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Responses to the Referee 1 

Dear authors please see the following comments: I think the major problem is the presentation of an extended 2 

uncertainty analysis. 3 

Comment 1: why 29 ECs and not groups of categorical and continuous or mixture of them, a test is needed like PCA 4 

and others? 5 

Response: Thank you for your suggestion of including the combinations and PCA test of ECs. The 29 ECs we used in this 6 

work were 29 the results of removing highly correlated variables. We selected 45 ECs initially. Considering that models may 7 

benefit from reducing the level of correlation between the variables, absolute correlations above 0.7 were removed using 8 

correlation analysis and the “findCorrelation” function in the ‘caret’ R package. In addition, for the combinations of different 9 

models, we applied the backward stepwise algorithm and obtained different combinations of ECs for different ILR data. 10 

 11 

 12 

P4L252: “There were 29 ECs considered in our study after reducing the level of correlation between the variables, including 13 

both continuous and categorical variables (Table S1.1).”  14 

 15 

P6L299: “The Akaike’s information criterion (AIC) was applied to choose the best predictors and remove model 16 

multicollinearity using a backward stepwise algorithm, and the combinations of ECs for different ILR data were then obtained 17 

(Table S2.1).” 18 

 19 

Comment 2: It is not clear mathematically how you apply the proposed methodologies. 20 

Response: Thank you for your suggestion regarding the proposed methodologies. The simplified formula and flow chart are 21 

as follows:  22 

For the simplified formula, when the ILR method was applied in soil PSFs (D=3), three components (i.e., sand, silt, and 23 

clay) were transformed into two components (i.e., ILR1 and ILR2). Moreover, using different SBPs (in total, three types of 24 

SBPs), we applied different permutations of three components to derive the final formulas for three SBPs (Table 1). The 25 

transformation process is available in the ‘compositions’ R package using the “ilr” function. 26 

The flow chart showed how ILR transformed data were applied to the RK model. We used ILR transformed data (ILR1 and 27 

ILR2) to predict models and their residuals; then the two parts (predicted ILR1 and ILR2) were added and back-transformed 28 

into predicted soil PSF data (sand, silt and clay). 29 

 30 

 31 

 32 
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Table 1. All choices of SBPs for soil PSF data (D = 3), the order of soil PSFs data is (𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦), (𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑), 33 

and (𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡) for SBP1, SBP2 and SBP3.  34 

Groups Step Sand Silt Clay r s Formula 

SBP1 
1 + - - 1 2 Step1: 𝐼𝐿𝑅1 = √

2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
 

 

2 0 + - 1 1 Step2: 𝐼𝐿𝑅2 = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
 

SBP2 
1 - + - 1 2 Step1: 𝐼𝐿𝑅1 = √

2

3
𝑙𝑛

𝑠𝑖𝑙𝑡

√𝑐𝑙𝑎𝑦×𝑠𝑎𝑛𝑑
 

 

2 - 
0 

+ 1 1 Step2: 𝐼𝐿𝑅2 = √
1

2
𝑙𝑛

𝑐𝑙𝑎𝑦

𝑠𝑎𝑛𝑑
 

SBP3 
1 - - + 1 2 Step1: 𝐼𝐿𝑅1 = √

2

3
𝑙𝑛

𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡
 

  
2 + - 

0 
1 1 Step2: 𝐼𝐿𝑅2 = √

1

2
𝑙𝑛

𝑠𝑎𝑛𝑑

𝑠𝑖𝑙𝑡
 

 35 

 36 

Fig. 1. Process of RK method in our study. 37 
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Comment 3: For RK: you should provide more details about the RK process: regression type, variogram types, 38 

parameters, nugget, fitting method, suitability of data for geostatistical analysis etc. 39 

 40 

Response: Thank you for your suggestion regarding the details of the RK process. We have updated the details of the RK 41 

process in the Supplementary Material, which now includes two figures–RK of GLM and RF (i.e., GLMRK and RFRK), 42 

respectively. Variogram types, parameters are included.   43 

 44 

Figure S6.1. Variograms of GLM using different ILR transformed data. 45 

 46 
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 47 

Figure S6.2. Variograms of RF using different ILR transformed data. 48 

 49 
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Comment 4: Table 2 needs better explanation. 50 

Response: Thank you for your suggestion. Table 2 showed all the models we built, which were combinations of four models 51 

(GLM, GLMRK, RF, RFRK) and three types of SBP. Therefore, a total of 12 models were predicted, and their performance 52 

compared.  53 

 54 

P8L332 “The method of spatial interpolation for soil PSFs is presented in Table 2. We systematically compared 12 models: 55 

the combinations of four interpolators (GLM, GLMRK, RF, RFRK), and three SBPs of the ILR transformation method.”  56 

 57 

Table 2. The method of spatial interpolation of soil PSFs.  58 

Models GLM GLMRK RF RFRK 

SBP1 GLM_SBP1 GLMRK_SBP1 RF_SBP1 RFRK_SBP1 

SBP2 GLM_SBP2 GLMRK_SBP2 RF_SBP2 RFRK_SBP2 

SBP3 GLM_SBP3 GLMRK_SBP3 RF_SBP3 RFRK_SBP3 

 59 

Comment 5: It is not explained how the uncertainty has been calculated. A more clear and extended presentation and 60 

calculation of uncertainty is required. 61 

Response: Thank you for your suggestion regarding the calculation of uncertainty. We compared the uncertainties by 62 

calculating the ranges of 95% confidence interval (CI) (Streiner, 1996) derived from running models 30 times (i.e., CI of ME, 63 

RMSE, and AD). The box diagrams also showed the uncertainties of the different models. We have added calculation methods 64 

in our revised manuscript.  65 

P8L282: “The ranges of a 95% confidence interval (CI) (Streiner, 1996) of ME, RMSE, and AD were calculated to compare 66 

the uncertainties of different models.” 67 

 68 

Comment 6: Generally different algorithms have been applied but it is unclear how the uncertainty propagation affects 69 

the final results. 70 

Response: The results of uncertainty analysis for different models were demonstrated in the added table in the Supplementary 71 

Material (Table. S7.1). The main reasons why uncertainty propagation affects the final results are: (1) input data are different 72 

based on three SBPs, and (2) models we applied are different. Firstly, the input data of ILR methods were different (three 73 

SBPs), and these different ILR data directly impacted the prediction results and uncertainty. Different input data generate 74 

different SBPs of ILR, which means we should consider the SBP in soil PSF interpolation. Secondly, the main differences in 75 

these applied models were linear regression (GLM) and machine-learning method (RF), and models with or without RK. The 76 

results showed that CI_ME of GLM were lower than that of RF, but CI_RMSE and CI_AD of RF delivered a better 77 

performance. Moreover, introducing of RK can reduce the uncertainty, especially for the sand fraction. For the uncertainty of 78 
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prediction maps, we added the ordinary kriging variance and the range of 95% prediction interval of different models in the 79 

Supplementary Material. Because of the small values of variance for the ILR data, the differences of interval were very close, 80 

showing low uncertainty when using ILR transformed data, which was also an advantage that can be considered. 81 

