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Abstract: Altitudinal precipitation gradient plays an important role in the interpolation of precipitation 

in the Third Pole (TP) region, where the topography is very complex but in-situ data are very sparse. 15 

This study proves that the altitude dependence of precipitation in the TP can be reasonably reproduced 

by a high-resolution atmospheric simulation-based dataset called ERA5_CNN. The precipitation 

gradients, including both absolute (APG) and relative gradients (RPG), for 388 sub-basins of the TP 

above 2500 m a.s.l. are calculated based on the ERA5_CNN. Results show that most of the sub-basins 

have positive precipitation gradients, and negative gradients are mainly found along the Himalayas, the 20 

Hengduan Mountains and the Western Kunlun. The annual APG and RPG averaged across all 

sub-basins of the TP are 0.05 mm.day-1.100 m-1 and 4.25 %.100 m-1, respectively. The values of APG 

are large in wet seasons but small in dry seasons, while the RPG shows opposite variations. Further 

analyses demonstrate that the RPGs have negative correlations with relative humidity but positive 

correlations with wind speed, which is likely because dry air tends to reach saturation at high altitudes, 25 

while stronger wind can bring more humid air to high altitudes. In addition, we find that precipitation 

gradients tend to be positive at small spatial scales compared to those at large scales, mainly because 

local topography plays an important role in determining precipitation distribution at small scales. These 

findings on the spatiotemporal variations of precipitation gradients provide useful information for 

interpolation of precipitation in the TP. 30 

Keywords: precipitation gradient; the Third Pole; high-resolution atmospheric simulation; 

spatiotemporal variation 
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1. Introduction 

Gridded precipitation is a key input for many hydrological and ecological models when applied to 35 

a regional study. Typically, the spatial distribution of precipitation in a region can be obtained by 

interpolating the in-situ data. In regions with flat terrain and dense rain gauge networks, different 

interpolation methods (e.g. Thiessen polygons, inverse distance weighting, Kriging) can result in 

similar distributions of precipitation. In mountainous regions, precipitation has great spatial 

heterogeneity and sparse rain gauges with limited spatial representativeness make the interpolation of 40 

precipitation challenging in these regions. Relations between precipitation and other environmental 

factors (e.g. topography and vegetation) play an important role in the interpolation of precipitation, 

especially in mountainous regions. Among the many environmental factors, altitude is considered to 

have significant impact on the distribution of precipitation. Several widely-used interpolation models 

have taken altitude as a covariant, such as PRISM (Daly et al., 1997) and ANUSPLIN (Hutchinson, 45 

1991). Therefore, quantifying the precipitation gradient is greatly important in mountainous regions. 

As the main source of many large rivers in Asia, the Third Pole (TP) is a typical mountainous 

region in the world, characterized by complex terrain and high altitude. Rain gauges in the TP are 

sparse and usually located in lowland areas, where the weather conditions are much different from 

those in high altitudes (Chen et al., 2012; Daly et al., 2002). Therefore, interpolating in-situ data to 50 

data-sparse high altitudes is essential for hydrometeorological studies in this region, as reported in 

many previous studies that taking the precipitation gradient into account in hydrological modeling 

results in better simulations (Immerzeel et al., 2014; Li Wang et al., 2018; Zhang et al., 2015). 

Currently, studies on the altitude dependence of precipitation are mostly in the eastern TP (Cuo and 

Zhang, 2017; Guo et al., 2016) and some sub-regions, such as the Himalaya (Ouyang et al., 2020; 55 

Salerno et al., 2015; Yang et al., 2018), the Qilian Mountains (Chen et al., 2018; Lei Wang et al., 2018), 

the Yarlung Tsangpo River Basin (Sun and Su., 2021) and the Hengduan Mountains (Yu et al., 2018). 

Moreover, the precipitation gradients obtained in these studies are usually based on rain gauge data, 

which may misrepresent precipitation gradient due to the poor representativeness of rain gauges (they 

are usually located in valleys or lowland areas). For most parts of the TP, particularly the central and 60 

western TP, the precipitation gradients remain unknown. Besides, the precipitation gradients may vary 

with different seasons and years due to the changes in weather and meteorological conditions, and the 

temporal variability of the precipitation gradient in the TP has not been investigated yet.  

 In previous studies, satellite precipitation products also have been used to calculate the 

precipitation gradients in the TP (Liu et al., 2011). However, the satellite products contain large 65 
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uncertainties and are less accurate in complex-terrain regions (Derin and Yilmaz, 2014; Henn et al., 

2018; Shen et al., 2014; Xu et al., 2017). In the western TP, where solid precipitation is dominated, the 

satellite products cannot reproduce the actual spatial variability of precipitation (Li et al., 2020). 

