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Abstract. Digital soil mapping of soil particle-size fractions (PSFs) using log-ratio methods is a widely used technique. As a 10 

hybrid interpolator, regression kriging (RK) is an alternative way to improve prediction accuracy. However, there is still a lack 11 

of comparisons and recommendations when RK is applied for compositional data, and it is not known if the performance based 12 

on different balances of isometric log-ratio (ILR) transformation is robust. Here, we compared the generalized linear model 13 

(GLM), random forest (RF), and their hybrid patterns (RK) using different transformed data based on three ILR balances, with 14 

29 environmental covariables (ECs) for the prediction of soil PSFs in the upper reaches of the Heihe River Basin, China. The 15 

results showed that RF performed best, with more accurate predictions, but GLM produced a more unbiased prediction. For 16 

the hybrid interpolators, RK was recommended because it widened the data ranges of the prediction values, and modified the 17 

bias and accuracy for most models, especially for RF. Moreover, prediction maps generated from RK revealed more details of 18 

the soil sampling points. For three ILR balances, different data distributions were produced. Using the most abundant 19 

component of the compositional data as the first component of the permutations was not considered the right choice because 20 

it produced the worst performance. Compared to the relative abundance of components, we recommend that the focus should 21 

be on data distribution. This study provides a reference for the mapping of soil PSFs combined with transformed data at the 22 

regional scale.  23 

1 Introduction  24 

Recently, spatial interpolation of soil particle-size fractions (PSFs) has become a focus of soil science researchers. More 25 

accurately predicted soil PSFs could contribute to a better understanding of hydrological, physical, and environmental 26 

processes (Delbari et al., 2011; Ließ et al., 2012; McBratney et al., 2002).  27 

The characteristics of compositional data makes soil PSFs more impressive than other soil properties. Soil PSFs are usually 28 

expressed as three components of discrete data – sand, silt, and clay, and carry only relevant percentage information. Soil 29 

texture is classified as soil PSFs, which can be demonstrated on a ternary diagram (so-called soil texture triangle). The closure 30 

system formed in this triangle is not Euclidean space, but is rather Aitchison space (i.e., the simplex) (Aitchison, 1986). Due 31 
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to “spurious correlations” (Pawlowsky-Glahn, 1984), traditional statistical methods based on the Euclidean geometry may 32 

generate mistakes when dealing directly with soil PSF data (Filzmoser et al., 2009). The requirement for constant sum, 33 

nonnegative, unbiased prediction is the key to spatial interpolation (Walvoort and de Gruijter, 2001). Data transformation is 34 

crucial for compositional data from the simplex to the real space. Log ratio transformations play a significant role in 35 

compositional data analysis, including the additive log-ratio (ALR), centered log-ratio (CLR) (Aitchison, 1986), and isometric 36 

log-ratio (ILR) (Egozcue et al., 2003).  37 

Although these three log-ratio methods have been widely applied to transform soil PSF data, different study area scales and 38 

model selection should be considered when modeling. For local scale study areas, geostatistical models, i.e., ordinary kriging 39 

(OK) and compositional kriging, combined with log-ratio transformed data, are sufficient to map spatial patterns, as shown in 40 

our previous study (Wang and Shi, 2017). As another perspective, functional compositions combined with the kriging method 41 

can also be applied to produce soil particle size curves (PSCs) (Menafoglio et al., 2014), providing an abundance of information. 42 

This involves the use of complete and continuous information rather than discrete information, and soil PSFs can be extracted 43 

from the predicted soil PSCs (Menafoglio et al., 2016a). Log-ratio transformations can also be combined with functional-44 

compositional data for the stochastic simulation of PSCs (Menafoglio et al., 2016b, Talska et al., 2018). For middle scale study 45 

areas, outliers may lead to the overestimation of the variogram, resulting in prediction errors (Lark, 2000). Therefore, the 46 

spatial interpolation should take robust variogram estimators into account to improve model performance (Lark, 2003). A 47 

previous study proved that applying robust variogram estimators in log-ratio co-kriging significantly improved mapping 48 

performance (Wang and Shi, 2018). For large scale study areas, geostatistical models are limited by the number of soil samples 49 

and increased spatial variability. An increasing number of studies have concentrated on mapping soil PSFs using different 50 

machine-learning models combined with ancillary data (i.e., environmental covariables, ECs) on a broad basin scale (Zhang 51 

et al., 2020), national scale (Akpa et al., 2014), and even global scale (Hengl et al., 2017) using log-ratio transformed data.  52 

Among these EC-combined models, linear, machine-learning, geostatistical models, and high accuracy surface modeling 53 

