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Abstract. Knowledge of the variability of the hydrograph of outflow from urban catchments is highly important for 15 

measurements and evaluation of the operation of sewer networks. Currently, hydrodynamic models are most frequently used 

for hydrograph modeling. Since a large number of their parameters have to be identified, there may be problems at the 

calibration stage. Hence, the sensitivity analysis is used to limit the number of parameters. However, the current sensitivity 

analysis analytical methods ignore the effect of the temporal distribution and intensity of precipitation in a rainfall event on 

the catchment outflow hydrograph. TheThis article presents the a methodology of construction of constructing a simulator of 20 

catchment outflow hydrograph parameters (volume and maximum flow). For this purpose, uncertainty analytical analysis 

results obtained with the use of the GLUE (Generalized Likelihood Uncertainty Estimation) method were used. A novel 

analysis of the sensitivity of the hydrodynamic catchment models was also developed, which can be used in the analysis of the 

operation of stormwater networks and underground infrastructure facilities. Using the logistic regression method, an innovative 

sensitivity coefficient was proposed to study the impact of the variability of the parameters of the hydrodynamic model 25 

depending on the distribution of rainfall, the origin of rainfall (on the Chomicz scale) and the uncertainty of the estimated 

simulator coefficients on the parameters of the outflow hydrograph. The developed model enables the analysis of the impact 

of the identified SWMM (Storm Water Management Model) parameters on the runoff hydrograph, taking into account local 

rainfall conditions, which have not been analyzed thus far. Compared with the currently developed methods, the analyses 

included the impact of the uncertainty of the identified coefficients in the logistic regression model on the results of the 30 

sensitivity coefficient calculation. This aspect has not been taken into account in the sensitivity analytical methods thus far, 

although this approach evaluates the reliability of the simulation results. The results indicated a considerable influence of 

rainfall distribution and intensity on the sensitivity factors. The greater the intensity and temporal distribution rainfall were, 
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the lower the impact of the identified hydrodynamic model parameters on the hydrograph parameters. Additionally, the 

calculations confirmed the significant impact of the uncertainty of the estimated coefficient in the simulator on the sensitivity 35 

coefficients. In the context of the sensitivity analysis, the obtained results have a significant effect on the interpretation of the 

relationships obtained. The approach presented in the this study can be widely applied at the model calibration stage and for 

appropriate selection of hydrographs for identification and validation of model parameters. The results of the calculations 

obtained in this study indicate the suitability of including the origin of rainfall in the sensitivity analysis and calibration of 

hydrodynamic models, which results from the different sensitivities of models for normal, heavy, and torrential rain types. In 40 

this context, it is necessary to first divide the rainfall data by origin, for which analyses will be performed, including sensitivity 

analysis and calibration. Considering the obtained results of the calculations, at the stage of identifying the parameters of 

hydrodynamic models and their validation, precipitation conditions should be included because, for the precipitation caused 

by heavy rainfall, the values of the sensitivity coefficients were much lower than for torrential ones. Taking into account the 

values of the sensitivity coefficients obtained, the calibration of the models should not only cover episodes with high rainfall 45 

intensity, since this may lead to calculation errors at the stage of applying the model in practice (assessment of the stormwater 

system operating conditions, design of reservoirs and flow control devices, green infrastructure, etc.). 

 

1 Introduction  

Climate change and progressive urbanization result in an increase in the volume of stormwater outflow from catchments, which 50 

leads to flooding and deterioration of water quality in receivers (Crocetti et al., 2020; Fletcher et al., 2013). To reduce the 

incidence of these phenomena, there is a need to  runoff model generation is needed. This can be achieved using hydrodynamic 

models based on physical equations representing stormwater outflows. One of the common tools is the SWMM (Stormwater 

Management Model) program (Buahin and Horsburgh, 2015; Crocetti et al., 2020; Gironás et al., 2010). SWMM allows 

simulation of sewage quantity (Guan et al., 2015), quality (Dotto et al., 2012), including objects located in sewerage networks 55 

(separation and combined sewerage networks. The program allows simulation of surface runoff from a drainage basin 

including the flow in a network of pipes and analysis of interaction between hydraulic conditions in the system and sewage 

flooding on the ground (Fraga et al. 2016). The program's advantages also include the possibility to model green infrastructure 

facilities (McGarity et al., 2013). The source code of the program is available to users, which gives the possibility of its 

modification and adaptation to individual requirements. Due to the interactions between parameters identified in the models, 60 

they may be difficult to calibrate, and the results may be biased. Therefore, statistical models are used for the simulation of 

runoffsrunoff, which has been shown in a number of studies (Gernaey et al., 2011; Yang and Chui, 2020). A serious drawback 

of many models (the so-called black box techniques) is their inability to interpret structural parameters (Zoppou, 2001). Linear 

models, including multiple regression (MLR), as well as nonlinear models such as artificial neural networks (ANNs) and 

regression trees (CRTs) with their modifications (Yang and Chui 2020) are used for this purpose. Nonlinear models enable a 65 

more accurate description of hydrological processes in urban catchments, which results from the physics of the analyzed 

phenomena and is confirmed in the literature (Zoppou 2001). 
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The hydrodynamic model must be calibrated to reflect the conditions prevailing in the real system. Calibration of the catchment 

model is a complex task aimed at determination of determining the optimal values of parameters with a satisfactory goodness-

of-fit of calculation outcomes and measurement results (Bárdossy, 2007; Dotto et al., 2012; Guan et al., 2015). Parameter 70 

values are determined for an appropriate form of the objective function in which one or more criteria (maximum instantaneous 

flow, hydrograph volume, or mean relative or absolute error of flow prediction) can be included. Since the description of the 

stormwater outflow from the catchment is complicated, modeling the phenomenon requires knowledge of many parameters 

(physical and geographical characteristics of the catchment and the sewer network). A number of these parameters can be 

determined using detailed spatial data (GIS), as has been indicated in numerous studies (Fraga et al., 2016; Leandro and 75 

Martins, 2016). This helps to reduce the number of variables included in the calibration. However, since a large number of 

parameters must be included in the models, there may be problems with the identification of their values. Therefore, the aim 

is usually to simplify the calibration process by elimination of eliminating factors that have a negligible impact on simulation 

results. Hence, model sensitivity analysis is employed. To understand the modeled processes in urban catchments and to 

determine the influence of interactions between the identified parameters on the simulation results, an uncertainty analysis 80 

(GLUE - Generalized Likelihood Uncertainty Estimation) is performed. This method is widely used in the analysis of the 

quantity and quality of stormwater for models of urban and agricultural catchments (Dotto et al. 2012, Mirzaei et al. 2015), 

retention reservoirs (Kiczko et al. 2018), stormwater flooding (Fraga et al. 2016), etc., which is reflected in a large number of 

publications in this field. In this approach, the empirical distributions of parameters identified in hydrodynamic models are 

determined (e.g., catchment retention, roughness coefficients of pervious and impervious areas, roughness of channels, etc.) 85 

and a confidence interval is determined (e.g., 95%), containing the data obtained from the measurement results. 

As shown by the literature review (Chisari et al., 2018; Tolley et al., 2019; Xu et al., 2019), the analysis is often applied at the 

stage of calibration of the mathematical models. In practice, local and global sensitivity analytical analysis methods, which 

can be implemented for statistical and physical relationships, are used (Link et al., 2018; Morio, 2011; Cristiano, et al. 2019). 

In the case of the local sensitivity analysis, the calculations consist inof determination of the derivative value at a given point, 90 

which is the basis for assessment of the effect of the variance of the variables on the modeled value (Razavi and Gupta, 2015). 

One of the drawbacks of the local sensitivity analysis is the fact that the variability of the analyzed phenomenon and the effect 

of variables are considered in the narrow domain of the modeled variable (Pianosi et al., 2016). This approach ignores the fact 

that the sensitivity of the model in the domain of the output values may change, which may be important for calibration of the 

model at the validation stage and its course. In the case of non-linearnonlinear models, the local sensitivity analysis does not 95 

take into account the character of the relationships between the explanatory variables and the dependent variable. Then, the 

sensitivity coefficient is calculated only for the mean level of the explanatory variable. Nevertheless, this method is widely 

used in the analysis of the sensitivity of models describing runoff in urban catchments, which has been confirmed by numerous 

studies (Ballinas-González et al., 2020; Liu et al., 2020; Yang et al., 2019). Another shortcoming of sensitivity analysis based 

on partial derivatives is the fact that the effects of individual variables on the output variable are estimated with while the other 100 

variables are kept constant. This is rarely observed in the case of complex relationships, as the explanatory variables are then 
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correlated to some extent. The Cateris Paribus analysis does not take this fact into account. Consequently, the effects of 

individual variables may be overestimated. 

In the context of literature studies (Xu et al. 2019), the results of LSAs may lead to simplifications in the interpretation 

of hydrological processes in catchments. From the point of view of the appropriate selection of the identified parameters of 105 

urban catchment models, the local sensitivity analytical method has limited application and may lead to problems with 

calibration (Morio 2011). Global sensitivity analysis does not have many of the aforementioned disadvantages. One of the 

simplest methods used in many cases is based on multiple linear regression (Ashley and Parmeter, 2020; Touil et al., 2016). 

