
Response Letter 

 

We have revised the manuscript and answered each of the comments of the reviewer. Please find 

point by point response below. We would like to inform the reviewer that the line numbers in our 

responses correspond to updated manuscript. 

 

Reviewer 1 

The authors performed modelling of the transport of Escherichia coli (E. coli) in a tropical 

headwater catchment located in Lao PDR using a deep learning model and the Hydrological 

Simulation Program–FORTRAN (HSPF). The deep learning model was built using the long short-

term memory (LSTM) technique, whereas the process-based model was constructed using the 

HSPF. Their results show that the LSTM provided accurate results for surface and subsurface flow, 

by showing 0.51 and 0.64 of Nash–Sutcliffe Efficiency (NSE), respectively, whereas the NSE 

values yielded by the HSPF were -0.7 and0.59 for surface and subsurface flow. The simulated E. 

coli concentration from LSTM also improved, yielding an NSE of 0.35, whereas the HSPF showed 

an unacceptable performance, with an NSE value of -3.01. The subject is interesting, important 

and useful. However, there are still some key points need to be addressed. This reviewer 

recommends to do some revision taking into account the below comments. 

We are thankful to the reviewer for his valuable and insightful comments. We have revised the 

manuscript according to comments of the reviewer. The detailed response to each comment of the 

reviewer is given below.  

 



Line 62, add g in “determining”. 

Response: We have removed the typo in line 62 and modified the sentence.  

Line 61 – 64: “Thus, they can be a means to determine the fate and transport of fecal pathogenic 

microorganisms at the catchment scale by simulating E. coli in environmental compartments, 

such as the soil surface and streams (Ligaray et al., 2016; Pachepsky and Shelton, 2011)”. 

 

Line65-84, although the authors have performed a good review of literature of process based 

models, some latest literatures of water quality should be introduced, such as E.coli (Ligaray et 

al., 2016; Sowah et al., 2020), and limitations of process-based models (Wang et al., 2020). 

https://www.sciencedirect.com/science/article/pii/S0048969720341917?casa_token=itdrA 

Azone8AAAAA:boSZBTjS_8FQY3RZ2bJz9zwQjiwpz9QOLuLvqK2iB6_CMu7NFaqmjvYcaC

wPxwvLO7yw1XEQKA 

https://www.sciencedirect.com/science/article/pii/S002216941931248X 

https://www.sciencedirect.com/science/article/pii/S0048969720326097 

https://www.mdpi.com/2073-4441/13/4/518 

Response: We thank the reviewer for the literature suggestion. This literature provides important 

insights about the latest research on E. coli. We have included the important highlights from this 

literature in our manuscript. 

Lines 75 - 81: Recently, Sowah et al. (2020) applied the SWAT model to research the sources 

and drivers of E. coli in Clouds Creeks watershed, USA. However, the process-based models still 

have limitations to accuracy due to the complexity of relationships among hydrological and 

environmental variables (Abimbola et al., 2020). In addition, the simplified equations of these 

https://www.mdpi.com/2073-4441/13/4/518


models can increase the inherent uncertainties, resulting in simulation errors. To overcome these 

limitations, several modifications of the E. coli module of the SWAT model have been proposed 

to incorporate the impacts of the multiple drivers of E. coli fate and transport (Cho et al., 2016; 

Jeon et al., 2019; Meshesha et al., 2020).  

 

Line85-95, it is unclear what advantages DL has over process-based models. Are there 

any disadvantages of DL, compared to process-based models? 

Response: Deep learning-based models have the advantage over their process-based counterparts 

because of their high accuracy, faster prediction time and their ability to model complex 

relationships between input and output features. This ability of deep learning comes mainly from 

their ability to exploit special form of compositionality in input data by creating abstract features 

in different layers of neural networks. We have added the following lines to explain more clearly 

the advantages of deep learning-based models over process-based models.  

Line 88 – 92: “Deep learning-based models are superior to their process-based counterparts due 

to their high accuracy, faster prediction time, and their ability to model complex physical 

phenomenon (Sze et al., 2017). Deep learning models can exploit a particular compositionality in 

the input features by finding more abstract features in them (Bengio et al., 2021)”.  

 

One the other hand, one disadvantage of deep learning models is their lack of explainability i.e. it 

is difficult to explain their output. In fact, this is an open research problem and many solutions are 

being proposed to answer this question. We have added this point in section 3.6 (Limitations and 

future research) of the manuscript. 



Lines 427 – 434: “The deep learning-based approach can yield high model performance but it has 

the limitation in terms of explainability and interpretability (Molnar, 2020). The neural networks 

are generally considered as black-box and the question of interpreting them is still an open research 

problem (Mitchell, 2021; Tiddi, 2020). Several methods have been proposed to interpret the 

behavior of neural networks (Molnar et al., 2020). Explaining the output of neural networks can 

enhance the confidence of decision makers (Lipton, 2018). Therefore, we propose future research 

involving deep learning models will benefit if the questions of interpretability and explainability 

are considered along with model’s prediction performance”.   

