation is called ERA5 _CNN hereafter. Previous
evaluation of this dataset showed that it is skillful in reflecting spatial variability of precipitation and its
bias has been much reduced compared with other analysis data. Nevertheless, it still overestimates the
precipitation amount in the TP (Jiang et al., 2021).

This study also investigates the performance of IMERG (Integrated Multi-satellite Retrievals for
Global Precipitation Measurement; Huffman et al., 2019) and HAR V2 (High Asia Refined Analysis
version 2; X. Wang et al., 2020) in reflecting altitude dependence of precipitation, and compares it with
that from ERA5_CNN. IMERG is the latest generation of global satellite-based precipitation products.
The final run version of IMERG V06 with a horizontal resolution of 0.1° is used in this study, which
has applied gauge observations to correct the satellite estimates. HAR V2 is produced by dynamically
downscaling the ERAS reanalysis using the WRF model. It also covers the whole TP but has a coarser
horizontal resolution (10 km) than ERA5_CNN.

Observations from six rain gauge networks are used in this study. Five rain gauge networks with
relatively high density but covering small sub-regions of the TP are used to validate the altitude
dependence of precipitation in these gridded datasets at small spatial scales. Details about the five rain
gauge networks are given in Table 1 and their distributions are shown in Fig. 1. Besides, the network
from the CMA (China Meteorological Administration) is also used in this study, which covers a large
area of the TP but has scarce gauge density. Therefore, this network is used for quantifying the bias in

ERA5_CNN in the TP.
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Figure 1 (a) Topography of the Third Pole (TP) region and the boundaries of five sub-regions of the TP,
along with the distribution of the five rain gauge networks. The black points represent the rain

gauges. (b) The boundary of the 388 sub-basins in the TP. Fig. 1b shows the area above 2500 m

135

a.s.l. The boundaries of the TP and the five sub-regions are derived from Zhang (2019).

Table 1 Basic information about the six rain gauge networks used in this study.

Rain gauge Temporal Number of
Source
network coverage gauges
Yarkant River
2014.01-2015.12 28 (Kan et al., 2018)
Basin
Bayi Basin 2018.07-2018.09 4 (Han et al., 2020)
Mingjiang River The Hydrological Bureau of the Ministry of
2017.01-2017.12 375
Basin Water Resources (MWR) in China
Yadong valley  2018.07-2018.09 9 (YYang, 2020)
The Department of Hydrology and
Nepal 2014.01-2016.12 283
Meteorology (DHM) in Nepal
Whole TP 1980.01-2018.12 95 The China Meteorological Administration
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2.2. Other datasets

The elevation data used in this study is from the NASA Shuttle Radar Topographic Mission
(SRTM), which provides global digital elevation data (DEM) at a resolution of 90 m. The 90-m DEM is
resampled to 1/30° by averaging the elevation of all 90-m grids within a 1/30°grid to match the
horizontal resolution of the precipitation data.

The ERAGS reanalysis data of near-surface humidity and wind speed are also used to explore the

relations between precipitation gradients and meteorological factors.

3. Method

The precipitation gradients are calculated based on a linear regression between precipitation and
altitudes, which can be expressed as follow:
P=axH+b, 1)
Where P is average precipitation (unit in mm.day) for a specific period, H is altitude (unit in 100 m),
a is the absolute precipitation gradient (APG; unit in mm.day1.100 m) within a specific region, and b
is the intercept of the regression equation. In this study, the regression equation is fitted in 388
sub-basins of the TP above the 2500 m a.s.l. contour. The geometries of the 388 sub-basins (shown in
Fig. 1b) are obtained from the HydroATLAS database (Linke et al., 2019), which provides twelve
nested levels of sub-basins for the global. The level 6 sub-basins are applied in this study and these
sub-basins have areas ranging from 2.91 km? to 120135.00 km?. The relatively small size of these
sub-basins can ensure that the grids used to fit the equations are dominated by similar prevailing winds.
Moreover, the basin-scale precipitation gradient is easier to be applied for hydrological applications
than the gridded precipitation gradient. The value of precipitation gradient for a sub-basin is given only
when the following three principles are met: (1) the number of grids within the sub-basin should not be
less than 10; (2) the standard deviation of altitude within the sub-basin should not be less than 50 m; (3)
the p-value of the Student’s t-test for the regression equation should be less than 0.05.
Although the ERA5_CNN shows good performance in representing spatial variability of
precipitation, it has a systematic bias in the TP (Jiang et al., 2021). Therefore, the relative precipitation

gradient (RPG, unit in %.100 m™) is also presented in this study. The RPG is calculated as follows:

RPG =%><100%, B

Where a is the absolute precipitation gradient from Equation (1) and P is the basin-average

7
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precipitation. For calculating the RPG, P should be greater than 0.1 mm.day*.
To quantify the bias of ERA5_CNN, both absolute bias (Abias) and relative bias (Rbias) are used

in this study, calculated as follows.

Abias=%zn:(Mi ~0), ©
i=1

Z(Mi _Oi)
Rbias = &———, 4)

M
i=1

Where M, and O, are the precipitation from ERA5_CNN and in-situ data, respectively, and n is the

number of samples.
Besides, the coefficient of variation (CV) is used to quantify the spatiotemporal variability of

variables, which is defined as follow in this study.

cv =", ©)

Where ¢ and | ,u| are the standard deviation and absolute mean of a series of samples, respectively. The

CV is dimensionless. The closer the CV value is to zero, the smaller the dispersion is.

4. Results
4.1. Validation of the altitude dependence of precipitation

The altitude dependence of precipitation from ERA5_CNN is compared with that from rain gauge
data in the five networks mentioned in section 2.1. For comparison, the altitude dependence of
precipitation from two widely-used precipitation datasets, i.e. IMERG and HAR V2, are also

investigated.
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185 Figure 2 Comparison between the altitude dependence of precipitation from ERA5_CNN, IMERG and
HAR V2 and that from rain gauge data in five networks. The lines show the average precipitation
amount in each altitude zone and the bars denote the number of rain gauges in each zone. The
numbers in the figures give the spatial correlations of precipitation amount between the rain gauge
data and precipitation products. The ‘*’ represents the correlation is significant at the 95%

190 confidence level.

In the Yarkant River basin (Fig. 2a), all datasets reproduce the observed local precipitation
maxima at 2400-2800 m a.s.l. Nevertheless, remarkable differences exist in these datasets. HAR V2 has
the highest spatial correlation (0.93) with rain gauge data, but presents a sharp precipitation gradient
above 4000 m a.s.l. ERA5_CNN also shows similar altitude dependence of precipitation to gauge data

195 but yields another local precipitation maximum at 1600-2000 m a.s.l., leading to a smaller correlation
of 0.67. IMERG slowly changes with altitude with the lowest correlation of 0.22.

In the Bayi Basin (Fig. 2b), ERA5_CNN shows the most consistent pattern with rain gauge data
with a correlation of 0.95, although it generally overestimates precipitation. In terms of the other two
datasets, precipitation from IMERG decreases with altitude above 4600 m a.s.l., while precipitation

200 from HAR V2 has a similar magnitude at all altitudes.

In the Minjiang River Basin, Fig. 2c shows that precipitation from rain gauge data increases with
9
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altitude below 1200 m a.s.l., then decreases with altitude between 1200-3200 m a.s.l., then rises again
above 3200 m a.s.I. ERA5_CNN overestimates precipitation in this basin, but it shows the most similar
altitude dependence to rain gauge data and has the highest correlation of 0.74. HAR V2 also generally
reproduces the observed pattern but changes slowly with altitude above 1600 m a.s.l, yielding a smaller
correlation of 0.53. However, precipitation from IMERG changes little with altitudes in the Minjiang
River Basin.