However, the results of the sensitivity analysis can be considered reliable when the coefficient of determination reflecting the 

relationship between the dependent variable and the explanatory variables is not lower than 0.70. When this requirement is not 110 

met, other methods for global sensitivity analysis should be applied (Saltelli et al., 2007). Variance methods, which facilitate 

estimation of the contribution of the individual parameters to the model output variance using the Monte Carlo method, are 

more precise and more computationally complex. The global sensitivity analysis (GSA) method is one of the commonly used 

approaches. It has been subjected to modifications, as described in Iooss and Lemaître (2015). Variance methods are currently 

gaining increasing interest, which is confirmed by the number of publications in this field. However, since implementation 115 

thereof is complicated, simplified methods are used in many cases despite the major advantage of variance approaches over 

the local analytical analysis methods. The implementation of the global sensitivity analytical analysis methods is not a simple 

task, as it requires complex mathematical tools, which limits their application. Despite the limitations of the local sensitivity 

analytical method and the complex implementation of the global sensitivity analysis, in both cases, the aspects related to local 

precipitation conditions are treated to a limited extent. Recent studies of urban catchments indicate that the temporal and spatial 120 

distributions of rainfall are very important factors that strongly influence the catchment response (Schilling, 1991, Berne et al., 

2004; Ochoa-Rodriguez et al., 2015, Cristiano et al. 2017). However, a number of issues have not been fully clarified. In the 

currently used methods, the influence of rainfall origin on the results of the sensitivity analysis is neglected. It is not clear how 

the sensitivity of the model (maximum flow rate and hydrograph volume) changes for rainfall events resulting from high 

(convective) or low intensity (convergence zone) rainfall. The LSA and GSA methods ignore the influence of rainfall temporal 125 

distribution on the sensitivity coefficients, which is contrary to the information from the literature (Schilling et al. 2011) 

describing the analyses conducted for different urban catchments. It is important to select outflow hydrographs from the 

catchment area for the identification of parameters and their validation in the context of rainfall parameters (rainfall origin, 

rainfall intensity, and temporal distribution). It is also of great methodological importance in the context of modifying the 

currently used methods of sensitivity analysis of hydrodynamic catchment models. In the sensitivity analytical methods based 130 

on statistical models, the influence of the uncertainty of the estimated coefficients on the sensitivity coefficients is neglected. 

From the point of view of the reliability of the obtained results, this is important when deciding on the selection of the method 

of parameter identification in hydrodynamic models (GIS, maps, etc.) to reduce the uncertainty of the simulation results.  

Given the information specified above, the this paper presents an original application of the logistic regression method 

for sensitivity analysis. ItThis is one of the first studies to analyze the sensitivity of the model in terms of the temporal 135 
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variability of rainfall. The advantage of the model is the fact that it has the form of a statistical relationship; hence, without the 

need for complex analyses, it can be used to determine the effects of parameters included in the calibration of the catchment 

model, precipitation characteristics, and absolute values of the modeled dependent variables on the parameters of outflow 

hydrographs (maximum instantaneous flow and hydrograph volume). The approach proposed in the present study also 

facilitates analysis of the sensitivity of selected explanatory variables, depending on the numerical values of the modeled 140 

hydrograph parameters of catchment runoff. At the stage of sensitivity analysis, the effect of the uncertainty of coefficients 

estimated in the statistical model (logistic regression) on the calculatedion results is included, which is reflected in the 

determined sensitivity coefficients. Since the model is constructed based on simulation results provided by the Monte Carlo 

method, which is typical for global sensitivity analytical analysis methods, this approach can complement and extend the 

results of GSA calculations. Summing upIn summary, In summary (Saltelli et al. 2007; Razavi and Gupta 2015), the sensitivity 145 

analysis used in the present study represents a fusion of local and global sensitivity analysis through a combination of logistic 

regression in phenomenon modeling with partial derivatives. Since logistic regression is not an example of a black-box method, 

as it has an explicit form of dependence between the modeled probability of success and explanatory variables, the use of 

partial derivatives for assessment of the sensitivity of the model to individual parameters seems reasonable. Especially in the 

case of an implicit, complex, and non-linearnonlinear dependence, it is recommended that variance-based techniques such as 150 

the Sobol method should be employed. Partial derivatives used in the logistic regression model increase the flexibility of this 

method, as it is possible to assess the model sensitivity to individual parameters at any point in the domain. An additional 

modification can be the use of a standardized local sensitivity analytical analysis method based on logarithms of dependent 

and explanatory variables. This facilitates assessment of the effect of the percentage increase in the explanatory variable on 

the percentage increase in the dependent variable. 155 

Due to the extensive nature of the conducted analyses, the manuscript has been divided into several sections, including 

characteristics of the research object and methodology, which presents an innovative algorithm for the development of a 

logistic regression model and subsequent calculation steps, i.e., determination of a hydrodynamic model of a catchment, 

identification of the threshold values of the outflow hydrograph parameters from a catchment using a hydrodynamic model, 

uncertainty analysis using the GLUE method, development of a logit model and its verification, analysis of the influence of 160 

rainfall origin and temporal distribution of rainfall on the calculated sensitivity coefficients, and assessment of the impact of 

uncertainty of the identified coefficients in the logit model on the values of the sensitivity coefficients. 

2 Study object Case study 

The analysis in this study was carried out in a catchment with a total area of 62 ha located in the south-easternsoutheastern 

part of the city of Kielce, central Poland (Fig. 1). Six types of impervious surfaces were distinguished in the catchment: 165 

sidewalks, roads, parking lots, greenery, school playgrounds, and roofs (with 72.5% of their area directly connected to the 

stormwater sewer system). The main canal is 1.6 km long with a diameter in the range of Ø 0.60–1.25 m. Detailed information 
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about concerning the analyzed catchment was provided by Kiczko et al. (2018). The analysis of measurement data (2010–

2016) from the catchment distinguished a dry period of 0.16–60 days. The annual precipitation depth was 537–757 mm, and 

the number of days with precipitation was in the range of 155–266. The number of storms per year in the analyzed period 170 

ranged from 27 to 47. The area was characterized by an average annual temperature of 8.1–9.6o C and 36–84 snowfall days. 

The analysis of flow measurement data recorded with the a MES1 flow meter revealed that the instantaneous stormwater 

stream in the dry periods was in the range of 0.001–0.009 m3/s, which indicates an infiltration effect in the sewer network. 

 

Figure 1. Scheme of the hydrodynamic model of the catchment generated in the SWMM program. 175 

The analyzed sewer system consists of 200 manholes and 100 conduit sections with Ø 0.20–1.25 m diameters and longitudinal 

slopes of 0.1–2.7%, which gives a retention capacity of 2032 m3. The Maningʼs roughness coefficient for the conduit is in the 

range of 0.010 – 0.018 m-1/3·s. The average retention depth is 2.5 mm in the impervious areas and 6.0 mm in the pervious 

surfaces, which gives a weighted mean of 3.81 mm for the entire catchment. Stormwater is discharged from the catchment 

through the S1 channel to the diversion chamber (DC), and some part is discharged directly to the stormwater treatment plant 180 

(STP) to the a filling level of hm=0.42 m. After exceeding the hm value, the stormwater is discharged via the stormwater 

overflow (OV) into channel S2, which discharges the stormwater into the Silnica River. 

As part of the continuous monitoring carried out in 2009–2011, the volume of stormwater outflow from the catchment was 

measured using a flow meter installed in the S1 channel at a distance of 3.0 m from the inlet to the DW chamber. In turn, in 

2015, parallel MES1 and MES2 flow meters were installed in the inlet (S1) and discharge (S2) channels to measure the flow 185 

and stormwater level. A detailed description of the stormwater catchment and installed measuring equipment is provided in 

Szeląg (2016). 
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The catchment (Fig. 1) had previously been analyzed to determine the variability of the quantity and quality of stormwater and 

the operation of the sewer system based on the catchment hydrodynamic model generated in the SWMM program. The model 

used in the study was subjected to deterministic (Szelag et al., 2016) and probabilistic (Kiczko et al., 2018) calibration and 190 

was used as the basis for the sensitivity analysis. It was also subjected to probabilistic calibration with the GLUE+GSA method 

(Szelag et al., 2016). The deterministic calibration is was perceived in the present study as a computational case where the 

uncertainty and interaction of calibrated parameters in the SWMM model is were omitted. The parameters were determined 

with the method of successive substitutions to achieve a sufficiently high degree of agreement between the modeled and 

measured hydrographs. 195 

3 Methodology 

The developed methodology of the sensitivity analysis of hydrodynamic models included several independent stages: 

preparation of data for the construction of the model and its implementation, conducting the uncertainty analysis using the 

GLUE method, development of a logit model for specific threshold values of the hydrograph parameters and model 

verification, calculation of sensitivity coefficients taking into account the rainfall origin, the temporal distribution of rainfall, 200 

and the evaluation of the impact of the uncertainty of the identified coefficients in the logit model on the results of the sensitivity 

analysis. 

3.1 Rainfall and separation of independent rainfall events 

The methodology described in the DWA-A 118E (2006) guidelines was applied in the study to separate independent rainfall 

events. The interval between successive independent rainfall events was 4 hours (Blume et al. 2007; Dunkerley 2008; Joo et 205 

al. 2014; Szeląg et al. 2021). The minimum rainfall depth (3.0 mm) constituting a rainfall event was adopted, as in the studies 

conducted by Fu et al. (2011) and Fu and Butler (2014). Independent rainfall events were distinguished based on a series of 

rainfall events (2010–2016) measured at the rainfall station located at a distance of 2 km from the Si9 collector catchment and 

the definition of a rainfall event specified above. The number of events in the individual study years was estimated at 36 – 58. 

The rainfall duration (tr) in the events was 20 – 2366 min, and the length of the dry period was 0.16 – 60 days. The rainfall 210 

depth (Ptot) in the rainfall events was in the range of 3.0 – 45.2 mm. 

