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Abstract. Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important, but poorly understood 

component of temperate catchment carbon budgets. This paper delineates explicit DOC source zones within the RZ of a small 

forested catchment in central Germany, and identifies and quantifies their dominant DOC export mechanism at high spatio-

temporal resolution. Stream water DOC samples from differing hydrological situations were compared to riparian DOC 15 

groundwater and surface water samples and classified chemically (via Fourier-transform ion cyclotron resonance mass 

spectrometry) and spatially via a small-scale topographic analysis of the RZ at a resolution of 1m. Explicit water fluxes from 

the resulting riparian DOC source zones were then simulated by a physically-based, fully-integrated numerical flow model 

(HydroGeoSphere). 

Chemical classification revealed two distinct DOC pools (DOCI and DOCII) in the RZ. The comparison of stream and riparian 20 

water samples indicated a predominant export of DOCI during wet conditions and high groundwater levels. The two DOC 

pools were spatially separated and mapped using a threshold value in high-resolution topographical wetness index (TWIHR). 

Hydrological modelling revealed that surface runoff from DOCI source zones with high TWIHR values dominated overall 

discharge generation and therefore DOC export. Although corresponding to only 15 % of the area in the studied RZ, the high 

TWIHR zones provided in total 1.5 times the load of DOC from the remaining 85 % of the area associated with the DOCII pool.  25 

Our results suggest that surface DOC export can play a dominant role for DOC export in RZs with overall low topographic 

relief and should be considered in DOC export models. We propose that proxies of spatial heterogeneity (here: TWIHR) can 

delineate the most active riparian source zones and provide a meaningful basis for improved model conceptualization of 

surficial DOC export.  

1 Introduction 30 

Dissolved organic carbon (DOC) in streams and rivers is of central ecological importance (Cole et al., 2007; Battin et al., 

2008), but amount and quality of DOC also shape water quality through interactions and co-export with other chemicals in 
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terrestrial solute source areas (Ledesma et al., 2016; Sherene, 2010), rivers and lakes (Prairie, 2008). But despite increasing 

DOC concentrations in surface waters and shifting quality of exported DOC through ongoing changes in land use, climate 

and biogeochemical boundary conditions (Larsen et al., 2011; Chantigny, 2003; Wilson and Xenopoulos, 2008), routine 35 

management of DOC is practically nonexistent (Stanley et al., 2012), but could particularly help to fulfill water quality 

directives and increase cost efficiency of drinking water purification (Matilainen et al., 2011). In order to derive effective 

management practices, it is crucial to have an adequate conceptual understanding of the dominant mechanisms of carbon 

export (and nutrients in general) at scales that constitute the best compromise between conventional small‐scale restoration 

projects and larger-scale water quality impairments by DOC (Stanley et al., 2012).  40 

Especially riparian zones (RZs) of lower order streams are potential targets for DOC export management since RZs – as 

terrestrial aquatic interfaces – constitute a general control unit for DOC and solute export, lower order streams make up a 

large fraction of total river networks worldwide (Raymond et al., 2013) and their RZs represent a main source of terrestrial 

DOC export (Ledesma et al., 2015; Musolff et al., 2018). Large uphill contributing areas deliver a steady supply of water to 

the RZ, such that DOC mineralization and production of DOC mainly get limited by temperature and redox conditions, but 45 

not water content in the soil. Here, DOC accumulation rates are highest during anaerobic conditions at low temperatures due 

to low mineralization rates, whereas high mineralization rates can be realized in oxygen supplied soil compartments at higher 

temperatures. On the other hand, the rate of DOC accumulation and ultimately export is also dependent on hydrological 

connectivity of DOC sources to the stream. This leads to a stronger accumulation of DOC close to the soil surface where water 

mobilizes existing DOC pools only during hydrologic events. Thus topography of the hillslope-RZ continuum, initial 50 

groundwater level and precipitation are the main hydrological drivers for export from these DOC sources.  

Attempts to acknowledge the spatio-temporal variability of underlying physical processes led to concepts like variable source 

zone activation (Dick et al., 2015; Werner et al., 2019), the dominant source layer (Ledesma et al., 2015) and transmissivity 

feedback (Bishop et al., 2004). These concepts still describe a heterogeneous system in terms of an integrated response with 

a strong focus on vertical heterogeneity. But variations in lateral RZ width and spatio-temporal hydrological connectivity of 55 

single landscape units further influence DOC export in catchments (Ledesma et al., 2018a; Ploum et al., 2020; Dick et al., 

2015). Moreover RZs are highly dynamic and heterogeneous with micro-topography inducing hot spots of biological activity 

(Frei et al., 2012) that contribute disproportionally strong to nutrient turnover and export when hydrologically connected to 

the stream (during hot moments). However, implementing this dynamic complexity including the adequate resolution for 

spatio-temporal patterns of hot spots and hot moments within RZs into models still poses a challenge (Pinay et al., 2015; 60 

Bernhardt et al., 2017; Krause et al., 2014). Frei et al. (2010) could simulate and verify the evolution of biogeochemical hot 

spots and moments in a fully integrated, physically based model of a virtual RZ. However their model was computationally 

expensive and the implemented details potentially site specific. Hence the challenge remains to describe and quantify the 

lateral spatio-temporal variability of effective DOC export from RZs at larger management-scale, while at the same time being 

consistent with the local mechanisms that control DOC mobilization and transport. Model conceptualizations that are able to 65 
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bridge those scales will be needed to up-scale DOC export to catchment-scale and beyond (Pinay et al., 2015; Detty and 

McGuire, 2010; Ledesma et al., 2016; Duncan et al., 2013).  