 82 

 83 

P18L488: “With respect to uncertainty, the uncertainty of bias for GLM is higher than that of RF, but the uncertainty of 84 

accuracy for GLM is lower. However, RF performed better in terms of accuracy assessment. Therefore, the main concern was 85 

whether the introductions of RK could reduce the uncertainty of RF. With regard to the performances of RFRK and RF, adding 86 

RK was recommended in soil PSF interpolation combined with ILR transformed data. In addition, the range of 95% prediction 87 

interval for different models (Figs. S8.1–8.6) demonstrated that the differences were very close. This may because the values 88 

of variance for ILR data were small, showing low uncertainty when using ILR transformed data.” 89 

 90 

 91 

Table. S7.1. The ranges of 95 % confidence interval (CI) of ME, RMSE and AD for different models. 92 

  CI_ME CI_RMSE CI_AD 

  sand silt clay sand silt clay   

GLM_SBP1 1.20  1.65  1.02  1.16  0.94  0.63  0.04  

GLM_SBP2 1.39  1.74  0.99  0.98  0.87  0.67  0.04  

GLM_SBP3 1.22  1.58  0.95  1.15  0.96  0.62  0.05  

GLMRK_SBP1 1.16  1.56  1.03  1.04  0.88  0.69  0.05  

GLMRK_SBP2 1.38  1.75  1.02  0.94  1.03  0.74  0.05  

GLMRK_SBP3 1.22  1.56  0.97  1.08  1.03  0.95  0.05  

RF_SBP1 1.26  1.44  0.69  1.26  0.97  0.38  0.04  

RF_SBP2 1.24  1.40  0.68  1.25  0.99  0.37  0.04  

RF_SBP3 1.26  1.43  0.67  1.30  1.02  0.37  0.04  

RFRK_SBP1 1.21  1.35  0.71  1.23  0.99  0.40  0.04  

RFRK_SBP2 1.19  1.32  0.69  1.21  1.03  0.39  0.04  

RFRK_SBP3 1.20  1.32  0.69  1.25  1.01  0.39  0.04  

 93 

 94 
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 95 

Figure 1. Ordinary kriging variance for GLM using different SBPs. 96 

 97 
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 98 

Figure 2. Ordinary kriging variance for RF using different SBPs. 99 

 100 

 101 

 102 

 103 
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‘Supplementary Material Section S8. The uncertainty of prediction maps’ 105 

 106 

 107 

Figure S8.1. 95% prediction intervals of soil PSFs using GLM combined with SBP1. 108 

 109 

  110 

Figure S8.2. 95% prediction intervals of soil PSFs using GLM combined with SBP2. 111 

 112 
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 113 

Figure S8.3. 95% prediction intervals of soil PSFs using GLM combined with SBP3. 114 

 115 

 116 

Figure S8.4. 95% prediction intervals of soil PSFs using RF combined with SBP1. 117 

 118 
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 119 

Figure S8.5. 95% prediction intervals of soil PSFs using RF combined with SBP2. 120 

 121 

 122 

Figure S8.6. 95% prediction intervals of soil PSFs using RF combined with SBP3. 123 

 124 

Comment 7: The mixture of categorical and continues data needs more explanation in terms of methods applications 125 

and uncertainty of the results.  126 
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Response: We added this discussion in the Discussion Section. Firstly, for categorical and continuous data, the processes of 127 

the linear model and machine-learning model were different. GLM applied a backward stepwise algorithm and processed 128 

categorical data as dummy variables. Thus, not all ECs we selected were used in the process of model training for GLM (Table 129 

S2.1). In addition, RF applied all variables and did not require data processing for categorical variables. For the uncertainty in 130 

the results, the uncertainty in bias for GLM was higher than that of RF, but the uncertainty in accuracy for GLM was lower. 131 

However, RF performed better in the accuracy assessment; the main concern, therefore, was whether introducing RK could 132 

reduce the uncertainty in RF. The results showed that the uncertainty in accuracy for RFRK was lower than that of RF. Thus, 133 

RFRK was recommended in soil PSF interpolation combined with ILR transformed data. 134 

 135 

P18L481: “The results of GLM and GLMRK should not depend on the choice of ILR basis, which has been proved by previous 136 

studies on the use of linear models and kriging for compositional data (Pawlowsky-Glahn et al, 2015). However, the GLM 137 

model used the “glmStepAIC” algorithm (i.e., a stepwise regression) to select the best combination of environmental 138 

covariables for each ILR component (Table S2.1). Therefore, the variable inputs are different for these ILR data, and further 139 

impact the accuracy assessment and prediction maps.” 140 

 141 

P18L488: “With respect to uncertainty, the uncertainty of bias for GLM is higher than that of RF, but the uncertainty of 142 

accuracy for GLM is lower. However, RF performed better in terms of accuracy assessment. Therefore, the main concern was 143 

whether the introductions of RK could reduce the uncertainty of RF. With regard to the performances of RFRK and RF, adding 144 

RK was recommended in soil PSF interpolation combined with ILR transformed data. In addition, the range of 95% prediction 145 

interval for different models (Figs. S8.1–8.6) demonstrated that the differences were very close. This may because the values 146 

of variance for ILR data were small, showing low uncertainty when using ILR transformed data.”147 
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Abstract. Digital soil mapping of soil particle-size fractions (PSFs) using log-ratio methods is a widely used technique. As a 158 

hybrid interpolator, regression kriging (RK) is an alternativeone way to improve prediction accuracy of soil PSFs. However, 159 

there is still a lack of comparisons and recommendations when RK is applied for compositional data, and it. It is not 160 

knownunknown if the prediction performance based on different balances of the isometric log-ratio (ILR) transformation is 161 

robust. Here, weWe compared the generalized linear model (GLM), the random forest (RF),) model, and their hybrid patterns 162 

(RKi.e., GLMRK and RFRK) using different transformed data based on three ILR balances, with. The comparison involved 163 

29 environmental covariables (ECs) for the prediction of soil PSFsPSF prediction in the upper reaches of the Heihe River 164 

Basin, China. The results showed that RF performed best, with more accurate predictions, but GLM produced a more unbiased 165 

prediction. For the hybrid interpolators, RK was recommended because it widened the data ranges of the prediction values, 166 

and modified the bias and accuracy for most models, especially for RF. Moreover, prediction maps generated from RK revealed 167 

more details of the soil sampling points. For three ILR balances, different data distributions were produced. Using the most 168 

abundant component of the compositional data as the first component of the permutations was not considered the rightbest 169 

choice because it produced the worst performancefor soil PSF mapping. Compared to the relative abundance of components, 170 

we recommend that the focus should be on data distribution. This study provides a reference for the mapping of soil PSFs 171 

combined with transformed data at the regional scale.  172 

1 Introduction  173 

Recently, spatial interpolation of soil particle-size fractions (PSFs) has become a focus of soil science researchers. More 174 

accurately predicted soil PSFs could contribute to a better understanding ofelucidates hydrological, physical, and 175 

environmental processes (Delbari et al., 2011; Ließ et al., 2012; McBratney et al., 2002).  176 

