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Abstract. Agricultural production is highly dependent on the weather. The mechanisms of action are complex and interwoven,

making it difficult to identify relevant management and adaptation options. The present study uses random forests to investigate

such highly non-linear systems for predicting yield anomalies in winter wheat at district level in Germany. In order to take

into account sub-seasonality, monthly features are used that explicitly take soil moisture into account in addition to extreme

meteorological events. Clustering is used to show spatially different damage potentials, such as a higher susceptibility to5

drought damage from May to July in eastern Germany compared to the rest of the country. In addition, relevant heat effects

are not detected if the clusters are not sufficiently defined. The variable with the highest importance is soil moisture in March,

where higher soil moisture has a detrimental effect on crop yields. In general, soil moisture explains more yield variations than

the meteorological variables. The approach has proven to be suitable to explain historical extreme yield anomalies for years

with exceptionally high losses (2003, 2018) and gains (2014) and the spatial distribution of these anomalies. The highest test10

R-squared is about 0.68. Furthermore, the sensitivity of yield variations to soil moisture and extreme meteorological conditions,

as shown by the visualisation of average marginal effects, contributes to the promotion of targeted decision support systems.

1 Introduction

Extreme weather conditions have increased over the last two decades over Germany, leading to an amplification of inter-annual

crop yield variations in the agricultural sector. These include years with above-average wet years (2002, 2007, 2010), but15

also the droughts of 2003, 2015 and 2018 and the year 2012 with a longer period of bare frost (Gömann, 2018). Models

that accurately map weather conditions to crop yields allow a better understanding of the damage mechanism and can thus

support management and adaptation (Albers et al., 2017; Peichl et al., 2018) as well as be used for decision support systems

and seasonal forecasts (van der Velde et al., 2019; Lecerf et al., 2019; Sutanto et al., 2019; Ben-Ari et al., 2018; Guimarães

Nobre et al., 2019). Furthermore, such damage functions form the basis for projections of the social and economic effects of20

climate change (Carleton and Hsiang, 2016; Diaz and Moore, 2017; Hsiang et al., 2017). While process-based crop models take

into account the growth mechanisms of crops (Rosenzweig et al., 2014), they are only partially able to reproduce historical
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yield anomalies (Müller et al., 2017; Mistry et al., 2017). Furthermore, it has been shown that classical statistical models

outperform process-based models in predictive power, especially on a large scale (Lobell and Asseng, 2017). Those statistical

approaches usually reduce the processes that affect plant development to the main features (Timmins and Schlenker, 2009;25

Kolstad and Moore, 2020). Following the seminal work of Schlenker and Roberts (2009), extreme heat is routinely included

as the main determinant (Carleton and Hsiang, 2016). However, we consider inference about the marginal effect of these

often aggregated measurements of meteorological variables on the yield to be critical, since a spurious association can be

caused by missing or only roughly represented variables (Peichl et al., 2018; Roberts et al., 2017). For example, a global

study based on process-based models for maize and wheat found that for most countries water stress is a major source of30

the observed yield variations (Frieler et al., 2017). It has also been shown that it is necessary to account for multiple adverse

environmental conditions such as frost, heat, drought and excessive soil moisture during sensitive growth phases (Trnka et al.,

2014; Albers et al., 2017; Schauberger et al., 2017; Mäkinen et al., 2018; Peichl et al., 2018, 2019). Furthermore, these effects

are often mutually amplifying, which potentially increases the impact (Ben-Ari et al., 2018; Lu et al., 2018; Toreti et al., 2019;

Zscheischler et al., 2018, 2020). In 2018, for example, extremely hot temperatures in Germany were accompanied by extremely35

low precipitation, which further intensified the effects on crop yield (Zscheischler and Fischer, 2020). Ben-Ari et al. (2018)

showed that compound extreme events such as exceptionally warm temperatures in late autumn and very wet conditions in late

spring 2016 led to unprecedented wheat losses in France.

In previous studies we have tried to approximate this non-linear and complex damage spectrum by considering the sub-

seasonal effects of hydro-meteorological variables such as temperature and soil moisture, however, applying an econometric40

linear model neglecting sub-seasonal interaction of the features. This approach was very well able to project long-term mean

yield changes, but not the inter-annual variations caused by extreme conditions (Peichl et al., 2019). This study applies a

statistical framework that takes into account a range of potentially harmful extreme environmental conditions. For this purpose

we map various sub-seasonal hydro-meteorological extremes with yield anomalies of winter wheat. For winter wheat, the

challenge of nonlinearty is particular relevant: studies have shown that it is difficult to explain yield variations in winter wheat45

because the growing season is relatively long compared to other crops (Vogel et al., 2019). In accordance with the typology of

compound weather and climatic events (Zscheischler et al., 2020), we consider plant growth as a nonlinear system, since the

time of occurrence and the various features and extreme events themselves interact, which ultimately affect plant development

(Storm et al., 2020). Therefore, we use random forests, which is a machine learning algorithm particularly suitable for complex

nonlinear systems with interactions in the predictors (Breiman et al., 1984; James et al., 2013; Vogel et al., 2019). The features50

used (see Table 1) are meteorological extreme indicators for temperature and precipitation extremes as well as soil moisture,

which is the main water source for plant growth, each on a monthly basis. This allows for sub-seasonality in the model and the

quasi-consideration of plant growth and different phenological stages. To increase the predictive power (Conradt et al., 2016)

of the models as well as to reveal spatially dependent damage mechanisms, we rely on spatial clustering, which accounts for

regional differences in climate, soil moisture and soil properties.55

Disentangling the non-linear spectrum of extreme conditions harmful to plant growth and identifying the causes of yield

loss will help improve decision support systems in the agricultural sector. Machine learning focuses primarily on predictive
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accuracy, while econometricians focus on inference, i.e. deriving statistical properties of estimators for hypothesis testing

within a classical parametric and linear approach (Mullainathan and Spiess, 2017; Storm et al., 2020). However, the functional

forms used in econometric analysis are usually not flexible enough to capture the interactions, non-linearities and heterogeneity60

that are often common to both biological and social processes in agricultural and environmental systems (Storm et al., 2020).