(Yue et al., 2020) have been commonly used in middle or large-scale studies. Linear models, for example, the generalized 54 

linear model (GLM) and multiple linear regression (MLR) have been used in soil PSF predictions with their flexibility and 55 

interpretability (Lane, 2002; Buchanan et al., 2012). Many machine-learning models have been applied for the soil PSF 56 

interpolation and soil texture classification. For example, tree learners, such as the random forest (RF), have been shown to be 57 

advantageous due to their ability to handle overfitting and generate more realistic maps (Zhang et al., 2020). Furthermore, 58 

regression kriging (RK), which has been proved to be a powerful and widely accepted method of soil mapping, can not only 59 

combine ECs through its regression function, but it also improves model accuracy as a hybrid interpolator for some soil 60 

properties, such as topsoil thickness and pH (Hengl et al., 2004; Keskin and Grunwald, 2018). However, the scope of the 61 

comparison needs to be expanded to further explore the accuracy and predict compositional data using linear models, machine-62 

learning models, and other models combining RK (hybrid patterns). 63 

In log-ratio methods, the ILR method performs better than ALR and CLR in both theory and in practice (Filzmoser and 64 

Hron, 2009; Wang and Shi, 2018; Zhang et al., 2020). The ILR method eliminates model collinearity and preserves 65 
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advantageous properties such as isometry, scale invariance, and sub-compositional coherence, through its use of orthonormal 66 

coordinate systems (i.e., balances) using a sequential binary partition (SBP) (Egozcue and Pawlowsky-Glahn, 2005). These 67 

choices are not unique, multiple sets of ILR transformed data can be generated by permutations of components (different SBPs) 68 

in the compositional data. The choice of an SBP can be based on prior expert knowledge, using a compositional biplot (Lloyd 69 

et al., 2012) or variograms and cross-variograms (Molayemat et al., 2018). It has been proven in statistical science that different 70 

results are obtained using different choices of ILR balances, and the option of a specific SBP for compositions is crucial for 71 

the intended interpretation of coordinates (Fiserova and Hron, 2011). However, most soil science researchers have ignored this 72 

point. Martins et al. (2016) reported that clay has been used as the denominator in the ALR method because it is typically the 73 

most abundant component of compositions. Few studies have compared the different SBP options from the perspective of 74 

accurate assessments and analyzed whether these differences are due to the general characteristics of specific data sets or log-75 

ratio transformations. 76 

Therefore, based on our previous work, the objectives of this study were to: (i) compare the spatial prediction accuracy of 77 

soil PSFs using a GLM and RF combined with ECs and ILR transformed data; (ii) determine whether hybrid interpolators 78 

(GLMRK and RFRK) can improve the interpolation performance; and (iii) explore the distributions of different transformed 79 

data and the variation law of precision based on different choices of SBP. 80 

2 Methods and materials 81 

2.1 Study area  82 

The study area was the upper reaches of the Heihe River Basin (HRB), which is the source of the Heihe River and the central 83 

area of runoff generation in the HRB. The elevation in this area ranges from 1640 to 5573 m (Fig. 1), and the climate is damp 84 

and cold, being dominated by the Qilian Mountains. The mean annual rainfall in the study area is 350 mm, and the mean annual 85 

temperature is lower than 4°C. Meadow and steppe are the dominant vegetation types. Grassland is the primary land-use type. 86 

The main soil classes are frigid calcic soil in the southwest of the study area, with cold desert soil dominating the southeast, 87 

while Castanozems and Sierozems are distributed in the north of the study area. 88 
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 89 

Figure. 1. The location, elevation, and soil samples on the upper reaches of the Heihe River Basin. 90 

2.2 Data collection and analysis  91 

2.2.1 Soil PSF data  92 

A total of 262 soil samples were collected in the upper reaches of the HRB based on a purposive sampling strategy and were 93 

used to characterize the spatial variability of soil PSFs at the regional scale (Fig. 1). The variability of soil formation factors, 94 

such as elevation, soil type, vegetation class, and geomorphology of the upper reaches of the HRB was considered in soil 95 

sample collection. The average of three mixed topsoil samples (approximate depth of 0–20 cm) was obtained to reduce the 96 

noise of soil sample parameters, and a parallel sample was also measured. Subsequently, about 30 g of each soil sample was 97 

air-dried, and chemical and physical analyses were conducted in the laboratory. Soil PSF information was obtained for the soil 98 

samples using a Malvern Panalytical Mastersizer 2000, with less than 3% average measurement error.  99 

2.2.2 The selection of ECs 100 

There were 29 ECs considered in our study, including both continuous and categorical variables (Table S1.1). They followed 101 

the principles of the SCORPAN model (McBratney et al., 2003). The continuous variables included the morphometry and 102 

hydrologic characteristics of topographic properties, climatic and vegetative indices, and soil physical and chemical properties 103 

(Yi et al., 2015; Song et al., 2016; Yang et al., 2016). The categorical variables included geomorphology, land use types, and 104 
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vegetation classes, which were transformed into raster with 1000 m resolution. Due to the intricate patterns of topography in 105 

the upper reaches of the HRB, the variable of topographic properties dominated the ECs. The System for Automated 106 