The characteristics of compositional data makesmake soil PSFs more impressive than other soil properties. Soil PSFs are 177 

mailto:shiwj@lreis.ac.cn
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usually expressed as three components offor discrete data – —sand, silt, and clay, —and carry only relevant percentage 178 

information. Soil texture is classified asby soil PSFs, which can be demonstrated on a ternary diagram (so-called soil texture 179 

triangle). TheHowever, the closure system formed in this triangle is not in Euclidean space, but is rather Aitchison space (i.e., 180 

thea simplex) (Aitchison, 1986). Due to “spurious correlations” (Pawlowsky-Glahn, 1984), traditional statistical methods 181 

based on the Euclidean geometry may generate mistakes when dealing directly with soil PSF data (Filzmoser et al., 2009). The 182 

requirement for constant -sum, nonnegative, unbiased prediction is the key to spatial interpolation (Walvoort and de Gruijter, 183 

2001). Data Therefore, data transformation from a simplex into real space is crucial for compositional data from the simplex 184 

to the real space. Log ratio transformations play a significant role in compositional data analysis, including the additive log-185 

ratio (ALR), centered log-ratio (CLR) (Aitchison, 1986), and the isometric log-ratio (ILR) (Egozcue et al., 2003).  186 

Although these three log-ratio methods have been widely applied to transform soil PSF data, different study area scales and 187 

model selection should be considered when modeling. For local -scale study areas, geostatistical models, i.e., ordinary kriging 188 

(OK) and compositional kriging, combined with log-ratio transformed data, are sufficient to map spatial patterns, as shown in 189 

our previous study (Wang and Shi, 2017). AsFrom another perspective, functional compositions combined with the kriging 190 

method can also be applied to produce soil particle size curves (PSCs) (Menafoglio et al., 2014), providing an abundance of 191 

information. This involvesFunctional compositions involve the use of complete and continuous information rather than discrete 192 

information, and soil PSFs can be extracted from the predicted soil PSCs (Menafoglio et al., 2016a). Log-ratio transformations 193 

can also be combined with functional-compositional data for the stochastic simulation of PSCs (Menafoglio et al., 2016b, 194 

Talska et al., 2018). For middle -scale study areas, outliers may lead to the overestimation of the variogram, resulting in 195 

prediction errors (Lark, 2000). Therefore, the spatial interpolation should take robust variogram estimators into account to 196 

improve model performance (Lark, 2003). A previous study proved that applying robust variogram estimators in log-ratio co-197 

kriging significantly improved mapping performance (Wang and Shi, 2018). For large -scale study areas, geostatistical models 198 

are limited by the number of soil samples and increased spatial variability. An increasing numberIncreasing numbers of studies 199 

have concentrated on mapping soil PSFs using different machine-learning models combined with ancillary data (i.e., 200 

environmental covariables, ECs)). Log-ratio transformed data have been applied on a broad basin scale (Zhang et al., 2020), 201 

national scale (Akpa et al., 2014), and even a global scale (Hengl et al., 2017) using log-ratio transformed data.).  202 

Among these EC-combined models, linear, machine-learning, geostatistical models, and high -accuracy surface modeling 203 

(Yue et al., 2020; Shi et al., 2016) have been commonly used in middle or large-scale studies. Linear models, for example, the 204 

generalized linear model (GLM) and multiple linear regression (MLR) model, have been used in soil PSF predictions 205 

withbecause of their flexibility and interpretability (Lane, 2002; Buchanan et al., 2012). Many machine-learning models have 206 

been applied for the soil PSF interpolation and soil texture classification. For example, tree learners, such as the random forest 207 

(RF), have been shown to be) model, are advantageous due to their ability to handle overfitting and generate more realistic 208 

maps (Zhang et al., 2020). FurthermoreIn addition, regression kriging (RK), which) has been provedproven to be a powerful 209 



 

3 

 

and widely accepted method offor soil mapping, can not only combineinterpolation. ECs can be introduced through its 210 

regression function, but it also improves and improved model accuracy as a hybrid interpolator for some soil properties, such 211 

as topsoil thickness and pH (Hengl et al., 2004; Keskin and Grunwald, 2018; Shi et al., 2009; Shi et al., 2011). However, the 212 

scope of the comparison needs to be expanded to further explore the prediction accuracy and predictcombined with 213 

compositional data using linear models, machine-learning models, and combining RK with other models combining RK 214 

(hybrid patterns). 215 

In log-ratio methods, the ILR method performs better than the ALR and CLR methods in both theory and in practice 216 

(Filzmoser and Hron, 2009; Wang and Shi, 2018; Zhang et al., 2020). The ILR method eliminates model collinearity and 217 

preserves advantageous properties, such as isometry, scale invariance, and sub-compositional coherence, through its use of. 218 

The ILR method is constructed in orthonormal coordinate systems (i.e., balances) using a sequential binary partition (SBP) 219 

(Egozcue and Pawlowsky-Glahn, 2005). TheseThe choices of balances are not unique, multiple. Multiple sets of ILR 220 

transformed data can be generated by permutations of components (different SBPs) in the compositional data. The 221 

choiceselection of an SBP can be based on prior expert knowledge, using a compositional biplot (Lloyd et al., 2012) or 222 

variograms and cross-variograms (Molayemat et al., 2018). It has been proven in statistical science that different results are 223 

obtained using different choices of ILR balances, andILR balances. For example, Fiserova and Hron (2011) reported that 224 

different balances generated different covariance structures. Moreover, the choice of SBP is related to hypotheses, research 225 

questions of interest, or the context of the data analysis (Coenders et al., 2017; Facevicova et al., 2018). Thus, the option of a 226 

specific SBP for compositions is crucial for the intended interpretation of coordinates (Fiserova and Hron, 2011). However, 227 

most soil science researchers have ignored this point. Martins et al. (2016) reported that clay has beenwas used as the 228 

denominator in the ALR method because it is typically the most abundant component of compositions. Few studies have 229 

compared and analyzed the different SBP options from the perspective of accurate assessmentsassessment and analyzed 230 

whether these differences are due to the general characteristics of specific data sets or log-ratio transformations. 231 

Therefore, based on our previous work, the objectives of this study were to: (i) compare the spatial prediction accuracy of 232 

soil PSFs using a GLM and RF method combined with ECs and ILR transformed data; (ii) determine whether hybrid 233 

interpolators (GLMRK and RFRK) can improve the interpolation performanceprediction accuracy; and (iii) explore the 234 

distributions of different transformed data and the variation law of precision based on different choices of SBP. 235 

2 Methods and materials 236 

2.1 Study area  237 

The study area was the upper reaches of the Heihe River Basin (HRB), which is the source of the Heihe River and the central 238 

area of runoff generation in the HRB. The elevation in this area ranges from 1640 to 5573 m (Fig. 1), and the climate is damp 239 

and cold, due to the area being dominated by the Qilian Mountains. The mean annual rainfall in the study area is 350 mm, and 240 
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the mean annual temperature is lower than 4°C. Meadow and steppe are the dominant vegetation types. Grassland is the 241 

primary land-use type. The main soil classes are frigid calcic soil in the southwest of the study area, with cold desert soil 242 

dominating the southeast, while Castanozems and Sierozems are distributed in the north of the study area. 243 

 244 

Figure. 1. The locationLocation, elevation, and soil samples on the upper reaches of the Heihe River Basin. 245 