Therefore, obtaining the precipitation gradients based on satellite products seems to be undesirable in 

these regions.  70 

Recently, high-resolution atmospheric simulations have made great progress in the TP and its 

surroundings and many atmospheric simulation-based precipitation datasets have been arising 

(Maussion et al., 2014; Pan et al., 2012; Y. Wang et al., 2020; Zhou et al., 2021). The atmospheric 

simulations are constrained by a set of physical processes and thus can well represent the influence of 

topography on precipitation distribution when integrated with high resolution (Lundquist et al., 2019; Y. 75 

Wang et al., 2018). Previous studies have demonstrated the potential of atmospheric simulations 

(especially convective-permitting simulations) in capturing spatial variability of precipitation in the TP, 

e.g. Zhou et al. (2021) found that the downscaled precipitation of ~3 km horizontal resolution, which 

was generated by the WRF model (Skamarock et al., 2008), has high correlations with observations in 

the TP; Gao et al. (2020) found that a convective-permitting simulation could better reproduce the 80 

precipitation distribution and further result in better snow cover simulation than satellite-based products 

in the southeastern TP. Similar results were also reported in the Himalayas (Collier and Immerzeel, 

2015; Ouyang et al., 2021) and western TP (Pritchard et al., 2019). These studies indicate that 

high-resolution model simulations can be alternative sources for obtaining the precipitation gradients in 

the TP, particularly in regions like the western TP with almost no rain gauges located. 85 

Therefore, the main objective of this study is to obtain the altitudinal precipitation gradient for 

different sub-basins of the TP based on a high-resolution atmospheric simulation-based dataset, which 

can be used for assisting interpolation of in-situ data, especially in regions where rain gauges are sparse. 

In addition, some studies observed remarkable seasonal variations of precipitation gradients (Li and Fu, 

1984; Putkonen, 2004; Wulf et al., 2010; Zhao et al., 2011), which implies that precipitation gradients 90 

can be related to weather conditions. However, very limited works have been done to investigate the 

relationships between precipitation and meteorological factors. Therefore, this study also investigates 

the relations between precipitation gradients and two meteorological factors (i.e. humidity and wind 

speed), to explore whether these factors can provide potential auxiliary information for adjusting the 

precipitation gradient in a region. 95 

2. Description of datasets 

2.1. Precipitation datasets 
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The dataset used to quantify the precipitation gradients is produced by Jiang et al. (2021). It covers 

the whole TP and is generated by combing the ERA5 reanalysis (Hersbach et al., 2021) with the 

high-resolution simulated precipitation produced by Zhou et al. (2021). Three main steps are involved 100 

to produce this dataset. First, a short-term high-resolution WRF simulation with a horizontal resolution 

of 1/30° is conducted and the short-term simulation covers two representative years (2013 and 2018). 

Second, the precipitation from ERA5 is corrected with the high-resolution simulated precipitation using 

a CDF (Cumulative Distribution Function) matching method. Third, the high-resolution simulation is 

resampled to the spatial resolution of ERA5 and a convolutional neural network-based model is trained 105 

using the resampled precipitation as the input and the original high-resolution simulated precipitation 

as the target, and then the corrected ERA5 precipitation is downscaled to a resolution of 1/30° using the 

trained model. This downscaled precipitation shows similar performance in describing the spatial 

variability of precipitation to the WRF simulations produced by Zhou et al. (2021), while it has a wide 

temporal coverage spanning 39 years from 1980 to 2018, which allows us to investigate the interannual 110 

variations of precipitation gradients in the TP. For convenience, this downscaled precipitation is called 

ERA5_CNN hereafter. Previous evaluation of this dataset showed that it is skillful in reflecting spatial 

variability of precipitation and its bias has been much reduced compared with other analysis data. 

Nevertheless, it still overestimates precipitation amount in the TP (Jiang et al., 2021). 

This study also investigates the performance of the IMERG (Integrated Multi-satellite Retrievals 115 

for Global Precipitation Measurement; Huffman et al., 2019) and HAR V2 (High Asia Refined 

Analysis version 2; X. Wang et al., 2020) in reflecting altitude dependence of precipitation, and 

compares it with that from the ERA5_CNN. IMERG is the latest generation of global satellite-based 

precipitation products. The final run version of IMERG V06 with a horizontal resolution of 0.1° is 

used in this study, which has applied gauge observations to correct the satellite estimates. The HAR V2 120 

is produced by dynamically downscaling the ERA5 reanalysis using the WRF model. It also covers the 

whole TP but has a coarser horizontal resolution (10 km) than ERA5_CNN. 