Geoscientific Analyses geographic information system (SAGA GIS, Conrad et al., 2015) was applied for a terrain analysis to 107 

derive topographic variables using the 30 m resolution digital elevation model (DEM, http://www.gscloud.cn). A collinearity 108 

test removed the redundant variables, and the topographic properties were then resampled to 1000 m. More details of the ECs 109 

are provided in the Data Availability section. 110 

2.3 ILR transformation and SBP 111 

An orthonormal basis of ILR was chosen to isometrically project the compositions from 𝑆𝐷 (the simplex for the Aitchison 112 

geometry) to 𝑅𝐷−1 (real space for the Euclidean geometry). The choice of a specific orthonormal basis for use on 𝑆𝐷 can be 113 

explained by the SBP for the groups of compositions (Egozcue and Pawlowsky-Glahn, 2005). The choice of the construction 114 

of coordinates (i.e., balances) between groups of compositions was calculated as follows: 115 

𝑧𝑘 = √
𝑟𝑘𝑠𝑘

𝑟𝑘+𝑠𝑘
𝑙𝑛(

(𝑥𝑖1𝑥𝑖2 ...𝑥𝑖𝑟𝑘
)1/𝑟𝑘

(𝑥𝑗1𝑥𝑗2 ...𝑥𝑗𝑠𝑘
)1/𝑠𝑘

), 𝑘 = 1, . . . , 𝐷 − 1,                    (1)  116 

where 𝑧𝑘 refers to the balance between two groups; 𝑖1, 𝑖2, . . . , 𝑖𝑟𝑘 is the 𝑟𝑘 part of one group; and 𝑗1, 𝑗2, . . . , 𝑗𝑟𝑘 is the 𝑠𝑘 117 

part of the other group. Therefore, in a stepwise manner, the balances contain all the relevant information of the compositions 118 

in two groups. This can also be explained in a tabular form. For soil PSF data (D = 3), all three choices of the balance of SBPs 119 

are shown in Table 1. The first component of the ILR contained all the information on soil PSFs, and the main difference in 120 

the choice of balances for soil PSFs was the order of the three parts, i.e., the first order of the soil PSF component was used as 121 

the numerator of the first ILR equation. In our study, three SBP balances, SBP1, SBP2, and SBP3, were transformed from the 122 

original soil PSF data, and the orders of soil PSF data were (𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦), (𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑), and (𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡), 123 

respectively. The transformation equations for the ILR can be derived from Eq. (1), and were defined as Eqs. (2) and (3). The 124 

inverse equations for ILR were defined as Eqs. (4), (5), (6). The ILR transformation and its inverse were conducted using the 125 

R package “compositions” (K. Gerald van den Boogaart and Raimon Tolosana, 2014).  126 

𝐳 = (𝑧1, . . . 𝑧𝐷−1) = 𝐼𝐿𝑅(𝐱), and for 𝑖 = 1, . . . , 𝐷 − 1 and component 𝑥𝑖,             (2) 127 

𝑧𝑖 = √
𝐷−𝑖

𝐷−𝑖+1
𝑙𝑛

𝑥𝑖

√∏ 𝑥𝑗
𝐷
𝑗=𝑖+1

𝐷−𝑖
.                          (3) 128 

𝑌(𝑥𝑗) = ∑
𝐼𝐿𝑅(𝑥𝑗)

√𝑗×(𝑗+1)

𝐷
𝑗=1 −√

𝑗−1

𝑗
× 𝐼𝐿𝑅(𝑥𝑗),                  (4) 129 

𝐼𝐿𝑅(𝑥0) = 𝐼𝐿𝑅(𝑥𝐷) = 0,                      (5) 130 

𝐼𝐿𝑅(𝑥𝑗) =
𝑒𝑥𝑝(𝑌(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑌(𝑥𝑗))
𝐷
𝑗=1

.                      (6) 131 

Table 1 All choices of SBPs for soil PSF data (D = 3), the orders of soil PSFs data are (𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦), (𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑) 132 

and (𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡) for SBP1, SBP2 and SBP3. 133 
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Groups Step Sand Silt Clay r s Balance 

SBP1 
1 + - - 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
 

 

2 0 + - 1 1 Step2: 𝑧2 = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
 

SBP2 
1 - + - 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑠𝑖𝑙𝑡

√𝑐𝑙𝑎𝑦×𝑠𝑎𝑛𝑑
 

 

2 - 
0 

+ 1 1 Step2: 𝑧2 = √
1

2
𝑙𝑛

𝑐𝑙𝑎𝑦

𝑠𝑎𝑛𝑑
 

SBP3 
1 - - + 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡
 

  
2 + - 

0 
1 1 Step2: 𝑧2 = √

1

2
𝑙𝑛

𝑠𝑎𝑛𝑑

𝑠𝑖𝑙𝑡
 

 134 

2.4 Linear model, machine-learning model, and hybrid patterns 135 

2.4.1 GLM 136 

The GLM is an extended version of the linear model, which contains response variables, with non-normal distributions (Nelder 137 

and Wedderburn, 1972). The link function is embedded into the GLM to ensure the classical linear model assumptions. The 138 

scaled dependent variables and the independent variables can be connected using a link function for the additive combination 139 

of model effects, the choice of link function depends on the distribution of response variables (Venables and Dichmont, 2004). 140 