On the other hand, there is concern from an econometric point of view that machine learning models are difficult to interpret

because of these high-dimensional and highly non-linear functions (Breiman, 2001b; Zhao and Hastie, 2019). To address this

issue of interpretability, we also present the relative importance of the variables and the mean average effects represented by

Accumulated Local Effect Plots (Apley and Zhu, 2016) of the main characteristics for each cluster. The paper describes the data65

(Section 2), methods (Section 3) and results (Section 4). Most results are discussed in the results section. A short conclusion is

given at the end.

2 Data

The annual yield data for winter wheat are provided by the Federal Statistical Office for the counties from 1999 to 2018 (Statis-

tisches Bundesamt (Destatis), 2019). Winter wheat has the largest share in cultivated area (2018: 46 %) and total production70

(2018: 51 % of quantity harvested) (Statistisches Bundesamt (Destatis), 2018) amongst all crops in Germany. Figure 1a shows

a map of the average yield and the standard deviation for the period 1999 - 2018. On average, the highest yields are recorded

in the extreme north of Germany, while the lowest yields and the highest inter-annual variation are found in the eastern part

of Germany. For each county, the data is converted into yield anomalies in percent by subtracting the average yield and di-

viding the resulting difference by this average. We have not corrected the yield data for the trend in order to take for example75

technological developments into account. Since the mid-1990s, annual yield increases have stopped and no trend in yields has

been observed since then (Gömann, 2018). This is shown in Fig. 1b, which shows the distribution of yield anomalies for the

period 1999 - 2018. A positive linear trend can be observed for this time period (blue line). However, as can be seen from the

green line, which represents the fit of the Local Polynomial Regression, this positive linear trend is mainly associated with

the above-average yields from 2013 onwards, which first rise rapidly and then fall again. Accordingly, almost no linear trend80

can be observed for the years before that (orange line in Fig. 1b). A trend correction is therefore not necessary. All counties

with yield data of less than ten years of observations are removed from the analysis, which results in 350 remaining districts

(Fig. A1 in the appendix shows a map of the numbers of observations available for each county).

The daily temperature and precipitation data are obtained from a network of stations of the German Weather Service

(Deutscher Wetterdienst, 2019). For the interpolation method to gridded data see Zink et al. (2017). Daily meteorological85

data are converted to monthly aggregates by counting days above or below a defined threshold based on Gömann et al. (2015)

and expert knowledge from farmer interviews. Table 1 shows the seven meteorological extreme indicators, the underlying

meteorological variables and considered months as well as the corresponding variable names in the model.

The soil moisture simulation was obtained from the German Drought Monitor (Zink et al., 2016) using the mesoscale Hydro-

logic Model (mHM) (Samaniego et al., 2010; Kumar et al., 2013). In general, the model is grid-based with a spatial resolution90

3



Figure 1. (a) 20-year winter wheat yield average (1999-2018, left) and standard deviation (right) of yields for the counties over Germany.

(b) Box-and-whisker plots of winter wheat anomalies for each year and both linear and nonlinear model fits to identify significant trends

in the anomaly data. The exceptional years 2004, 2014, and 2018 are marked with a light beige box. Data source: Federal Statistical Office

DESTATIS
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Table 1. Table of the indicators of seven extreme weather conditions as well as an index for soil moisture for different soil depths. Column

2 show the according meteorological conditions and months of occurrence. The indicators (first column) are generated by counting the days

above or below the thresholds of certain meteorological variables for specific months (second column). The variable names of the resulting

features are displayed in the last column. The number indicates the month. For example, Frost10 represents the number of days with black

frost in October of the previous year, and Heat6 the number of days with heat in June. T reflects temperature, P precipitation.

Environmental conditions Meteorological variables Variable Names

Black Frost min. T <−20◦C: Dec. - Feb. Frost12, Frost1, Frost2

min. T <−10◦C: Mar. & Nov. Frost3, Frost11

min. T <−5◦C: Apr. & Oct. Frost4, Frost10

Late Frost min. T < 0◦C: May Frost5

Alternating min. T <−3◦C & AF1, AF2, AF3, AF4, AF5

Frost max. T > 3◦C: Jan. - May

Heat max. T > 30◦C: Apr. - Aug. Heat4, Heat5, Heat6, Heat7, Heat8

Heavy rain P > 30 mm/d: Oct. - Jun. Rain10, Rain11, Rain12, Rain1,

during season Rain2, Rain3, Rain4, Rain5, Rain6

Rain during harvest P > 5 mm/d: Jul. & Aug. Rain7, Rain8

Precipitation P = 0 mm/d: Oct. - Aug. PS10, PS11, PS12, PS1, PS2,

scarcity PS3, PS4, PS5, PS6, PS7, PS8

Soil Moisture Index SMI: Oct. - Aug. SMI10, SMI11, SMI12, SMI1,SMI2,

uppermost 25 cm SMI3, SMI4, SMI5, SMI6, SMI7, SMI8

Soil Moisture Index SMIa: Oct., Jan., Apr., July SMIa10, SMIa1, SMIa4, SMIa7

entire soil column

of 4 km. Various hydrological processes such as infiltration, percolation, evapotranspiration, snow accumulation, groundwa-

ter recharge and storage, and runoff, both rapid and slow, are considered to calculate soil moisture. The model is driven by

hourly or daily meteorological forcings (e.g., precipitation, temperature). For parameterization, it uses the spatial variability

of observable but high-resolution physical properties of the catchment (land surface descriptors such as the digital elevation

model, slope, aspect, rooting depth based on land cover classes or plant functional types, plant canopy characterization, soil95

texture, and geological formation type). The main feature here is the multiscale parameter regionalization, which is critical to

achieve cross-scale flow matching. It allows the derivation of seamless parameter arrays between the targeted resolution and

the high-resolution land surface descriptors (Samaniego et al., 2017). However, no endogenous land use management processes

are considered. The depth of the soil in each grid cell depends on the soil type used in mHM.