In the Yadong Valley (Fig. 2d), ERA5_CNN firstly increases slowly and then decreases sharply
with altitude and has a spatial correlation of 0.85 with gauge data, although it has a higher altitude of
precipitation maximum than rain gauge data. Precipitation from HAR V2 also shows a similar pattern
to that of rain gauge data above 3600 m a.s.l., but a different pattern below 3600 m a.s.l. In contrast,
The altitude dependence of precipitation from IMERG is opposite to the observed one in the Yadong
Valley.

In Nepal (Fig. 2e), precipitation amount from rain gauge data shows large fluctuation among
different altitude bands. Generally, it increases with altitude below 2000 m a.s.l. and then decreases
beyond this altitude level. It can be found that ERA5_CNN can better represent the altitude dependence
of observed precipitation than the other two products (the spatial correlations with gauge data for
ERA5_CNN, HAR V2 and IMERG are 0.88, 0.41 and 0.81, respectively), particularly in reproducing
the great fluctuation of precipitation.

Overall, the high-resolution atmospheric simulation-based ERA5_CNN can reasonably represent
the altitude dependence of precipitation in the TP and generally shows better performance than the
widely-used IMERG and HAR V2. Therefore, it is used to quantify the spatial and temporal variability
of RPGs in the TP.

4.2. Spatial patterns of precipitation gradients

Figure 3a shows the spatial distribution of the correlations between annual average precipitation
from 1980 to 2018 and altitudes in each sub-basin. As shown in Fig. 3a, there are strong correlations
between precipitation and altitude in many sub-basins with absolute correlations larger than 0.50 at
about 55% of the sub-basins, and the correlations are significant at the 95% confidence level at most
sub-basins. Therefore, it is feasible to interpolate precipitation based on precipitation gradients in the

TP.

10
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Figure 3 Spatial distribution of (a) correlations between the annual average precipitation and altitude
for all grids within each basin, (b) absolute precipitation gradients (APGs, precipitation change per
100 m altitude difference) and (c) relative precipitation gradients (RPGs, APGs divided by
235 basin-average precipitation). The APGs and RPGs are calculated based on annual precipitation
averaged from 1980 to 2018. The dots in Fig. 3a represent the correlations significant at the 95%
confidence level. In Fig. 3b and c, the sub-basins with weak relationships between precipitation

and altitude or no data value of RPG are filled with white.

Generally, at the annual scale, most sub-basins (about 81% of the total) in the TP have a positive

240 APG and the sub-basins with negative APG are mainly distributed in the Himalayas, the Hengduan
mountains in the eastern edge of the TP and the Western Kunlun in the northwestern TP, resulting in an
average APG across all sub-basins of 0.05 mm.day*.100 m™. As shown in Fig. 3b and Table 2, large
positive APG mainly occurs in the Inner TP, with an average value of 0.07 mm.day*.100 m™, followed

by the eastern TP (covering the Yellow, the Yangtze, the Lancang and the Nu River Basin) (0.06

245 mm.day*.100 m?), the Yarlung Tsangpo River Basin and the Qaidam Basin (0.05 mm.day*.100 m),
and the upper Indus has the smallest APG of 0.04 mm.day2.100 m™. In some specific regions, such as

the Qilian Mountains (Wang et al., 2009; Han et al., 2020) and some small basins in the southern TP (Li

Wang et al., 2018; Zeng et al., 2021; Zhang et al., 2015) where the observed precipitation generally
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increases with altitude, our study reports consistent results. Notably, most sub-basins along the
Himalayas show large negative APG. This is also consistent with previous studies (Andermann et al.,
2011; Bookhagen and Burbank, 2006; Chen et al., 2020; Salerno et al., 2015; Tang et al., 2018), which
have demonstrated that there is a shape decrease in precipitation above 2500 m a.s.l. in this region.