A Gaussian distribution with an identity link function was applied in our study, which produced consequences equivalent to 141 

that of MLR (Nickel et al., 2014). However, categorical variables can be directly trained in the GLM without setting dummy 142 

variables. The Akaike’s information criterion (AIC) was applied to choose the best predictors and remove model 143 

multicollinearity using a backward stepwise algorithm, and the combinations of ECs for different ILR data were then obtained 144 

(Table S2.1). 145 

2.4.2 RF 146 

The RF is a non-parametric technique, which combines the bagging method with a selection of random variables as an extended 147 

version of a regression tree (RT) (Breiman, 1996, 2001). It can improve model prediction accuracy by producing and 148 

aggregating multiple tree models. The principle of the RF is to merge a group of “weak trees” together to generate a “powerful 149 

forest.” The bootstrap sampling method was applied for each tree, and each predictor was selected randomly from all model 150 

predictors. The “out of bag” (OOB) data were applied to produce reliable estimates in an internal validation using a random 151 

subset independent of the training tree data. Three parameters needed to be tuned: number of trees (𝑛𝑡𝑟𝑒𝑒); minimum size of 152 

terminal nodes (𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒), and number of variables randomly sampled as predictors for each tree (𝑚𝑡𝑟𝑦) (Liaw and Wiener, 153 

2001). The standard value of the 𝑚𝑡𝑟𝑦  parameter was one-third of the total number of predictors, while 𝑛𝑡𝑟𝑒𝑒  and 154 
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𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 were 500 and 5, respectively. For regression, the mean square errors (MSEs) of predictions were estimated to train 155 

the trees. The variable importance of the RF was produced from the OOB data using the “importance” function. One of the 156 

benefits of the RF is that the ensembles of trees are used without pruning to ensure that the most significant amount of variance 157 

can be expressed. Moreover, the RF can reduce model overfitting and normalization is unnecessary due to the effects on the 158 

value range being insensitive. The GLM and RF algorithms and the parameter adjustment of the RF were conducted in the R 159 

package “caret” (Max Kuhn, 2018). 160 

 161 

2.4.3 RK 162 

Regression kriging is a hybrid interpolation technique that combines regression models (e.g., GLM and RF) with the residuals 163 

of OK (Odeh et al., 1995). Mathematically, the RK method corresponds to two interpolators, the regression part and the kriging 164 

part, which are operated separately (Goovaerts, 1999). One limitation of using only the regression part is that it is usually only 165 

useful within the range of values of the training sets (Hengl et al., 2015). The principle of the RK method is that the regression 166 

model explains a deterministic component of spatial variability, and the interpolation of regression residuals generated from 167 

OK is used to describe the spatial variability (Bishop and McBratney, 2001; Hengl et al., 2004). The residuals create a 168 

variogram (e.g., Gaussian, spherical, or exponential) for models based on the MSE from the results of a cross-validation. First, 169 

we used the regression part (GLM or RF) to predict soil PSFs, the residual from the fitted model was then calculated by 170 

subtracting the regression part from the observations. Subsequently, OK was applied for the whole study area to interpolate 171 

the residuals. Finally, the regression prediction and the predicted residuals at the same location were summed. The variograms 172 

of the RK method were generated automatically using the “autofitVariogram” function in the R package “automap” (Hiemstra 173 

et al., 2009). 174 

2.5 Prediction method system and validation  175 

The method system of spatial interpolation models for soil PSFs is presented in Table 2. We systematically compared 12 176 

models: four interpolators, including GLM and RF with or without RK, and three SBPs of the ILR transformation method. For 177 

the validation of model performance, the independent data set validation was used to evaluate the prediction bias and accuracy 178 

of the models. The sub-training sets (70%) and the sub-testing sets (30%) were randomly selected from data independently, 179 

and this process was repeated 30 times.  180 

Table 2. The method system of spatial interpolation models of soil PSFs. 181 

Models GLM GLMRK RF RFRK 

ILR_SBP1 GLM_SBP1 GLMRK_SBP1 RF_SBP1 RFRK_SBP1 

ILR_SBP2 GLM_SBP2 GLMRK_SBP2 RF_SBP2 RFRK_SBP2 

ILR_SBP3 GLM_SBP3 GLMRK_SBP3 RF_SBP3 RFRK_SBP3 

 182 
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The mean error (ME), the root mean square error (RMSE), and Aitchison distance (AD) were used to evaluate and compare 183 

the prediction performance. The ME and RMSE measure prediction bias and accuracy, respectively (Odeh et al., 1995). The 184 

AD is an overall indicator of compositional analysis, which describes the distance between two compositions. Generally, in an 185 

accurate, unbiased model all three values will be close to 0. The ME, RMSE, and AD were calculated as follows: 186 

𝑀𝐸 =
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)
𝑛
𝑖=1 ,                          (7) 187 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)
𝑛
𝑖=1