Soil moisture is presented here as an index because an index configuration supports the reduction of systematic errors of data100

that are simulated as well as spatially processed, such as in the present study (Auffhammer et al., 2013; Lobell, 2013). The soil

moisture index (Samaniego et al., 2013) is derived from a non-parametric and site-specific cumulative distribution function
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of soil moisture for the period 1951-2019 for each month of the vegetation period of winter wheat. The percentile-based

index thus quantifies the likelihood of occurrence of the monthly absolute soil moisture. The index ranges from zero to one

and represents an anomaly with respect to the monthly long-term soil water median (soil moisture index = 0.5). Low values105

represent extremely dry soils and high values represent extremely wet soils. Consequently, seasonal effects due to drought

and wet conditions during different agrophenological stages are taken into account. In this context, the interpretation of the

monthly indices must take into account that the proportion of saturated soil changes over time and thus the base value for

the index of each month. For Germany, this seasonality of soil moisture is shown in Fig. 4 in Samaniego et al. (2013). Here,

we include two variables denoting soil moisture at two depths, namely the uppermost 25cm (SMI) and the total soil column110

(SMIa) with variable depth depending on the soil map BUEK1000 (BGR, 2013). Soil moisture provides an integrated signal

of meteorological conditions in the previous and subsequent months, which depends on determinants such as soil texture and

depth, among other factors (e.g. Orth and Seneviratne, 2012; Samaniego et al., 2013). This long-term temporal persistence of

soil moisture is relatively high compared to pure meteorological measures. It therefore does not allow for cumulative measures,

such as those commonly used for temperature (e.g., growing or killing degree days (Schlenker and Roberts, 2009))), but115

supports the use of monthly averages. Because of the high positive time correlation of soil moisture that accounts for the

entire soil to its first- and second-order neighbors, only October, January, April, and July are considered for SMIa (Fig. A2,

Appendix). In contrast, all months of the growing season are used for soil moisture of the upper 25 cm. The yield data are

available for the counties of Germany. The meteorological data and soil moisture, which have a spatial resolution of 4·4 km2,

are thus aggregated to the counties. See Peichl et al. (2018) for a detailed description of the spatial processing (e.g., grid cells120

that are not non-irrigated agricultural land are excluded and the remaining cells are used to calculate the respective county

average).

3 Method

We apply the machine learning method Random Forests to explain the variation of winter wheat anomalies by the hydro-

meteorological features introduced above. Random Forests (RFs) have been used to analyze the effect of meteorological de-125

terminants on crop yields on a global scale (Jeong et al., 2016; Vogel et al., 2019) and in specific countries or regions (Jeong

et al., 2016; Hoffman et al., 2018; Beillouin et al., 2020). However, none of these approaches explicitly used a measure of soil

moisture nor did they apply clustering to take into account the region-specific yield potential. RFs have also been widely used

in related disciplines such as drought impact assessment (Bachmair et al., 2016) and forecasting (Sutanto et al., 2019). Within

these applications, it has proven to be more powerful for classification than other data-science methods (Bachmair et al., 2017).130

Here, for a domain covering the whole of Germany, RFs proved to be superior to other machine learning algorithms that are

particularly suitable for nonlinear systems, such as support vector machines and gradient boosting (not shown). This result is

in alignment with other studies on global scale (Vogel et al., 2019). An comparison of RFs to Least Absolute Shrinkage and

Selection Operator in the Northern Hemisphere showed comparable for a binary classification approach for simulated crop

failures (Vogel et al., 2020). A RF randomly produces numerous independent trees as an ensemble to avoid over-fitting and135
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sensitivity in the configuration of training data, while being very efficient (Sutanto et al., 2019). The trained model is Breiman’s

RF (Breiman, 2001a). It is tuned to the number of variables available for splitting at each tree node (parameter mtry) using

the tuneRF function of the R package randomForest (Liaw and Wiener, 2002). The initial values of the parameters are set to

default, the number of trained trees is 500, and the tuning is based on an out-of-bag error estimation (see e.g. James et al.

(2013) for more information).140

The crop yield potential varies regionally in Germany due to differences in climate and soils among other factors. To take

account of these differences, a spatial clustering was implemented to identify different subregions within Germany. The clus-

tering methods used are representatives of centroid-based ones, such as k-means (KMEANS, (MacQueen, 1967; Hartigan and

Wong, 1979)) and partitioning around medoids (PAM, (Kaufman and Rousseeuw, 1990)), which is less sensitive to outliers, as

well as the connectivity-based hierarchical clustering (HIERARCHICAL, (Murtagh, 1985)). Standard internal validation such145

as connectivity, average silhouette width, Dunn index for cluster numbers between 2 and 16 were tested for the evaluation.

However, the results show no clear outcome on which algorithm and size combination to use (Fig. A3). Instead, we fit the

random forests individually for each region defined by one of the cluster algorithms and cluster size. We then selected the

combination that maximizes the average prediction capacity (test R-squared (R2)) across all regions. For each of these cluster

configurations the model is trained on 80 percent of the data in that subset and predicted for the rest. For this approach, the150

cluster sizes were limited so that each cluster contains at least 300 data points and the cluster sizes are the same for all three

algorithms. The respective maximum cluster size is thus 9. The data used for clustering are monthly averages and daily obser-

vations of the meteorological data for the entire year. Soil moisture index is included for both the upper layer and the entire soil

column. Average yields are also taken into account in the data for cluster formation. This is based on the intuition of taking into

account time-invariant factors of each cluster that affect yields such as soil quality and average farm size. These factors are not155

considered in the random forest due to use of yield anomalies. This approach is inspired by fixed effect econometric models.

There, the group means are fixed, thus taking into account the time-invariant heterogeneity of these groups (for econometric

literature see for instance Wooldridge (2012)).

The random forest algorithm allows to study the relationships between hydro-meteorological extremes and yield anomalies

by assessing the relative importance of the variables and the functional relationship between each predictor and the response160

variable (Jeong et al., 2016; Vogel et al., 2019; Beillouin et al., 2020). For the latter, we use model agnostics, which includes

various flexible methods that allow the interpretation of black box models that separate the explanation of the model from

the model itself. Accordingly, the same method can be used for any kind of machine learning algorithm, different types of

explanations and different types of features can be presented (Ribeiro et al., 2016). The particular method considered here is

Accumulated Local Effects (ALE), which is a visualization of the average marginal effect of features on target variables for165

supervised learning models (Apley and Zhu, 2016; Molnar, 2020). ALE plots predict the effect of an explanatory variable across

their realisations, taking into account only a subset of the sample with observed values adjacent to the respective realisation

(Apley and Zhu, 2016). It is a faster alternative to the popular approach of the Partial Dependence Plots (Friedman, 2001),

which have already proved to be suitable in the context of yield prediction (Jeong et al., 2016; Vogel et al., 2019). However,

ALE plots are more suitable to visualize marginal effects by plotting explanatory variables against the predicted outcomes if170
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Table 2. Table with the average R2 for the test and training sample for the three best combinations of cluster algorithm and cluster size (in

parentheses) for three soil moisture configurations.