Observations from six rain gauge networks are used in this study. Five rain gauge networks with 

relatively high gauge density but covering small sub-regions of the TP are used to validate the altitude 

dependence of precipitation in these gridded datasets at small spatial scales. Details about the five rain 125 

gauge networks are given in Table 1 and their distributions are shown in Fig. 1. Besides, the network 

from the CMA (China Meteorological Administration) is also used in this study, which covers a large 

area of the TP but has scarce gauge density. Therefore, this network is used for quantifying the bias in 

ERA5_CNN in the TP. 

 130 
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Figure 1 (a) Topography of the Third Pole (TP) region and the boundaries of five sub-regions of the TP, 

along with the distribution of the five rain gauge networks. The black points represent the rain 

gauges. (b) The boundary of the 388 sub-basins in the TP. Fig. 1b shows the area above 2500 m 

a.s.l. The boundaries of the TP and the five sub-regions are derived from Zhang (2019).  135 

Table 1 Basic information about the six rain gauge networks used in this study. 

Rain gauge 

network 

Temporal 

coverage 

Number of 

gauges 
Source 

Yarkant River 

Basin 
2014.01-2015.12 28 (Kan et al., 2018) 

Bayi Basin 2018.07-2018.09 4 (Han et al., 2020) 

Mingjiang River 

Basin 
2017.01-2017.12 375 

The Hydrological Bureau of the Ministry of 

Water Resources (MWR) in China 

Yadong valley 2018.07-2018.09 9 (Yang, 2020) 

Nepal 2014.01-2016.12 283 
The Department of Hydrology and 

Meteorology (DHM) in Nepal 

Whole TP 1980.01-2018.12 95 
The China Meteorological Administration 

(CMA) 
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2.2. Other datasets 

The elevation data used in this study is from the NASA Shuttle Radar Topographic Mission 

(SRTM), which provides global digital elevation data (DEM) at a resolution of 90 m. The 90-m DEM is 

resampled to 1/30° to match the horizontal resolution of the precipitation data. The resample is 140 

achieved by averaging the elevation of all 90-m grids within a 1/30° grid. 

The ERA5 reanalysis data of near-surface humidity and wind speed are also used to explore the 

relations between precipitation gradients and meteorological factors. 

3. Method 

The precipitation gradients are calculated based on a linear regression between precipitation and 145 

altitudes, which can be expressed as follow: 

P a H b=  + ,                              (1) 

Where P is average precipitation (unit in mm.day-1) for a specific period, H is altitude (unit in 100 m), 

a is the absolute precipitation gradient (APG; unit in mm.day-1.100 m-1) within a specific region, and b 

is the intercept of the regression equation. In this study, the regression equation is fitted in the 150 

sub-basins of the TP above the 2500 m a.s.l. contour line. The geometries of 388 sub-basins (shown in 

Fig. 1b) are derived from the HydroATLAS database (Linke et al., 2019), which provides twelve nested 

levels of sub-basins for the global. The level 6 sub-basins are applied in this study and these sub-basins 

have areas ranging from 2.91 km2 to 120135.00 km2. The relatively small size of these sub-basins can 

ensure that the grids used to fit the equations are dominated by similar prevailing winds. Moreover, the 155 

basin-scale precipitation gradients are easier to be applied for hydrological applications than gridded 

precipitation gradients. The value of precipitation gradient for a sub-basin is given only when the 

following three principles are met: (1) the number of grids within the sub-basin should not be less than 

10; (2) the standard deviation of altitude within the sub-basin should not be less than 50 m; (3) the 

p-value of the Student’s t-test for the regression equation should be less than 0.05. 160 

Although the ERA5_CNN shows good performance in representing spatial variability of 

precipitation, it has a systematic bias in the TP (Jiang et al., 2021). Therefore, the relative precipitation 

gradient (RPG, unit in %.100 m-1) is also presented in this study. The RPG is calculated as follows: 

100%
a

RPG
P

=  ,                         (2) 

Where a is the absolute precipitation gradient from Equation (1) and P  is the basin mean 165 

precipitation. For calculating the RPG, P  should be greater than 0.1 mm.day-1.  

To quantify the bias of ERA5_CNN, both absolute bias (Abias) and relative bias (Rbias) are used 
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in this study, calculated as follows. 
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Where 
iM  and 

iO  are the precipitation from ERA5_CNN and in-situ data, respectively, and n is the 

number of samples. 

Besides, the coefficient of variation (CV) is used to quantify the spatiotemporal variability of 

variables, which is defined as follow in this study. 

