
Supplementary Materials

S1 Description of Hydrological Model

In the following the hydrological model structure and the underlying assumptions will be described and the
corresponding equations provided.

The temperature lapse rate is set to 0.006 ◦C m-1 (e.g., Gao et al., 2014) to account for decreasing
temperature with increasing elevation (see Eq. S1 where HT defines the height at which temperature was
measured (Tmeas) and Te the temperature at elevation He). A constant temperature lapse rate is assumed
although in reality the lapse rate changes with season. However, a representation as a sine function of this
seasonality does not improve model performance (Girons Lopez et al., 2020).

Te = Tmeas − 0.006 · (He −HT ) (S1)

A threshold temperature (Tthresh) is employed to split precipitation into rain and snow. In the following
two paragraphs the representation of interception and snow in the model is described. These two processes
are run per elevation zone and the combined output of the elevation zones is used as input for the other
processes in the model.

S1.1 Interception

The water stored in the interception reservoir (Sint) increases if precipitation is present as rain (Prain) and
decreases by interception evaporation (Eint) and outflow of water (Peff ) (Eq. S2).

The interception of precipitation by vegetation is represented as a threshold process because leaves can
only hold a certain amount of water. If the interception capacity (Imax) is exceeded, excess water leaves
the storage (Peff ) (Eq. S3) . Afterwards water in the interception reservoir can evaporate (Eq. S4). The
amount is limited by the water stored in the reservoir. Moreover, a limit of 50% of the potential evaporation
is set to make the model more realistic. Thus, on cool humid days not all water potentially able to evaporate,
evaporates from the interception storage but also soil evaporation can occur. Interception only takes place
if temperature is above the threshold temperature which means precipitation enters the system as rain. For
the bare rock HRU the process of interception is neglected as it is assumed to be negligible due to sparse
vegetation.

dSint
dt

= Prain − Eint − Peff (S2)

Peff = max(Sint − Imax, 0) · dt−1 (S3)

Eint = min(0.5 · Epot, Sint · dt−1) (S4)

S1.2 Snow

The changes in the snow storage (Ssnow) are represented by the input of snow (Psnow) if the temperature is
below the threshold temperature and the output of melt water (Msnow) if temperature is above the threshold
temperature (Eq. S5). The bare rock HRU also has a glacier storage (Sglacier, Eq. S6).

dSsnow
dt

= Psnow −Msnow (S5)
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dSglacier
dt

= Psnow −Mglacier (S6)

The melt process which happens at temperatures above the threshold temperature is simulated with a
degree-day approach. In this study it is assumed that the degree-day factor (DDF) (Fmelt) is constant in
time and space. Studies have shown that DDF increases during melt season, differs in different vegetation
(Rango and Martinec, 1995), is correlated with elevation (He et al., 2014) and aspects of slopes. However,
Griessinger et al. (2016) obtained similar results for a fixed DDF and a time-varying DDF for catchments
with mean elevation below 2000m, Finger et al. (2015) showed that model performance does not increase
with increasing complexity (including aspect or difference in vegetation) and Gao et al. (2017) show that
including aspects does not improve the model performance but increases its spatial transferability. On
the other hand, Abudu et al. (2016) illustrates that including aspects and slope slightly increased model
performance. Girons Lopez et al. (2020) found a slight increase of model performance for a seasonal DDF.
Yet, when evaluating increased model complexity against increased performance it was decided to implement
a fixed DDF in order to keep the model simple.The melt process is represented by an exponential function
as suggested by Girons Lopez et al. (2020) where MM is the parameter to control for the smoothness of the
snowmelt transition (Eq. S7) to increase the model performance. The process is limited by the amount of
water stored in the snow reservoir (Eq. S8) whereas the process is unlimited for glaciers (Eq. S9). The
threshold for melt was the same as the threshold for partitioning between rainfall and snow.

M = Fmelt ·MM (
T − Tthresh

MM
+ ln(1 + exp(−T − Tthresh

MM
)) (S7)

Msnow = min(M,Ssnow · dt−1) (S8)

Mglacier = M (S9)

In the bare rock HRU, glaciers can exist, which are described as an unlimited reservoir. Glacial melting
depends on the same DDF as snow melting (Eq. S9). Studies suggest a higher melt factor for glaciers than
for snow (Braithwaite, 2008; He et al., 2014; Gao et al., 2017), because ice has a lower albedo than fresh
snow which results in increased melting. However, glaciers are snow covered during a long period of the year.
Thus, it was decided to use the same melt factor in order to not further increase the number of parameters.
The total melt is the combination of snow and glacier melt according to the areal extent (Eq. S10).