An improved understanding of the dominant mechanisms in small-scale landscape elements could help to find accessible 

proxies that can describe the larger-scale effective DOC-export behavior of catchments (Frei et al., 2012; Grabs et al., 2012). 

Proxies based on landscape-scale characteristics like different land use types (Pisani et al., 2020), hydromapping based on 70 

convergence of topography (Laudon et al., 2016; Ploum et al., 2020), or topographical wetness (e.g. represented by the 

topographic wetness index TWI (Beven and Kirkby, 1979)) can potentially provide information on the distances and dominant 

connections of DOC source locations to the stream and thus DOC export at catchment-scale (Musolff et al., 2018; Fellman et 

al., 2017; Andersson and Nyberg, 2009; Inamdar and Mitchell, 2006; Grabs et al., 2012).  

However, landscape- and catchment-scale proxies cannot differentiate DOC export mechanisms that are induced by the small-75 

scale heterogeneity of topography and hydrological properties (e.g. micro-topography driven variable source zone 

contributions or spatial variability in biogeochemical DOC mobilization) because they integrate the entire RZ into a few 

spatial entities (e.g. model cells). For example, Andersson and Nyberg (2009) proposed a skewed linear relationship between 

mean catchment-scale TWI and DOC concentration for various Swedish catchments, which showed poor performance during 

dry hydrological states. We argue that a smaller-scale, dynamic assessment of the TWI, which includes the wetness conditions 80 

in the RZ could improve the quality of the DOC-TWI relationship by Anderson and Nyberg, as it would be able to account 

for the actual contributing source zones of DOC. We postulate that a small-scale assessment of the TWI in the RZ can identify 

dominant DOC source zones and their export dynamics, and in turn will yield better correlations between TWI values and 

instream DOC concentrations than catchment-scale TWI assessments.  

Several powerful tools to assess topographical, biogeochemical and hydrological heterogeneities in riparian zones have 85 

become available over the years. High-resolution drone-based digital elevation models (DEMs) of study sites are now 

relatively easy to obtain and provide a more detailed perspective on small-scale topographical variations in the RZ that can 

be linked to potential DOC source areas and source apportionment. State-of-the-art techniques for molecular DOC 

characterization based on FT-ICR-MS allow to compare chemical fingerprints of DOC from different riparian source areas 

with the integrated DOC signal in the stream (Raeke et al., 2017; Seifert et al., 2016; Wagner et al., 2019). Physico-chemical 90 

properties of the DOC compounds can provide valuable information on the origin, state of processing and mobilization 

potential of DOC, which can complement the identification of riparian DOC export patterns derived from topographic 

analysis. Last but not least, fully integrated, hydrogeological modeling can provide detailed insights into spatio-temporal 

patterns of small-scale hydrologic processes in the RZ (Frei et al., 2010). A systematic combination of these methods will 

ultimately lead to an improved understanding of the dominant DOC source areas in RZs and the mobilization and hydrologic 95 

export of DOC from these areas to the stream.  
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In this paper we identify dominant source areas of DOC within a riparian zone based on topographic analysis and DOC 

fingerprinting and evaluate the temporally variable export of DOC from these source areas to the stream using numerical flow 

modeling. To this end, we mapped and classified riparian DOC source areas and assessed DOC export to the stream within a 

highly instrumented RZ. More specifically, (1) chemical DOC fingerprints from different locations within a riparian zone were 100 

compared to the integrated DOC fingerprints in stream runoff under base flow and event flow conditions. (2) The DOC source 

areas identified in (1) were then mapped in space using high-resolution TWI to derive hot spots of DOC mobilization within 

the RZ. Finally, (3) we quantify the hydrological contribution of the delineated DOC source zones from (2) to stream flow 

generation and solute export using a numerical surface-subsurface water flow model. This approach allows us to develop a 

robust proxy to explicitly identify probable DOC source areas in riparian zones under different hydrological conditions, which 105 

could be used for mechanistically sound conceptualizations of catchment-scale, parsimonious DOC export models. 

2. Materials and Methods 

2.1 Rappbode Catchment 

Measurements were conducted in a headwater catchment of the Rappbode stream (51°39'22.61"N 10°41'53.98"E, Fig. 1) 

located in the Harz Mountains, Central Germany. After draining into a drinking water reservoir, the Rappbode stream flows 110 

into the river Bode, and discharges (through the rivers Saale and the Elbe) into the North Sea. The catchment has an area of 

2.58 km² and a drainage density of 2.91 km km-1. The study site is characterized by a temperate climate (Kottek et al., 2006), 

with a long-term mean air temperature of 6.0 °C and mean annual precipitation of 831 mm (Stiege weather station 12 km away 

from the study site, data provided by the German Weather Service DWD). The uncultivated and uninhabited catchment is 

predominantly forested with spruce and pine trees (77 %), 11 % is covered with grass, and 12 % is covered by other vegetation 115 

and a few unpaved roads. Elevation ranges from 540 to 620 m above sea level; the mean topographic slope is 3.9°. The 90th 

percentile of the topographic wetness index (TWI) as a measure for the extent of riparian wetlands in the catchment (Musolff 

et al., 2018) is 10.10 (median 7.58). The geology at this site consists mainly of graywacke, clay schist and diabase 

(Wollschläger et al., 2016). Soils in the spring area are dominated by peat and peat formation. Overall, 25 % of the catchment 

soils are humic and stagnic gleysols that are connected to riparian zones. 120 
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Figure 1. a) Rappbode catchment and position of the study site (red square). b) 3D view of the model site (red polygon). Soil sampling 
transect and piezometers network indicated by the red pins. Note the 2.5-fold vertical exaggeration. Map data: ©Google, GeoBasis-
DE-BKG. 125 

2.2 The monitoring program 

The study site was chosen to be within the 90th percentile of the Rappbode catchment TWI (derived from a drone-based high 

resolution DEM) and is thus regarded to be representative for riparian sites of the catchment (Musolff et al., 2018). Electric 

resistivity tomography (Resecs DC resistivity meter system, Kiel, Germany) was applied at two transects using a Wenner alpha 

configuration with an electrode distance of 0.5 m in order to explore structural consistencies of the subsurface. The intensive 130 

monitoring campaign took place from 12 April 2017 until 19 December 2018, the overall monitoring period lasted until 23 

July 2019. 