As shown in Fig. 3c, the annual RPG generally has a similar spatial pattern to APG but shows
large values in the Qaidam Basin. The average RPG across all the sub-basins of the TP is 4.25 %.100
m. However, the RPGs show great spatial variability, ranging from -5.23 %.100 m™ to more than
20.00 %.100 mt. Quantitatively, the average RPGs within five sub-regions of the TP are shown in
Table 2. The Qaidam Basin has the largest value of 11.26 %.100 m™, followed by the Inner TP with a
value of 7.08 %.100 m*, and then the Upper Indus with a value of 3.17 %.100 m™. The Yarlung
Tsangpo River Basin and the eastern TP have the RPG of 3.00 %.100 m* and 2.90 %.100 m,
respectively. Generally, the spatial pattern of RPG shown in our study is in agreement with the result of
Guo et al. (2016), which pointed out that large precipitation gradients are mainly in the Qaidam Basin

but small in the Hengduan Mountains in the southeastern TP.

Table 2 The APG and RPG averaged across the sub-basins within the five sub-regions and the whole
TP with respect to different seasons. ETP: eastern TP; YTR: Yarlung Tsangpo River Basin; ITP: Inner
TP; QDM: Qaidam Basin; UID: Upper Indus

ETP YTR ITP QDM uibD TP

APG (mm.day*.100 m™?)

Winter 0.01 0.01 0.01 0.01 0.04 0.02
Spring 0.04 0.02 0.04 0.04 0.04 0.04
Summer 0.16 0.13 0.19 0.10 0.05 0.11
Autumn 0.05 0.03 0.05 0.03 0.02 0.04
Annual 0.06 0.05 0.07 0.05 0.04 0.05

RPG (%. 100 m)

Winter 4.01 6.04 13.20 7.53 3.65 5.06
Spring 2.76 6.04 8.99 11.69 3.90 5.11
Summer 3.21 2.87 6.67 10.47 2.81 4.20
Autumn 242 351 7.39 11.37 3.02 4.33
Annual 2.90 3.00 7.08 11.26 3.17 4.25

4.3 Temporal variation of precipitation gradients

4.3.1 Seasonal patterns

12



The APG and RPG at each basin are also calculated based on the seasonal average precipitation,
and presented in Fig. 4 and Fig. 5, to explore the seasonality of the precipitation gradient.

270 As shown in Fig. 4 and Table 2, the absolute values of APG in summer are remarkably larger than
those in other seasons, with an averaged value across all sub-basins in the TP of 0.11 mm.day*.100 m™,
while they are 0.02 mm.day2.100 m in winter, and 0.04 mm.day*.100 m™ in spring and autumn. Such
a seasonal pattern is not surprising because a large precipitation amount tends to result in a large value
of APG and vice versa. Figure 5 shows the spatial distribution of RPG in the four seasons. In winter,

275 precipitation in some sub-basins is very small, therefore, the RPG is not calculated in these basins and
masked with white. Unlike APG, RPGs in spring and autumn are larger than those in summer, which is
especially true in the central TP. In winter, although many sub-basins are masked as no data, most of
the remained sub-basins have the largest RPG among the four seasons. Table 2 shows that the values of
RPG averaged across all the sub-basins in the TP are 5.06 %.100 m™ in winter, 5.11 %.100 m™ in

280 spring, 4.20 %.100 m in summer and 4.33 %.100 m in autumn.
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Figure 4 Spatial distribution of APGs in (a) winter (December to February), (b) spring (March to May),
(c) summer (June to August) and (d) autumn (September to November). The APGs are calculated
based on seasonal precipitation averaged from 1980 to 2018. The sub-basins with weak

285 relationships between precipitation and altitude are filled with white.

Particularly, remarkable seasonal variation of precipitation gradient (both APG and RPG) can be
found in the Himalayas. In winter, most of the sub-basins in this region have a positive precipitation

gradient, however, it can be seen from Fig. 4c and 5c that this region is dominated by negative

13
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gradients in summer. In spring (Fig. 4b and 5b) and autumn (Fig. 4d and 5d), the western Himalayas
has a positive gradient and the eastern Himalayas has a negative gradient. This phenomenon was also
observed by Wulf et al. (2010) who found that in the northwest Himalayas the precipitation gradients
are reversed between winter and summer, as well as by Putkonen (2004) who reported that in the Nepal
Himalayas monsoon precipitation maximum occurs at the altitude of about 3000 m a.s.l., while

precipitation continuously increases with altitude in dry seasons.
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Figure 5 Same as Fig. 4 but for RPGs. The sub-basins with weak relationships between precipitation

and altitude or no data value of RPG are filled with white.