Mtot = Msnow · (1− areagl) +Mglacier · areagl (S10)

The melt water is combined with the outflow of the interception reservoir over all elevation zones according
to their areal extents.

Peff,tot =

Elevations∑
i=1

Peff +

Elevations∑
i=1

Mtot (S11)

S1.3 Unsaturated Zone

The change in soil storage (Su) is defined by the water entering the unsaturated zone (qu) and the evapora-
tion/transpiration of the soil (Eu).

dSu
dt

= qu − Eu (S12)
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The amount of water entering the soil (qu) is dependent on the water already stored in the reservoir and
the maximum capacity of the soil storage (Eq. S13). The more water there is already stored in the reservoir,
the less water will be stored. The relation is described by a monotonous increasing function for Cr (Eq.
S14).

qu = min((1− Cr) · Peff,tot, (Su,max − Su) · dt−1) (S13)

Cr = 1− (1− Su
Su,max

)β (S14)

The excess water is either diverted to the fast reservoir (qoverland) or reaches the slow reservoir as prefer-
ential flow (qpref ). The process is governed by the parameter ρp. Recharge into groundwater can occur on
rainy days.

qoverland = (Peff,tot − qu) · ρp (S15)

qpref = (Peff,tot − qu) · (1− ρp) (S16)

Su = Su + qu · dt−1 (S17)

The transpiration of the unsaturated zone is only limited by the potential evaporation if the water stored
in soil is greater than the proportion Fevap of Su,max. Below, the flux is reduced linearly until reaching 0 for
Su = 0. The underlying reason is that the more water is stored in the soil the more water is stored in large
pores, which plants can easier access. The less water stored, the more water is stored in small pores which
cannot be fully used by the plants for transpiration.

Eu = (Epot − Eint) ·min(
Su

Su,max · Fevap
, 1) (S18)

In the riparian HRU, water can also enter the soil from the slow reservoir via a flux qrip (Eq. S20). The
excess water flows into the fast reservoir (Eq. S21).

dSu,rip
dt

= qu,rip − Eu (S19)

qu,rip = min((1− Cr) · (Peff,tot + qrip), (Su,max − Su) · dt−1) (S20)

qover = Peff,tot + qrip − qu,rip (S21)

S1.4 Fast Reservoir

The change in storage of the fast reservoir increases with water that does not enter the soil but runs off on
the surface and decreases by runoff into the river (Eq. S22). It is expressed as a linear response reservoir
with a reservoir constant (kfast), so that each time step a fixed percentage of water is released into the river
(Eq. S23).

dSfast
dt

= qoverland − qfast (S22)

qfast = kfast · Sfast (S23)
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S1.5 Slow Reservoir

The change in slow reservoir is defined by the incoming preferential flow of all hillslope HRUs and the outflow
qslow (Eq. S24), which depends on the reservoir constant kslow (Eq S25). Losses to deep ground water are
neglected because it is assumed that the amount is so small that increasing the complexity of the model is
not justified.

dSslow
dt

= qpref,bare + qpref,forest + qpref,grass − qslow (S24)

qslow = kslow · Sslow (S25)

Part of the outflow qslow enters the unsaturated zone of the riparian HRU, governed by the parameter
ρrip (Eq. S26). The remaining water contributes to the river runoff (Eq. S27).

qrip = ρrip · qslow (S26)

qbase = (1− ρrip) · qslow (S27)

S1.6 River runoff

The river runoff at each time step is defined by the weighted sum of the outflows of the fast reservoirs of
each HRU (qfast) and the outflow of the slow reservoir (qbase).

Qriver =

HRU∑
i=1

qfast,i + qbase · (Abare +Aforest +Agrass) (S28)

A lag function to account for channel routing was not implemented in the model. The longest catchment
(Gailtal) is 60 km long. Assuming a flow velocity of 1 m s-1, it would take maximum 17 h for the water
to get routed to the outlet of the catchment. As time steps of one day are used, channel routing can be
neglected.

Loss Term Pitztal In the Pitztal water is diverted to a reservoir in the Kaunertal close by. The exact
amount of water diversion at each time step is unknown but the maximum amount diverted is 12.1 m3 s-1. It
is assumed that during low runoff almost no water is diverted, whereas at high runoff the maximum amount
is diverted. Thus, an exponential relationship with an upper boundary was assumed (Eq. S29). This results
in an additional parameter that has to be calibrated (loss) which can range from 0.01 to 0.08.