CV



= ,                                (5) 175 

Where σ and  are the standard deviation and absolute mean of a series of samples, respectively. The 

CV is dimensionless. The closer the CV value is to zero, the smaller the dispersion is. 

4. Results 

4.1. Validation of the altitude dependence of precipitation  

The altitude dependence of precipitation from ERA5_CNN is compared with that from rain gauge 180 

data in the five networks mentioned in section 2.1. For comparison, the altitude dependence of 

precipitation from two widely-used precipitation datasets, i.e. IMERG and HAR V2, are also 

investigated. 
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Figure 2 Comparison between the altitude dependence of precipitation from ERA5_CNN, IMERG and 185 

HAR V2 and that from rain gauge data in five networks. The lines show the average precipitation 

amount in each altitude zone and the bars denote the number of rain gauges in each zone. 

In the Yarkant River basin (Fig. 2a), all three datasets yield local precipitation maxima at 

2400-2800 m a.s.l., consistent with rain gauge data. However, precipitation changes against altitude are 

much different among them. HAR V2 has the highest spatial correlation (0.93) with rain gauge data, 190 

but presents a sharp precipitation gradient above 4000 m a.s.l. The altitude dependence of precipitation 

from ERA5_CNN is also similar to that of gauge data with a correlation of 0.67. IMERG slowly 

changes with altitude with the lowest correlation of 0.22.  

In the Bayi Basin (Fig. 2b), ERA5_CNN shows the most consistent pattern with rain gauge data 

with a correlation of 0.95, although it generally overestimates precipitation. In terms of the other two 195 

datasets, precipitation from IMERG decreases with altitude above 4600 m a.s.l., while precipitation 

from HAR V2 has a similar magnitude at all altitudes.  

In the Minjiang River Basin, Fig. 2c shows that precipitation from rain gauge data increases with 

altitude below 1200 m a.s.l., then decreases with altitude between 1200-3200 m a.s.l., then rises again 

above 3200 m a.s.l. ERA5_CNN overestimates precipitation in this basin, but it shows the most similar 200 

altitude dependence of precipitation to rain gauge data and has the highest correlation of 0.74. HAR V2 
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also generally reproduces the observed pattern but changes slowly with altitude above 1600 m a.s.l, 

yielding a smaller correlation of 0.53. Precipitation from IMERG shows little change with respect to 

altitudes in the Minjiang River Basin.  

In the Yadong Valley (Fig. 2d), ERA5_CNN firstly increases slowly and then decreases sharply 205 

with altitude and has a spatial correlation of 0.85 with gauge data, although the altitude of the 

precipitation maximum in ERA5_CNN is higher than that in rain gauge data. Precipitation from HAR 

V2 shows a similar pattern to that of rain gauge data above 3600 m a.s.l. but a different pattern from the 

gauge data below 3600 m a.s.l. The altitude dependence of precipitation from IMERG is completely 

opposite to the observed one in the Yadong Valley.  210 

In Nepal (Fig. 2e), precipitation amounts from rain gauge data show large fluctuation among 

different altitude bands. Generally, it increases with altitude below 2000 m a.s.l. and then decreases 

with altitude beyond this altitude level. It can be seen from Fig. 2e that ERA5_CNN can better 

represent the altitude dependence of observed precipitation than the other two products (the spatial 

correlations with gauge data for ERA5_CNN, HAR V2 and IMERG are 0.88, 0.41 and 0.81, 215 

respectively), particularly in reproducing the great fluctuation of precipitation. 

Overall, the high-resolution atmospheric simulation-based ERA5_CNN can reasonably represent 

the altitude dependence of precipitation in the TP and generally shows better performance than the 

widely-used IMERG and HAR V2. Therefore, it is used to quantify the spatial and temporal variability 

of RPGs in the TP. 220 

4.2. Spatial patterns of precipitation gradients 

Figure 3a shows the spatial distribution of the correlations between annual mean precipitation of 

1980-2018 and altitudes in each sub-basin. It can be seen that there are strong correlations between 

precipitation and altitude in many sub-basins with absolute correlations larger than 0.50 at about 55% 

of the sub-basins and the correlations are significant at the 95% confidence level at most sub-basins. 225 

Therefore, it is feasible to interpolate precipitation based on precipitation gradients in the TP.  
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Figure 3 Spatial distribution of (a) correlations between the annual average precipitation and altitude 

for all grids within each basin, (b) absolute precipitation gradients (APGs, precipitation change per 

100 m altitude difference) and (c) relative precipitation gradients (RPGs, APGs divided by 230 

basin-average precipitation). The APGs and RPGs are calculated based on annual precipitation 

averaged from 1980 to 2018. The dots in Fig. 3a represent the correlations significant at the 95% 

confidence level. In Fig. 3b and c, the sub-basins with weak relationships between precipitation 

and altitude or no data value of RPG are filled with white. 