2.2.1 In-stream data sensors 

Two PCM4 portable flow meters (Nivus, Germany) measured discharge in the Rappbode stream at a chosen inlet (PCM4in) 

and outlet of the study site (PCM4out), respectively. A pressure transducer (Solinst Levellogger, Canada) was installed in the 135 

center of the study site. All three probes measured water level every 15 minutes. Discharge at the center was then estimated 

via a stage-discharge relationship (stage was measured using a pressure transducer) which was established based on biweekly 

https://doi.org/10.5194/hess-2021-82
Preprint. Discussion started: 23 February 2021
c© Author(s) 2021. CC BY 4.0 License.



6 
 

manual discharge measurements using an electromagnetic flow meter (n = 37; MF pro, Ott, Germany). Maximum discharge 

measured manually was 0.22 m³ s-1 on 28 February 2017 at a water level of 37.9 cm. Manual measurements were recorded 

between 28 February 2017 and 19 December 2018. The extrapolation of the stage discharge relationship to a wider range of 140 

stages was found to be in a valid range (Werner et al., 2019). However, values larger than 0.22 m³ s-1 are more uncertain than 

smaller values. 

2.2.2 Weather station 

A weather station (WS-GP1, Delta-T, United Kingdom) was placed about 250 m northwest of the study site in order to 

characterize ambient weather conditions. Air temperature, humidity, wind direction and speed, solar radiation and rainfall were 145 

recorded at a 30 min interval. Potential evapotranspiration (ETP) was calculated from the weather data after Penman-Monteith 

(Allen et al., 1998) also at a 30 minute resolution. 

2.2.3 Piezometer network 

The elevation map derived from the drone flight (Figure 1b) revealed that the floodplain's slope in the direction of the stream 

(0.2m/10m) was steeper as the slope towards the stream (0.1m/10m). We expected that this would have ramifications for the 150 

direction of the slope of the groundwater level and its temporal dynamics. To have maximum ability in capturing the magnitude 

and direction of this slope as a function of time a piezometer network was installed aligned on a square grid, with one principal 

axis oriented in parallel to the stream and the other perpendicular to the stream. Adjacent to the Rappbode stream, 25 partly 

screened piezometers (2.54 cm diameter, HDPE, 10 cm screen) were installed in a rectangular grid pattern, comprising a 

piezometer network covering 3600 m² (60 m x 60 m, Figure 1b). The well spacing was 12.5 m in both principal directions of 155 

the grid. In addition 3 more wells were installed at 0.3 m depth inside the rectangular grid for surface near sampling. The A 

horizon in the piezometer holes was 17.7 cm ± 2.4 cm on average (n = 27) (Figure 1). Figure S1 gives the depth of slotting 

and the soil horizon accessed by the slotted section. The screen depth of the piezometers ranged between 20 cm and 107 cm 

below ground (average = 75.2 cm). This was a tradeoff between having continuous water level measurements from the pressure 

transducers and covering the anticipated large variety of different DOC types in different soil layers and depths (Shen et al., 160 

2015). Each piezometer was equipped with a pressure transducer (Levellogger, Solinst, Canada and Diver, van Essen, 

Netherlands), measuring at a 15-minute interval. All pressure transducers were barometrically corrected and adjusted to manual 

measurements of the groundwater level at 8 occasions during the 15 months measurement period (from 04 October 2017 to 19 

December 2018). 

2.2.4 Sampling and maintenance 165 

Biweekly routine samples were collected in the Rappbode stream to determine DOC concentration. Riparian wells (n = 28), 

respective stream water samples and – if possible – riparian surface water samples were taken on five occasions throughout 

the year (Table S1). In addition, during five discharge-generating events, sampling in the stream was conducted hourly to sub-
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hourly by auto-samplers (6712 Full-Size Portable Sampler, Teledyne ISCO, US), which were triggered by the rate of water 

level increase. Bottles from the auto-sampler were soaked for 48 h in 0.1 N HCl prior to use. Process blanks with deionized 170 

water were prepared to correct for eventual contaminations during field work and sample processing. Due to the remoteness 

of the study site, auto-sampled stream water samples were collected within 4 days after the triggered event sampling. Samples 

were stored in the dark inside the sampler and air temperatures were below 10°C during that time.  

Riparian zone shallow groundwater samples were collected from 3 to 18 out of the 28 installed piezometers depending on 

hydrological conditions. Before sampling, water in the wells was replaced one to three times (based on the responsivity of the 175 

wells) through pumping. The flasks and the pump were rinsed with sample water prior to actual sampling. 100 mL of sample 

volume was then transferred into acid-rinsed (0.1 N HCl) and baked (500 °C, 4 h) glass bottles and stored dark and cool until 

further processing in the laboratory. 