Qloss =

{
loss ·Q2

river if loss ·Q2
river ≤ 12.1

12.1 if loss ·Q2
river > 12.1

(S29)

Qriver,real = Qriver −Qloss (S30)
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S2 Parameters

In order to reduce the number of parameters, most parameters are kept constant across HRUs. Only
parameters for landscape dependent processes, i.e. interception and soil storage, are defined individually per
HRU (see Table S1). Prior parameter ranges are determined based on literature (Gao et al., 2014; Prenner
et al., 2018; Girons Lopez et al., 2020) and further improved based on first calibration runs in order to
decrease the possible parameter space and improve calibration. To ensure parameter combinations of HRUs
are in line with the perception of the system, they are constrained based on Gharari et al. (2014). The
interception capacity of forest has to be larger than of grassland or of the riparian zone due to a higher Leaf
Area Index of forests (Eq. S31 & S32). The soil storage capacity is constrained based on the assumption
that larger plants have larger roots and a higher water demand and thus need more soil and a larger soil
storage. Moreover, a larger soil storage capacity of grassland than riparian zone is assumed due to high
ground water levels near the river shore (Eq. S33 & S34). Lastly, the reservoir constants were constrained
by the rate at which they run off into the river (Eq. S35).

Imax,forest > Imax,grass (S31)

Imax,forest > Imax,rip (S32)

Su,max,forest > Su,max,grass > Su,max,rip (S33)

Su,max,forest > Su,max,grass > Su,max,bare (S34)

kfast,rip > kfast > kslow (S35)

S3 Objective Functions

In order to calibrate the model, it is necessary to compare the model output to runoff measurements based
on so called objective functions. Due to high amount of parameters of the model it is necessary to use
several objective functions to make sure that the model represents well the catchment behaviour. The
overall performance of the model was assessed using the mean Euclidean Distance (De) from the perfect
model fit (Hrachowitz et al., 2014).

Nash Sutcliffe efficiency A widely used objective function in hydrology is the Nash Sutcliffe Efficiency
(NSE) (Eq. S36). The NSE ranges between 1 and -∞. A perfect fit would result in a NSE of 1. A value of
zero indicates that the mean observed stream flow is the best estimation of the model. The NSE tends to
overemphasizes peak flows because the deviations between the model and observed stream flow are squared.
Therefore, it is necessary to use another objective function which is focused on the low flows. A good
objective function for this purpose is the Log Nash-Sutcliffe efficiency (Eq. S37) because it is more sensitive
to low flows than to peak flows.

NSE = 1−

n∑
i=1

(QMod,i −QObs,i)2

n∑
i=1

(QObs,i −QObs)2
(S36)
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NSElog = 1−

n∑
i=1

(log(QMod,i)− log(QObs,i))
2

n∑
i=1

(log(QObs,i)− log(QObs))2
(S37)

Volumetric Efficiency The volumetric efficiency describes the fraction of water delivered at the proper
time (Criss and Winston, 2008).

V E = 1−

n∑
i=1

|QMod,i −QObs,i|
n∑
i=1

QObs,i

(S38)

Flow duration curve A Flow Duration Curve plots the magnitude of daily runoff against the exceedence
probability on any day. The flow duration curve of the logarithmic flows is calculated. The NSE between
the observed and modelled flow duration curve is taken as objective function. As the timing of the flow is
not considered for FDC, but only the magnitude, this objective function focuses on the magnitude of flows,
disregarding a proper representation of timing.

Autocorrelation The autocorrelation is a measure of the ”memory” of the catchment. If the memory
is high, the correlation values should be high and the hydrograph is smooth. If the memory is low, the
correlation values are low and the hydrograph has sharp peaks. The autocorrelation with a lag of 1 day
is calculated (see Eq. S39) and the results of observed and modelled streamflow are compared using the
relative error. As another signature, the auto correlation values with a lag of 1 to 90 days are calculated.
The resulting autocorrelation functions of the observed and modelled streamflow are compared using the
NSE.

AC =

n∑
i=1

(Qi −Q)(Qi+1 −Q)

n∑
i=1

(Qi −Q)2
(S39)

Monthly runoff coefficient The runoff coefficient is the ratio of total runoff to total precipitation. If
the monthly runoff coefficient are correctly represented by the model, it means that the model is able to
reproduce the amount of runoff and evaporation correctly. The following function is used to calculate the
monthly runoff with n the number of days in the corresponding month. The runoff coefficients of all months
are compared using the NSE.

R =

n∑
i=1

Q

n∑
i=1

P
(S40)
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Snow cover Using satellite derived snow cover images for calibration significantly improves correct repre-
sentation of glaciers, snow and rain (Finger et al., 2015). Thus, MODIS satellite data is used to determine
the daily area fraction of the catchments covered by snow (aobs,i) which is compared to the modeled area
fraction covered by snow (amod,i), where an SC of one indicates a perfect fit.