Generally, at the annual scale, most sub-basins (about 81% of the total) in the TP have positive 235 

APG and the sub-basins with negative APG are mainly distributed in the Himalayas, the Hengduan 

mountains in the eastern edge of the TP and the Western Kunlun in the northwestern TP, resulting in an 

average APG across all sub-basins of 0.05 mm.day-1.100 m-1. As shown in Fig. 3b and Table 2, large 

positive APG mainly occur in the Inner TP, with an average value of 0.07 mm.day-1.100 m-1, followed 

by the eastern TP (covering the Yellow, the Yangtze, the Lancang and the Nu River Basin) (0.06 240 

mm.day-1.100 m-1), the Yarlung Tsangpo River Basin and the Qaidam Basin (0.05 mm.day-1.100 m-1), 

and the upper Indus has the smallest APG of 0.04 mm.day-1.100 m-1. In some specific regions, such as 

the Qilian Mountains (Wang et al., 2009; Han et al., 2020) and some small basins in the southern TP (Li 

Wang et al., 2018; Zeng et al., 2021; Zhang et al., 2015) where the observed precipitation generally 
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increases with altitude, our study reports consistent results. Particularly, most sub-basins along the 245 

Himalayas show large negative APGs. This is also consistent with previous studies (Andermann et al., 

2011; Bookhagen and Burbank, 2006; Chen et al., 2020; Salerno et al., 2015; Tang et al., 2018), which 

have demonstrated that there is a shape decrease in precipitation above 2500 m a.s.l. in this region.  

The annual RPG generally has a similar spatial pattern to APG (Fig. 3c), but shows large values in 

the Qaidam Basin. The average RPG across all the sub-basins of the TP is 4.25 %.100 m-1. However, 250 

the RPGs show great spatial variability, ranging from -5.23 %.100m-1 to more than 20.00 %.100m-1. 

Quantitatively, the average RPGs within five sub-regions of the TP are shown in Table 2. The Qaidam 

Basin has the largest value of 11.26 %.100 m-1, followed by the Inner TP with a value of 7.08 %.100 

m-1, and then the Upper Indus with a value of 3.17 %.100 m-1. The Yarlung Tsangpo River Basin and 

the eastern TP have the RPG of 3.00 %.100 m-1 and 2.90 %.100 m-1, respectively. Generally, the spatial 255 

pattern of RPG shown in our study is in agreement with the result of Guo et al. (2016), which pointed 

out that large precipitation gradients in the Qaidam Basin but small in the Hengduan Mountains in the 

southeastern TP. 

Table 2 The APGs and RPGs averaged across the sub-basins within the five sub-regions and the whole 

TP with respect to different seasons. ETP: eastern TP; YTR: Yarlung Tsangpo River Basin; ITP: Inner 260 

TP; QDM: Qaidam Basin; UID: Upper Indus 

 ETP YTR ITP QDM UID TP 

APG (mm.day-1.100 m-1) 

Winter 0.01 0.01 0.01 0.01 0.04 0.02 

Spring 0.04 0.02 0.04 0.04 0.04 0.04 

Summer 0.16 0.13 0.19 0.10 0.05 0.11 

Autumn 0.05 0.03 0.05 0.03 0.02 0.04 

Annual 0.06 0.05 0.07 0.05 0.04 0.05 

RPG (%. 100 m-1) 

Winter 4.01 6.04 13.20 7.53 3.65 5.06 

Spring 2.76 6.04 8.99 11.69 3.90 5.11 

Summer 3.21 2.87 6.67 10.47 2.81 4.20 

Autumn 2.42 3.51 7.39 11.37 3.02 4.33 

Annual 2.90 3.00 7.08 11.26 3.17 4.25 

4.3 Temporal variation of precipitation gradients 

4.3.1 Seasonal patterns 
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The APG and RPG at each basin are also calculated based on the seasonal mean precipitation, and 

presented in Fig. 4 and Fig. 5, to explore the seasonality of precipitation gradients.  265 

As shown in Fig. 4 and Table 2, the absolute values of APG in summer are remarkably larger than 

those in other seasons, with an averaged value across all sub-basins in the TP of 0.11 mm.day-1.100 m-1, 

while they are 0.02 mm.day-1.100 m-1 in winter, 0.04 mm.day-1.100 m-1 in spring and autumn. Such a 

seasonal pattern is not surprising because a large precipitation amount tends to result in a large value of 