2.3 Chemical analysis 

2.3.1 Sample processing and DOC determination 180 

After sample collection at the study site, samples were filtered using 0.45 µm membrane filters (cellulose acetate filter, Th. 

Geyer, Germany) and acidified to pH 2 (HCl, 30 %, Merk, Germany) for subsequent DOC measurement and extraction. Filters 

were rinsed with 20 mL of sample water to avoid bleeding. Filtered samples were stored in the dark at 4 °C until laboratory 

analysis was conducted (typically within two days). 

DOC concentration was determined as non-purgeable organic carbon with a high-temperature catalytic oxidation system (multi 185 

N/C 3100, Analytik Jena, Jena, Germany) from acidified samples and extracts after solvent evaporation. Due to the small 

difference in DOC concentration between hourly and subhourly samples during events we chose a lower time resolution for 

high resolution mass spectrometry measurements. A volume of 10 - 200 mL (n = 142) was extracted via solid-phase extraction 

using an automated system (FreeStyle, LC Tech, Obertaufkirchen, Germany) on 50 mg styrene-divinyl-polymer type sorbens 

(Bond Elut PPL, Agilent Technologies, Santa Clara, CA, United States) to desalt the sample for subsequent DI-ESI-MS 190 

according to Dittmar et al. (2008) and (Raeke et al., 2017). The carbon-to-sorbens ratio (C:PPL) was 280 ± 130 (m/m, n = 

142). The SPE-DOM was eluted with 1 mL methanol (Biosolve, Valkenswaard, The Netherlands), and stored at −20 °C until 

measurement. Carbon based extraction efficiency was (56 ± 15) % (determined from n = 133 samples, Fig. S8). This is in the 

range of typical extraction efficiencies obtained for freshwater samples (Raeke et al., 2017). Immediately prior FT-ICR-MS 

analysis extracts were diluted to 20 ppm and mixed 1:1 (v/v) with ultrapure water (Milli-Q Integral 5, Merck, Darmstadt, 195 

Germany).  

2.3.2 FT-ICR-MS measurement 

An FT-ICR mass spectrometer equipped with a dynamically harmonized analyzer cell (solariX XR, Bruker Daltonics Inc., 

Billerica, MA, USA) and a 12 T refrigerated actively shielded superconducting magnet (Bruker Biospin, Wissembourg, 
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France) instrument was used in ESI negative mode (capillary voltage: 4.2 kV) using an Apollo II source. Extracts were 200 

analyzed in random order with an auto sampler (infusion rate: 10 µL min−1). For each spectrum, 256 scans were co-added in 

the mass range 150 - 1000 m/z with 4MW time domain (resolution @ 400 m/z was ca. 483000). Mass spectra were internally 

re-calibrated with a list of peaks (247 - 643 m/z, n > 55) commonly present in terrestrial DOM and the mass accuracy after 

linear calibration was better than 0.13 ppm (n = 142). Peaks were considered if the signal-to-noise (S/N) ratio was greater than 

four. Raw spectra were processed with Compass DataAnalysis 4.4 (Bruker Daltonics Inc., Billerica, MA, USA). SRFA 205 

reference sample and a pool sample (mix of randomly picked DOM extracts) was repeatedly measured to check instrument 

performance across multiple measurement days and solvent and extraction blanks were measured with the samples. 

2.3.3 FT-ICR-MS data processing 

Molecular formulas were assigned to peaks in the range 0-750 m/z allowing for elemental compositions C1-60H0-122N0-2O0-40S0-

1 with an error range of ± 0.5 ppm according to Herzsprung et al. (2020). Briefly, the following rules were applied: 0.3 ≤ H/C 210 

≤ 2.5, 0 ≤ O/C ≤ 1, 0 ≤ N/C ≤ 1.5, 0 ≤ DBE ≤ 25 (double bound equivalent, DBE = 1 + 1/2 (2C - H + N), Koch et al. (2014)), 

-10 ≤ DBE-O ≤ 10 (Herzsprung et al., 2014), and element probability rules proposed by Kind and Fiehn (2007). Isotopologue 

formulas (13C, 34S) were used for quality control but removed from the final data set as they represent duplicate chemical 

information. All peaks present in the instrument blank and in the SPE blanks were subtracted from the mass list. Relative peak 

intensities (RI) were calculated based on the summed intensities of all assigned peaks in each sample. To ensure that the 215 

variance in DOC quality observed by FT-ICR-MS was not induced by systematic instrumental shifts at different times of the 

year, we quantified the variability of peak intensities based on 15 reference samples (SRFA) of the four measurement days. 

Subsequently this variability was applied to every RI in measured samples to derive a mean error for the intensity (see S1). 

We conclude that the analytical uncertainty from the FT-ICR-MS measurements between the different measurement dates does 

only minor affect the overall variance of the samples, which allows the joint evaluation of all samples (see S1, Fig. S2, Fig. 220 

S3). An assigned molecular formula is termed compound throughout this article although they potentially represents multiple 

isomers.  