2
,                      (8) 188 

𝐴𝐷 = [∑ (𝑙𝑜𝑔
𝑀𝑖

𝐺(𝑴)
− 𝑙𝑜𝑔

𝑃𝑖

𝐺(𝑷)
)𝐷

𝑖=1

2
]
0.5

,                   (9) 189 

where 𝑀𝑖 and 𝑃𝑖 are the measured and predicted values at the 𝑖th position, respectively; 𝑛 refers to the number of soil 190 

samples; 𝐷 is the number of dimensions of compositions; and 𝐺(𝑴) and 𝐺(𝑷) denote the geometric mean with the form 191 

G(𝐱) = (𝑥1, . . . , 𝑥𝐷)
1/𝐷 of the measured and predicted values, respectively.  192 

 193 

2.6 Covariance structure analysis 194 

The interpretation of the ILR balances is based on a decomposition of the covariance (COV) structure (Fiserova and Hron, 195 

2011). We calculated the variance (VAR), COV, and the corresponding correlation coefficient (CC) of ILR transformed data 196 

based on different SBP. The equations for calculating VAR, COV, and CC were derived from Eq. (1) as follows:  197 

𝑉𝐴𝑅(𝑧) =
1

𝑟+𝑠
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑖𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑟
𝑝=1 −

𝑠

2𝑟(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑖𝑝

𝑥𝑖𝑞
)𝑟

𝑞=1 −
𝑟

2𝑠(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑗𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑠
𝑝=1

𝑟
𝑝=1 −198 

𝑟

2𝑠(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑗𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑠
𝑝=1                                (10) 199 

𝐶𝑂𝑉(𝑧1, 𝑧2) =
𝐶

2𝑟1𝑠2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
1

𝑥
𝑗𝑞
2
)

𝑠2
𝑞=1

𝑟1
𝑝=1 +

𝐶

2𝑟2𝑠1
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
2

𝑥
𝑗𝑞
1
)

𝑠1
𝑞=1

𝑟2
𝑝=1 −

𝐶

2𝑟1𝑟2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
1

𝑥
𝑖𝑞
2
)

𝑟2
𝑞=1

𝑟1
𝑝=1 −200 

𝐶

2𝑠1𝑠2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑗𝑝
1

𝑥
𝑗𝑞
2
)

𝑠2
𝑞=1

𝑠1
𝑝=1 ,                                 (11) 201 

𝐶𝐶 =
𝐶𝑂𝑉(𝑧1,𝑧2)

√𝑣𝑎𝑟(𝑧1)⋅𝑣𝑎𝑟(𝑧2)
                                                           (12) 202 

For soil PSF data, Eqs. (10), (11), and (12) can be simplified to three dimensions. The relationship between the ratios of soil 203 

PSF components and the dominant roles of ILR transformed data were indicated from the covariance structure. All the 204 

statistical analyses, such as the descriptive statistics of soil PSF data, calculation and evaluation of indicators, and the spatial 205 

prediction mapping, were performed using the R statistical program (R Development Core Team, 2019).  206 

 207 

https://doi.org/10.5194/hess-2021-86
Preprint. Discussion started: 26 April 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

3 Results 208 

3.1 Exploratory data analysis 209 

3.1.1 Descriptive statistics of soil PSF data 210 

From the descriptive statistics of the original (raw) and ILR transformed data, the silt fraction dominated the soil PSFs, 211 

accounting for a more substantial amount than the sand and clay fractions. The distributions of the sand and clay fractions 212 

were similar (Fig. 2a). The ILR transformed data based on the three SBPs revealed different distributions (Figs. 2b, 2c, and 213 

2d). For example, two ILR components (ILR1 and ILR2) for SBP1 had a symmetric distribution around zero at the x-axis (Fig. 214 

2b). In comparison, the distribution of data generated from SBP2 or SBP3 had a mirrored symmetry, with a left-skewed ILR1 215 

of SBP2 and right-skewed ILR2 of SBP3 (Figs. 2c and 2d). The comparison of means and medians demonstrated that the back-216 

transformed means of three sets of ILR transformed data were the same, and the mean ILR of sand was closer to the median 217 

compared with the original soil PSF data. In contrast, the opposite patterns were apparent for the silt and clay components (Fig. 218 

2e).  219 

 220 

Figure 2. Descriptive statistics of original soil PSF and ILR transformed data using different SBPs. Note that means of 221 

Sand_ILR, Silt_ILR, and Clay_ILR from different SBPs were back-transformed to the real space. 222 

 223 

3.1.2 Covariance structure of ILR transformed data with different balances 224 

The covariance analysis of the transformed data of soil PSFs based on the different SBPs showed that the variance VarILR_1 225 

of SBP3 was the largest, followed by the VarILR_1 of SBP1 and SBP2 (Table 3). The variance of the second component of 226 

ILR (VarILR_2) followed the opposite pattern to that of VarILR_1. The COV and corresponding CC followed the same pattern 227 

of SBP1 > SBP3 > SBP2. The first ILR equation (𝑧1 in Table 1) contained all information of soil PSFs, while the second one 228 

https://doi.org/10.5194/hess-2021-86
Preprint. Discussion started: 26 April 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