 

Line376-378, There are no Figs. S2a-S2c in Figure S2. 

Response: This was mistake to refer Figure S2 here. The actual figure is S1. We have corrected 

this mistake.  

Lines 399 – 400: “In scenario 1, we used land-use change time-series information (Fig. S1a) and 

bacterial source information (Fig. S1b)”. 

 

In Fig. S11d and S11e, a peak on 2015-08-28 was captured by both models. However, 

It look no data of E. Coli. This should give some explanation if no observed data. 

Response: We agree with the reviewer that the peak shown by both HSPF and LSTM in Fig. S11 

on August 28, 2015. The observed missing E. coli concentration during this peak is likely due to 

lack of observation. We have mentioned this in the manuscript.  

Line 371 – 377: “We observed that both HSPF and LSTM simulated peaks even when the 

observed data did show corresponding peaks (Figures S8 and S11). The peaks predicted in Fig. S8 



are solely from HSPF while the peak event in Fig. S11 is predicted by both HSPF and LSTM 

models. This shows the efficacy of both calibrated models. We could conclude from Fig. S11 that 

the lack of observed peak is more likely because of missing observation. However, a similar 

conclusion cannot be drawn for all the predicted E. coli peaks in Fig S8 because of contradicting 

results of LSTM and HSPF”.  

 

It is unclear where input data sources are from for both LSTM and HSPF. Furthermore, 

is land use resolution same for both LSTM and HSPF? 

Response: The input data for both HSPF and LSTM consists of climate, hydrological, E. coli 

source, and electrical conductivity data. The climate data was measured with an automatic weather 

station located at the study site. This has been described in following lines in manuscript. 

Lines 120 - 122: “Rainfall, relative humidity, solar radiation, wind speed, and air temperature were 

measured with an automatic weather station Campbell Scientific BWS200, which was equipped 

with ARG100 (a 0.2 mm capacity tipping bucket)”. 

 

The electrical conductivity data was used to calculate surface and sub-surface flow. This method 

has been used in several previous studies such as Ribolzi et al., 2018. We have given the detailed 

description of this method in supplementary information (Text S2). 

Lines 123 – 128: “We measured the stream water level at the monitoring station using a V-notch 

and water-level recorder (OTT Thalimedes). The discharge was estimated based on the rating 

curve relating discharge to water levels. The surface and subsurface flow were calculated using 



the electrical conductivity method (Ribolzi et al., 2018). A detailed description of this method is 

provided in the supplementary information (Text S2)”. 

 

The E. coli concentration was measured based on the standardized microplate method (ISO 9308-

3). The detailed description of the experiments is given in supplementary information provided 

with the manuscript.  

Lines 128 – 134: “E. coli concentration was measured based on the standardized microplate 

method (ISO 9308–3). A detailed explanation of the E. coli experiment can be found in the 

supplementary information (Text S3). In this study, we carried out biweekly grab sampling of E. 

coli from 2011 to 2018. Over the same period, we also monitored 11 flood events to assess E. coli 

dynamics during flood events using an automated sampler (ICRISAT) triggered by the water level 

recorder to collect water after every 2 cm water level change during flood rising and every 5 cm 

water level change during flood recession”. 

 

Fig. 4 and Fig. 5 can be merged to remove a rainfall figure. 

Response: We have merged Fig. 5 and Fig. 5 into one Fig. 4. Fig. 4 now shows surface and sub-

surface flow from HSPF and LSTM models. The subsequent numbering of all the figures in the 

manuscript has been updated. 

 



  



Figure 4: Hydrological simulation from HSPF and LSTM: (a) Simulated and observed surface 

flow from HSPF, (b) Simulated and observed sub-surface flow from HSPF, (c) Simulated and 

observed surface flow from LSTM, and (d) Simulated and observed sub-surface flow from 

LSTM. 

 

 

Line 182, it should be briefly described how the data has been converted to a 6 min 

frequency. 

Response: The rainfall data was recorded at 6-minute interval for 2011 and 2012. It was recorded 

with 1-minute frequency from 2013 to 2018. We used cumulated sum of rainfall data from 2013 

to 2018 to convert it into 6-minute time-step. Using the automatic weather station, we also recorded 

hourly relative humidity, solar radiation wind speed and air temperature. These data were then 

used to calculate potential evapotranspiration using the method of Penman-Monteith at a 1-h time-

step. Finally, we interpolated the potential-calculated evapotranspiration to a 6-min time-step. For 

E. coli, we considered the values nearest to 6-minute time-step as representative of that time-step. 

We have briefly discussed this in following lines in the manuscript.  