2.4 Numerical water flow modeling 

The numerical code HydroGeoSphere (HGS) was used to quantify flows at the study site. HydroGeoSphere is a 3D numerical 

model describing fully coupled surface-subsurface, variably saturated flow (Therrien et al., 2010). It solves Richards' equation 225 

for 3D variably saturated water flow in the subsurface domain, and uses Manning's equation and the diffusive-wave 

approximation of the St. Venant equations to simulate surface flow in the 2D surface domain and 1D channel network (Yang 

et al., 2015). Using a dual node coupling approach, HydroGeoSphere simulates the water exchange fluxes between the 

domains, providing the simulated infiltration/exfiltration fluxes. More details on the governing equations, coupling approach, 

and general aspects of HydroGeoSphere can be found in (Therrien et al., 2010). 230 
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Only the upper 2 m of the alluvial sediments were included in the flow simulation as an aquifer because geological survey data 

showed that the electric resistivity dropped sharply below that depth indicating base rock formation (Fig. S4). The subsurface 

was discretized into 8 horizontal element-layers, each composed of 6924 prisms. The layer thicknesses ranged from 0.05 m 

near the land surface to 0.5 m near the aquifer bottom. The horizontal cell sizes varied from 1 m to 2 m. The 6924 uppermost 

2D triangles of the 3D prismatic mesh were used to discretize the surface domain. The channel crossing the study site was 235 

discretized into 148 1D segments, which coincide with the segments of the 2D triangular mesh. The line element made up of 

the channel segments was treated as a Cauchy boundary with the stream stage being calculated based on the assumption of a 

rectangular cross-section with channel width and depth based on measurements. 

2.4.1 Parameters 

Lateral variability of the saturated hydraulic conductivity K, i.e. the K field in xy-plane, was calibrated using 38 pilot-points 240 

(Tang et al., 2017; Moeck et al., 2015) distributed inside the study site. Each of these pilot-points were associated with a K 

value, set to 0.1 m d-1 prior to calibration. For the vertical K heterogeneity, it was assumed that the K was depth-dependent and 

decreased exponentially when the aquifer was deeper than 0.2 m, as K = K0 when d < 0.2 m, and K = K0e-λd d > 0.2 m, where 

K0 is the hydraulic conductivity of the aquifer top determined from the horizontal K field, 𝑑 is the aquifer depth to land surface 

and λ is a factor constraining the decreasing rate, set to 0 prior to calibration. These formulations captured the general 245 

decreasing trend of K with depth, while also reflecting the fact that this decreasing trend was not significant in the upper 0.2 

m of the soil, which contained most roots and mainly consisted of poorly decayed organic materials.  

The surface domain and channel domain were uniformly parameterized with Manning roughness coefficients (Manning et al., 

1890), respectively. Prior to calibration, the roughness coefficients were set to 6∙10-6 d m-1/3, a typical value for 

floodplains/grassland. The parameters described above were selected as key parameters that could significantly influence the 250 

flow processes, and were optimized during calibration (Table S2). Other parameters were assigned for the model domain 

according to literature values from Yang et al. (2018) from a nearby (25 km) catchment with similar geological settings. Values 

were then adjusted during calibration (Table S2). 

2.4.2 Boundary and initial conditions 

Input data was defined at a one-hour time resolution for the simulation, and all the time-resolution data (15 min) was aggregated 255 

accordingly. For the aquifer top boundary, spatially uniform and temporally variable precipitation was applied to the surface 

domain. Spatially uniform and temporally variable potential ET, estimated using the climate data, was specified as model input 

with actual ET being simulated by the model (Therrien et al., 2010). For the upstream boundary AB (Figure 2), a constant 

groundwater head gradient of 0.02 in the direction of the stream was assumed according to the measured groundwater levels, 

such that a groundwater flux (Qup) entering the subsurface domain across AB could be determined using Darcy’s law. A 260 

temporally variable flux 𝑄௨௣
௖  was directly applied to the inlet of the channel domain, representing the measured channel 

discharge rate. The groundwater recharge rates via the two lateral boundaries of the model domain AD and BC (Qleft, Qright) 
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were estimated using 𝑅 ∙ 𝐴௖௢௡, where 𝑅 is the annual mean groundwater recharge rate in this area (~200 mm yr-1), and 𝐴௖௢௡ is 

the contributing surface area associated with each lateral boundary estimated from the DEM. The respective recharge fluxes 

Qleft, and Qright were calculated as 0.18 m3 s-1 per unit length and 0.09 m3 s-1 per unit length. They were also allowed to vary by 265 

0.1 to 10 times of their initial values during model calibration (Table S2). Water can exit the model domains through the 

downstream boundary CD, either via the subsurface calculated using a constant groundwater head gradient of 0.02 (Qdown), or 

via the surface domain (𝑄ௗ௢௪௡
௢ ) and channel outlet (𝑄ௗ௢௪௡

௖ ) calculated using a critical depth boundary condition (Therrien et 

al., 2010). All other model boundaries were assumed to be impermeable (no flow boundaries). 

A steady state model was obtained by running a preliminary simulation using time-invariant boundary conditions. The steady 270 

state results were used as initial conditions for the actual transient simulations to reduce the influence from inappropriate initial 

conditions. 
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Figure 2. The boundary conditions of the study site (indicated by polygon A-D). Qup: groundwater influx (const.), 𝑸𝒖𝒑
𝒄 : channel influx 275 

(dynamic), Qdown: groundwater leaving the model site (dynamic), 𝑸𝒅𝒐𝒘𝒏
𝒄  and 𝑸𝒅𝒐𝒘𝒏

𝒐 : surface water leaving the model site through 
channel outlet and through CD (dynamic), Qleft and Qright: groundwater discharge rate from side boundaries (const.). Red arrows 
indicate flow direction of the water. The 25 white points indicate wells which were used for model calibration. Labels of the 
piezometer run from a to e (lines) and 1 to 5 (columns) respectively. 
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2.4.3 Calibration 280 