(𝑧2 in Table 1) included only two components. The information of VarILR_1 was therefore more abundant. All of VarILR_1 229 

and VarILR_2 values were not 0 (or not nearly 0), indicating that there was no constant (or almost constant) value in any two 230 

ratios of soil PSF components. The COV of SBP3 was close to 0, indicating that the proportions of clay/sand and clay/silt 231 

were approximately the same. The same results were generated from the corresponding CC. For the distribution of soil PSFs 232 

in a ternary diagram (the United States Department of Agriculture texture triangle, USDA), the main texture class was silt 233 

loam (Fig. 3a). The biplot of soil samples demonstrated that the rays of the three components, i.e., sand, silt, and clay, were 234 

reasonably well clustered at about 120° in the three groups (Fig. 3b).  235 

 236 

Table 3. Covariance structure of soil PSFs based on different SBPs. VarILR_1 and VarILR_2 denote the variance of the first 237 

and the second component of ILR, respectively. COV refers to the covariance of ILR1 and ILR2. CC is the correlation 238 

coefficient. 239 

Balances VarILR_1 VarILR_2 COV CC 

SBP1 0.53 0.71 0.32 0.52 

SBP2 0.39 0.86 -0.24 -0.41 

SBP3 0.94 0.30 -0.09 -0.16 

 240 

 241 

Figure 3. The distribution of soil PSFs in the USDA triangle (a) and biplot graph (b). The red curve was fitted by loess function. 242 

3.2 Accuracy comparison of different models using ILR data 243 

The first three rows of the boxplots in Figs. 4a, 4b, and 4c indicate the bias of the different models according to their ME 244 

values. The ME of sand was closest to 0, followed by the MEs of clay and silt. GLM was more unbiased than RF, with lower 245 

ME values. After combining with RK, there was an improvement in the ME for most GLM and RF models (Figs. 4a, 4b, and 246 

4c). For the accuracy assessment, the RMSE of silt was higher than for the other two components. The GLMRK did not 247 

perform as well as expected in terms of the RMSE, with only the sand component having an improved RMSE (Fig. 4d). 248 
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However, the RFRK performed better than the GLMRK and improved the accuracy of most parts compared with the RF, 249 

except for the RFRK_SBP1 of sand. As an overall indicator, AD showed that the RF (or RFRK) performed better than the 250 

GLM (or GLMRK) in terms of both average RMSE values and uncertainties (Fig. 4g). Moreover, the RFRK improved the AD 251 

values for the SBP2 and SBP3 methods. For the uncertainty assessment, the RF generated lower uncertainties than the GLM, 252 

and the models combined with RK further reduced the uncertainties for most GLM and RF models.  253 

 254 

Figure 4. Accuracy comparison of GLM, RF, and their RK patterns combined with three ILR balances. The mean values of 255 

different model indicators were calculated in their boxes. 256 

 257 

The model performances were different for the three SBPs. To better evaluate model performance using the different SBP 258 

balances, we graded each box from 1 to 3, and the final results are shown in Fig. 5. The results demonstrated that SBP1 259 
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performed best, with the lowest ME value of all models. For the accuracy comparison there was no apparent pattern, but 260 

accuracy could be considered hierarchically: (1) for the GLM, SBP1 performed better than the other two SBP methods, which 261 

also performed well when RK was combined (GLMRK); (2) for RF, SBP1 produced the best result. However, the introduction 262 

of RK resulted in the Score2 of SBP3 performing best among the three SBPs. However, RFRK of SBP1 performed worst 263 

according to the values of Score2 and Score5. Finally, for the comprehensive assessment, SBP1 performed best among three 264 

SBPs according to Score6. More details and calculation processes can be found in the Supplementary Material (Table S4.1).  265 

 266 

Figure 5. Ranking score of model performance based on three SBPs. Score1 and Score2 are the sum scores of ME and RMSE 267 

for each model, respectively; Score3 is the sum scores of ME, RMSE and AD for each model, Score4 and Score5 are the sum 268 

scores of ME or RMSE for GLMall (GLM and GLMRK) and RFall (RF and RFRK), Score6 is the sum scores of all indicators. 269 

The lower the value, the better the model performance. 270 

 271 

3.3 Spatial prediction maps of soil PSFs generated from the different models 272 

Prediction maps of soil PSFs made from the different models are shown in Figs. 6, S3.1, and S3.2. For the components of soil 273 

PSFs, the maps of the three group maps followed a similar rule. The GLM and GLMRK produced more extensive ranges of 274 

predicted values, and their maps were more relevant to the real environment. However, the RF and RFRK predicted a relatively 275 
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narrow range of low values for these components, revealing a smoother distribution than that generated by the GLM and 276 

GLMRK. Unlike the regression methods, the RF and RFRK methods produced hot and cold spots on the prediction maps and 277 

more details of the soil sampling points were apparent (Fig. S5.1).  278 

 279 

Figure 6. Spatial prediction maps of the sand component of the upper reaches of the Heihe River Basin.  280 

3.4 Spatial distribution of soil texture classes in the USDA triangles 281 

The predicted soil textures in the USDA texture triangles (Fig. 7) showed that most predictions fell within the range of observed 282 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3

(j) RFRK_SBP1 (k) RFRK_SBP2 (l) RFRK_SBP3

0 80 160 240 32040
km

Sand (%)

0 - 11

11 - 16

16 - 20

20 - 24

24 - 29

29 - 36

36 - 50

50 - 75 ®

https://doi.org/10.5194/hess-2021-86
Preprint. Discussion started: 26 April 2021
c© Author(s) 2021. CC BY 4.0 License.