 

3.2 Scheme of model analysis 

In the present study, a method of model sensitivity analysis was proposed to predict the stormwater volume (maximum 

instantaneous flow and hydrograph volume) with the use of logistic regression (Fig. 2). The method presented here represents 215 

a group of sensitivity analytical analysis methods based on empirical models. It was assumed that the variable rainfall 

distribution may exert different effects on the sensitivity of the model and induce changes in the calibrated parameters. It was 
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also assumed that the sensitivity of the model may change as a result of an increase in the maximum instantaneous stormwater 

flow and the volume of the outflow hydrograph. Due to the non-linearitynonlinearity between the modeled hydrograph 

parameters and the calibrated model coefficients, the use of the linear approach is limited (Chan et al., 2018); therefore, the 220 

classification model (logit) was used in the study. Appropriate threshold values of hydrograph parameters constituting the 

basis for substitution of continuous values with classes were selected in the model. 

On the one hand, this approach is based on the precipitation dynamics during rainfall events specified in the DWA-A 118E 

(2006) guidelines (distribution R1 - constant rainfall intensity during a rainfall event, distribution R2 - maximum rainfall 

intensity in the middle of the rainfall event, i.e., t/tr=0.50, distribution R3 - maximum rainfall intensity for dla t/tr=0.85–1.00, 225 

and distribution R4 - maximum rainfall intensity in the initial phase of rainfall). The approach assumed in this paper was 

confirmed by the analyses of numerous researchers conducting computer simulations of the operation of the stormwater 

network for various rainfall parameters, including the analysis of the conditions of the total system functioning (Siekmann and 

Pinnekamp, 2011), the location of green infrastructure objects (Jia et al. 2015), and the location of underground infrastructure 

facilities allowing real-time control of the flow in channels or at the outflow from reservoirs (Garofalo et al. 2017). 230 
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where: calibrated coefficients its mean the same 

 

Figure 2: Calculation algorithm scheme in a logit model. 

On the other hand, the modeled hydrograph parameter values were combined with the rainfall classification, which facilitated 235 

generalization of the analytical analysis results. Compared to with the local and global analytical analysis methods, detailed 

analysis of changes in the sensitivity to the effect of calibrated coefficients is was possible with the proposed approach, taking 

into account values of the modeled parameters of the catchment outflow hydrograph. This has been scarcely considered in this 

approach thus farso far. The calculation algorithm presented in this study consists of three elements (Fig. 2). The first one 

comprises a simulator of parameters of the catchment outflow hydrograph (statistical model generated with the logistic 240 

regression method), which includes rainfall characteristics and coefficients calibrated in the hydrodynamic catchment model. 
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(here: SWMM - Storm Water Management Model). The simulator was constructed based on simulations performed with the 

use of calculations in the catchment model, which included the uncertainty of the identified coefficients subjected to 

calibration. The approach proposed here is applied in computational experiments at the stage of generation of mathematical 

models for urban catchments, as described by Thorndahl et al. (2009). It is important that the distribution of coefficients (Table 245 

1) used for GLM (Generalized Likelihood Modelgeneralized likelihood model) identification should result from their actual 

variability. The distribution can be determined by probabilistic identification of calibrated coefficients. The GLUE 

methodology, in which the variability of calibrated coefficients is determined by selecting the so-called behavioral simulations, 

was employed in this study. Based on a posteriori distributions of calibrated coefficients in the catchment model determined 

by observation data, simulations of catchment outflow hydrographs were performed based on the separated rainfall events in 250 

continuous rainfall time series (2010–2016), for which typical temporal rainfall distribution was assumed independently (R1, 

R2, R3, and R4). This was the basis for determination of the outflow hydrograph parameters - maximum instantaneous flow 

(Qm) and hydrograph volume (V). 

The second stage consisted in establishment of of establishing the so-called threshold values of maximum flow (Qm,g) and 

hydrograph volume (Vg), which served as the basis for the division into rainfall events with different intensityintensities and 255 

their temporal distribution in the time series (ξ=R1, R2, R3, and R4). Establishment of general rules for selection of threshold 

values may be very difficult, as they are the result of the response of the catchment to the rainfall, which is catchment-specific. 

These may be characteristic values of flows influenced by the presence of objects in the sewer network (stormwater overflows, 

etc.) at which they begin to operate. An alternative approach is to apply rainfall classification measures (proposed by Chomicz 

(1951), Sumner (1988), etc.), which allow determination of the characteristic parameters of hydrographs. Sumner's 260 

classification is universal in its nature and – like the Chomicz classification – it expresses the qualitative relationship between 

the category of rainfall and its intensity. Hence, belonging to the appropriate rainfall class can be associated with the average 

rainfall intensity. The rainfall classes at the Sumner scale determine the extremely different hydraulic conditions prevailing in 

the stormwater network, which may not always be used in practice for measurements and calibration. In the case of the 

Chomicz classification, a number of rainfall categories were introduced, ranging from normal to heavy rain and ending with 265 

torrential rain. This approach makes it possible to identify the operating conditions of the stormwater network and facilities 

located in it, taking into account the rainfall data, i.e., rainfall duration (tr) and rainfall depth (Ptot) within the appropriate range 

of variability. It This is important because it enables the identification of the average intensity of rainfall (i=Ptot·tr
-1) as a 

parameter connected with the operation of the stormwater system, which can be associated with the runoff from the catchment 

and hydrograph parameters (volume and maximal flow rate). 270 

In the present study, the reference rainfall values determined inat the regional classification scale proposed by Chomicz (1951) 

were the basis for the selection of threshold values (maximum instantaneous flow and hydrograph volume) in accordance with 

the following equation: 

 𝑃𝑡𝑜𝑡 = 𝑈 = 𝛼0 · √𝑡𝑟            (1) 
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where tr is the rainfall duration, Ptot is the rainfall depth equal to its efficiency, and α0 is the rainfall efficiency 275 

coefficientscoefficient taking into account the normal, heavy, and torrential rain types. 

Based on the Chomicz (1951) classification of rainfall, outflow hydrographs were calculated, their parameters (Qm and V) 

were determined, and classification variables were defined. The outflow hydrographs and their parameters (volume and 

maximum flow rate) were calculated for the set values Ptot = f(tr, α0), which matched the assumed categories of rainfall and the 

temporal distribution of rainfall in the rainfall episode. When the calculated values Q(Ptot, tr, ζ, θ) and V(Ptot, tr, ζ, θ) (where ζ 280 

is a function describing the temporal intensity distribution and θ is a function taking into account the uncertainty of the 

calibrated parameters in the catchment model) are smaller than the threshold values, they have thea value of 0; otherwise, they 

are equal to 1. 

In the third stage, logistic regression models were developed for the values of the explanatory variables (Ptot, tr, ζ, and xj - 

values of calibrated coefficients in the catchment model; rainfall characteristics) and for the established dependent (zero-one) 285 

variables for the applied threshold values (Qg,m and Vg) and temporal rainfall distribution (ζ). The subsequent stage of the 

analyses consisted inof determination of the values of the sensitivity coefficients (Sxj) in accordance with the methodology 

described later in this study. The proposed computational algorithm of the sensitivity analysis was performed in the following 

stages: 

a) Determination of the hydrodynamic model of the catchment 290 

b) Identification of a posteriori distributions of the calibrated parameters in the model of the catchment 

c) Monte Carlo sampling of the identified parameters of the SWMM and calculation of the parameters of the outflow 

hydrograph from the catchment for the separated rainfall events (described by the temporal distribution of rainfall and duration 

of rainfall, as well as rainfall depth) 

d) Identification of the threshold values of the outflow hydrograph parameters from the catchment, taking into account the 295 

origin of rainfall (on the Chomicz scale) 

e) Determination of logit models and their validation using a hydrodynamic model 

f) Calculation of sensitivity coefficients, taking into account the origins of rainfall and the temporal distribution of rainfall 

g) Determining the influence of uncertainty of estimated coefficients in logistic regression models on the sensitivity 

coefficients 300 

Based on the calculation scheme described above, the this paper presents the next stages of construction of a logit model. A 

catchment model generated in the SWMM program was used for this purpose. The threshold values were determined in 

accordance with the Chomicz (1951) classification, in which the following categories of rainfall were defined: normal rain 

(α0=1.00), heavy rain (α0=1.40), and torrential rain (α0=5.66), assuming a constant temporal rainfall distribution and rainfall 

duration tr=15 min. For these assumptions, the depth of rainfall was determined from Eq. (1), and catchment outflow 305 

hydrographs were simulated using the calibrated catchment model. 
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3.3 Logistic regression 

The logistic regression model, also known as the binomial logit model, is usually employed for the analysis of binary data and 

can be used to determine the probability and identify the occurrence of events (Jato-Espino et al., 2018; Li and Willems, 2019; 

Szeląg et al., 2020). The maximum amount of stormwater outflow from the catchment and the hydrograph parameters of any 310 

rainfall event can be calculated using hydrodynamic models, e.g., SWMM. An alternative solution areis statistical models 

(hydrograph simulators are considerably easier to implement than physical models); for instance, the generalized linear model 

(GLM – generalized likelihood model), which comprises the variability of rainfall characteristics and the uncertainty of 

calibrated coefficients, shown in the following equation: 

𝑄(𝜇)𝑚 = 𝛼0 + 𝛼1 · 𝑃𝑐 + 𝛼2 · 𝑡𝑑 + 𝛼3 · 𝑥1 + 𝛼4 · 𝑥2 + ⋯ + 𝛼𝑗+2 · 𝑥𝑗       (2) 315 

where α0 – intercept, α1, α2, …, αj+2 – empirical coefficients determined with the maximum likelihood method, Ptot – rainfall 

depth, tr – rainfall duration, x1, 2, j=n – calibrated coefficients in the SWMM model, and Qm – link function determining the 

relationship of the mean value of the dependent variable μ with the linear combination of predictors. 