Transient calibration was performed using the software package PEST, which uses the Marquardt method to minimize a target 

function (describing the error between modeled and measured variables) by varying the values of a given set of parameters 

until the optimization criterion is reached (Doherty and Hunt, 2010). The calibrated model parameters (Table S2) were set to 

be adjustable within the selected ranges around their initial values. The measured groundwater level time-series at 25 

observation wells and channel flux time-series at the outlet (similar location to 𝑄ௗ௢௪௡
௖ ) were used to compare with the simulated 285 

ones (Fig. S5, such that the target function could be calculated. Because two different data sets (groundwater level and channel 

flux) were used, a weighting scheme was selected to let the defined multi-objective function be dominated by the data set of 

groundwater levels, because: (i) we focused more on the groundwater flow and the associated surface-subsurface exchange 

fluxes, and (ii) the channel flux was relatively easy to reproduce by the model as measured channel fluxes were directly 

assigned to the channel inlet. A period of 21 days from 15 November 2017 to 6 December 2017 was selected for the model 290 

calibration in view of the high CPU time demand for transient model runs and data availability constraints. 

The time-variable groundwater levels were well replicated by the model for the wells near the channel (Fig. S2a). The wells 

close to channel had better fits than those near the side boundaries (Fig. S2b), because the latter were more strongly constrained 

by the constant groundwater fluxes through the side boundaries. The calibrated flow model was used to quantify internal water 

flux data from specific regions in the riparian zone. Additionally, advective-dispersive particle-tracking was used on the flow 295 

field from the calibrated model to visualize surface and subsurface flow paths through the model domain. The surface flow 

paths are used to identify key runoff generation zones in the riparian zone.  

2.5 Statistical methods 

Statistical analysis was performed using R (R-Core-Team, 2017). Evaluation of geospatial properties was conducted via R in 

combination with ArcMap (ESRI, US). 300 

2.5.1 Chemical classification of potential DOC source zones  

Peak intensity weighted average (wa) of FT-ICR-MS derived molecular parameters (mass (mz), elemental ratios (H/C, O/C, 

N/C, S/C), nominal oxidation state of carbon (NOSC) and aromaticity index (AI)) was calculated for each sample by Eq. (1): 

𝑤𝑎௣ሺ𝑥ሻ ൌ  
∑ ௣೔ሺ௫ሻ ∙ ௜௡௧೔ሺ௫ሻ

∑ ௜௡௧೔ሺ௫ሻ
 ,           (1) 

where wap(x) is the weighted average value for the molecular parameter p in sample x. pi(x) is the derived value for the 305 

parameter p of each molecular formula i in sample x. Accordingly, inti(x) is the peak intensity for molecular formula i in sample 

x. 

A principal components analysis (PCA) was then performed with the RI of molecular formulas (n = 482) commonly detected 

in all riparian samples (n = 66) covering on average 40 % of the assigned intensities in each sample. A consecutive k-means 

clustering on the first two principal components (R package FactoMineR (Lê et al., 2008)) was used to partition the riparian 310 
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samples into two (as suggested by the silhouette index (Rousseeuw, 1987)) chemically distinct groups, representing different 

DOC quality in the riparian groundwater.  

The Wilcoxon rank sum and the Kolmogorov Smirnov (KS) test were applied to identify significant differences in the 

distributions and medians of DOC concentration and FT-ICR-MS derived molecular parameters for the two groundwater DOC 

groups and stream water samples.  315 

2.5.2 Hydromorphological classification of potential DOC source zones 

Pearson correlation analysis was applied to every groundwater level time series with the stream water level time series. 

Geomorphological analysis was conducted via the TWI, according to Eq. (2) 

𝑇𝑊𝐼 ൌ log ቀ
௙

୲ୟ୬ሺ௦ሻ
ቁ ,           (2) 

Where TWI is the topographical wetness index for each cell, f is the flow accumulation (the accumulated weight of all cells 320 

flowing into a downslope cell at the surface) at each cell and s is the slope in radians of respective triangular surface element. 

The DInf algorithm was used for calculating flow accumulation in ArcMap since it proved to depict more realistic hydrological 

routing (Tarboton, 1997). To account for mathematical infinity/indefinite terms, zero slopes were set to 0.001 rad, and cells 

with no flow accumulation (f = 0) were set to 1 cell instead.  

A smoothed map of the local TWIHR values was created by assigning the median TWI value of the central cell and its 8 325 

surrounding cells to the central cell. According to KS and F-test statistics, the resulting map represented the non-smoothened 

TWI distribution of the study site (pKS = 0.33; pF = 0.76). We applied the Wilcoxon rank sum to test for differences in TWIHR 

distributions and medians of the two DOC clusters. For an extrapolation from point sources (i.e. sampled piezometers) to 

spatial entities, zones were demarcated that had higher TWIHR values than the median of the DOC cluster group of higher 

TWIHR. The water balance for the entire model site and the two TWI-generated zones was then estimated and compared to 330 

each other between 12 April 2017 and 19 December 2018 by modeling with HydroGeoSphere. 

3 Results 

3.1 Hydroclimatic conditions and DOC chemical characterization  

The basic statistics of discharge, groundwater level and climatic variables throughout the 15-months measurement period are 

given in Table 1. Discharge shows event-type, erratic variability but in general followed a clear seasonal pattern, with lowest 335 

values in late summer and highest values in spring (Figure 3a). Stream water level was highest during a flood event from 01 

to 03 January 2018 when the Rappbode stream went over-bank. We decided to not include this event in the statistics, because 

we could not estimate the discharge for water levels higher than the stream banks. Yet observing this flood event helped to 

verify and understand riparian surface runoff pathways at our study site. The amount of precipitation during 2018 (580 mm) 
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was below the long-term annual mean (831 mm) at the nearest official weather station. Air temperature exhibited seasonal 340 

patterns and was above the long term annual mean at the nearest station (8.6°C vs. 6.0°C).  