14 

 

soil textures (Fig. 3a), and silt loam was the dominant soil texture in all cases. The GLM produced a more discrete distribution 283 

than the RF, and the RK method expanded the dispersion. In the trends of the predicted samples, the silt components predicted 284 

from all models were overestimated. The pattern fitting curves indicated that the prediction results were closer to the bottom 285 

right of the USDA triangle than the soil PSF observations. The GLMRK and RFRK curves were longer than the GLM and RF 286 

curves, with a more extensive range of values in triangles. Compared with the GLMRK, the RFRK produced a more upward 287 

extension (Figs. 7j, k, l). It was clear that the clay fraction was overestimated and the sand fraction was underestimated. 288 
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 289 

Figure 7. Predicted 262 soil samples in USDA texture triangles using (a) GLM_SBP1, (b) GLM_SBP2, (c) GLM_SBP3, (d) 290 

GLMRK_SBP1, (e) GLMRK_SBP2, (f) GLMRK_SBP3, (g) RF_SBP1, (h) RF_SBP2, (i) RF_SBP3, (j) RFRK_SBP1, (k) 291 

RFRK_SBP2, (l) RFRK_SBP3. Red fitting curves in triangles showed the trends.  292 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3

(j) RFRK_SBP1 (k) RFRK_SBP2 (l) RFRK_SBP3
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4 Discussion 293 

4.1 Comparison of the GLM, RF, and RK patterns using ILR data 294 

We found RF reveal more accurate results, but with more bias than the GLM, and RK method improved the performance in 295 

terms of bias for most models and the accuracy of the RF. Odeh et al. (1995) indicated that RK was superior to the linear 296 

models, such as MLR, which was reflected in the prediction results for sand in our study. Scarpone et al. (2016) reported that 297 

as a hybrid interpolator, the RFRK outperformed the RF when making soil thickness predictions. We proved that RFRK was 298 

also suitable for compositional data and improved model performance when combining with the ILR transformation. In 299 

summary, the GLM and RF had both advantages and disadvantages when considering the trade-off between bias and accuracy.  300 

The results of GLM and GLMRK should not depend on the ILR basis being chosen, which has been proved by previous 301 

studies on the use of linear models and kriging for compositional data (Pawlowsky-Glahn et al, 2015). However, the GLM 302 

model used the “glmStepAIC” algorithm (i.e., a stepwise regression) to select the best combination of environmental 303 

covariables for each ILR component (Table S2.1). Therefore, the variable inputs are different for these ILR data, and further 304 

impact the accuracy assessment and prediction maps. In addition, the difficulty with the use of the GLM is the need for a back-305 

transformation. There is a need to present results on the original untransformed scale after conducting the analysis on a 306 

transformed level, which may produce spurious results (Lane, 2002). In our study, we compared the means of ILR transformed 307 

data and the original data. We proved the feasibility of the ILR transformation method, especially for meeting the requirements 308 

of compositional data. However, the accuracy of the GLM still needs to be improved, which may be because the transformed 309 

data did not follow a normal distribution (Fig. 2).  310 

Although the RF had the advantage of prediction accuracy, the limited interpretability of the consequences made it difficult 311 

to modify the prediction bias – each tree from the model cannot be examined individually (Grimm et al., 2008). Moreover, the 312 

ILR transformation before modeling increased the difficulty of interpretation for not only the predicted values on the ILR scale 313 

but also the residuals. The back-transformation of the optimal estimate of log-ratio variables does not generate the optimal 314 

estimation of compositional data (Lark and Bishop, 2007), which should also be considered.  315 

4.2 Comparison of three SBPs of ILR transformation 316 

For the comparison of the three SBPs, the ME and RMSE performed better when using SBP1 for ILR transformed data, 317 

which may be interpreted as the distributions of the ILR1 and ILR2 of SBP1 being more symmetric (Fig. 2b). In contrast, the 318 

performance of SBP2 was worse than that of SBP1 and SBP3 because the ILR_1 component, including all the soil PSF 319 

information, was left-skewed (Fig. 2c). This result was especially apparent for the GLM and GLMRK, because the data in a 320 

linear model needs to be normally distributed (Lane, 2002). 321 

The negligible difference among the three SBP balances revealed a triangular shape with a cluster at about 120° (Fig. 3b). 322 

This could be interpreted as the three soil PSFs having a mixed pattern, with each component dominated by the components 323 

in one cluster (Tolosana-Delgado et al., 2005). Although the silt component dominated the soil PSFs (Fig. 2a), sand and clay 324 
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also played important roles in soil compositions. Taking either the most abundant component of the compositional data as the 325 

denominator (Martins et al., 2016) or the first component of the permutations did not provide convincing evidence. Because 326 

using the most abundant component of the compositional data as the primary component of the alterations, i.e., SBP2, resulted 327 

in a relatively poor performance compared to the other SBPs. Thus, we recommend that the focus should be on data distribution. 328 