Assuming that μ=p and introducing the link function referred to as logit, it is possible to transform the modeled values of 

dependent variables included in Eq. (2) into a new (zero-one) system describing the probability values: 320 

𝑄(𝑝) = 𝑄(𝜇)𝑚 = 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 (
𝑝

1−𝑝
) =  𝑒𝑥𝑝(𝛼0 + 𝛼1 · 𝑃𝑡𝑜𝑡 + 𝛼2 · 𝑡𝑟 + 𝛼3 · 𝑥1 + 𝛼4 · 𝑥2 + ⋯ + 𝛼𝑗+2 · 𝑥𝑗) (3) 

This approach may prove especially useful when the results of calculations in the multiple linear regression model exhibit 

unsatisfactory convergence (R2<0.70), and it is therefore advisable to introduce classification variables, which is a simplifying 

solution. Moreover, this approach makes it possible to emphasize and include relationships that might be omitted in the 

calculations of multiple linear regression, as has been demonstrated in many reports (Hosmer and Lemeshow, 2000; Kleinbaum 325 

and Klein, 2010; Myers et al., 2010). Since the continuous values Q(Ptot, tr, xj)m are transformed into the probability space p 

by the logit function in this case, it is reasonable to equate them with the determined p(P tot, tr, xj) values for a given threshold 

Qg,m (Fig. 2). In the transformed data system (expressing probability) varying in the range of 0–1, it was shown that the effect 

of the change in individual variables (xj) by Δxj on the p value is described by the following equation: 

𝑆𝑥𝑗
=

𝜕𝑝

𝜕𝑥𝑗
·

𝑥𝑗

𝑝
=

𝑝(𝑥𝑗,𝑔+∆𝑥𝑗)−𝑝(𝑥𝑗,𝑔; 𝑄𝑔,𝑚)

(𝑥𝑗,𝑔+∆𝑥𝑗)−𝑥𝑔,𝑗
∙

𝑥𝑗

𝑝(𝑥𝑗,𝑔; 𝑄𝑔,𝑚)
  = 𝛼𝑗+2 · 𝑥𝑗 · (1 − 𝑝(𝑥𝑗,𝑔;  𝑄𝑔,𝑚))    (4) 330 

where Q, p(xj,g + Δxj) – maximum flow value (Fig. 2a) and the probability of exceeding thereof for value (xj,g +Δxj) (Fig. 2b); 

Q(xj,g)m,g – maximum instantaneous outflow from the catchment; and p(xj,g; Qm,g) – probability of exceeding the threshold 

value Qg,m for the given explanatory variables (Ptot, tr, x1, x2, x3, …,xn) equal to p=0.50 (most of the considerations in the 

present analyses related to the value p=0.50, as this value corresponds to that of Qg,m in the probability scale p). 
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 335 

Figure 3: Calculation diagram showing the effect of changes in the xj,g value by Δxj on (a) the flow volume Qm; and (b) probability 

of exceeding p(Qg,m; xj,g)=0.50. 

As indicated in Fig. 3, an increase in xj,g by Δxj results in a decrease in the Qg,m value by ΔQm and yields a flow value of Qξ, 

which facilitates determination of the numerical value of the sensitivity coefficient described by Eq. (4). In the transformed 

space (see Fig. 2b), the increase in the xj,g value (corresponding to p=0.50 and the threshold value Qg,m) to the value of xj,g + 340 

Δxj is accompanied by a decline in the p value by Δp to the value p*. In these analyses, the determined p* value corresponds to 

Qm
*, which can be defined as Qg,m – f(p, p*), and the relationship can be expressed as follows: 

𝑆𝑥𝑗
=

𝑄(𝑥𝑗,𝑔+𝜀·∆𝑥𝑗)
𝑚

∗
−𝑄(𝑥𝑗,𝑔)

𝑔,𝑚

(𝑥𝑗,𝑔+𝜀·∆𝑥𝑗)−𝑥𝑗,𝑔
·

𝑥𝑗

𝑄(𝑥𝑗,𝑔)
𝑔,𝑚

=
𝑓(𝑝,𝑝∗)−𝑄(𝑥𝑗,𝑔)

𝑔,𝑚

(𝑥𝑗,𝑔+𝜀·∆𝑥𝑗)−𝑥𝑗,𝑔
∙

𝑥𝑗

𝑄(𝑥𝑗,𝑔)
𝑔,𝑚

       (5) 

where ε is the empirical coefficient for conversion of the Qm
*value into p*. The p* value can be related to Qm

*<Qm,g; hence, the 

effect of changes in the xj value on the calculatedion results can be inferred, and the sensitivity coefficient can be determined 345 

from Eq. (5). Assuming a p value of 0.50 for the analyses was driven by the fact that the logit models determined should be 

universal, which is important from the point of view of being able to generalizegeneralise the results obtained and apply them 

also to other urban catchments (Jato - Espino et al., 2018; Li and Willems 2019; Szeląg et al., 2020). 

 

The following parameters were included in the assessment of the predictive abilities of logit models: sensitivity– SENS 350 

(reflects the correctness of classification of data in a dataset p > p(Qg,m)), specificity – SPEC (reflects the correctness of 

classification of data in a dataset p<p(Qg,m)), and calculation error Rz
2 (reflects the correctness of classification of events at 

p<p(Qg,m) and p<p(Qg,m)), as described in detail by Hosmer and Lemeshow (2000) and Szeląg et al. (2020). 

In the deterministic solution, the values of the sensitivity coefficients (Sxi, where xi is α, nimp, dimp, and nsew) are 

calculated from Formula (4) for the subsequent parameters calibrated in the SWMM for the assumed rainfall characteristics 355 

(Section 5.1), temporal distribution of rainfall and the boundary values of xi determined in such a way that p = 0.50. For the 



14 

 

solution that takes into account the uncertainty of the estimated coefficients in logistic regression models, the values of the 

sensitivity coefficients are also calculated from Formula (4). Additionally, the errors of the determined coefficients (standard 

deviation) are taken into account, MC simulations are performed for subsequent parameters included in the calibration, the 

sensitivity coefficients are calculated and empirical distributions are determined. 360 

3.4 Analysis of the uncertainty of estimated coefficients in the logit model 

The study comprised the analysis of the effect of the parametric uncertainty of the logit models on the results of calculations 

of probability p as propagation of the uncertainty of the model coefficients. Moreover, the values of the sensitivity coefficients 

of individual factors Sxi were determined. The calculation of uncertainty in the scheme presented in Fig. 1 consisted of the 

following steps: 365 

 Determination of mean coefficient values (αj) and their standard deviations (σj) in logistic regression models used for 

determination of normal distributions N(μα, σα)i 

 T-fold sampling of the αj
* value with the Monte Carlo method based on the developed theoretical distributions Nj 

 determination Determination of probability curves for exceeding the Qg,m value, i.e., p*=f(Ptot, tr, ζ, xn, N(μα, σα)) and 

sensitivity coefficients Sxi
*=F(Ptot, tr, ζ, xn, N(μα, σα)) from Eq. (4) ,as well as the relevant percentiles 370 

On the basis of the determined logit models for the assumed cutoffcut-off thresholds Qg,m depending on the temporal rainfall 

distribution (ζ), probability curves described by Eq. (3) were plotted, and the values of sensitivity coefficients Sxi were 

determined from Eq. (4) for individual explanatory variables. 

3.5 Hydrodynamic model 

The SWMM 5.1 model was used to simulate the outflow from the catchment. The hydrodynamic model considered in this 375 

study consists of 92 partial catchments, 200 manholes, and 72 conduit sections. The proportion of impervious areas in the 

individual sub-catchmentssubcatchments ranges from 5% to 90%, and the average slope of the area is 0.5–6%. The surface 

area of the partial catchments varies from 0.12 ha to 2.10 ha. After calibration, the Manning roughness coefficient for the sewer 

channels had a value nsew=0.018 m-1/3·s, the roughness coefficient and retention depth for the impervious areas were nimp=0.020 

m-1/3·s and dimp=1.65 mm, respectively, and the flow path width expressed as W=αS·A0.50 was αS=2.00 (Kiczko et al., 2018). 380 

In the developed model of the catchment, stormwater flows independently from impervious (QImp) and pervious (QPerv) areas 

to the stormwater network. Thus, the outflow hydrograph from single catchments is the sum of the two-component runoff 

hydrographs at time t, which means that Q = QImp + QPerv. The analyzed catchment model was calibrated and used in the 

analysis of the quantity and quality of stormwater outflow from the catchment, the operation of the stormwater treatment plant, 

and the function of the stormwater system, which was reported in detail by Szeląg et al. (2016) and Kiczko et al. (2018). The 385 

sensitivity analysis and calibration of the catchment model were also performed with the GLUE+GSA method as well (Szeląg 

et al., 2016). 
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3.6 GLUE - Generalized Likelihood Uncertainty Estimation 

The model uncertainty was estimated using Generalized Likelihood Uncertainty Estimationgeneralized likelihood uncertainty 

estimation (Beven and Binley, 1992). It was assumed that model uncertainty can be described by the random variability of its 390 

calibrated coefficients. The coefficientscoefficient variability ranges for the SWMM of the Kielce Basin were investigated in 

previous studies (Kiczko et al., 2018; Szelag et al., 2016). They are shown in Table 1. In the previous studies conducted by 

Kiczko et al. (2018) and Szeląg et al. (2016), the parameter identification was performed along with the Bayesian approach 

using likelihood functions. The parameters were identified on the basis of Bayesian estimation (Beven and Binley, 1992): 

𝑃(𝑄/𝜃) =
𝐿(𝑄/𝜃)𝑃(𝜃)

∫ 𝐿(𝑄/𝜃)𝑃(𝜃)𝑑𝜃
            (6) 395 

where 𝑃(𝜃) stands for an a priori (Table 1) calibrated coefficientscoefficient distribution (uniform distribution was applied in 

the present study) and 𝐿(𝑄/𝜃) is a likelihood function used to calculate weights for the Monte Carlo sample depending on the 

model fit to the observed basin flows Q and 𝑃(𝑄/𝜃) resulting in a posteriori distribution of model coefficient 𝜃. The following 

formula was used as the likelihood function (Romanowicz and Beven 2006): 

𝐿(𝑄 𝜃⁄ ) = 𝑒𝑥𝑝 (
∑ (𝑄𝑖−𝑄𝑖̂)2𝑁

𝑖=1

𝜅·𝜎2 )          (7) 400 

where 𝑄𝑖  and 𝑄𝑖̂ -i-th values from represent the timestime series of observed and computed flows, respectively; and 𝜅 is the 

scaling factor for the variance 𝜎2 of model residuals used to adjust the width of the confidence intervals. In the study conducted 

by Kiczko et al. (2018), the value of 𝜅 was determined, ensuring that 95% of observed flow points are enclosed by 95% 

confidence intervals of the model output. 