 

Table 1: Basic climatic, hydrological and chemical statistics of the study site during the monitoring campaign between 12 April 2017 
and 19 December 2018. ET0: potential evapotranspiration, DOC conc.: DOC concentration, ‘wa’ indicates peak intensity weighted 
average values of the subsequent DOC properties: wamz (mass to charge ratio), waHC (hydrogen to carbon ratio), waOC (oxygen to 345 
carbon ratio), waSC (sulfur to carbon ratio), waAI (aromaticity index), waNOSC (nominal oxidation state of carbon). 

 mean sd min max 

Air temperature [°C] 8.6 8.18 -18.9 34 

Rain [mm h-1] 0.03 0.17 0 8.6 

ET0 [mm d-1] 1.59 2.7 0 13.8 

Stream water level [cm] 14.64 8.48 3.54 69.94 

Discharge [L s-1] 58.7 92.9 8.2 1116.0 

DOC conc. [mg L-1]1 3.80 2.77 0.69 15.77 

wamz 1 435.8 7.65 420.3 452.53 

waHC 1 1.28 0.05 1.15 1.41 

waOC 1 0.4 0.01 0.36 0.45 

waSC 1 0.01 0 0 0.02 

waAI 1 0.09 0.02 0.05 0.15 

waNOSC 1 -0.41 0.06 -0.55 -0.16 

1 for 66 groundwater and riparian surface water samples taken from April 2018 to July 2019 (single spots were sampled 

multiple times throughout year) 

 

Stream water levels (Figure 3c) were closely coupled with groundwater levels, with lower and more fluctuating water levels 350 

in summer and less variable, higher water levels in winter (Figure 3a). Water level fluctuations in wells closer to the stream 

followed stream stage variations more closely than in the wells more distant to the stream, which showed more damped 

dynamics. This results in Spearman correlations (rs) of groundwater level time series with the stream between 0.43 and 0.86 

(mean of all rs = 0.60). The groundwater table was shallow throughout the measurement period with highest values in winter 

and after snowmelt in spring (Figure 3b).  355 

An overview of hydroclimatic data for the dates of DOC sampling (Figure 3b, c) in the stream or the RZ is given in Table S3. 

DOC concentrations in the stream during events generally followed the hydrograph, with higher concentrations during higher 

water levels. Although DOC concentration and molecular properties across all riparian groundwater samples exhibited 

variability (Table 1), DOC in riparian water samples was in general of highly unsaturated and phenolic composition, typically 

found in lignin and biomass type compounds. 360 
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Figure 3. a) Depth to water table (DTW) time series of all 28 riparian wells. White spaces indicate missing data in the time series: 
due to varying (de)installation times (if white in the beginning), sensor failure (white gaps in every time series) and dryness induced 
disconnection of wells with the groundwater (white gaps in red areas). Locations of wells are depicted in Figure 2. b) Time series of 365 
mean DTW values (blue line) ± the standard deviation (grey ribbon). A positive value of DTW indicates water ponding at the soil 
surface or that the piezometer measured locally confined part of the aquifer. Red vertical lines indicate sampling dates of riparian 
groundwater. Green area indicates the modeling period where ground water levels were used for calibration. c) Discharge time 
series of the central pressure transducer. Blue vertical lines indicate stream water auto sampling dates during events, red vertical 
lines indicate sampling dates of stream water. Green area indicates the modeling period where ground water levels were used for 370 
calibration. Note that the flood event at the beginning of January 2018 is ungauged. 
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3.2 Classification and mapping of potential DOC sources  

3.2.1 Chemical classification 

A detailed overview of the FT-ICR MS results of the distinct water samples can be found in S2, Table S5, and Figs. S9-S10. 

The PCA to classify riparian DOC quality was able to explain 66.3 % of the total variance of DOC molecular peak intensities 375 

using 2 principal components (PCs). K-means clustering based on the PCs then separated the riparian samples into two groups 

of 19 and 47 samples (DOCI and DOCII, resp.; Fig. S6), representing distinct DOC quality in the riparian zone. Weighted 

average molecular parameters were significantly different between the two clusters, allowing for a clear separation between 

DOCI and DOCII (Figure 4a). Samples clustered in DOCI had higher DOC concentration and their molecular composition was 

characterized by more oxidized (higher NOSC and waOC), more aromatic molecules (higher waAI), with a lower fraction of 380 

heteroatoms (smaller waSC, waNC not shown), and a lower molecular weight (smaller wamz). Comparison of DOCI and DOCII 

molecular composition and concentration with that of stream water sampled during rain events in spring, summer and autumn 

confirmed overall different DOC quality distributions and medians between riparian groundwater and stream water (Fig. 4). 

However, median values of the DOCI cluster were always closer to the median of stream water event samples than the 

respective DOCII median. Moreover, the DOC composition of one event in December (Fig. 4a, orange dots) was in the range 385 

of the riparian samples, but did not show much compositional variability within the event.  

DOCI samples from April (n = 9, Fig. 3) and December (n = 9) did not show significant differences in DOC molecular 

composition (except waHC) and concentration (Figure 4b). In addition, DOC concentration and quality in the stream samples 

(from the routine measurement program, non-event conditions) generally matched DOCI concentration and quality in April 

and December (except waHC and waAI). In contrast, DOCII samples from April (n = 13) and December (n = 33) differed 390 

significantly according to their wamz, waHC, waAI, waNOSC and DOC concentration (Figure 4c). While DOC concentration and 

quality of stream water samples from December were mostly within the range of the respective DOCII samples, stream water 

samples from April were mostly outside the range of the DOC properties and concentrations of the respective DOCII samples.  