Soil moisture index configuration Algorithm size combination Avg. R2 (test / train)

Soil moisture index HIERARCHICAL (2) 0.677 / 0.611

for uppermost 25cm HIERARCHICAL (6) 0.669 / 0.600

PAM (4) 0.668 / 0.598

non-cluster 0.642 / 0.623

Soil moisture index HIERARCHICAL (2) 0.674 / 0.596

for entire soil column PAM (4) 0.659 / 0.578

HIERARCHICAL (6) 0.653 / 0.590

non-cluster 0.642 / 0.593

Soil moisture index HIERARCHICAL (2) 0.676 / 0.613

for both uppermost 25cm PAM (4) 0.674 / 0.595

and entire soil column PAM (6) 0.664 / 0.627

non-cluster 0.659 / 0.623

the features are highly correlated (Storm et al., 2020). One limitation is that uncertainty estimates are not provided for ALE

plots, which is a substantial limitation of the approach and is an area of active research (Storm et al., 2020). The ALE plots are

shown for the most important features of each cluster.

4 Results

4.1 Evaluation of spatial clustering175

To evaluate the cluster algorithm and the number of clusters, the test R2 is created using the RFs for each combination of the

clusters and the size of the clusters. Table 2 shows results for three different soil moisture configurations, i.e. one each for the

upper layer as well as the entire soil column and one that takes both into account. For each of these soil moisture configurations

the three combinations of algorithms and cluster sizes with the highest test R2 are shown. The R2 derived from the training data

is also shown. In general, the test values are higher compared to those derived from the training sample. This generally indicates180

good out-of-sample predictive ability of the model. Furthermore, all the configurations presented have very similar predictive

capacities. Overall, the best results can be achieved if only soil moisture index for the uppermost 25 cm is considered. Since

the data for the entire soil column do not appear to provide any additional information for the model, we rely only on the top

25 cm for further analysis. The best results explain 68% of the wheat yield anomaly variation. The average variance explained

exceeds the variance explained by RFs applied at the global level (Vogel et al., 2019) or for the Northern Hemisphere (Vogel185

et al., 2020) and is comparable to the highest explained variability for RFs applied to European regions, with an average for
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Figure 2. Spatial structure of clusters shown in Table 2. The clusters are derived from the HIERARCHICAL cluster algorithm with cluster

sizes a) 2 and c) 6 and from the PAM algorithm with cluster sizes b) 4 and d) 6. The white numbers indicate the respective test R2 for each

cluster derived considering only the top 25 cm soil layer (a, b, c) and for d) with both the top and the entire soil column, since PAM (6) is

relevant only for this configuration. 9



Figure 3. Scatter (a) and density (b) plots of the observed and predicted data for the two clusters derived using the PAM algorithm with size

4. The bold black lines in the scatter plots indicate the linear regression line and the ellipses represent the contours of a 2d density estimate

of the points.

winter wheat of 43% (Beillouin et al., 2020). A comparable regression model approach is able to explain a maximum of 32%

of the variation (Gömann et al., 2015). A large fraction of the variability is usually explained by time-invariant factors, which

are largely not considered here due to the demeaned yield data. For example, Peichl et al. (2018) using a regression model for

silage maize showed that up to 32% of the variation explained by the model is explained by time-invariant factors. An approach190

modelling relative year-to-year yield changes has similar results (Conradt et al., 2016). There, the best explanatory power is

found for northern and eastern Germany with comparable coefficients of determination. However, for the rest of Germany the

model presented here performs better as it is doing well in regions with rather low yield variability such as in the south of

Germany (cluster 4 in Fig. 2b and cluster 6 in Fig. 2c and Fig. 2d). We decided to further investigate the results of PAM using

four clusters that offer a compromise between the highest possible predictive power and sufficient complexity to adequately195

represent relevant mechanisms. Here, cluster 1 mainly represents the northwestern and very western parts of Germany, cluster

2 the northeast, cluster 3 the extreme southwest along the Rhine, and cluster 4 most parts of central and southern Germany

Fig. 2b. The test R2 of cluster 2 is the highest at 0.743, followed by cluster 4 (0.656), 1 (0.641), and 3 (0.632). For all four

clusters, a good fit can be observed in the scatter plots for most of the data (Fig. 3 (a)), while the tails are slightly underestimated
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(Fig. 3 (b)). The higher explanatory power for cluster 2 might be related to the higher variation in yield anomaly there (see200

Fig. 1). In addition, different impact mechanisms operate within each cluster, which are decomposed in the following.

4.2 Marginal effects of the most important features

The main variables for each sub-cluster and the corresponding average marginal effects are presented below in order to un-

derstand the range of adverse effects on yield variation in winter wheat. To generate variable importance and ALE plots, no

split is made between test and training data. The non-cluster results are compared with the spatial clusters generated with the205

PAM clustering algorithm for a cluster size of 4 (PAM (4)). The detailed ALE plots for the overall best algorithm cluster size

combination, i.e., the HIERARCHICAL cluster algorithm with two clusters considering only the top 25 cm of the soil column,

are provided in the Appendix (Fig. A5). In addition, the ALE plots for the HIERARCHICAL (6) (Fig. A6), which consider

only the top 25 cm for the soil layers, and those of the 3 best-ranked cluster algorithm and size combinations when both soil

moisture for the top 25 cm and the entire soil column are considered (Fig. A7, A8 , A9). The feature effects shown here can210

be interpreted as additive because they are purged of correlation to other features. For example, the combined effect of soil

moisture in June and July is the sum of SMI6 and SMI7.

The ALE plots in Fig. 4 are ranked in accordance to their variable importance (for further information see the variable

importance section in the appendix). In general, soil moisture supports best the performance of the model. In both the non-

cluster approach and clusters 1 through 4, at least seven of the twelve most important features are derived from soil moisture215

(Fig. A4). Cluster 3 relies the least on soil moisture, while in cluster 4 the most is explained by soil moisture.