2.2 Data collection and analysis  246 

2.2.1 Soil PSF data  247 

A total of 262 soil samples were collected in the upper reaches of the HRB based on a purposive sampling strategy and were 248 

used to characterize the spatial variability of soil PSFs at the regional scale (Fig. 1). The variability of soil formation factors, 249 

such as elevation, soil type, vegetation class, and geomorphology of the upper reaches of the HRB, was considered in soil 250 

sample collection. TheAn average of three mixed topsoil samples (approximate depth of 0–20 cm) was obtained to reduce the 251 

noise of soil sample parameters, and a parallel sample was also measured. Subsequently, about 30 g of each soil sample was 252 

air-dried, and chemical and physical analyses were conducted in the laboratory. Soil PSF information was obtained forfrom 253 

the soil samples using a Malvern Panalytical Mastersizer 2000, with less than a 3% average measurement error.  254 
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2.2.2 The selection of ECs 255 

There were 29 ECs considered in our study after reducing the level of correlation between the variables, including both 256 

continuous and categorical variables (Table S1.1). TheyThese ECs followed the principles of the SCORPAN model 257 

(McBratney et al., 2003). The continuous variables included the morphometry and hydrologic characteristics of topographic 258 

properties, climatic and vegetative indices, and soil physical and chemical properties (Yi et al., 2015; Song et al., 2016; Yang 259 

et al., 2016). The categorical variables included geomorphology, land use types, and vegetation classes, which were 260 

transformed into rasterrasters with 1000 m resolution. Due to the intricate patterns of topography in the upper reaches of the 261 

HRB, the variable of topographic properties dominateddominate the ECs. The System for Automated Geoscientific Analyses 262 

geographic information system (SAGA GIS, Conrad et al., 2015) was applied for a terrain analysis to derive topographic 263 

variables using the 30 m resolution digital elevation model (DEM, http://www.gscloud.cn). A collinearity test removed the 264 

redundant variables, and the topographic properties were then resampled to 1000 m. More details of the ECs are provided in 265 

the Data Availability section. 266 

2.3 ILR transformation and SBP 267 

An orthonormal basis of ILR was chosen to isometrically project the compositions from 𝑆𝐷 (the simplex for the Aitchison 268 

geometry) to 𝑅𝐷−1 (real space for the Euclidean geometry). The choice of a specific orthonormal basis for use on 𝑆𝐷 can be 269 

explained by the SBP for the groups of compositions (Egozcue and Pawlowsky-Glahn, 2005). The choice of the construction 270 

of coordinates (i.e., balances) between groups of compositions was calculated as follows: 271 

𝑧𝑘 = √
𝑟𝑘𝑠𝑘

𝑟𝑘+𝑠𝑘
𝑙𝑛(

(𝑥𝑖1𝑥𝑖2 ...𝑥𝑖𝑟𝑘
)1/𝑟𝑘

(𝑥𝑗1𝑥𝑗2 ...𝑥𝑗𝑠𝑘
)1/𝑠𝑘

), 𝑘 = 1, . . . , 𝐷 − 1,                   272 

         (1)  273 

where 𝑧𝑘 refers to the balance between two groups; 𝑖1, 𝑖2, . . . , 𝑖𝑟𝑘 is the 𝑟𝑘 part of one group; and 𝑗1, 𝑗2, . . . , 𝑗𝑟𝑘 is the 𝑠𝑘 274 

part of the other group. Therefore, in a stepwise manner, the balances contain all the relevant information of the compositions 275 

in two groups. This can also be explaineddisplayed in a tabular form. For soil PSF data (D = 3), all three choices of the balance 276 

of SBPs are shown in Table 1. The first component of the ILR contained all the information on soil PSFs, and the main 277 

difference in the choice of balances for soil PSFs was the order of the three parts,; i.e., the first order of the soil PSF component 278 

was used as the numerator of the first ILR equation. In our study, three SBP balances, SBP1, SBP2, and SBP3, were 279 

transformed from the original soil PSF data, and the orders of soil PSF data were (𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦), (𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑), and 280 

(𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡) , respectively. The transformation equations for the ILR can be derived from Eq. (1), and were defined 281 

asconstitute Eqs. (2) and (3). The inverse equations for ILR were defined asconstitute Eqs. (4), (5),) – (6). The ILR 282 

transformation and its inverse were conducted using the R package “compositions” (K. Gerald van den Boogaart and Raimon 283 

Tolosana,et al., 2014).  284 

http://www.gscloud.cn/
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𝐳 = (𝑧1, . . . 𝑧𝐷−1) = 𝐼𝐿𝑅(𝐱), and for 𝑖 = 1, . . . , 𝐷 − 1 and component 𝑥𝑖,            285 

        (2) 286 

𝑧𝑖 = √
𝐷−𝑖

𝐷−𝑖+1
𝑙𝑛

𝑥𝑖

√∏ 𝑥𝑗
𝐷
𝑗=𝑖+1

𝐷−𝑖
.                         287 

                     (3) 288 

𝑌(𝑥𝑗) = ∑
𝐼𝐿𝑅(𝑥𝑗)

√𝑗×(𝑗+1)

𝐷
𝑗=1 −√

𝑗−1

𝑗
× 𝐼𝐿𝑅(𝑥𝑗),                  (4) 289 

𝐼𝐿𝑅(𝑥0) = 𝐼𝐿𝑅(𝑥𝐷) = 0,                      (5) 290 

𝐼𝐿𝑅(𝑥𝑗) =
𝑒𝑥𝑝(𝑌(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑌(𝑥𝑗))
𝐷
𝑗=1

.                      (6) 291 

Table 1. All choices of SBPs for soil PSF data (D s of= 3),); the order of soil PSFs data areis (𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦) , 292 

(𝑠𝑖𝑙𝑡, 𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑), and (𝑐𝑙𝑎𝑦, 𝑠𝑎𝑛𝑑, 𝑠𝑖𝑙𝑡) for SBP1, SBP2 and SBP3. 293 

Groups Step Sand Silt Clay r s Balance 

SBP1 
1 + - - 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
 

 

2 0 + - 1 1 Step2: 𝑧2 = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
 

SBP2 
1 - + - 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑠𝑖𝑙𝑡

√𝑐𝑙𝑎𝑦×𝑠𝑎𝑛𝑑
 

 

2 - 
0 

+ 1 1 Step2: 𝑧2 = √
1

2
𝑙𝑛

𝑐𝑙𝑎𝑦

𝑠𝑎𝑛𝑑
 

SBP3 
1 - - + 1 2 Step1: 𝑧1 = √

2

3
𝑙𝑛

𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡
 

  
2 + - 

0 
1 1 Step2: 𝑧2 = √

1

2
𝑙𝑛

𝑠𝑎𝑛𝑑

𝑠𝑖𝑙𝑡
 

 294 

2.4 Linear model, machine-learning model, and hybrid patterns 295 

2.4.1 GLM 296 

The GLM is an extended version of the linear model, which contains response variables, with non-normal distributions (Nelder 297 

and Wedderburn, 1972). The link function is embedded into the GLM to ensure thethat classical linear model assumptions are 298 

met. The scaled dependent variables and the independent variables can be connected using a link function for the additive 299 

combination of model effects,; the choice of link function depends on the distribution of response variables (Venables and 300 