Lines 186-190: “This was carried by interpolating the hourly weather data. Rainfall data were 

already available at 6 min for 2011 and 2012 while for 2013 to 2018 it was available at 1 min 

frequency and was aggregated into a 6-min time series. For E. coli concentration, the values 

nearest to a 6-min step were used as representative of that time step”.    

 

Figs. S6-S11 should be explained and discussed. 



Response: We have added discussion about hydrological results of HSPF and LSTM which are 

illustrated in Fig. S6-S11 in the manuscript.  

Line 322 – 327: “The simulated surface flow by HSPF followed the rainfall events more closely 

as compared to that of LSTM. The peaks in surface flow in Fig. S8 are completely missed by 

LSTM while captured by HSPF model.  We also observed that LSTM can follow the observed 

trends in surface and subsurface flow more closely than the HSPF (Fig. S6, S9, S10). The falling 

limb from the predicted sub-surface flow of LSTM is gentle and follows the observed pattern (Fig. 

S9 - S11)”. 

 

A discussion paragraph about results of E. coli in Fig. S6 – S11 have been added in response to 

reviewer’s previous comment.  

Line 371 – 377: “We observed that both HSPF and LSTM simulated peaks even when the 

observed data did show corresponding peaks (Figures S8 and S11). The peaks predicted in Fig. S8 

are solely from HSPF while the peak event in Fig. S11 is predicted by both HSPF and LSTM 

models. This shows the efficacy of both calibrated models. We could conclude from Fig. S11 that 

the lack of observed peak is more likely because of missing observation. However, a similar 

conclusion can not be drawn for all the predicted E. coli peaks in Fig S8 because of contradicting 

results of LSTM and HSPF”.  

 

 

 



 

Reviewer 2 

It is important and meaningful to improve prediction accuracy in modeling works. Nowadays, 

application of machine learning including deep learning techniques may be very promising to 

support conventional modeling approaches. This study constructed LSTM model to simulate 

surface/subsurface flow and E. coli concentration in a catchment and compared the performance 

with HSPF model, which is a well-known watershed model. The results are quite interesting and 

can be useful in scientific and practical fields. I think that this study can be considered as a 

publication in the journal with minor revision. 

Some comments are as follows. 

We thank the reviewer for finding our work interesting and useful. We have revised the manuscript 

with reviewer’s comments. The answer to each of the comments are given below. 

 

In construction of LSTM in a catchment, this study used only meteorological data as an input to 

predict flow rates. An issue is that how we can consider characteristics of catchment such as land 

use and soil property in simulation of flow rate.  

Response: We agree with the reviewer that the flow rates in a catchment are affected by the 

catchment characteristics such as soil characteristics, slope etc. The LSTM is in principle designed 

to extract temporal features from time-varying input data. The static data consisting of catchment 

characteristics can however be fed to the along with continuous data. However, in this study we 

did not consider this because the study consisted of only single catchment. In such a scenario, the 

LSTM will be trained with only single constant value for each catchment feature. On the other 



hand, if had data for several catchments, then LSTM could be trained to learn different catchment 

characteristics. We adopted similar strategy in the preceding study (Abbas et al., 2020) where we 

trained LSTM with input data of different HRUs and the static input data of HRUs was used along 

with time series data of each HRU. 

 

I think that the basin area in this study may be relatively small. What if LSTM model application 

in a largescale watershed? Is the meteorological data enough to predict flow rate? I think that this 

discussion can be very informative to readers in LSTM application to watershed scale. 

Response: The prediction performance of deep learning models is strongly affected by the data 

distribution of the training data. In order to make a regional or global prediction model, the LSTM 

should also be trained with input data from more catchments. Some recent work is being carried 

out in this direction to build regional streamflow prediction models using deep learning. However, 

due to scarcity of water quality data, building such a regional model is more challenging. 

Nevertheless, we think the approach adopted in this study can be used as guideline for building 

regional water quality model by training the model with more input data. We have added this 

discussion in the manuscript.  

Lines 432 – 441: “Deep learning models are based upon the (independent and identically 

distributed) (IID) assumption which means that the validation data is expected to have the same 

distribution as that of the training data (Kawaguchi et al., 2017). However, this is not a realistic 

assumption and it is considered as one of the challenges for researchers in machine learning 

(Bengio et al., 2021). Thus, in order to build regional or global hydrological models, the deep 

learning model should be trained on catchment data from diverse catchments. Several researchers 

have adopted this approach to build regional models for streamflow prediction (Anderson and 



Radic, 2021; Kratzert et al., 2019; Xiang et al., 2021). However, a similar approach for building 

regional water quality model will be more challenging due to the scarcity of water quality data. 