In summary, the precipitation gradient (including both APG and RPG) in the TP shows great
seasonal variation and it may be desirable to interpolate seasonal or monthly precipitation with

precipitation gradients calculated at the corresponding season or month, especially in the Himalayas.
4.3.2 Interannual variations

The CV and trend for annual APG and RPG during 1980-2018 are calculated for each sub-basin of
the TP. As shown in Fig. 6a and 6b, the CV values for both APG and RPG at most sub-basins are less
than 0.2, implying low inter-annual variability of precipitation gradient. Fig. 6¢ shows that APG has a
positive trend at most sub-basins, especially in the Inner TP, which was also reported by Guo et al.
(2016) who used in-situ data to characterize the precipitation gradients in the TP. Such a pattern of

precipitation gradient trend is mainly because the TP has overall become wetter in recent decades,

14



especially in the central and northern TP (Sun et al., 2020; X. Wang et al., 2018; Yang et al., 2014). In
contrast, RPG does not show a positive trend at most sub-basins, and its trend in fewer basins is
310 significant at the 95% confidence level. The average value of the RPG trend across all sub-basins is
-0.0042 %.100 m™year?®. Therefore, RPG is less sensitive to the climatic change of precipitation
amount, and the RPG obtained in a certain period is expected to be more representative than APG when

applying for precipitation interpolation under climate change.
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315 Figure 6 Spatial distribution of (a) and (b) the coefficient of variation (CV) and (c) and (d) trend for
annual APGs and RPGs during 1980 to 2018. The dots in Fig. 6¢ and d represent trend significant
at the 95% confidence level. The CV and trend are calculated only for sub-basins without missing

APG or RPG during 1980-2018.

5. Discussions
320 5.1 Uncertainties in APGs and RPGs

This study uses the atmospheric simulation-based ERA5_CNN to characterize the precipitation
gradients in the TP. However, the ERA5_CNN has biases in the TP, leading to uncertainties in the
calculated APGs and RPGs. Figure 7 shows the Abias and Rbias of annual precipitation from
ERA5_CNN during 1980-2018 at the locations of CMA stations. It can be found that ERA5_CNN

325 generally overestimates precipitation in the TP with Abias ranging from -365.99 mm.year?! to more
than 1500.00 mm.year? and Rbias ranging from about -30.00% to more than 150.00%. This result is
similar to previous works that demonstrated overall wet bias in atmospheric simulation in the TP (Gao

et al., 2015; Y. Wang et al., 2020; Zhou et al., 2021). According to the definition of APG and RPG, if
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Abias is spatially homogeneous (i.e. the ERA5_CNN has the same absolute value of overestimation or
underestimation at all locations in a region), the slopes of the regression line derived from ERA5_CNN
and rain gauge data are the same because these two lines are parallel (as shown in Fig. S1a); if Rbias is
uniform in space (i.e. the ERA5_CNN has the same percentage of overestimation or underestimation),
the calculated RPG is consistent with that from rain gauge data because both APG and the
basin-average precipitation in Equation 2 have the same percentage of bias, which is also illustrated in
Fig. S1b. By comparing Fig. 7a and 7b, we can find that Rbias is more homogeneous than Abias (the
CV value for all CMA stations is 1.24 for the Rbias, while it is 1.59 for the Abias). In this case, it is
expected that RPG derived from the ERA5_CNN is closer to the observed one than APG and more
appropriate for interpolating rain gauge data.

Nevertheless, the Rbias still has great spatial variability. Given the complexity of biases in
ERA5_CNN, we recommend comparing the APG and the RPG and selecting the better one for specific

applications.