Dichmont, 2004). A Gaussian distribution with an identity link function was applied in our study, which produced 301 
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consequences equivalent to thatthose of the MLR (Nickel et al., 2014). However, categorical variables can be directly trained 302 

in the GLM without setting dummy variables. The Akaike’s information criterion (AIC) was applied to choose the best 303 

predictors and remove model multicollinearity using a backward stepwise algorithm, and the combinations of ECs for different 304 

ILR data were then obtained (Table S2.1). 305 

2.4.2 RF 306 

The RF is a non-parametric technique, which combines the bagging method with a selection of random variables as an extended 307 

version of a regression tree (RT) (Breiman, 1996, 2001). It can improve model prediction accuracy by producing and 308 

aggregating multiple tree models. The principle of the RF is to merge a group of “weak trees” together to generate a “powerful 309 

forest.” The bootstrap sampling method was applied for each tree, and each predictor was selected randomly from all model 310 

predictors. The “out of bag” (OOB) data were applied to produce reliable estimates in an internal validation using a random 311 

subset independent of the training tree data. Three parameters needed to be tuned: the number of trees (𝑛𝑡𝑟𝑒𝑒);), minimum 312 

size of terminal nodes (𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒), and the number of variables randomly sampled as predictors for each tree (𝑚𝑡𝑟𝑦) (Liaw 313 

and Wiener, 2001). The standard value of the 𝑚𝑡𝑟𝑦 parameter was one-third of the total number of predictors, while 𝑛𝑡𝑟𝑒𝑒 314 

and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 were 500 and 5, respectively. For regression, the mean square errors (MSEs) of predictions were estimated to 315 

train the trees. The variable importance of the RF was produced from the OOB data using the “importance” function. One of 316 

the benefits of the RF is that the ensembles of trees are used without pruning to ensure that the most significant amount of 317 

variance can be expressed. Moreover, the RF can reduce model overfitting, and normalization is unnecessary due to the effects 318 

on the value range being insensitiveslight. The GLM and RF algorithms and the parameter adjustment of the RF were 319 

conducted in the R package “caret” (Max Kuhn, 2018). 320 

 321 

2.4.3 RK 322 

Regression kriging is a hybrid interpolation technique that combines regression models (e.g., GLM and RF) with the residuals 323 

of ordinary kriging (OK (, Odeh et al., 1995). Mathematically, the RK method corresponds to two interpolators, the regression 324 

part and the kriging part, which are operated separately (Goovaerts, 1999). One limitation of using only the regression part is 325 

that it is usually only useful within the range of values of the training sets (Hengl et al., 2015). The principle of the RK method 326 

is that the regression model explains a deterministic component of spatial variability, and the interpolation of regression 327 

residuals generated from OK is used to describe the spatial variability (Bishop and McBratney, 2001; Hengl et al., 2004). The 328 

residuals create a variogram (e.g., Gaussian, spherical, or exponential) for models based on the MSE from the results of a 329 

cross-validation. First, we used the regression part (GLM or RF) to predict soil PSFs, the. The residual from the fitted model 330 

was then calculated by subtracting the regression part from the observations. Subsequently, OK was applied forto the whole 331 

study area to interpolate the residuals. Finally, the regression predictionpredictions and the predicted residuals at the same 332 
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location were summed. The variograms of the RK method were generated automatically using the “autofitVariogram” function 333 

in the R package “automap” (Hiemstra et al., 2009). Details of the of RK method in our study can be found in the 334 

Supplementary Material Section S6. 335 

2.5 Prediction method system and validation  336 

The method system of spatial interpolation models for soil PSFs is presented in Table 2. We systematically compared 12 337 

models: the combinations of four interpolators, including  (GLM and, GLMRK, RF with or without RK,, RFRK), and three 338 

SBPs of the ILR transformation method. For the validation of model performance, the independent data set validation was 339 

used to evaluate the prediction bias and accuracy of the models. The sub-data were randomly divided into two sets: the sub-340 

training sets (70%) and the sub-testing sets (30%) were randomly selected from data independently,%), and this process was 341 

repeated 30 times. Moreover, the Diebold–Mariano test (Diebold and Mariano, 1995; Harvey et al., 1997) was used to verify 342 

the statistical significance of the differences among the models. 343 

Table 2. The method system of spatial interpolation models of soil PSFs. 344 

Models GLM GLMRK RF RFRK 

ILR_SBP1 GLM_SBP1 GLMRK_SBP1 RF_SBP1 RFRK_SBP1 

ILR_SBP2 GLM_SBP2 GLMRK_SBP2 RF_SBP2 RFRK_SBP2 

ILR_SBP3 GLM_SBP3 GLMRK_SBP3 RF_SBP3 RFRK_SBP3 

 345 

The mean error (ME), the root mean square error (RMSE), and Aitchison distance (AD) were used to evaluate and compare 346 

the prediction performance. The ME and RMSE measure prediction bias and accuracy, respectively (Odeh et al., 1995). The 347 

AD is an overall indicator of compositional analysis, which describes the distance between two compositions. Generally, in an 348 

accurate, unbiased model all three values will be close to 0. The ranges of a 95% confidence interval (CI) (Streiner, 1996) of 349 

ME, RMSE, and AD were calculated to compare the uncertainties of different models. The ME, RMSE, and AD were 350 

calculated as follows: 351 

𝑀𝐸 =
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)
𝑛
𝑖=1 ,                       352 

     (7) 353 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)
𝑛
𝑖=1

2
,                      (8) 354 

𝐴𝐷 = [∑ (𝑙𝑜𝑔
𝑀𝑖

𝐺(𝑴)
− 𝑙𝑜𝑔

𝑃𝑖

𝐺(𝑷)
)𝐷

𝑖=1

2
]
0.5

,                   (9) 355 
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where 𝑀𝑖 and 𝑃𝑖 are the measured and predicted values atof the 𝑖th position, respectivelysample for sand, silt and clay; 𝑛 356 

refers to the number of soil samples; 𝐷 is the number of dimensions of compositions; and 𝐺(𝑴) and 𝐺(𝑷) denote the 357 

geometric mean with the form G(𝐱) = (𝑥1, . . . , 𝑥𝐷)
1/𝐷 of the measured and predicted values, respectively.  358 

 359 

2.6 Covariance structure analysis 360 

The interpretation of the ILR balances is based on a decomposition of the covariance (COV) structure (Fiserova and Hron, 361 

2011). We calculated the variance (VAR), COV, and the corresponding correlation coefficient (CC) of ILR transformed data 362 

based on different SBPSBPs. The equations for calculating VAR, COV, and CC were derived from Eq. (1) as follows:  363 

𝑉𝐴𝑅(𝑧) =
1

𝑟+𝑠
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑖𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑟
𝑝=1 −

𝑠

2𝑟(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑖𝑝

𝑥𝑖𝑞
)𝑟

𝑞=1 −
𝑟

2𝑠(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑗𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑠
𝑝=1

𝑟
𝑝=1 −364 

𝑟

2𝑠(𝑟+𝑠)
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥𝑗𝑝

𝑥𝑗𝑞
)𝑠

𝑞=1
𝑠
𝑝=1                                365 

                         (10) 366 

𝐶𝑂𝑉(𝑧1, 𝑧2) =
𝐶

2𝑟1𝑠2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
1

𝑥
𝑗𝑞
2
)