Figure 4a shows the ALE plots for the non-cluster approach. The three main effects shown for the whole country are the

same as in cluster 4, i.e. soil moisture in March (SMI3), heat in August (Heat8), and soil moisture in January (SMI1). The

functionality found in both non-cluster as well as cluster 4 is very similar in this regard. SMI7, the fourth ranked feature, is

very important in both cluster 1 (1st) and cluster 2 (2nd) and the functionality is combination of both. SMI4 (5th) is found220

with similar crop responsiveness in cluster 3 (2nd) and SMI8 in cluster 1 and cluster 4. For the three last ranked features, the

sensitivity of SMI12 looks like a combination of those found in cluster 3 and 4, SMI5 of cluster 2 and 4, and SMI2 of cluster 1

and 4. For the non-cluster approach, more water in the top 25 cm of soil is more harmful than beneficial to plant growth in

most months. The notable exceptions here are May (SMI5) and, to some extent, July (SMI7). Overall, the sensitivities for the

non-cluster approach are not very pronounced, which could come from the fact that it shows combined effects of areas with225

different plant susceptibility due to different environmental conditions, as well as possible interactions with other variables.

The largest effect is shown for soil moisture in March (SMI3).

For cluster 1 (Fig. 4b), the greatest plant sensitivities to environmental conditions for SMI are found in July and April.

While extremes at both ends are detrimental for July (SMI7), this is mostly the case for drier than normal conditions in April

(SMI4). In addition, each day without precipitation in April reduces yield (PS4). Furthermore, heat is beneficial up to 6 days230

in July, but has a negative effect above this threshold. In the first quarter of the year (SMI1, SMI2, SMI3), as well as in August

(SMI8), higher SMI values may be more associated with negative impacts on crop yields. Cluster 2 (Fig. 4c) corresponds to

the area for which the modeling approach also has the highest explanatory and predictive power (Table 2. The sensitivities
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Figure 4. Accumulated local effects plots of the nine most important features for no cluster (a), cluster 1 (b), cluster 2 (c), cluster 3 (d), and

cluster 4 (e). The red dots are estimated by the ALE plot algorithm (FeatureEffects of the iml-package in R). We have chosen a grid size

of 50, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a nonlinear smoothing function

(LOESS - locally estimated scatterplot smoothing) is added in blue (with confidence interval in grey). SMI represents the soil moisture index

for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month, Heat for days with a maximum temperature of

more than 30◦C, Frost for the number of days below −5◦C (as only April is indicated), and AF for days with minimum temperature below

−3◦C as well as maximum temperature of +3◦C (same day). The number indicates the month, 10, 11, and 12 refers to the year before. For

example, SMI12 represents SMI in December.
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shown there are also the largest. A drought signal can be found in particular for May (SMI5) and June (SMI6) and to some

extent for July (SMI7) and August (SMI8). In March (SMI3), drier than normal conditions are preferred. In January (SMI1),235

July (SMI7), and August (SMI8), wetter than normal conditions are detrimental. In general, for the SMI features, a pivotal

transition in the patterns takes place between April and May, as the negative effects of drought are evident first in May. Heat

plays a even more critical role in July as in cluster 1 (Heat7), however, the uncertainty is larger as well. In addition, additional

days without rain are adverse in April (PS4) but favorable in July (PS7). The cluster for which meteorology plays the most

decisive role is number 3 (Fig. ??d). In June and July, too few rain-free days have a negative impact on winter wheat yield (PS6240

and PS7). Overall, drier conditions are preferred in July (PS7 and SMI7), but also in March (SMI3), while the opposite is true

in December (SMI12). On the other hand, excessively wet soil moisture conditions are harmful in the following month (SMI1).

A low drought signal of soil moisture is found for April (SMI4). More than four heat days in June (Heat6) become increasingly

detrimental with each additional day above 30◦C. This feature has the greatest potential for damage, but the extreme impacts

are also associated with high uncertainty. The cluster is the only one that also represents alternate frost, here for March (AF3).245

Cluster 4 (Fig. 4e) is largely dominated by soil moisture, of which January (SMI1), April (SMI4), and August (SMI8) show a

slightly negative correlation with crop yield, and for March (SMI3) it is strongly negative. May shows a drought signal up to

an index of about 0.3 (SMI5) and is then also negatively correlated. For February (SMI2) and December (SMI12), only a small

effect of soil moisture on crop yield can be detected. The second most important variable is heat in August (heat8), with at

least one day of up to ten heat days being beneficial. Late frost in April (frost4) is an important and detrimental meteorological250

determinant.

Previous studies showed that water deficit has no limiting effect on wheat yield in North Rhine-Westphalia (Kropp et al.,

2009) or showed a higher sensitivity of wheat yields to water surplus compared to drought for Germany as a whole (Zampieri

et al., 2017). Similar observations can be made for the non-cluster approach as well as for most clusters defined by PAM (4).

For many regions in Germany for most growing stages, extensive wet periods with water-saturated soil represent an extreme255

weather situation for agriculture (Gömann, 2018). In our study, soil moisture in March is the most important variable (see

Fig.A4. It dominates both the non-cluster setting and cluster 4 and is at least fourth in the other clusters. The relationship

between the SMI and yield anomalies is negative (in varying sensitivities) for the entire range of the SMI in March. This

indicates that yield losses are associated with higher than normal water content in the upper 25 cm of soil. The most sensitive

growth phase for waterlogging is after germination, but before emergence (Barber et al., 2017; Grotjahn, 2020). Oxygen260

deficiency can cause damage to the plant that result in yield losses (Cannell et al., 1980). In addition, excessive soil water

fosters pathogens (Grotjahn, 2020) and complicates plant treatment operations (Urban et al., 2015; Gömann, 2018). This

finding is consistent with the results of Ben-Ari et al. (2018), which showed that a combination of abnormally wet conditions

in spring together with abnormally warm temperatures (not controlled in this study for) in late fall led to large losses in winter

wheat in France in 2016. An evaluation of the interaction effects to treat possible compounding events does not show stable265

results and varies from run to run, probably due to the lack of available data. Therefore these results are not discussed here but

need to be evaluated in further studies.
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A strong drought signal can only be found in the data if the model is applied to a sub-region of Germany defined by cluster 2

(Fig. 4c). In a non-cluster approach, those signals are mostly confused. This underlines the importance of using clustering

to take account of different crop potentials and environmental conditions. In cluster 2, for the months of May through July,270

dry conditions below a certain threshold are more damaging than too much water in the soil. The crop can tolerate (May and