(a) Abias (mm.yecar!) (b) Rbias (%)
40 F 7 ‘ ‘ ' 1 ' '

351

30 1

70 80 90 100 70 80 90 100

-100 0 100 200 -10 0 10 20

Figure 7 Spatial distribution of (a) absolute bias (Abias) and (b) relative bias (Rbias) for annual
precipitation from ERAS5 CNN during 1980-2018 at stations of China Meteorological

Administration.
5.2 Relations between precipitation gradients and relative humidity and wind speed

Previous works mainly focused on the influence of static topographic parameters (e.g. altitude,
slope, aspect and exposure) on precipitation gradient (Basist et al., 1994; Diodato, 2005; Sevruk, 1997;
Singh et al., 1995). However, section 4 shows that precipitation gradients are likely related to
meteorological conditions. Therefore, this section discusses the possible factors that may influence the
spatiotemporal variations of precipitation gradient. The near-surface relative humidity and wind speed
are selected as the potential factors because they should be the indicators of mass and dynamic

conditions for the formation of precipitation, respectively. Given that the magnitude of APG is likely to
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be influenced by precipitation amount (as shown in Fig. 4) and the RPG is more informative, this
section only discusses the relations between the RPG and the two meteorological factors.

Our results show that large RPG mainly occurs in the Qaidam basin and Inner TP characterized by
dry air conditions. In addition, RPG has larger values in winter and spring than in summer. Similar
results have been reported in the Himalayas (Putkonen, 2004), the Xinjiang region (Zhao et al., 2011)
and the Qinling Mountains (Li and Fu, 1984), which found that the altitude with precipitation
maximum in dry seasons is higher than that in wet seasons. These results indicate that there may be a
close relationship between RPG and the humidity of air mass. Therefore, the relationships between
annual average relative humidity and annual RPG are investigated in the whole TP and its five
sub-regions. As shown in Fig. 8, there is a good linear relationship (R=-0.68) between relative humidity
and RPG when considering all the sub-basins in the TP (Fig. 8a). In terms of each sub-region, the
negative correlation between relative humidity and RPG is relatively small in the Yarlung Tsangpo
River Basin (Fig. 8c) and the Inner TP (Fig. 8d), while they are larger than 0.5 in the other three
sub-regions (Figs. 8b, e and f). Overall, the RPG generally decreases with increasing relative humidity
in all sub-regions, indicating that precipitation tends to occur at lower altitudes when the relative
humidity is larger, which is easy to understand because air masses with lower humidity tend to be

saturated after a higher uplift.
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Figure 8 Relationships between annual RPGs and (a-f) basin-average relative humidity (RH) and (g-I)
wind speed (Va) in different sub-regions of the TP. ETP: eastern TP; YTR: Yarlung Tsangpo River

Basin; ITP: Inner TP; QDM: Qaidam Basin; UID: Upper Indus

The relations between near-surface wind speed and RPG were also tested (Fig. 8g-1). It can be
found that three sub-regions have high positive correlations (R>0.45) between RPG and wind speed,

and the Yarlung Tsangpo River Basin and the Inner TP have lower positive correlations (R=0.20 and
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0.17, respectively). The correlation coefficient for the whole TP is as high as 0.59, indicating RPG
increases with increasing wind speed. The positive correlations between precipitation gradient and
wind speed reported in this study have also been demonstrated in previous studies, e.g. Johansson and
Chen (2003) found that precipitation in Sweden increases with increasing wind speed on the upwind
side of mountains; Hill (1983) also confirmed that wind direction and wind speed could have great
impacts on the distribution of precipitation enhancement in mountainous regions. Moist air blocked by
upwind barriers usually leads to enhanced precipitation in the windward slopes, which is one of the
main mechanisms of orographic precipitation in mountainous regions (Houze, 2012; Roe, 2005). Thus,
the strong wind tends to bring more moisture to high altitudes and further results in precipitation
enhancement in high altitudes. That is why strong wind tends to result in larger positive precipitation

gradients.