Furthermore, the choice of balance and combination of RK are also the key to improving model accuracy, as shown by the 329 

result of the RFRK-SBP3 model (Fig. 4).  330 

4.3 Limitations 331 

Firstly, the scope of this study is limited to independent modeling. Each ILR component was modeled separately, which may 332 

suboptimal because they cannot further consider the cross correlations among ILR coordinates. However, the study 333 

demonstrated the relation of the raw data (sand, silt, and clay), and has confirmed that the currently used prediction models are 334 

suitable. In our pervious study, we have used compositional kriging (CK) for the spatial prediction of soil PSFs (Wang and Shi, 335 

2017), and the cross correlations of ILRs can be taken into account using CK. Although it is optimal, it cannot consider different 336 

balances of ILR, nor can it be combined with the hybrid interpolator (e.g., RK). Moreover, predicting each ILR component 337 

separately was a more suitable approach for the spatial prediction models currently used (such as the GLM and RF). Therefore, 338 

more alternative spatial prediction models combined with interpretation of ILR balances for compositional data should be 339 

considered in the future. For example, CK and high accuracy surface modelling (HASM; Yue et al., 2016) can be applied for 340 

small scale study areas. For large scale study areas, multivariate RF (Segal and Xiao, 2011) can be combined with a log-ratio 341 

transformation and hybrid interpolation method, enabling the cross correlations among ILR coordinates to be better interpreted.  342 

Secondly, the weighting problem was not considered in this study, because the ILR method can be qualified as an unweighted 343 

log-ratio transformation, giving all parts the same weight for both the definition of the total variance and the reduction of 344 

dimension. This may enlarge the ratios generated from the rare parts, which would dominate the analysis (Greenacre and Lewi, 345 

2009). The pairwise log-ratio can be used to set weights by their proportions when there is no additional knowledge about the 346 

component measurement errors (Greenacre, 2019). Nevertheless, all three parts of the soil PSF data dominated the biplot 347 

diagram, without the influence of rare elements and with no redundancy; thus, none of the shortcomings mentioned above 348 

were apparent. Accuracy assessments using a pairwise log-ratio transformation require further study in the future. 349 

5 Conclusions 350 

We evaluated and compared the performance of the GLM, RF, and their hybrid pattern (i.e., GLMRK and RFRK) using 351 

different balances of ILR transformed data. The bias of the GLM was lower than that of the RF; however, the accuracy of the 352 

GLM was relatively low. More discrete distributions and broader ranges of prediction value distributions were produced from 353 

GLMs in the USDA soil texture triangles. In other words, different predicted data sets were generated from the use of the GLM 354 

and RF, with unbiased and inaccurate predictions for the GLM and biased and more accurate predictions for the RF.  355 

The hybrid patterns, GLMRK and RFRK, were found to be the best solution because it produced a relatively high prediction 356 

accuracy and strong correlations with ECs, providing more details about the soil sampling points (hot spots and cold spots) 357 
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compared with only the regression model. However, the non-normal distribution of ILR data and its residuals, and more data 358 

transformation and inverse transformation processes make models further difficult to interpreted and improve. 359 

For the different SBPs, the three SBP-based data generated different distributions, but no pattern was apparent. This could 360 

be explained by the angle of the biplot diagram, with three rays of soil PSF components clustered into three modes, and each 361 

part dominating its cluster. Using the most abundant component of the compositional data as the first component of the 362 

permutations was not considered the right choice because SBP2 produced the worst performance. Thus, we recommend that 363 

the focus should be on data distribution. This study can provide a reference for the spatial simulation of soil PSFs combined 364 

with ECs at the regional scale, and how to choose the balances of ILR transformed data.  365 

 366 

Data Availability. We did not use any new data and the data we used come from previously published sources. Soil particle-367 

size fractions data is available through our previous studies (Wang and Shi, 2017, 2018). Moreover, it also can be visited on 368 

this website: http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/ (Digital soil mapping dataset of 369 

soil texture (soil particle-size fractions) in the upstream of the Heihe river basin (2012-2016); last access: 4 July 2020). The 370 

meteorological data can be accessed through http://data.cma.cn/ (last access: 4 July 2020). Environmental covariates data of 371 

soil physical and chemical properties and categorical maps can be obtained through http://data.tpdc.ac.cn/zh-hans/ (last access: 372 

4 July 2020), including saturated water content, field water holding capacity, wilt water content, saturated hydraulic 373 

conductivity data (http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/, Digital soil mapping dataset 374 

of hydrological parameters in the Heihe River Basin (2012); last access: 4 July 2020), and soil thickness data 375 

(http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/, Digital soil mapping dataset of soil depth in 376 

the Heihe River Basin (2012-2014); last access: 4 July 2020). DEM data set is provided by the Geospatial Data Cloud site, 377 

Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn, last access: 4 July 2020). 378 
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