𝑠2
𝑞=1

𝑟1
𝑝=1 +

𝐶

2𝑟2𝑠1
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
2

𝑥
𝑗𝑞
1
)

𝑠1
𝑞=1

𝑟2
𝑝=1 −

𝐶

2𝑟1𝑟2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑖𝑝
1

𝑥
𝑖𝑞
2
)

𝑟2
𝑞=1

𝑟1
𝑝=1 −367 

𝐶

2𝑠1𝑠2
∑ ∑ 𝑣𝑎𝑟( 𝑙𝑛

𝑥
𝑗𝑝
1

𝑥
𝑗𝑞
2
)

𝑠2
𝑞=1

𝑠1
𝑝=1 ,                                368 

                         (11) 369 

𝐶𝐶 =
𝐶𝑂𝑉(𝑧1,𝑧2)

√𝑣𝑎𝑟(𝑧1)⋅𝑣𝑎𝑟(𝑧2)
                                                    370 

                               (12) 371 

For soil PSF data, Eqs. (10), (11), and )–(12) can be simplified to three dimensions. The relationship between the ratios of soil 372 

PSF components and the dominant roles of ILR transformed data were indicated from the covariance structure. All the 373 

statistical analyses, such as the descriptive statistics of soil PSF data, calculation and evaluation of indicators, and the spatial 374 

prediction mapping, were performed using the R statistical program (R Development Core Team, 2019).  375 

 376 

3 Results 377 

3.1 Exploratory data analysis 378 

3.1.1 Descriptive statistics of soil PSF data 379 

From the descriptive statistics of the original (raw) and ILR transformed data, the silt fraction dominated the soil PSFs, 380 

accounting for a more substantial amountlarger than the sand and clay fractions. The distributions of the sand and clay fractions 381 

were similar (Fig. 2a). The ILR transformed data based on the three SBPs revealed different distributions (Figs. 2b, 2c, and –382 
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2d). For example, two ILR components (ILR1 and ILR2) for SBP1 had a symmetric distribution around zero aton the x-axis 383 

(Fig. 2b). In comparison, the distribution of data generated from SBP2 orand SBP3 had a mirrored symmetry, with a left-384 

skewed ILR1 of SBP2 and right-skewed ILR2 of SBP3 (Figs. 2c and 2d). TheA comparison of means and medians 385 

demonstrated that the back-transformed means of three sets of ILR transformed data were the same, and the mean ILR of sand 386 

was closer to the median of sand compared with the original soil PSF data. In contrast, the opposite patterns were apparent for 387 

the silt and clay components (Fig. 2e).  388 

 389 

Figure 2. Descriptive statistics of original soil PSF and ILR transformed data using different SBPs. Note that the means of 390 

Sand_ILR, Silt_ILR, and Clay_ILR from different SBPs were back-transformed to theinto real space. 391 

 392 

3.1.2 Covariance structure of ILR transformed data with different balances 393 

The covarianceCovariance analysis of the transformed data of soil PSFs based on the different SBPs showed that the 394 

variance VarILR_1 of SBP3 was the largest, followed by thethat of VarILR_1 of SBP1 and SBP2 (Table 3). The variance of 395 

the second component of ILR (VarILR_2) followed theis opposite pattern to that of VarILR_1. The COV and corresponding 396 

CC followed the same patternlaw of SBP1 > SBP3 > SBP2. The first ILR equation (𝑧1 in Table 1) contained all the information 397 

of soil PSFs, while the second oneILR equation (𝑧2 in Table 1) included only two components. The information of VarILR_1 398 

was therefore more abundant. All of VarILR_1 and VarILR_2 values were not 0 (or not nearly 0), indicating that there was no 399 

constant (or almost constant) value in any two ratios of soil PSF components. The COV of SBP3 was close to 0, indicating 400 

that the proportions of clay/sand and clay/silt were approximately the same. The same results were generated from the 401 

corresponding CC. For the distribution of soil PSFs in a ternary diagram (the United States Department of Agriculture texture 402 

triangle, USDA), the main texture class was silt loam (Fig. 3a). TheA biplot of soil samples demonstrated that the rays of the 403 
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three components, i.e., sand, silt, and clay, were reasonably well clustered at about 120° in the three groups (Fig. 3b).  404 

 405 

Table 3. Covariance structure of soil PSFs based on different SBPs. VarILR_1 and VarILR_2 denote the variance of the first 406 

and the second componentcomponents of ILR, respectively. COV refers to the covariance of ILR1 and ILR2. CC is the 407 

correlation coefficient. 408 

Balances VarILR_1 VarILR_2 COV CC 

SBP1 0.53 0.71 0.32 0.52 

SBP2 0.39 0.86 -0.24 -0.41 

SBP3 0.94 0.30 -0.09 -0.16 

 409 

 410 

Figure 3. The distributionDistribution of soil PSFs in the USDA triangle (a) and biplot graph (b). The red curve was fitted 411 

byusing a loess function. 412 

3.2 Accuracy comparisonComparison of the accuracy of different models using ILR data 413 

The first three rows of the boxplots in Figs. 4a, 4b, and To assess the accuracy of the different models, the Diebold–Mariano 414 

test was used, which showed that the statistical differences of most models were significant. This significance was reflected 415 

not only in different models (GLM and RF), but also in different SBPs when using the same model (Tables S6.1–S6.7). The 416 

first three rows of the boxplots in Figs. 4a–4c indicate the bias of the different models according to their ME values. The ME 417 

of sand was closest to 0, followed by the MEs of clay and silt. GLM was more unbiased than RF, with lower ME values. After 418 

combining with RK, there was ana marked improvement in the ME for most GLM and RF models (Figs. 4a, 4b, and –4c). 419 

ForWith respect to the accuracy assessment, the RMSE of silt was higher than forthat of the other two components. The 420 

GLMRK did not perform as well as expected in terms of the RMSE, with only the sand component having an improved RMSE 421 
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(Fig. 4d). However, the RFRK performed better than the GLMRK and improved the accuracy of most partscomponents 422 

compared with the RF, except for the RFRK_SBP1 of sand. As an overall indicator, AD showed that the RF (or RFRK) 423 

performed better than the GLM (or GLMRK) in terms of both average RMSE values and uncertainties (Fig. 4g). Moreover, 424 

the RFRK improved the AD values for the SBP2 and SBP3 methods. ForWith respect to the uncertainty assessment, the RF 425 

generated lower uncertainties than the GLM according to bias, and the models combined with RK further reduced the 426 

uncertainties, especially for the sand fractions of most GLM and RF models. (Table. S7.1).  427 

 428 

Figure 4. Accuracy comparisonComparison of the accuracies of GLM, RF, and their RK patterns combined with three ILR 429 

balances. The mean values of different model indicators were calculated in their boxes. 430 