June) or even benefit from (July) drier than normal conditions during this period until soil water content is lower than about

the 25th percentile of the empirical distribution of soil water content in the top 25 cm of soil. At levels below this threshold,

the effect on crop yield is negative. Expected wheat yields (relative to zero in ALE plots) decrease by about 4% in June

and 2.5% in July when SMI is less than about 0.125 and about 2.5% when SMI is less than just below 0.25 in May. Yield275

losses are even more when compared to the entire potential of SMI impacts of the respective months. For example, in July,

the largest difference between yields is 5% when comparing an SMI value close to zero and close to 1. Thus, these values

define critical relative thresholds. The observation that the absence of water governs crop production in eastern Germany is

in alignment with recent studies (Conradt et al., 2016; Vinet and Zhedanov, 2010). There, lack of precipitation together with

sandy soils, which have a lower water holding capacity, may result in water shortage for winter wheat growth (Rezaei et al.,280

2018). According to phenological evidence, this strong negative water deficiency signal makes sense because it is associated

with the drought-sensitive vegetative and generative phases of winter wheat (Lüttger and Feike, 2018).

In general, it is difficult to disentangle the compounding effects of heat and water supply on plant growth (Gourdji et al.,

2013; Roberts et al., 2013; Lobell and Asseng, 2017; Roberts et al., 2017; Schauberger et al., 2017; Siebert et al., 2017;

Zscheischler and Seneviratne, 2017; Mäkinen et al., 2018; Peichl et al., 2018). Previous studies show that the specific contribu-285

tions of temperature and precipitation anomalies to drought are difficult to isolate (Zscheischler and Seneviratne, 2017; Vogel

et al., 2019). Moreover, the negative yield effects of high temperatures are associated with water stress and can be mitigated

by irrigation (Frieler et al., 2017; Vogel et al., 2019; Ribeiro et al., 2020). However, for Germany, studies show that heat has

historically been more damaging than drought at sensitive growth stages (Lüttger and Feike, 2018; Trnka et al., 2014). Vogel

et al. (2019) showed on a global scale with a very similar approach that temperature-related indicators such as frequency of290

warm days, growing season average temperature, and average daily temperature have the highest predictive power for crop

yields. Here, a heat signal is observed in June for cluster 3 and in July for cluster 1 and with higher sensitivity for cluster 2,

which could be related to the most heat sensitive phase of anthesis (Barber et al., 2017; Rezaei et al., 2018). These signals

cannot be detected in the non-cluster approach as well as when considering only clusters of size 2 as in Fig. A5 and Fig. A7. In

clusters 1 and 2, more than 6 and 8 heat days above 30 degrees in July, respectively, show adverse effects, a period that could be295

related to grain filling (Lobell et al., 2012; Lüttger and Feike, 2018; Mäkinen et al., 2018). In cluster 4, heat in August, a period

generally associated with ripening, has positive effects for each additional day and negative effects after the seventh day. Our

approach, which explicitly controls for plant water supply through soil moisture, shows, however, more negative effects related

to water deficit compared to heat for the non-cluster approach as well as for cluster 1 and cluster 4. In cluster 2, July heat has

the largest negative effect in amplitude found in this study (albeit with large uncertainty). However, each month from May300

through August exhibits drought-related impacts that are greater in total than the heat-related impacts. In cluster 3, meanwhile,

the heat in June has a greater impact than the lack of precipitation in the same month and the lack of soil moisture in April
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combined. This underscores the importance of disentangling environmental factors on plant development in terms of temporal

and spatial occurrence, as this has critical and significant implications for management and adaptation actions.

4.3 Predictions of years with extreme yield anomalies305

Figure 5 shows the maps of observed, the predicted and the difference between those two for winter wheat yield anomalies

for the in-sample years 2003, 2014 and 2018 as well as for 2019. The latter year is not included in the training period 1999

- 2018 to allow the assessment of the out-of-sample predictive skill of the model. The first three are the years with both the

largest losses and gains during the training period. Those years show different spatial pattern in yield gains and losses. In 2003,

the year with the highest total volume of losses, the largest losses were recorded in eastern Germany. For the year 2018 the310

losses are more likely to be in the northernmost parts of Germany, while the south of Germany shows positive yield anomalies.

2014 is a particularly good year with higher than expected yields, especially in the easternmost parts of Germany. The general

spatial patterns of losses and gains of the observed data are reproduced by the simulated data for all three years. However,

as can be seen from the differences, the model tends to slightly underestimate the extent of both extremes. For example, the

largest negative differences between observed and projected data for 2003 are found for Vorpommern-Greifswald, a county in315

the north-east of Germany. The region around this county also shows the largest contiguous area of negative differences, i.e. an

underestimation of the losses. The largest positive difference is found in the very south. For 2018 the picture is comparable and

the positive yield anomalies in the south and the negative anomalies in the north are underestimated. However, for both years,

there is no clear pattern of over- and underestimation of non-extreme values. For 2014, the very positive results in some of

the eastern counties are underestimated. However, the highest positive differences are not consistent with the highest positive320

anomalies observed. The highest differences in the positive anomalies are those for the high yield anomalies in the extreme

southwest. The highest negative differences are those for the underestimated losses in southern Bavaria. For the in-sample

years 2003, 2014, and 2018 the model is very well able to predict district yield anomalies, but does not represent the full

extent of the anomaly variation in the extremes. With less variation in the observed yield data, no clear pattern of under- or

overestimation can be observed. A different picture can be observed for the out-of-sample year 2019. There, both losses and325

gains are structurally underestimated and the full range of variation of the observed yield anomalies is not represented in the

predicted yield anomalies. This shows potential difficulties of out-of-sample predictions of machine learning models such as

random forest. With sufficiently large tree size, the out-of-bag estimator used in this study converges with estimates based

on leave-one-out cross-validation, which may promote overfitting compared to other cross-validation techniques (James et al.,

2013). Another possible reason is that out-of-sample structural relationships and functional relationships of a given year are330

not detected or adequately reflected by this approach. For one, corresponding patterns affecting wheat yields in 2019 might not

have occurred in the 1998 - 2018 training period. On the other hand, loss events due to certain determinants, compounded or

isolated, could have occurred in 2019, which may not have been appropriately detected by the model, or may not have been

extrapolated from the sample by the model to a sufficient degree.