APG and vice versa. Figure 5 shows the spatial distributions of RPG in the four seasons. In winter, 270 

precipitation in some sub-basins is very small, therefore, the RPG is not calculated in these basins and 

masked with white. Different from those of APG, RPGs in spring and autumn are larger than those in 

summer, which is especially true in the central TP. In winter, although many sub-basins are masked as 

no data, most of the remaining sub-basins have the largest RPG among the four seasons. Table 2 shows 

that the RPGs averaged across all the sub-basins in the TP are 5.06 %.100 m-1 in winter, 5.11 %.100 m-1 275 

in spring, 4.20 %.100 m-1 in summer and 4.33 %.100 m-1 in autumn. 

 

Figure 4 Spatial distribution of APGs in (a) winter (December to February), (b) spring (March to May), 

(c) summer (June to August) and (d) autumn (September to November). The APGs are calculated 

based on seasonal precipitation averaged from 1980 to 2018. 280 

Particularly, remarkable seasonal variation of precipitation gradients (both APG and RPG) can be 

found in the Himalayas. In winter, most of the sub-basins in this region have positive precipitation 

gradients, however, it can be seen from Fig. 4c and 5c that this region is dominated by negative 

gradients in summer. In spring (Fig. 4b and 5b) and autumn (Fig. 4d and 5d), the western Himalayas 
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has positive gradients and the eastern Himalayas has negative gradients. This phenomenon was also 285 

observed by Wulf et al. (2010) who found that in the northwest Himalayas the precipitation gradients 

are reversed between winter and summer, as well as by Putkonen (2004) who reported that in the Nepal 

Himalayas monsoon precipitation maximum occurs at the altitude of about 3000 m a.s.l., while 

precipitation continuously increases with altitude in dry seasons. 

 290 

Figure 5 Same as Fig. 4 but for RPGs. 

In summary, the precipitation gradients (including both APG and RPG) in the TP show great 

seasonal variation and it may be desirable to interpolate seasonal or monthly precipitation with 

precipitation gradients calculated at corresponding season or month, especially in the Himalayas. 

4.3.2 Interannual variations 295 

The CV and trend for annual APG and RPG during 1980-2018 are calculated for each sub-basin of 

the TP. As shown in Fig. 6a and 6b, the values of CV for both APG and RPG at most sub-basins are less 

than 0.2, implying low inter-annual variability of precipitation gradients. In terms of the trend of 

precipitation gradients, Fig. 6c shows that APG has positive trends at most sub-basins, especially in the 

Inner TP, which was also reported by Guo et al. (2016) who used in-situ data to characterize the 300 

precipitation gradients in the TP. Such patterns of precipitation gradient trend are mainly because the 

TP has overall become wetter in recent decades, especially in the central and northern TP (Sun et al., 

2020; X. Wang et al., 2018; Yang et al., 2014). In contrast, RPG does not show a positive trend at most 
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of the sub-basins, and its trend in fewer basins is significant at the 95% confidence level. The average 

value of RPG trend across all sub-basins is -0.0042 %.100 m-1.year-1. Therefore, RPG is less sensitive 305 

to the climatic change of precipitation amount, and the RPG obtained in a certain period is expected to 

be more representative than APG when applying for precipitation interpolation under climate change. 

 

Figure 6 Spatial distribution of (a) and (b) the coefficient of variation (CV) and (c) and (d) trend for 

annual APGs and RPGs during 1980 to 2018. The dots in Fig. 6c and d represent trend significant 310 

at the 95% confidence level. The CV and trend are calculated only for sub-basins without missing 

APG or RPG during 1980-2018. 

5. Discussions 

5.1 Uncertainties in APGs and RPGs 

This study uses the atmospheric simulation-based ERA5_CNN to characterize the precipitation 315 

gradients in the TP. However, the ERA5_CNN has biases in the TP, which will lead to uncertainties in 

the calculated APGs and RPGs. Figure 7 shows the Abias and Rbias of annual precipitation from 

ERA5_CNN during 1980-2018 at the locations of CMA stations. It can be found that ERA5_CNN 

generally overestimates precipitation in the TP with Abias ranging from -365.99 mm.year-1 to more 

than 1500.00 mm.year-1 and Rbias ranging from about -30.00% to more than 150.00%. This result is 320 

similar to previous works that have demonstrated overall wet bias exists in atmospheric simulation in 

the TP (Gao et al., 2015; Y. Wang et al., 2020; Zhou et al., 2021). According to the definition of APG 

and RPG, if Abias is spatially homogeneous, the APG in this study is equal to that derived from rain 

gauge data, and if Rbias is uniform in space, the RPG in this study is consistent with that from rain 
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gauge data. By comparing Fig. 7a and 7b, we can find that Rbias is more homogeneous than Abias at a 325 

large scale (the value of CV for all CMA stations is 1.24 for the Rbias, while it is 1.59 for the Abias). In 

this case, it is expected that RPG is more appropriate than APG for reflecting the precipitation gradients 

and interpolating rain gauge data.  