 431 
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The model performances were different for the three SBPs. To better evaluate model performance using the different SBP 432 

balances, we graded each box from 1 to 3,  based on the predicted results and Diebold–Mariano test results—the final results 433 

are shown in Fig. 5. The results demonstrated that SBP1 performed best in terms of bias, with the lowest ME valuescore of all 434 

models. For the, except for GLMRK (Fig. 5a). With respect to the model accuracy comparisonassessment, there was no 435 

apparent pattern, but the accuracy could be considered hierarchically: (1) for the GLM, SBP1SBP3 performed better than the 436 

other two SBP methods, which alsoand SBP1 performed well when RK was combined with RK (GLMRK); (2) for RF, SBP1 437 

produced the best result. However, the introduction of RK resulted in the Score2 ofSBP2 and SBP3 performing best among 438 

the three SBPs. However, RFRK of well (Fig. 5b). In addition, SBP3 and SBP1 performed worst according to the values of 439 

Score2 and Score5.delivered a better performance for GLM and RF, respectively (Figs. 5c–5e). Finally, for thein a 440 

comprehensive assessment, SBP1 performed best amongout of the three SBPs according to Score6.SUM6 (Fig. 5f). More 441 

details and calculation processescalculations can be found in the Supplementary Material (Table S4.1).  442 

 443 
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 444 

Figure 5. Ranking score of model performance based on three SBPs. Score1SUM1 (a) and Score2SUM2 (b) are the sum scores 445 

of ME and RMSE for each model, respectively; Score3. SUM3 (c) is the sum scoresscore of ME, RMSE, and AD for each 446 

model, Score4; SUM4 (d) and Score5SUM5 (e) are the sum scores of ME or RMSE for GLMall (GLM and GLMRK) and RFall 447 

(RF and RFRK), Score6); SUM6 (f) is the sum scoresscore of all indicators. The lower the value of these scores, the better the 448 

model performance.  449 

 450 

3.3 Spatial prediction maps of soil PSFs generated from the different models 451 

Prediction maps of soil PSFs madeconstructed from the different models are shown in Figs. 6, S3.1, and S3.2. For the 452 

components of soil PSFs, the prediction maps of the three group mapscomponents followed a similar rule. The GLM and 453 

GLMRK produced more extensivebroader ranges of predicted values, and their maps were more relevant to the real 454 

environment. However, the RF and RFRK predicted a relatively narrow range of low values for these components, (sand, silt 455 

and clay), revealing a smoother distribution than that generated by the GLM and GLMRK. Unlike the regression methods, the 456 

RFhybrid methods (GLMRK and RFRK methods) produced hot and cold spots on the prediction maps and more details of the 457 

soil sampling points were apparent (Fig. S5.1).  458 
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 459 

Figure 6. Spatial prediction maps of the sand component of the upper reaches of the Heihe River Basin.  460 

3.4 Spatial distribution of soil texture classes in the USDA triangles 461 

The predicted soil textures in the USDA texture triangles (Fig. 7) showed that most predictions fell within the range of observed 462 

soil textures (Fig. 3a), and silt loam was the dominant soil texture in all cases. The GLM produced a more discrete distribution 463 

than the RF, and the RK method expanded the dispersion. In theWith respect to trends ofin the predicted samples, the silt 464 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3

(j) RFRK_SBP1 (k) RFRK_SBP2 (l) RFRK_SBP3
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components predicted from all models were overestimated. The pattern fitting curves indicated that the prediction results were 465 

closer to the bottom right of the USDA triangle than the soil PSF observations. The GLMRK and RFRK curves were longer 466 

than the GLM and RF curves, with a more extensive range of values in triangles. Compared with the GLMRK, the RFRK 467 

produced a more upward extension (Figs. 7j, k, l–7l). It was clear that the clay fraction was overestimated and the sand fraction 468 

was underestimated. 469 
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 470 

Figure 7. Predicted 262 soil samples in USDA texture triangles using (a) GLM_SBP1, (b) GLM_SBP2, (c) GLM_SBP3, (d) 471 

GLMRK_SBP1, (e) GLMRK_SBP2, (f) GLMRK_SBP3, (g) RF_SBP1, (h) RF_SBP2, (i) RF_SBP3, (j) RFRK_SBP1, (k) 472 

(a) GLM_SBP1 (b) GLM_SBP2 (c) GLM_SBP3

(d) GLMRK_SBP1 (e) GLMRK_SBP2 (f) GLMRK_SBP3

(g) RF_SBP1 (h) RF_SBP2 (i) RF_SBP3

(j) RFRK_SBP1 (k) RFRK_SBP2 (l) RFRK_SBP3



 

18 

 

RFRK_SBP2, and (l) RFRK_SBP3. Red fitting curves in triangles showedshow the trends.  473 

4 Discussion 474 

4.1 Comparison of the GLM, RF, and RK patterns using ILR data 475 

We found that RF revealprovided more accurate results, but with more bias than the GLM, and that the RK method improved 476 

the performance in terms of bias for most models and the accuracy of the RF. Odeh et al. (1995) indicated that RK was superior 477 

to the linear models, such as MLR, which was reflected in the prediction results for sand in our study. Scarpone et al. (2016) 478 

reported that as a hybrid interpolator, the RFRK outperformed the RF when making soil thickness predictions. We proved that 479 

RFRK was also suitable for compositional data and improved model performance when combiningcombined with the ILR 480 

transformation. In summary, the GLM and RF had both advantages and disadvantages when considering the trade-off between 481 

bias and accuracy.  482 

The results of GLM and GLMRK should not depend on the choice of ILR basis being chosen, which has been proved by 483 

previous studies on the use of linear models and kriging for compositional data (Pawlowsky-Glahn et al, 2015). However, the 484 

GLM model used the “glmStepAIC” algorithm (i.e., a stepwise regression) to select the best combination of environmental 485 

covariables for each ILR component (Table S2.1). Therefore, the variable inputs are different for these ILR data, and further 486 

impact the accuracy assessment and prediction maps. In addition, the difficulty with the use of the GLM is the need for a back-487 

transformation. There is a need to present results on the original untransformed scale after conducting the analysis on a 488 

transformed level, which may produce spurious results (Lane, 2002). In our study, we compared the means of ILR transformed 489 

data and the original data. We proved the feasibility of the ILR transformation method, especially for meeting the requirements 490 

of compositional data. However, the accuracy of the GLM still needs to be improved, which may be because the transformed 491 

data did not follow a normal distribution (Fig. 2). With respect to uncertainty, the uncertainty of bias for GLM is higher than 492 

that of RF, but the uncertainty of accuracy for GLM is lower. However, RF performed better in terms of accuracy assessment. 493 

Therefore, the main concern was whether the introductions of RK could reduce the uncertainty of RF. With regard to the 494 

performances of RFRK and RF, adding RK was recommended in soil PSF interpolation combined with ILR transformed data. 495 

In addition, the range of 95% prediction interval for different models (Figs. S8.1–8.6) demonstrated that the differences were 496 

very close. This may because the values of variance for ILR data were small, showing low uncertainty when using ILR 497 

transformed data. 498 

Although the RF had the advantage of prediction accuracy, the limited interpretability of the consequences made it difficult 499 

to modify the prediction bias – –each tree from the model cannotcould not be examined individually (Grimm et al., 2008). 500 

Moreover, the ILR transformation before modeling increased the difficulty of interpretation for not only the predicted values 501 

on the ILR scale but also the residuals. The back-transformation of the optimal estimate of log-ratio variables doesdid not 502 

generate thean optimal estimation of compositional data (Lark and Bishop, 2007), which should also be considered.  503 
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4.2 Comparison of three SBPs of ILR transformation 504 