SC =
1

n

n∑
i=1

(1− |amod,i − aobs,i|) (S41)

S4 Calculation of analysis of change

S4.1 Timing of maximum/minimum flow

The mean timing of annual maximum and minimum flow over 30 years was calculated using the approach
of circular statistics (e.g., Young et al., 2000; Blöschl et al., 2017). Therefore, the date of occurrence (Di)
has to be converted to an angle (Eq. S42) where Lenyr denotes the number of days in each year. The date
of occurrence for the annual maximum runoff is defined as the date of maximum daily runoff in a calender
year. The date of annual minimum flows is defined as the first day of the seven consecutive days with lowest
flows in the time period from June to May.

θi = Di ·
2π

Lenyri
(S42)

The mean date of occurrence over the 30-year time period is calculated by

D =


tan−1( yx ) · Lenyr2π x > 0, y ≥ 0

(tan−1( yx ) + π) · Lenyr2π x ≤ 0

(tan−1( yx ) + 2π) · Lenyr2π x > 0, y < 0

(S43)

using

x =
1

n

n∑
i=1

cos θi (S44)

y =
1

n

n∑
i=1

sin θi (S45)

Lengyr =
1

n

n∑
i=1

Lengyri (S46)

For calculating the distribution of the date of occurrences over the time period of 30 years, the year was
divided into bins of 15 days, so 25 bins in total, with the last bin containing DOY > 360, so only 5 or 6
days. The fraction of occurrence per time bin was calculated as follows:

p15days =

30∑
i=1

Di

30
(S47)
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S4.2 Magnitude of annual maximum flow

In addition to calculating the mean magnitude of annual maximum flow, the distribution of magnitudes
of annual maximum flow over 30 years was determined. Therefore, the magnitudes were ranked, from
the highest (i=1) to lowest (i=30) annual maximum flow magnitude. The exceedance probability (p) was
calculated, where N denotes the total number of observations, which is in this case 30.

p =
i

N + 1
(S48)

The return period (Ta) was calculated using the exceedance probability

Ta =
1

p
(S49)

The magnitudes in relation to the return periods were analysed by calculating the absolute and relative
change of magnitude for each return period.
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S5 Calibration & evaluation

Figure S1: Feistritztal 1990: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.

Figure S2: Feistritztal 2010: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.
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Figure S3: Paltental 1990: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.

Figure S4: Paltental 2010: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.
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Figure S5: Gailtal 1990: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.

Figure S6: Gailtal 2010: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.
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Figure S7: Silbertal 1990: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets, the measured runoff was scaled to match Budyko framework.

Figure S8: Silbertal 2010: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets, the measured runoff was scaled to match Budyko framework.
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Figure S9: Defreggental 1990: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets, the measured runoff was scaled to match Budyko framework.

Figure S10: Defreggental 2010: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets, the measured runoff was scaled to match Budyko framework.
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Figure S11: Pitztal 1990: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.

Figure S12: Pitztal 2010: Comparison of measured and modelled runoff, also showing the corresponding
precipitation and temperature, black line indicates mean modelled runoff using best parameter sets, shaded
area shows the range of best parameter sets.
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S6 Measured data vs. climate simulations in the past

The following plots show the comparison of measured data and climate simulations for every catchment.
Yearly extreme events, i.e. maximum precipitation, maximum/minimum runoff, are compared using em-
pirical cumulative distribution functions (ECDF) to show the distribution of magnitudes and timing over
a 22 to 30 year time period in the past, depending on the catchment. On the right, monthly temperature
and precipitation of measured data (left) and climate simulations (right) are compared using boxplots. The
lower right plot displays a comparison of mean monthly runoff over the time period using measured data as
forcing for the hydrological model (left) or using climate simulations as forcing (right). The observed mean
monthly runoff is also shown as a black X.

Figure S13: Comparison of measured data and climate simulations in the Feistritztal.

XVI



Figure S14: Comparison of measured data and climate simulations in the Paltental.

Figure S15: Comparison of measured data and climate simulations in the Gailtal.
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Figure S16: Comparison of measured data and climate simulations in the Defreggental.

Figure S17: Comparison of measured data and climate simulations in the Pitztal.
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S7 Additional figures

Figure S18: Comparison of observed (black line) and modelled runoff regime in past (1985–2013) using
meteorological observations (dotted line) as well as runoff regimes modelled by climate simulations in past
(1981–2010) and future (2071–2100) for RCP 4.5 (line represents the mean flow regime within the range of
14 climate models (shaded area). Note that the extent of the y-axis differs for the Feistritztal.
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