15



Figure 5. Maps of the observed, the predicted (for KMEANS/PAM clustering with 8 subregions) and the difference between these two for

winter wheat yield anomalies for the in-sample years 2003 (a), 2014 (b) and 2018 (c) as well as 2019 (d), for which the model was not

trained, at the county- level.
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5 Conclusions335

Here we show that random forests are very suitable for assessing the non-linear damaging effects of different environmental

conditions on winter wheat yield anomalies. Explicit consideration is given to soil moisture at various depths. In addition, the

crop potential and other spatially related environmental conditions are taken into account, which helps to improve predictive

power. Different clustering algorithms and cluster sizes have been applied to improve the predictive capacity of the model from

64% in average test R2 to 68% when only considering the uppermost 25 cm in the soil column. In general, the approach is340

able to explain the general pattern of losses and gains of the counties, also those in particular extreme years such as the years

2003, 2014, and 2018. In comparison to other models, this approach performs better in regions with low crop yield variation.

However, it slightly underestimates the extremes, with this problem being more pronounced for out-of-sample predictions.

This suggests that the out-of-sample predictive capacity of machine learning algorithms such as Random Forest needs to be

further explored both for the use as a seasonal forecasting tool and in the context of climate impact assessment. Nevertheless,345

the analysis presented here can support the design of tailor-made and, above all, prompt support mechanisms for large losses

caused by extremes as it helps to disentangle the damage spectrum for sub-regions as well as sub-seasonal effects in Germany.

It particularly shows, that soil moisture dominates the variable importance ranking. All over Germany, soil moisture abundance

in March thereby ranks first and shows substantial negative effects. In addition, the abundance of water is problematic for the

growth of winter wheat in most other parts of Germany. Water shortage signals can be found for all 4 clusters represented350

here, however, the most susceptible area is represented by cluster 2 (roughly northeast of Germany). These water scarcity

effects tend to go unrecognized in a non-cluster approach. The same applies to meteorological variables, such as heat-related

measures in cluster 2 in July. Overall, these have a comparatively minor role in explaining the effects on yield anomalies in

winter wheat, but can still have a major impact on crop development. Again, this is especially the case in cluster 2, where heat

in July has the greatest overall damage potential. However, across the season, more can be associated with drought-related355

measures based on soil moisture than heat. For example, four months of drought signal occur in the northeastern cluster, while

heat is only relevant in July. Those information are helpful to tailor management and adaptation measures. For example, it

is particularly suitable for the insurance industry to provide index-based insurance policies, as they help to identify harmful

features and visualize thresholds in those features that cause damage (Albers et al., 2017). Prominent examples of this are the

large yield declines associated with an SMI smaller than 0.25 in May and 0.125 in June and July in eastern Germany. These360

sub-seasonal thresholds may also help to better determine drought classes for specific crops used in monitoring and decision

support tools such as the German Drought Monitor. Furthermore, such an approach, which explicitly captures the complexity

of the underlying reaction mechanism rather than relying on one major determinant, generally appears to be more suitable for

the projection of climate impacts, since global climate models explicitly capture the dynamics of several hydro-meteorological

variables (Crane-Droesch, 2018). However, further research is needed to better take into account small-scale events such as hail365

and thunderstorms and to better reflect region-specific differences in growth periods. The compounding effects of interacting

characteristics also need to be studied in more detail and should be clarified using appropriate methods. In addition, it is

important for seasonal forecasting to improve the ability to predict events outside the sample. Here, an extended time period
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for training the data might help. Furthermore, different cross-validation techniques might support the reduction of the variability

in the predictions. Also, the use of other machine learning algorithm or deep learning could help to further improve predictive370

capabilities by better capturing (annual) patterns not covered by this approach. Similarly, a sensitivity analysis of the expert

thresholds used to define the extreme values could help to improve the model.

Code and data availability. The input data and the script for processing the data and for analysis are available on the following UFZ reposi-

tory: https://git.ufz.de/damage-functions/rf-winterwheat.

Appendix A375

The appendix includes additional information on data, cluster validation approaches, as well as variable importance plots and

accumulated local effects plots for the best combination of cluster algorithm, cluster size and SMI for a particular soil depth,

i.e. Partitioning Around Medoids (PAM) with 8 clusters and soil moisture for the uppermost 25 cm, not shown in the main text.

A1 Map of available yield observations for each county

We use a spatiotemporal dataset that includes 412 counties and 20 years. All counties with less than 12 years of reported yields380

(green areas) are excluded from the analysis (Fig. A1). The gray areas in the south are four counties for which non-irrigated

agricultural land could not be identified. A total of 350 counties remained. Because of missing values, especially for Saxony-

Anhalt and Mecklenburg-Western Pomerania and some parts in western Germany, the time series for these counties can be

shorter than 20 years.

A2 Correlation plot of the soil moisture index for the entire root zone for all months of the season of winter wheat.385

Figure A2 shows the correlation of soil moisture indices for total root zone depth for the season of winter wheat in Germany

from October to August. This correlation shows the persistence of soil moisture and the smoother distribution resulting from

it compared to meteorological variables. The Pearson correlation coefficient between the neighbouring SMIa is between 0.62

and 0.95. For the second order neighbours it is still between 0.42 and 0.88. In general, the largest correlation coefficients are

found for the first half of the season. For this reason, within the Random Forests, we consider only the months of October,390

January, April and July.

A3 Cluster Validation

Here, we use internal validation measures to assess the quality of the clustering, which employ only the data set and the

clustering partition for the assessment (Brock et al., 2008). The specified measures are connectivity, silhouette width, and

Dunn index (see Fig. A3). Connectivity refers to the degree of connectivity of the clusters (Handl et al., 2005). It has a value395

between 0 and infinity and should be minimized. Both the silhouette width and the Dunn index represent linear combinations
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Figure A1. Map showing the number of available winter wheat yield observations for each county used in the analysis for the period 1999

- 2018. Green counties were removed because 8 or more years of winter wheat data were not reported by regional statistics. Gray areas are

counties with no non-irrigated agricultural land.

of compactness and separation of the clusters. The Dunn index has a value between 0 and infinity and should be maximized

(Dunn, 1974). The silhouette width ranges between -1 and 1 and well clustered observations have a value close to 1 (Rousseeuw,

1987). The connectivity mainly indicates the use of a small number of clusters, Dunn, at the other end, a rather large number.