We hope that the lessons from this study can be used a guideline to train neural networks on 

regional water quality data”. 

 

Line 29, full name is needed for “PDR” 

Response: We have corrected this by writing the full name of PDR. The modified sentence is as 

follow 

Line 29: In this study, we simulated the fate and transport of Escherichia coli (E. coli) in a 0.6 

km² tropical headwater catchment located in Lao People’s Democratic Republic (Lao PDR) using 

a deep learning model and a process-based model. 

 

Line 52, what is the meaning of “less dangerous than other pathogens”? 

Response: We agree with the reviewer that the word ‘less dangerous’ is vague and not clear. 

Therefore, we have removed this word from the sentence. The modified sentence in manuscript is 

as follows; 

Line 52 – 53: “Escherichia coli (E. coli) has been frequently used as an indicator of fecal 

bacteria because it is easy to culture (Rochelle-Newall et al., 2015)”.  

 

In study site description, basin area is needed. 

Response: We have added the catchment area in the study site description. 

Line 112: “The study area is 0.6 km2 the Houay Pano headwater catchment”. 



 

Line 167, what is the meaning of “rewrote” Did you modify the source code? Rephrase it.  

Response: The original HSPF code is in FORTRAN programming language which is difficult to 

use with modern optimization algorithms and change. Therefore, we converted the code into 

Python programming language. Thus, we did not modify the source code but converted it into 

Python programming language. 

Lines 170 – 171: For this study, we converted the original FORTRAN code of E. coli module of 

HSPF into Python programming language. 

 

Line 192-193 and 376-378, It is difficult to understand scenario 1 and scenario 2. 

Scenario 1 is land use change with same E. coli loading (Fig. S1-a and b) and scenario 2 is 

land use change with variable E. coli loading in terms of land use (Fig. S1-a and c))? It is 

confusing. 

Response: The purpose of these two scenarios is to assess the impact of different input features. 

In scenario 1, the land use change information and E. coli source information is represented by 

separate input features. This results in increase in number of input features. In scenario 2, the 

number of input features was reduced by combining the land-use change information with that of 

E. coli concentration. We have rephrased the sentences to make it clearer. 

Line 205 – 208: “In scenario 2, the number of input features was reduced by multiplying E. coli 

source with land-use change. In this way, we calculated E. coli source per area for each land use 

and used this as input instead of using land use and E. coli information as separate input features”. 

 

Line 265, among the 10 most sensitive parameters? 10 variables are equally sensitive? 



Response: The sensitivity of the 10 parameters is not equal. The sensitivity rank of these 

parameters is given in Table S2.  

Table 2 and line 313, number of optimal batch size and lookback steps are mismatched 

between the table and sentence. 128 vs 100 and 50 vs 5 h 

Response: We thank the reviewer for pointing the mistake. We have corrected the values of batch 

size and hidden units for LSTM for surface and sub-surface flow estimation. However, the value 

of lookback steps is correct i.e. 5 hours. This is because the 5 hours of historical data was used as 

input for both flow estimation E. coli concentration estimation.  

Lines 331 – 332: The optimal batch size and LSTM units were 128 and 64, respectively. 

 

Figure 8, what is (a) and (b) in the figure? (a) July 15 and (b) August 1? 

Response: In Fig. 8 (a) and (b) represents prediction performance of models during two selected 

periods with several storm events. The first period is from July 15 to July 23 while the second 

period is from August 1 to August 5 2017. We have rephrased the caption of Fig. 8 to make this 

clearer. 

Figure 8: E. coli concentration of HSPF and LSTM during July 15-22 (a) and August 1-5, 2017 

(b). Both storm events were affiliated in validation period.   

 

Line 362 – 370, where is minmax and logarithmic transformation from? There was not any 

mention about application of minmax and logarithmic transformation in method. All E. coli 

simulations was based on logarithmic? 

Response: We have added information about minmax and logarithmic transformation of the E. 

coli data in the methods section (2.2.2). We trained the neural network on the transformed data. 



However, we calculated the performance metrics by transforming the predictions back to normal 

scale.  

Line 198 – 202: “The preprocessing of the data before feeding the neural network can have a 

significant impact on the of performance (Banhatti and Deka, 2016). Therefore, we compared the 

performance of model by transforming the E. coli concentration using the minmax transformation 

and the logarithmic transformation. The minmax transformation results in data between 0 and 1 

while logarithmic transformation transforms the data on a logarithmic scale”. 

 

Line 376-378, Referencing of the figure in the sentences may be wrong. Not Fig. S2 but 

Fig. S1. Check it.. 

Response: We are thankful to the reviewer for pointing out this mistake. We have corrected this 

mistake. 

Lines 399 – 400: In scenario 1, we used land-use change time-series information (Fig. S1a) and 

bacterial source information (Fig. S1b).  
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