The coefficients in the ranges given in Table 1 were uniformly sampled 5000 times, and the model was evaluated for each set. 405 

The simulation goodness-of-fit was determined as the standard deviation of computed and observed outflow hydrographs. The 

behavioral simulations were selected using a threshold value of deviation, i.e., simulations with a poorer fit were rejected. The 

threshold value was determined iteratively to ensure that confidence intervals explained the model uncertainty inwith respect 

ofto the observation. The goal was to enclose 95% observation points within 95% confidence intervals. Confidence intervals 

were calculated on the basis of empirical cumulative distribution functions of an ensemble of modeled hydrographs. The value 410 

of the threshold was iteratively increased to reach the above assumption. 

 

Table 1. Ranges of SWMM model coefficients (Kiczko et al., 2018). 

Parameters Unit Range 

Coefficient for flow path width (α) – 2.7–4.7 

Retention depth of impervious areas (dimp) mm 0.8–4.8 

Manning roughness coefficient for impervious areas (nimp) m-1/3·s 0.010–0.022 
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Manning roughness coefficient for sewer channels (nsew) m-1/3·s 0.010–0.048 

 

Coefficients were identified, and the threshold was adjusted for two rainfall events of on 24 July 2011 and 15 September 2010. 415 

The size of the behavioral set was as 5000. It should be noted that it is assumed in the above approach that the simulations 

from the behavioral set are equally probable. In this study, analyses were limited to four parameters in the SWMM model. 

Computer simulations (Szeląg et al. 2016) using the presented catchment model (SWMM) integrated with the MATLAB 

algorithms, in which the GLUE + GSA method was implemented (including global sensitivity analysis and uncertainty 

analysis), showed that the parameters of the Horton model, retention depth and Manning’s roughness coefficient of pervious 420 

areas had a negligible impact on the modeled outflow hydrograph from the catchment. These results were also confirmed by 

simulations performed by other researchers (Thorndahl 2009; Fu et al. 2011; Fraga et al. 2016) for urban catchments in 

Belgium, Great Britain, Italy, etc., using local and global sensitivity analytical methods. These results were also confirmed in 

the analyses performed by Zawilski (2010) and Mrowiec (2009) for catchments in Poland. The relationships between the 

calibrated parameters in the SWMM and the modeled parameters of the outflow hydrograph are complex and depend on many 425 

factors, i.e., spatial distribution of impervious areas, geometry and retention of the stormwater network, catchment area, etc. 

(Razavi and Gupta, 2015). Due to the size of the catchment area and limited outflow from pervious areas compared with 

impervious areas (Szeląg et al. 2016), the roughness and retention coefficients of impervious areas proved that they had a 

negligible effect on the outflow hydrograph from the catchment compared with other calibrated parameters of the SWMM. 

With precise spatial data about the catchment, it was shown that the uncertainty in the identification of impervious areas also 430 

has had an insignificant influence on the modeled outflow hydrogram (Szeląg 2013, 2016). Based on the continuous rainfall 

series from the period of 2010–2016 period and the determined a posteriori distributions of calibrated coefficients in the 

SWMM model, simulations of the combinations of numerical values [α, nimp, dimp, nsew] (5000 samples) were carried out, which 

facilitated the determination of catchment outflow hydrographs (Fig. 3B, Appendix). On this basis, parameters, i.e., maximum 

instantaneous outflow (Qm) and volume (V), were determined for each calculated hydrograph. The results of these analyses 435 

were used for the development of logit models for the established threshold values (Qg,m and Vg) and the assumed temporal 

rainfall distributions (R1, R2, R3, and R4). In the knowledge To ensure that the number of rainfall events in the period 2010–

2016 period is was 321 rainfall events, 1605000 rainfall event simulations were performed (considering the uncertainty of the 

SWMM model), of which 120000 episodes were separated for logit model validation. 

4.6 Hydrodynamic model 440 

3.7 Verification of generated logit models for analysis of hydrograph parameters 

The suitability of the generated logit models for simulation tasks in the case of the stormwater catchment analyzed in the this 

study was verified vs. measurement data. Since the temporal rainfall distributions in the rainfall events derived from 

measurements varied, they were assessed and adjusted to the theoretical distributions presented in this study (see Fig. B1 – 
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Appendix B) based on the value of the correlation coefficient (R) expressing the goodness-of-fit of empirical distributions 445 

𝑃

𝑃𝑡
= 𝑓 (

𝑡

𝑡𝑟
) to the theoretical distributions (R1, R2, R3, and R4). 

4 Results and discussion 

Following the developed computational algorithm, the “Results” section includes the following steps: determining the 

threshold values of the outflow hydrograph parameters using the hydrodynamic model of the catchment, as well as uncertainty 

analysis; developing the logistic regression model and its verification; sensitivity analysis, in which the influence of rainfall 450 

origin and temporal rainfall distribution on the parameters of the hydrograph is analyzed (volume and maximum flow rate); 

and analysis of the impact of uncertainty of the estimated coefficients in the logit model on the determined sensitivity 

coefficients. 

 

4.1 Separation of independent rainfall events 455 

Independent rainfall events were distinguished based on a series of rainfall events (2010–2016) measured at the rainfall station 

located at a distance of 2 km from the Si9 collector catchment and the definition of a rainfall event specified above. The number 

of events in the individual study years was estimated at 36 – 58. The rainfall duration (tr) in the events was 20 – 2366 min, and 

the length of the dry period was 0.16 – 60 days. The rainfall depth (Ptot) in the rainfall events was in the range of 3.0 – 45.2 

mm. 460 

4.2 Establishment of threshold values 

The values of calibrated parameters shown in Table 1 served for the SWMM model calculations. Assuming rainfall intensity 

values corresponding to normal (Ptot,u=3.7 mm), heavy (Ptot,m=5.8 mm), and torrential (Ptot,g=21.9 mm) rain, outflow 

hydrographs were determined for tr=15 min; and the Q(t) values were determined with at a 10-s resolution. The 

abovementioned assumption is made because the area under consideration is a small urban catchment, where the time of 465 

stormwater runoff is relatively short, and the stormwater retention time is limited due to the significant slope in the channels, 

reaching 3.9%. Moreover, the stormwater system model is simplified and limited to the main channels. In the context of the 

adopted assumptions (catchment retention resulting from land development and topography), the value of the rainfall duration 

(tr = 15 min) theoretically including the concentration time, the pipe retention time seems to be representative for small urban 

catchments, considering that the measure of the influence of rainfall origin on the model sensitivity is primarily to be 470 

differentiated by the mean intensity of rainfall (Meynink and Cordery, 1976; Watt and Marsalek, 2013; Krvavica and Rubinić, 

2020). Appropriate selection of the duration of rainfall and classification of rainfall for calculation purposes may result from 

the local rainfall parameters and the climatic conditions shaping the dynamics of rainfall-runoff processes. The simulations 

revealed the following values of maximum instantaneous flow and hydrograph volumes: Q(qu)m=0.275 m3/s and V(qu)=450 
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m3, Q(qs)m=0.735 m3/s and V(qs)=812 m3, and Q(qg)m=2.95 m3/s and V(qg)=3500 m3, respectively. It is worth noting that the 475 

values of the catchment outflow hydrographs were identical withto the rainfall intensity distributions R1, R2, R3, and R4, as 

demonstrated by Szeląg et al. (2016). 

4.3 GLUE (Generalized Likelihood Uncertainty Estimation) 

Parameters were identified using outflow time series for two rainfall events of on 24 July 2011 and 15 September 2010 (Kiczko 

et al., 2018). The threshold value of the correlation coefficient ensuring that 95% of the observations were enclosed within 480 

95% confidence intervals was 0.920. The size of the behavioral obtained set was 3375. The confidence intervals were verified 

for two rainfall events of on 30 May 2010 and 30 July 2010 (see Fig. B2 – Appendix B). The percentage values of the enclosed 

observation points were as follows: 30 May 2010: 91% and 30 July 2010: 47% (Kiczko et al., 2018). 

4.4 Estimation of coefficients in the logit model and assessment of goodness-of-fit 

Based on the determined values of the dependent variables and the corresponding explanatory variables (Ptot, tr, α, dimp, nimp, 485 

and nsew) for the assumed rainfall distributions (R1, R2, R3, and R4), logit models were generated for calculation of the 

probability of exceeding the threshold values: maximum instantaneous flows (Qg,m) and outflow hydrographs (Vg). Table 2 

presents the determined values of empirical coefficients (αj) and assessment of the goodness-of-fit of the calculation vs. 

measurementsmeasurement results in the logit models used for calculation of p=F(Qm,g) and p=F(Vg). The calculations 

indicated identical coefficient values in the case of temporal rainfall distributions R3 and R4 in the logit model; hence, the 490 

tables below show the results for temporal rainfall distribution R3. The analysis of the goodness-of-fit of the calculatedion 

results to the measurement results (SPEC, SENS, and Rz
2) revealed that the proposed logit models were characterized by 

satisfactory classification abilities. 