5.3 Impact of spatial scale on the estimation of precipitation gradients

In this study, the precipitation gradient is fitted using all grids with a specific sub-basin, therefore,
the estimated precipitation gradient is likely to be spatial scale-dependent. Accordingly, we investigate
and compare precipitation gradients at different spatial scales by calculating the precipitation gradients
based on four sub-basin levels provided by the HydroATLAS database. Figure 9 shows the spatial
distribution of the annual RPG calculated at different sub-basin levels (a lower sub-basin level has a
larger spatial scale). The results of APG are similar to those of RPG and thus not shown. It can be seen
that RPGs calculated at different spatial scales differ greatly, especially in the southern and eastern TP
where the topography is complex. For example, the RPGs are negative in the southern TP when
calculated for large river basins (Fig. 9a), while they tend to be positive in sub-basins of these large
river basins. This is similar to the results of Sun and Su (2020) who reported that precipitation overall
decreases with increasing altitude in the Yarlung Tsangpo River Basin but shows the opposite variation
in some small sub-basins. Taking the TP as a whole, we can find that the values of RPG increase from
L4 to L6 and remain relatively stable after L6 (Fig.10a). In addition, the correlations between
precipitation and altitude tend to be larger at smaller spatial scales (Fig. 10b). This indicates that
precipitation variations at large scales are more controlled by large-scale atmospheric circulations but at

small scales are more dependent on local topography.
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bottom and top edges of the box represent 25th and 75th percentiles, respectively. The whiskers

represent the extreme value. The red sign “+” shows the RPGs beyond the extreme value.

415 6. Conclusions

In this study, the altitudinal precipitation gradient in the TP is investigated at the basin scale using
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a high-resolution atmospheric simulation-based precipitation dataset and its spatiotemporal variability
is analyzed.

The performance of the high-resolution atmospheric simulation-based dataset in describing the
altitude dependence of precipitation is firstly validated using observations from five rain gauge
networks. The results show that this dataset can reasonably reproduce the observed altitude dependence
of precipitation and generally performs better than the widely-used IMERG and HAR V2 in the TP.

Both absolute precipitation gradient (APG) and relative precipitation gradient (RPG) for annual
and seasonal average precipitation are calculated for 388 sub-basins of the TP. Most sub-basins of the
TP have positive precipitation gradients, and negative gradients are mainly distributed in the Himalayas,
the Hengduan mountains and the Western Kunlun. The APGs are less than -0.05 mm.day.100 m in
the central and eastern Himalayas but greater than 0.06 mm.day.100 m™ in most sub-basins of the
central TP. Meanwhile, the annual RPGs range from about -5.00%.100 m? in the Himalayas to more
than 20.00%.100 m™ in the Qaidam Basin. Particularly, both APG and RPG show large values in the
Inner TP. The seasonal variations of APG are corresponding to the seasonal variability of precipitation
amount, with larger APG in wet seasons but smaller in dry seasons. However, the RPG has opposite
seasonal variations.

The variations of precipitation gradient are related to meteorological conditions. Analyses show
that the RPGs decrease with increasing relative humidity but increase with increasing wind speed. The
relationships between RPGs and the two factors are strong with absolute correlations greater than 0.50
for both factors when taking all sub-basins in the TP into account. The strong correlations suggest that
relative humidity and wind speed can be potential indicators to adjust RPG regionally.

In addition, our results show that the precipitation gradient in the TP is spatial scale-dependent.
The precipitation gradients are positive in the northern TP but negative in the southern TP at larger
spatial scales, however, they tend to be positive at smaller spatial scales, even in the southern TP. As the
spatial scale decreases, the precipitation gradient first increases and then remains relatively stable. This
is because the impact of large-scale atmospheric circulations on precipitation distribution is reduced
and topography is the key determinant at a small scale, highlighting the importance of calculating
precipitation gradient at a relatively small spatial scale.

In summary, our study presents the spatiotemporal variability of precipitation gradient in the TP,
which can be used as a reference for assisting precipitation interpolation. Nevertheless, uncertainties
still exist (as shown in section 5.1). Further works are expected to evaluate the accuracy of the obtained
precipitation gradients in the TP, which requires reliable observations, e.g. high-quality radar

observation or high-density rain gauge networks.
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