Nevertheless, the Rbias still has great spatial variability. Given the complexity of biases in 

ERA5_CNN, we recommend comparing the APG and the RPG and selecting the better one for specific 330 

applications. 

 

Figure 7 Spatial patterns of (a) absolute bias (Abias) and (b) relative bias (Rbias) for annual 

precipitation from ERA5_CNN during 1980-2018 at CMA stations. 

5.2 Relations between precipitation gradients and relative humidity and wind speed 335 

Previous works mainly focused on the influence of static topographic parameters (e.g. altitude, 

slope, aspect and exposure) on precipitation gradient (Basist et al., 1994; Diodato, 2005; Sevruk, 1997; 

Singh et al., 1995). However, our results in section 4 show that precipitation gradient is likely related to 

meteorological conditions. Therefore, this section discusses the possible factors that may influence the 

spatiotemporal variations of precipitation gradients. The near-surface relative humidity and wind speed 340 

are selected as the potential factors because they should be the indicators of mass and dynamic 

conditions for the formation of precipitation, respectively. Given that the magnitude of APG is likely to 

be influenced by precipitation amount (as shown in Fig. 4) and the RPG is more informative, this 

section only discusses the relations between the RPG and the two meteorological factors. 

Our results show that large RPG mainly occurs at the Qaidam basin and Inner TP characterized by 345 

dry air conditions. In addition, RPG in the TP has larger values in winter and spring than in summer. 

Similar results have been reported in the Himalayas (Putkonen, 2004), the Xinjiang region (Zhao et al., 

2011) and the Qinling Mountains (Li and Fu, 1984), which found that the altitude with precipitation 

maximum in dry seasons is higher than that in wet seasons. These results indicate that there may be a 
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close relationship between RPG and humidity of air mass. Therefore, the relationships between annual 350 

average relative humidity and annual RPG are investigated in the whole TP and its five sub-regions. As 

shown in Fig. 8, there is good linear relationship (R=-0.68) between relative humidity and RPG when 

considering all the sub-basins in the TP (Fig. 8a). In terms of each sub-region, the negative correlation 

between relative humidity and RPG is relatively small in the Yarlung Tsangpo River Basin (Fig. 8c) 

and the Inner TP (Fig. 8d), while they are larger than 0.5 in the other three sub-regions (Figs. 8b, e and 355 

f). Overall, the RPGs generally decrease with increasing relative humidity for all sub-regions, 

indicating that precipitation tends to occur at lower altitudes when the relative humidity is larger, which 

is easy to understand because air masses with lower humidity tend to be saturated after a higher uplift.  

 

Figure 8 Relationships between annual RPGs and (a-f) basin-average relative humidity (RH) and (g-l) 360 

wind speed (Va) in different sub-regions of the TP. ETP: eastern TP; YTR: Yarlung Tsangpo River 

Basin; ITP: Inner TP; QDM: Qaidam Basin; UID: Upper Indus 

The relations between near-surface wind speed and RPG were also tested (Fig. 8g-l). It can be 

found that three sub-regions have high positive correlations (R>0.45) between RPG and wind speed, 

and the Yarlung Tsangpo River Basin and the Inner TP have lower positive correlations (R=0.20 and 365 

0.17, respetively). The correlation coefficient for the whole TP is as high as 0.59, indicating RPG 

increases with increasing wind speed. The positive correlations between precipitation gradients and 

wind speed reported in this study have also been demonstrated in previous studies, e.g. Johansson and 

Chen (2003) found that precipitation in Sweden increases with increasing wind speed on the upwind 

side of mountains, based on the rain gauge observations; Hill (1983) also confirmed that wind direction 370 

and wind speed could have great impacts on the distribution of precipitation enhancement in 

mountainous regions. Moist air blocked by upwind barriers usually leads to enhanced precipitation in 

the windward slopes, which is one of the main mechanisms of orographic precipitation in mountainous 
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regions (Houze, 2012; Roe, 2005). Thus, the strong wind tends to bring more moisture to high altitudes 

and further results in precipitation enhancement in high altitudes. That is why strong wind tends to 375 

result in larger positive precipitation gradients.  