Silhoutte Width, on contrast, prefers a rather small number of clusters. Both, Connectivitiy and Dunn index mostly favor the400

HIERARCHICAL algorithm, while silhoutte width is preferring KMEANS. As a consequence of this ambiguity, we decided

to evaluate the cluster algorithm and the number of clusters by the R2 outside the sample, which is generated for each cluster

and the number of cluster combinations for the separate soil moisture configuration.

A4 Variable importance plots

Here, importance is defined as the factor by which the model’s mean average error (mae), a measure of model performance,405

changes when the feature is shuffled (Molnar, 2020). To overcome the randomness added by this shuffling, the permutation is

repeated 50 times and the results are averaged. Thus, the results show variability, indicated by the black bar, but rather small

(Fig. A4). As Fig. A4a shows for a non-cluster approach nine out of the twelve most important features are soil moisture in
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Figure A2. Correlation plot (Pearson correlation coefficient) of the soil moisture index for the entire root zone (Lall) for all months of the

season of winter wheat. The SMI variables of October to December (10 - 12) refer to the previous year, since winter wheat is usually planted

in late fall and harvested in the summer of the following year.
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Figure A3. Internal validation measures for clusters with different sizes between 2 and 16. The measures depicted are Connectivity, Dunn

Index, and Silhouette Width.

the uppermost 25cm during different times within the growing season and March being the most important month. The most

important meteorological variable is Heat for August. In general soil moisture supports the performance of the model for all410

five considerations the most. This is particular true for the non-cluster approach and cluster 1, 2, and 4 as in cluster 3 more

meteorological variables are critical.

A5 Accumulated local effects plots

The ALE plots for the best combinations of cluster algorithm and size are presented here for the uppermost 25 cm (HIER-

ARCHICAL (2), HIERARCHICAL(6)) and the total soil column (HIERARCHICAL (2), PAM (4), PAM(6)) are shown in the415

following. First, the ALE plots derived from the cluster algorithm and size combination with the highest predictive capacity

is shown in Fig. A5. The spatial arrangement of the clusters can be seen in Fig. 2 of the main text. The nine most important

features are shown for each cluster.

Author contributions. A.M. and S.T. prepared the historical meteorological data. A.M. applied the hydro-meteorological simulations. S.T.

was responsible for the spatial processing of the data. M.P. developed the research idea, prepared the data and developed the statistical crop420

model. M.P. and A.M. analysed the results. M.P. composed the text. M.P., S.T., L.S., B.H. and A.M. contributed to interpreting results.
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Figure A4. Variable importance of the twelve most important features for no cluster (a), cluster 1 (b), cluster 2 (c), cluster 3 (d), and cluster 4

(e) derived with the PAM (4) cluster algorithm and size combination only considering the uppermost 25cm of the soil column. The importance

ranking is established with 50 repetitions of permutation. SMI represents the soil moisture index for the uppermost 25 cm of the soil column,

PS stands for days without rain in a given month, Heat for days with a maximum temperature of more than 30◦C, Frost for the number of

days below −5◦C (as only April is indicated), and AF for days with minimum temperature below −3◦C as well as maximum temperature of

+3◦C (same day). The number between the two points indicates the month, refers to the year before. For example, Frost10 represents black

frost in October.
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Figure A5. Accumulated local effects (ALE) plots for the best combination of cluster algorithm, cluster size and SMI, i.e. PAM with 2

clusters and soil moisture for the uppermost 25 cm. For both cluster, the nine ALE plots with the highest feature importance are shown.

The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate the ALE plots, which allows us to

reveal the true complexity of the model at the expense of shakiness. Therefore a nonlinear smoothing function (LOESS - locally estimated

scatterplot smoothing) is added in blue (with confidence interval in grey). SMI represents the soil moisture index for the uppermost 25 cm of

the soil column, PS stands for days without rain in a given month and Heat for days with a maximum temperature of more than 30 degrees.

The number indicates the month, October (10) to December (12) refers to the year before.
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Figure A6. Accumulated local effects (ALE) plots for the best combination of cluster algorithm, cluster size and SMI, i.e. HIERARCHICAL

with 6 clusters and soil moisture for the uppermost 25 cm. For both cluster, the nine ALE plots with the highest feature importance are shown.

The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate the ALE plots, which allows us to

reveal the true complexity of the model at the expense of shakiness. Therefore a nonlinear smoothing function (LOESS - locally estimated

scatterplot smoothing) is added in blue (with confidence interval in grey). SMI represents the soil moisture index for the uppermost 25 cm of

the soil column, PS stands for days without rain in a given month and Heat for days with a maximum temperature of more than 30 degrees.

The number indicates the month, October (10) to December (12) refers to the year before.
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Figure A7. Accumulated local effects (ALE) plots for the best combination of cluster algorithm, cluster size and SMI, i.e. HIERARCHICAL

with 6 clusters and soil moisture for the uppermost 25 cm as well as the entire soil column. For both cluster, the nine ALE plots with

the highest feature importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50

to estimate the ALE plots, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a nonlinear

smoothing function (LOESS - locally estimated scatterplot smoothing) is added in blue (with confidence interval in grey). SMI represents

the soil moisture index for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month and Heat for days with

a maximum temperature of more than 30 degrees. The number indicates the month, October (10) to December (12) refers to the year before.
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Figure A8. Accumulated local effects (ALE) plots for the best combination of cluster algorithm, cluster size and SMI, i.e. PAM with 4

clusters and soil moisture for the uppermost 25 cm as well as the entire soil column. For both cluster, the nine ALE plots with the highest

feature importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate the

ALE plots, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a nonlinear smoothing function

(LOESS - locally estimated scatterplot smoothing) is added in blue (with confidence interval in grey). SMI represents the soil moisture index

for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month and Heat for days with a maximum temperature

of more than 30 degrees. The number indicates the month, October (10) to December (12) refers to the year before.
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Figure A9. Accumulated local effects (ALE) plots for the best combination of cluster algorithm, cluster size and SMI, i.e. PAM with 6

clusters and soil moisture for the uppermost 25 cm as well as the entire soil column. For both cluster, the nine ALE plots with the highest

feature importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate the

ALE plots, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a nonlinear smoothing function

(LOESS - locally estimated scatterplot smoothing) is added in blue (with confidence interval in grey). SMI represents the soil moisture index

for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month and Heat for days with a maximum temperature

of more than 30 degrees. The number indicates the month, October (10) to December (12) refers to the year before.
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