 

Table 2: Calculated coefficients (αj) and measures of the goodness-of-fit of measurement results to the logit model calculations of the 495 
Qg,m and Vg values for rainfall distributions R1, R2, R3 and R4. 

Rainfall distribution R1 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

α0 -0.235 0.083 -23.72 6.749 5.051 1.327 

α 2.571 0.988 1.901 0.821 0.091 0.028 

dimp -1.344 0.413 -1.13 0.473 -0.129 0.035 

nimp -234.241 84.098 -7.481 2.593 -5.449 2.057 

nsew -205.159 141.19 -377.74 107.016 -419.281 81.495 

Ptot 3.821 0.913 2.797 1.157 0.249 0.022 
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tr -0.221 0.051 -1.125 0.139 -0.1 0.009 

 

SPEC=96.51; 

SENS=99.79; 

Rz
2=99.51 

SPEC=100; 

SENS=99.77; 

Rz
2=99.82 

SPEC=95.74; 

SENS=97.62; 

Rz
2=96.28 

Rainfall distribution R2 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

α0 -1.307 0.465 -3.509 0.785 6.582 1.386 

α 1.503 0.491 1.444 0.567 0.29 0.12 

dimp -2.971 0.542 -2.872 0.905 -0.029 0.015 

nimp -68.921 29.814 -56.207 26.698 -22.629 10.949 

nsew -114.428 53.26 -397.451 132 -666.661 88.012 

Ptot 2.792 0.355 3.867 0.81 0.468 0.044 

tr -0.052 0.007 -0.207 0.043 -0.092 0.009 

 

SPEC=97.43; 

SENS=98.97; 

Rz
2=98.66 

SPEC=99.28; 

SENS=99.57; 

Rz
2=99.48 

SPEC=98.06; 

SENS=98.13; 

Rz
2=98.10 

Rainfall distribution R3 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

α0 -3.842 0.98 -2.908 0.916 1.726 0.675 

α 1.285 0.283 1.175 0.259 0.312 0.043 

dimp -1.869 0.3 -1.22 0.25 -0.152 0.043 

nimp -97.252 20.082 -70.814 18.365 -20.008 3.15 

nsew -161.108 32.34 -197.528 36.361 -264.179 40.089 

Ptot 3.068 0.261 1.959 0.164 0.267 0.017 

tr -0.022 0.002 -0.046 0.004 -0.027 0.002 

 

SPEC=95.79; 

SENS=97.11; 

Rz
2=96.93 

SPEC=95.92; 

SENS=96.11; 

Rz
2=96.01 

SPEC=97.60; 

SENS=96.89; 

Rz
2=97.25 

Rainfall distribution R1, R2, R3, and R4 

Variable 
V(qu)g V(qs)g V(qg)g 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 
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α0 -27.793 3.511 -23.483 2.997 -20.903 4.516 

α 5.427 1.963 3.142 0.917 2.837 0.688 

dimp -3.983 0.968 -3.075 1.381 -1.978 0.722 

nimp -48.794 21.066 -40.105 21.133 -31.321 14.474 

nsew -86.986 46.889 -66.569 32.38 -42.606 20.799 

Ptot 7.417 2.824 6.904 1.726 2.473 0.391 

tr -0.001 0.001 -0.001 0.0003 -0.001 0.008 

 

SPEC=96.53; 

SENS=99.17; 

Rz
2=98.73 

SPEC=98.63; 

SENS=97.77; 

Rz
2=98.13 

SPEC=97.63; 

SENS=98.77; 

Rz
2=98.33 

 

As shown in Table 2, not less than 95.79% of the cases were correctly identified at the calculated valuevalues of p<p(Qg,m; Vg) 

and p ≥ p(Qg,m; Vg). The model was validated on with 40000 independent rainfall events for R1, R2, R3, and R4 rainfall 

distributiondistributions (Table 3). 500 

 

 
Table 3. Results of validation of logit models shown in Table 2. 

Rainfall distribution R1 

Data to validation 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

40000 SPEC=96.00; SENS=95.60 SPEC=94.11; SENS=96.20 SPEC=96.20; SENS=95.20 

Rainfall distribution R2 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

40000 SPEC=97.30; SENS=96.50 SPEC=96.20; SENS=95.22 SPEC=95.20; SENS=96.50 

Rainfall distribution R3 

Variable 
Q(qu)g,m Q(qs)g,m Q(qg)g,m 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

40000 SPEC=95.50; SENS=97.10 SPEC=96.45; SENS=96.56 SPEC=97.12; SENS=96.45 

Rainfall distribution R1, R2, R3, and R4 

Variable 
V(qu)g V(qs)g V(qg)g 

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj) 

120000 SPEC=95.25; SENS=96.15 SPEC=96.03; SENS=93.17 SPEC=95.03; SENS=96.34 
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The results of calculations of the goodness-of-fit measures of the logit models for the temporal rainfall distributions R1, R2, 505 

R3, and R4 associated with the normal, heavy, and torrential rains confirm the high goodness-of-fit of the calculated and 

measured results. This confirms the suitability of the models for further analyses. 

4.5 Verification of the generated logit models vs. measurement data 

The analyses showed that in 237 of the 248 events for which the empirical and theoretical rainfall distribution exhibited high 

convergence (R ≥ 0.96), the calculatedion results from the logit models were consistent with the simulation data provided by 510 

the SWMM model in terms of the Qm classification. In the total number of the 248 rainfall events, the R1 temporal rainfall 

distribution was identified in 126 events (calculatedion results consistent with measurements in 122 events), 72 events 

represented the R2 temporal distribution (calculated calculation results consistent with measurements in 69 events), and 58 

events were determined as the R3 and R4 temporal distributions (simulation results consistent with measurements in 56 events). 

In the other 73 events (with R<0.96), the results of calculations performed in the logit models agreed with the measurement 515 

results in 43 events. In this group of events, 19 rainfall events were classified as the R1 temporal distribution (simulation results 

consistent with measurement results in 8 events), 23 events represented the R2 temporal distribution (calculated calculation 

results consistent with measurement results in 17 events), and 31 events were identified as the R3 and R4 temporal distributions 

(simulation results consistent with measurements in 18 events). The Vg value calculated for 321 rainfall events agreed with the 

measurement results obtained for 281 events. Table 4 shows a comparison of the calculated calculation results provided by the 520 

proposed logit models with the measurement results obtained in the consecutive years (2010–2016). 

The table shows the agreement of the calculated calculation results for the hydrograph parameters obtained via simulation with 

the SWMM model and logistic regression with regard to the classification of maximum flows and hydrograph volumes. The 

data presented in Table 4 indicate agreement of the logit model-based calculated calculation results with the measurement 

results. 525 

 

Table 4. Comparison of measurement and calculation calculated results in the analyzed period. 

Year M 
Qm

mes<0.3 Qm
sim<0.3 Qm

mes > 2.5 Qm
sim > 2.5 Qm

mes<0.75 Qm
sim<0.75 Qm

mes > 0.75 Qm
sim > 0.75 

V(Q=0.3 m3·s-1) V(Q=2.5 m3·s-1) V(Q=0.75 m3·s-1) 

2010 47 18/15 20/18 3/9 3/6 30/24 22/20 17/23 15/19 

2011 51 20/23 15/19 2/7 2/5 29/28 26/23 22/23 18/16 

2012 36 15/17 12/14 3/7 2/6 22/20 18/18 14/16 11/18 

2013 41 20/18 16/15 4/8 3/9 28/22 24/20 13/19 10/22 

2014 44 18/15 14/12 3/8 2/8 29/25 26/22 15/15 12/13 

2015 58 23/18 18/22 3/9 3/10 39/32 33/29 19/26 15/23 

2016 44 24/17 22/13 4/9 4/7 34/25 30/22 10/19 12/17 
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where: x1/x2 – number of rainfall events in a year with an exceeded x1=Qg,m/x2=Vg threshold value; calibrated values α, ninp, 

dimp, and nsew specified in section “Hydrodynamic model” were used for verification calculations in the logit models shown in 530 

Table 4. 

 

The calculated calculation results confirm that the proposed logit models include the key determinants of the variability of 

hydrograph parameters, which has been confirmed in theoretical studies and the results of field studies conducted by many 

authors (Gironás et al., 2010; Guan et al., 2015; Thorndahl, 2009). The maximum difference between the number of rainfall 535 

events where the parameters of the catchment outflow hydrograph were identified correctly based on rainfall distribution and 

rainfall characteristics by the logit model and the calibrated values of the SWMM model iswas 6 events, which was noted for 

2015. In this case, and in the other years, this is was associated with problems with agreement between empirical and theoretical 

distributions specified in DWA-A 118E (2006). This is was confirmed by the local nature of the dynamics of rainfall events 

in some urban catchments in Europe, as reported by various authors (De Paola and Ranucci, 2012; Todeschini et al., 2012) 540 

investigating the variability of temporal rainfall distribution in a rainfall event. Hence, there is a need to construct regional 

rainfall models that take into account the variability of measured rainfall distribution in an event rather than that assumed for 

another region (Wartalska et al., 2020). However, this may be the only solution in the absence of measurement data, which 

has been confirmed in studies on the use of typical DWA-A 118E (2006) of rainfall distributions to model the sewer network 

operation (Siekmann and Pinnekamp, 2011). Analysis of the data compiled in Table 3 demonstrates that, in addition to their 545 

theoretical value and the possibility to determineof determining sensitivity (Qm and Vg), the proposed models can be used for 

identification of an event with a probability of exceeding the Qm,g or Vg values in the analyzed catchment. 