For the comparison ofRegarding the three SBPs, the ME and RMSE performed better when using SBP1 for ILR transformed 505 

data, which may be interpreted as the distributions of the ILR1 and ILR2 of SBP1 being more symmetric (Fig. 2b). In contrast, 506 

the performance of SBP2 was worse than that of SBP1 and SBP3 because the ILR_1 component, including all the soil PSF 507 

information, was left-skewed (Fig. 2c). This result was especially apparent for the GLM and GLMRK, because the data in a 508 

linear model needs to be normally distributed (Lane, 2002). 509 

The negligible difference among the three SBP balances revealed a triangular shape with a cluster at about 120° (Fig. 3b). 510 

This could be interpreted as the three soil PSFs having a mixed pattern, with each component dominated by the components 511 

in one cluster (Tolosana-Delgado et al., 2005). Although the silt component dominated the soil PSFs (Fig. 2a), sand and clay 512 

also played important roles in soil compositionscomposition. Taking either the most abundant component of the compositional 513 

data as the denominator (Martins et al., 2016) or the first component of the permutations did not provide convincing evidence. 514 

Because that the model performs best. This is because using the most abundant component of the compositional data as the 515 

primary component of the alterations, i.e., SBP2, resulted in a relatively poor performance compared to the other SBPs. Thus, 516 

we recommend that the focus should be on data distribution. Furthermore, the choice of balance and combination of RK are 517 

also the key to improving model accuracy, as shown by the result of the RFRK-SBP3 model (Fig. 4).  518 

4.3 Limitations 519 

Firstly, the scope of this study is limited to independent modeling. Each ILR component was modeled separately, which may 520 

be suboptimal because theythe components cannot further considertake into account the cross correlations among the ILR 521 

coordinates. However, the study has demonstrated the relation of the raw data (sand, silt, and clay),) based on ILR 522 

transformation, and has confirmed that the currently used prediction models in this work are suitable. In our pervious study, 523 

we have used compositional kriging (CK) for the spatial prediction of soil PSFs (Wang and Shi, 2017), and the cross 524 

correlations of ILRs can be taken into account using CK. Although itCK is optimal, it cannot considertake into account different 525 

balances of ILR, nor can it be combined with thea hybrid interpolator (e.g., RK). Moreover, predicting each ILR component 526 

separately was a more suitable approach for the spatial prediction models currently used (such as the GLM and RF). Therefore, 527 

more alternative spatial prediction models combined with interpretation of ILR balances for compositional data should be 528 

considered in the future. For example, CK and high -accuracy surface modelling (HASM; Yue et al., 2007; Yue, 2011; Yue et 529 

al., 2016) can be applied for small scale study areas. For large scale study areas, multivariate RF (Segal and Xiao, 2011) can 530 

be combined with a log-ratio transformation and hybrid interpolation methodmethods, enabling the cross correlations among 531 

ILR coordinates to be better interpreted.  532 

Secondly, the weighting problem was not considered in this study, because the ILR method can be qualified as an unweighted 533 

log-ratio transformation, giving all parts the same weight for both the definition of the total variance and the reduction of 534 
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dimensiondimensions. This may enlarge the ratios generated from the rare partscomponent, which would dominate the analysis 535 

(Greenacre and Lewi, 2009). The pairwise log-ratio can be used to set weights by their proportions when there is no additional 536 

knowledge aboutof the component measurement errors (Greenacre, 2019). Nevertheless, all three parts of the soil PSF data 537 

dominated the biplot diagram, without the influence of rare elements and with no redundancy; thus, none of the shortcomings 538 

mentioned above were apparent. Accuracy assessments using a pairwise log-ratio transformation require further study in the 539 

future. 540 

5 Conclusions 541 

We evaluated and compared the performanceperformances of the GLM, and the RF, and their hybrid patternpatterns (i.e., 542 

GLMRK and RFRK) using different balances of ILR transformed data. The bias of the GLM was lower than that of the RF; 543 

however, the accuracy of the GLM was relatively low. More discrete distributions and broader ranges of prediction value 544 

distributions were produced from GLMs in the USDA soil texture triangles. In other words, different predicted data sets were 545 

generated from the use of the GLM and RF, with unbiased and inaccurate predictions for the GLM and biased and more 546 

accurate predictions for the RF.  547 

The hybrid patterns, GLMRK and RFRK, were found to beprovide the best solutionsolutions because itthey produced a 548 

relatively high prediction accuracy and strong correlations with ECs, providing more details about the soil sampling points 549 

(hot spots and cold spots) compared with onlyusing the regression model only. However, the non-normal distribution of ILR 550 

data and itstheir residuals, and moreincreased data transformation and inverse transformation processes, make models 551 

furthermore difficult to interpretedinterpret and improve. 552 

For the different SBPs, theThe three SBP-based datadatasets generated different distributions, but; a statistical significance 553 

test proved that most models had significant differences in prediction accuracy using different SBPs. A ranking score was 554 

provided to demonstrate these differences, and compositional balance should be considered when mapping soil PSFs. However, 555 

no pattern was apparent. This, which could be explained by the angle of the biplot diagram, —with three rays of soil PSF 556 

components clustered into three modes, and each part dominating its cluster. Using the most abundant component of the 557 

compositional data as the first component of the permutations was not considered the rightbest choice for mapping soil PSFs 558 

because SBP2 produceddelivered the worst performance. Thus, we recommend that the focus should be on data distribution. 559 

This study can provideprovides a reference for the spatial simulation of soil PSFs combined with ECs at the regional scale, 560 

and how to choosefor choosing the balances of ILR transformed data.  561 

 562 

Data Availability. We did not use any new data and the data we used come from previously published sources. Soil particle-563 

size fractions data is available through our previous studies (Wang and Shi, 2017, 2018). Moreover, it also can be visited on 564 

this website: http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/ (Digital soil mapping dataset of 565 

soil texture (soil particle-size fractions) in the upstream of the Heihe river basin (2012-2016); last access: 4 July 2020). The 566 

http://data.tpdc.ac.cn/zh-hans/data/7f91d36d-8bbd-40d5-8eaf-7c035e742f40/
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meteorological data can be accessed through http://data.cma.cn/ (last access: 4 July 2020). Environmental covariates data of 567 

soil physical and chemical properties and categorical maps can be obtained through http://data.tpdc.ac.cn/zh-hans/ (last access: 568 

4 July 2020), including saturated water content, field water holding capacity, wilt water content, saturated hydraulic 569 

conductivity data (http://data.tpdc.ac.cn/zh-hans/data/e977f5e8-972b-42a5-bffe-cd0195f3b42b/, Digital soil mapping dataset 570 

of hydrological parameters in the Heihe River Basin (2012); last access: 4 July 2020), and soil thickness data 571 

(http://data.tpdc.ac.cn/zh-hans/data/fc84083e-8c66-4a42-b729-4f19334d0d67/, Digital soil mapping dataset of soil depth in 572 

the Heihe River Basin (2012-2014); last access: 4 July 2020). DEM data set is provided by the Geospatial Data Cloud site, 573 

Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn, last access: 4 July 2020). 574 
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