5.3 Impact of spatial scale on the estimation of precipitation gradients 

In this study, the precipitation gradient is fitted using all grids with a specific sub-basin, therefore, 

the estimated precipitation gradient is likely to be spatial scale-dependent. Accordingly, we investigate 

and compare precipitation gradients at different spatial scales by calculating the precipitation gradients 380 

based on four sub-basin levels provided by the HydroATLAS database. Figure 9 shows the spatial 

distributions of annual RPG calculated at different sub-basin levels (a lower sub-basin level has a larger 

spatial scale). The results of APG are similar to that of RPG and thus not shown. It can be seen that 

RPGs calculated at different spatial scales differ greatly, especially in the southern and eastern TP 

where topography is complex. For example, the RPGs are negative in the southern TP when they are 385 

calculated for large river basins (Fig. 9a), while they tend to be positive in sub-basins of these large 

river basins. This is similar to the results of Sun and Su (2020) who reported that precipitation overall 

decreases with increasing altitude in the Yarlung Tsangpo River Basin but shows the opposite variation 

in some small sub-basins. Taking the TP as a whole, we can find that the values of RPG increase from 

L4 to L6 and remain relative stable after L6 (Fig.10a). In addition, the correlations between 390 

precipitation and altitude tend to be larger at smaller spatial scales (Fig. 10b). This indicates that 

precipitation variations at large scales are more controlled by large-scale atmospheric circulations but at 

small scales are more dependent on local topography.  
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Figure 9 Spatial patterns of annual RPGs calculated at four sub-basin levels. The spatial scales of 395 

sub-basins (i.e. sub-basin area) generally decrease from L4 to L7. 

 

Figure 10 Comparison of (a) RPGs and (b) correlations between precipitation and altitude calculated at 

different sub-basin levels. Each box represents the distribution of RPGs or correlations of all the 

sub-basins over the TP. 400 

6. Conclusions 

In this study, the altitudinal precipitation gradient in the TP is investigated at the basin scale using 

a high-resolution atmospheric simulation-based precipitation dataset and its spatiotemporal variability 

is analyzed. 
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The performance of the high-resolution atmospheric simulation-based dataset in describing the 405 

altitude dependence of precipitation is firstly validated using observations from five rain gauge 

networks. The results show that this dataset can reasonably reproduce the observed altitude dependence 

of precipitation and generally has higher performance than the widely-used IMERG and HAR V2 in the 

TP.  

Both absolute precipitation gradient (APG) and relative precipitation gradient (RPG) for annual 410 

and seasonal average precipitation are calculated for 388 sub-basins of the TP. Most sub-basins of the 

TP have positive precipitation gradients, and negative gradients are mainly distributed in the Himalayas, 

the Hengduan mountains and the Western Kunlun. The APGs are less than -0.05 mm.day-1.100 m-1 in 

the central and eastern Himalayas but greater than 0.06 mm.day-1.100 m-1 in most sub-basins of the 

central TP. Meanwhile, the annual RPGs range from about -5.00%.100 m-1 in the Himalayas to more 415 

than 20.00%.100 m-1 in the Qaidam Basin. Particularly, both APG and RPG show large values in the 

Inner TP. The seasonal variations of APG are corresponding to the seasonal variability of precipitation 

amount, with larger APG in wet seasons but smaller in dry seasons. However, the RPG has opposite 

seasonal variations.  

The variations of precipitation gradient are related to meteorological conditions. Analyses show 420 

that the RPGs decrease with increasing relative humidity but increase with increasing wind speed. The 

relationships between RPGs and the two factors are strong with absolute correlations greater than 0.50 

for both factors when taking all sub-basins in the TP into account. The strong correlations suggest that 

relative humidity and wind speed can be potential indicators to adjust RPG regionally. 

In addition, our results show that the precipitation gradient in the TP is spatial scale-dependent. 425 

The precipitation gradients are positive in the northern TP but negative in the southern TP at larger 

spatial scales, however, they tend to be positive at smaller spatial scales, even in the southern TP. As the 

spatial scale decreases, the precipitation gradient first increases and then remains relatively stable. This 

is because the impact of large-scale atmospheric circulations on precipitation distribution is reduced 

and topography is the key determinant at a small scale, highlighting the importance of calculating 430 

precipitation gradient at a relatively small spatial scale. 

In summary, our study presents the spatiotemporal variability of precipitation gradient in the TP, 

which can be used as a reference for assisting precipitation interpolation. Nevertheless, uncertainties 

still exist (as shown in section 5.1), and further works are expected to evaluate the accuracy of the 

obtained precipitation gradients in the TP, which requires reliable observations, e.g. high-quality radar 435 

observation or high-density rain gauge networks. 
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