The analyses performed in the this study (Table 2) indicate a strong effect of the flow path width (α), Manning roughness 

coefficient of impervious areas (nimp), retention depth of impervious areas (dimp), and Manning roughness coefficient of sewer 

channelchannels (nsew) on the hydrograph volume and the maximum instantaneous stormwater stream outflow in the analyzed 550 

catchment. This is confirmed by the values of the αj coefficients. The other explanatory variables (Table 1) are statistically 

insignificant at the assumed confidence level of 0.05. These findings were confirmed by Barco et al. (2008), Kleidorfer et al. 

(2009), and Skotnicki and Sowiński (2015), who calibrated hydrodynamic models of catchments in the USA (Santa Monica; 

area catchment of 217 km2), Australia (Melbourne; area catchments of 37.98 ha and 89.10 ha), Poland (Poznań; area catchment 

of 6.7 km2), respectively. The present simulation results confirm the findings reported for larger catchments located in China 555 

(Li et al., 2014), where correlation coefficient values and entropy measures were used, the USA (Muleta et al., 2013), where 

the GLUE method was applied, and Iran (Rabori and Ghazavi, 2018), where the local sensitivity analysis was carried out. The 

analysis of the values of coefficients αj in the logit models indicates that only an increase in the flow path width (α) leads to an 

increase in the probability of exceeding Qg,m as well as Vg, which is confirmed by the analyses performed by Barco et al. 

(2008). An inverse correlation was found for the other parameters in the SWMM model (nimp, dimp, and nsew). The results of 560 

the nsew simulations relative to Qg,m and Vg are were confirmed by the calculations reported by Barco et al. (2008) and Li et al. 
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(2014). The catchment analyzed by Li et al. (2014) was situated located in China (Changsha city, area catchment of 11.7 ha). 

The impervious area accounted for 56% of the catchment. The increase in the nsew value reported by many authors (Barco et 

al., 2008; Fraga et al., 2016; Li et al., 2014) indicated an opposite relationship to that observed in this study. This shows that 

an increase in the nsew value results in a shorter stormwater flow time and accumulation of flow from channels, which leads to 565 

a rise in the stormwater level and reduction of the instantaneous flow stream in the cross-section closing the catchment 

(Leandro and Martins, 2016). The calculations performed by Li et al. (2014) confirmed the Qm=f(nimp) relationship obtained 

in the this study; however, these analyses did not include the rainfall distribution and genesis. The nimp and dimp simulation 

results obtained in the this study are relevant in the nonlinear reservoir SWMM model for simulation of the catchment outflow 

(Gironás et al., 2010; Rossman, 2015). An increase in the catchment retention leads to a reduction in the amount of stormwater 570 

flowing into the sewer channels, which has an impact on the simulation results of the outflow in the cross-section closing the 

catchment. 

4.6.1 Sensitivity coefficients (hydrograph volume vs. maximum instantaneous flow) 

The plotted curves indicated that the smaller the volume of the calibrated catchment outflow hydrograph was, the greater the 

sensitivity of the model to changes in the calibrated coefficients identified in the catchment model (Fig. 5a–d). As part of the 575 

present calculations, the effect of the rainfall intensity distribution (ξ) and the threshold value (Qg,m and Vg) on sensitivity 

coefficients Sxj was assessed. The analyses focused on the temporal R2 distribution, i.e., Euler type II, as this distribution is 

used for assessment of the effectiveness of the operation of sewer networks (Siekmann and Pinnekamp, 2011) and is thus 

highly important in engineering considerations. The analyses of the subsequent rainfall distributions (R1, R2, R3, and R4) 

were based on the maximum flow caused by normal rainfall (Q=0.3 m3/s), which is determined by the occurrence of stormwater 580 

overflow in the case of the above-mentionedabovementioned value. The results of these analyses are presented in FigFigs. 4–

5. 

The analysis of the results of calculations of the probability of exceeding the threshold values Vg revealed that the 

rainfall intensity distribution did not influence the model sensitivity, which was confirmed by simulation experiments in the 

analyzed urban catchment (Szelag et al., 2016). The plotted curves (Fig. 5) indicated that the calibrated volume in the domain 585 

of the Vg value exhibits the greatest sensitivity (deterministic solution) to changes in dimp and α. This relationship was 

confirmed by Skotnicki and Sowiński (2015), who simulated outflows from a 6.7 km2 catchment in Poznań and employed 

local sensitivity analysis. Similar results were also obtained by Rabori and Ghazavi (2018) in their analyses of a catchment 

outflow in Iran. These correlations were also confirmed by the calculations reported by Mrowiec (2009), who modeled 

hydrographs in the urban catchment in Częstochowa (120 ha). The present analytical analysis results were also are confirmed 590 

by Ballinas-Gonzáles et al. (2020), who demonstrated a major impact of the characteristics of impervious areas on the 

variability of the catchment outflow hydrograph. Different sensitivity analytical analysis results were reported by Li et al. 

(2014), who demonstrated a crucial effect of nsew on the outflow hydrograph volume. Among the explanatory variables 
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considered in this study (for any p in Eq. (4)), nimp was found to exert the lowest effect on the probability of exceeding Vg at 

any p value. The course of the curves and their variability (Fig. 5) indicate the lowest Sxi values of the calibrated 595 

coefficientscoefficient (α, nimp, dimp, and nsew) catchment outflow hydrographs in the case of torrential rainfall events, whereas 

the highest values were noted in the case of normal rainfall events (inon the Chomicz scale). In terms of the selection of 

hydrographs for calibration followed by validation (SWMM model), the present results have an engineering aspect. This is 

associated with the fact that different relationships V(Q)=f(xi) can be obtained by validation of the model coefficients at the 

calibration stage, which is crucial for minimization of the difference between measurement and simulation values. The curves 600 

in Fig. 4e-4h show that apart from the rainfall origin (average rainfall intensity as a result of normal, heavy, and torrential 

rainfall), the temporal distribution of rainfall has an impact on the values of the determined sensitivity coefficients. This result 

is the effect of the fact that the temporal distribution of rainfall and the intensity of rainfall have a significant impact on the 

values of the modeled maximum flow rates, which was confirmed by the analysis by Schilling (2011). The obtained curves 

(Fig. 5) prove that the volume of the outflow hydrograph depends on the origin of rainfall and hence the variability of the 605 

determined values of the sensitivity coefficients for normal, heavy and torrential rainfall. 
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Figure 4. Comparison of calculation the calculated results (deterministic and probabilistic solutions) of sensitivity coefficients (Sα, 

Sdimp, Snimp, and Snsew) for (a–d) threshold values (Q=Qg,m) and temporal rainfall distribution ξ=R2; and (e–h) temporal rainfall 

distributions (ξ=R1, R2, and R3) for Qg,m=0.30 m3/s. 610 

 

Figure 5: Comparison of calculation the calculated results (deterministic and probabilistic solutions) of sensitivity coefficients (Sα, 

Sdimp, Snimp, and Snsew) for (a ÷ d) threshold values V(Q)=Vg and temporal rainfall distribution ξ=R1, R2, and R3. 

 

In turn, the impact of rainfall distribution was not found, which iswas confirmed by the studies in the field of modeling the 615 

volume of runoff from urban catchments (Grum and Aalderink 1999), including the computer simulations by Szeląg et al. 

(2014) for the urban catchment under consideration. 

4.6.2 Sensitivity coefficient (maximum instantaneous flow vs. rainfall distribution) 

Based on the plotted curves (probabilistic solution), it can be concluded that when the Qm value is calibrated in the region of 

Qg,m=0.30 m3·s-1 (uniform rainfall distribution R1, normal rain), the model shows the greatest sensitivity (percentile 0.50) to 620 

changes in nimp (deterministic solution), as confirmed by the value Snimp= -2.47 (Fig. 4g). The Manning roughness sewer 
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channel of coefficient (Snsew= -2.12; Fig. 4h), flow path width (Sα=1.25; Fig. 4e), and retention depth of impervious areas 

(Sdimp= -1.03; Fig. 4f) have a lower impact. The plotted curves and the deterministic solution indicate that the absolute Snimp 

and Snsew values for the R2 and R3 temporal rainfall distributions (deterministic solution) are lower than those for the R1 

distribution (Fig. 4e–f). In turn, in the case of Sα (Fig. 4e) and Sdimp (Fig. 4f), it was found that the absolute values of the 625 

sensitivity coefficients calculated for the R1 distribution have lower values than for R2 and R3. When the model is calibrated 

based on hydrographs reflecting the reaction of the analyzed catchment to normal rain (constant temporal rainfall distribution 

in an event - R1), the greatest effect on the Qm in the Qg,m domain is exerted by nimp, and the lowest impact is shown by dimp (in 

terms of absolute values); this is indicated by the curves in Fig. 4f–g. In turn, a different relationship, i.e., the greatest effect 

of dimp and α, and the lowest effect of nimp, was found for the R2 distribution (Fig. 4e–f). These relationships indicate a 630 

significant effect of temporal rainfall intensity distributions on the model sensitivity to changes in the coefficients calibrated 

in the domain of Qg,m values. 

The results of the present analyses may be highly important in engineering practice, as they confirm that, with the Qm values 

assumed to asbe the basis for calibration, the hydrograph should be selected in a way facilitating identification of the 

coefficients (α, dimp, nimp, and nsew) and validation so that the values will be a result of rainfallsrainfall with similar intensity 635 

dynamics. Therefore, it should be underlinedemphasized that in the hydrograph intended for identification of model 

coefficients and validation, the relationship between the dependent variables and the calibrated coefficients must have a similar 

form. 

4.6.3 Sensitivity coefficients (maximum instantaneous flow vs. size of threshold Qm) 

The plotted curves (probabilistic solution) with the deterministic solutions showed that the greater the rainfall intensity (rising 640 

Qm value) was, the smaller the values of the sensitivity coefficients (Sα, Snimp, and Sdimp) (Fig. 4a–d). This indicates a decline 

in the sensitivity of the model of predicitingpredicting the probability of exceeding Qg,m to changes in calibrated parameters 

(α, nimp, and dimp) (Fig. 4a–c). An inverse relationship was found for the nsew value (Fig. 4d). During the calibration of the 

catchment model for normal rainfall (maximum intensity in the middle of the event – R2), the model exhibited the highest 

sensitivity (Qg,m prediction) to changes in the retention of impervious areas (Sdimp= -2.342; Fig. 4b) and the lowest sensitivity 645 

to the Manning roughness coefficient of impervious areas (Snimp= -0.683; Fig. 4c). In the case of calibration of the catchment 

model for heavy and torrential rainfall events, the maximum instantaneous flow Qm in the region of corresponding Qg,m values 

exhibited the highest sensitivity to changes in nsew (Fig. 4d). 

The relationships presented in this study have been scarcely analyzed by other researchers (Barco et al., 2008; Krebs et al., 

2014; Li et al., 2014) in terms of catchment outflow modeling. These relationships, which confirm the significant effect of 650 

rainfall intensity distribution on hydraulic phenomena occurring in the a sewer network, were described by Jato-Espino et al. 

(2018) in their study of stormwater overflow. The authors showed a statistically significant effect of the rainfall intensity 

distribution on the relationship between stormwater overflow onto the land surface and catchment characteristics. A certain 
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analogy with the calculated calculation results described in the present study may be suggested. This is related to the fact that, 

along with the increase in rainfall intensity, Jato-Espino et al. (2018) reported a decline in the sensitivity of the model to the 655 

values of selected catchment characteristics; this is equivalent to a decrease in the sensitivity of the model to the calibrated 

parameters. 

4.6.4 Sensitivity coefficients (uncertainty of estimated coefficients in the logit model) 

The calculations showed that the uncertainty of parameter estimation in logit models exerts a strong effect on the values of the 

sensitivity coefficients calculated for the analyzed cases. This is confirmed by the determined range of variability of the 660 

sensitivity coefficient values (Sα, Snimp, Sdimp, and Snsew) depending on the size of the respective percentiles (Fig. 4 – 5). In most 

of the calculation variants (with the exception of α; Figs. 4a, 4e, 5a), the difference between the determined values of the 

sensitivity coefficients (for the different temporal rainfall distributions R1, R2, and R3 and rainfall genesis - normal, heavy, 

and torrential rains, respectively, and rainfall genesis) was shown to decrease with the increase in the percentile values. 

Different relationships were observed in the analysis of the variability of Sxi values shown in Fig. 5a. In this case, for percentiles 665 

below 0.36, the highest and the lowest Sα values were obtained for V(Qm,g=2.50 m3/s) and V(Qm,g=0.30 m3/s), respectively. 

The analysis of the effect of rainfall distribution (R1, R2, and R3) on the model sensitivity (calibrated Qm value) revealed an 

increase in the difference in the sensitivity coefficient Sα values with the increase in the percentiles. As shown by the analysis 

of the values of sensitivity coefficients Sα and Sdimp (Fig. 4a, 4b), the relationship Sα(dimp)(Qm=0.75 m3/s) > Sα(dimp)(Qm=2.50 

m3/s) was obtained for percentile values above 0.42, whereas an inverse relationship was found for lower percentile values. 670 

5 Summary and conclusions 

Modeling of outflows and calibration of hydrodynamic models with the design of tools supporting this task represent a relevant 

current research topic. It is necessary to search for methods that will yield reliable results reflecting the reality, as well as what 

is possible, on the one hand. On the other hand, with their acceptable time and cost efficiency in the retrieval and analysis of 

data, the methods should have the potential to be used in practice by a wide group of engineers. The currently used methods 675 

of analyzing the sensitivity of hydrodynamic models neglect the origin of rainfall and the temporal distribution of rainfall.  

Moreover, in the methods based on statistical models, the influence of the uncertainty of the estimated coefficients in the logit 

model on the values of the calculated sensitivity coefficients is not taken into account. Neglecting the abovementioned 

conditions may result in problems with the calibration of models and simplification in the interpretation of the physics of 

hydrological processes in catchments, which makes them difficult to understand. This study has shown showed that the logistic 680 

regression model can be used for analyses of the sensitivity of the maximum flow in a hydrograph and hydrograph volume in 

a rainfall event. The hydrograph parameters depended on the temporal rainfall intensity distribution in the rainfall event and 

parameters identified in the SWMM model. In addition to their scientific aspects, the proposed logit models may be a useful 

tool for forecasting the variability of the parameters of catchment outflow hydrographs, which confirms the usefulness of the 
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developed tool. The analyses performed in this work showed that the origin of rainfall and the temporal distribution of rainfall 685 

in the event have a large impact on the sensitivity of the model. However, this aspect has been neglected until now in sensitivity 

analytical methods. The results of the calculations showed that the lowest values of the sensitivity coefficients were obtained 

for the outflow hydrographs resulting from heavy rainfall, while the highest values of the sensitivity coefficients were obtained 

for normal rain. In the context of the currently used methods of sensitivity analysis and calibration, it seems advisable to 

modify them by introducing an additional calculation step consisting of the classification of the measured rainfall data in terms 690 

of the origin of rainfall (accounting for average rainfall intensity) and the temporal distribution of rainfall. For this purpose, it 

is possible to use unsupervised machine learning methods (e.g., hierarchical cluster analysis, Kohonen neural networks, etc.). 

In the context of the obtained calculated results, it is advisable to select the rainfall-runoff events for calibration and validation 

in such a way that the determined sensitivity coefficients do not show significant variability. It is important for the appropriate 

selection of the values of calibrated parameters and their potential correction at the stage of model validation. The sensitivity 695 

coefficient proposed in the this study facilitates the determination of the impact of selected parameters of the SWMM model 

on the outflow hydrograph parameters with consideration of rainfall genesis and variability of temporal rainfall distribution in 

a rainfall event. Furthermore, it has was been demonstrated that the rainfall genesis and the temporal variability of rainfall 

intensity in a rainfall event should be included in the selection of hydrographs for calibration and validation of the model. It 

was found that the higher the rainfall intensity determining the modeled outflow hydrograph was, the lower the sensitivity of 700 

the identified SWMM model parameters to the maximum outflow and hydrograph volume. The calculations have indicated 

that the uncertainty of the coefficients identified in the logit model has a significant impact on the determined sensitivity 

coefficients. The aspects discussed above are highly important for the procedure of hydrodynamic model calibration, which 

ultimately has a significant effect on the accuracy of the identified model parameters. 

The computational methodology proposed in this paper is universal in nature and can be applied to any urban catchment area. 705 

The simulation results presented in this paper refer to a single catchment area. Therefore, further analyses are required to verify 

the developed model for catchments with different physical and geographic characteristics. Thus, it is advisable to determine 

the applicability range of the developed computational model. Considering the usefulness of the obtained dependencies, as 

well as the large influence of rainfall origin and rainfall temporal distribution on the sensitivity coefficients, further studies are 

needed. The purpose of these analyses should be to expand the developed methodology of the sensitivity analysis aimed at 710 

additionally taking into account the shape and area of the catchment, land use, the path of the stormwater network, and the 

retention of the network. The analysis of the effect of the temporal distribution of rainfall, together with the spatial distribution, 

seems to be a particularly interesting issue, especially because both distributions strongly depend on rainfall genesis. However, 

the design of an appropriate experiment seems challenging. 
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7 Appendices 715 

Appendix A: List of Symbols 

tr – rainfall duration, 

Ptot – rainfall depth, 

αj – estimated coefficient of logistic regression model, 

α0 – rainfall efficiency coefficients taking into account the normal, heavy, and torrential rain types, 720 

qu – hydrograph caused by normal rainfall (according to the Chomicz scale), 

qs – hydrograph caused by heavy rainfall (according to the Chomicz scale), 

qg – hydrograph caused by torrential rainfall (according to the Chomicz scale), 

R1, R2, R3, and R4 - temporal of rainfall distribution, 

V – volume of hydrograph, 725 

Qm – maximum instantanous flow, 

Vg – threshold of volume of hydrograph, 

Qg,m – threshold of maximum instantaneous flow, 

ξ –  function describing the temporal intensity distribution, 

nimp  – Manning roughness coefficient for impervious areas, 730 

nsew – Manning roughness coefficient for sewer channels, 

α – coefficient for flow path width, 

GLUE – Generalized Likelihood Uncertainty Estimation, 

dimp – retention depth of impervious areas, 

Sxj – sensitivity coefficient, 735 

p – probability of exceeding of Qg,m and Vg, 

SWMM – Storm Water Management Model, 

SPEC – Specificityspecificity, 

SENS – Sensitiviltysensitivity, 

Rz
2 – calculation error, 740 

ε – empirical coefficient for conversion of the Qm
*value into p*, 

Q(t) – outflows from of the catchment at time t, 

x1, 2, j=n – calibrated parameters in the SWMM model, 

 

Appendix B: Supporting graphical information 745 
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Figure B1. Dimensionless rainfall curves P/Ptot=f(t/tr) obtained from measurements performed in 2008–2016. 
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 750 

Figure B2. Comparison of measurement results of hydrograms of outflow from the catchment area with GLUE calculations. 

 

 

Figure B3. Calculated likelihood function -   scatter plots of M values versus calibrated catchment parameters in SWMM. 

 755 
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