The cluster DOCI was associated with groundwater sampled at depth to water table (DTW) > -0.3 m in 9 cases whereas the 

cluster DOCII had 7 samples no deeper than 0.3 m. Median high-resolution TWI (TWIHR) values at the well position (see 2.5) 395 

were grouped according to their attribution to the DOCI and DOCII clusters based on the chemical characterization. Note that 

8 wells, sampled during different occasions throughout the year occur in both DOC clusters and according TWIHR values can 

thus occur in both clusters (Fig. 4d). In general, the median values of TWIHR for DOCI wells were significantly higher 

(Wilcoxon rank sum p < 0.008) than respective values of the DOCII wells (Figure 4d). Both, distribution of TWIHR was different 

and median was higher when comparing DOCI vs DOCII TWIHR values from April, whereas December samples did not show 400 

any statistical significant difference in their TWIHR distribution or median. 
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Figure 4. Comparison of FT-ICR-MS derived weighted average molecular parameters, DOC concentrations and high-resolution 
TWI (TWIHR) values of DOCI and DOCII samples. a) Boxplots of molecular parameters and DOC concentration of the DOCI and 405 
DOCII clusters. Orange dots indicate samples of one December event. b) Boxplots of molecular parameters and DOC concentration 
of April and December DOCI samples and all event samples. c) Boxplots of molecular parameters and DOC concentration of April 
and December DOCII samples and all event samples. Red horizontal lines in b) and c) indicate weighted averages of two April and 
two December stream water samples collected during the respective riparian groundwater sampling campaign. Data in a) to c) were 
min-max normalized to values between 0 and 1 for better illustration (see Table 1 for actual values). d) Boxplots of TWIHR values as 410 
affiliated to the respective wells of DOCI and DOCII samples. Wilcoxon rank sum (WC) and Kolmogorov Smirnov (KS) test results 
are depicted above the squared brackets. Squared brackets above and below boxplots in a) to c) indicate the application of a KS test 
between two partitions. Asterisks indicate p-values of the KS test (∗∗∗: < 0.001; ∗∗: < 0.01; ∗: < 0.05; NS: not significant). 
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3.2.2 Spatial mapping 

The significant difference in TWIHR median values of DOCI and DOCII wells (Wilcoxon rank sum p < 0.008) was used to 415 

spatially separate both potential source zones from each other by using the median TWIHR value of the DOCI group (9.66) as 

a threshold. Overall, this TWI threshold also includes 25 % of the samples from the DOCII group. However, this percentage 

dropped to 15 % in April. Also note that different samples of one well can appear in both DOC groups. This TWIHR 

classification split the riparian zone into zones of high TWIHR (DOCI source zone) and low TWIHR (DOCII source zone) values 

(Figure 5). The high TWIHR zones defined in this way made up 14.6 % of the study site. The HydroGeoSphere (HGS) model 420 

was then used to quantify the runoff generation from the delineated DOCI source zones and to quantify their impact on total 

runoff generation and DOC export from the study site. According to our simulations surficial runoff (that is groundwater 

discharging to the surface or direct precipitation onto saturated areas feeding the stream) was the main contribution to overall 

runoff generation at the site (Figure 6). The median contribution of surficial runoff to total runoff generation was 61 % (± 12 

% standard deviation) but surface contributions increased up to 99 % during event situations. We selected the subsurface-425 

surface exchange flux as a key descriptive variable for potential surface runoff contributions, because it quantifies the 

availability of water at the surface for each cell of the model. Although there was a 1.5 times higher net surface water flux 

generation from low TWIHR zones throughout the modeling period (Figure 6b), the median of the area-normalized water 

exchange flux for high TWIHR zones (0.026 m d-1) was about 8.6 times higher than that for DOCII source zones (0.003 m d-1). 

This resulted in higher absolute exchange fluxes in high TWIHR zones in about 47 % of the modeling period. During (non-430 

winter) runoff events, water exchange flux contribution of high TWIHR zones increased up to 100 % (negative or no exchange 

flux for DOCII source zones in dry summer) whereas low TWIHR zones contributed more potential surface runoff at non-event 

winter conditions and flooding events when high overall exchange fluxes occurred under fully saturated soil conditions. 

Hydrological conditions were exemplary mapped for situations on 13 December 2017, immediately after an event under wet 

conditions, and on 29 August 2018, amidst a prolonged dry period in summer (Fig. S7, Table S4 for according water fluxes). 435 

High TWIHR zones had the highest exchange fluxes and water depths in both wet and dry situations. Surface flow paths in 

winter intersect the high TWIHR zones establishing hydrologic connectivity between these zones and the stream, which is in 

line with our observations on DOC quality. The highest positive exchange flux values (GW exfiltration) occurred at the outer 

hillslope boundaries of the RZ, running parallel to the channel (values at the exact boundaries of the model have not been taken 

into account due to potential boundary effects). These exfiltration spots were located close to the strongest surface water 440 

infiltration spots. During the exemplary wet situation, the entire RZ was saturated with water besides the stream banks. Surficial 

runoff pathways then connect the DOCI source areas (high TWIHR zones), running parallel to the stream and eventually entering 

it within the modeled domain. 
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Figure 5. High resolution TWI (TWIHR) map of the modeled site (excluding hillslopes). White points indicate sampling locations, the 445 
Rappbode stream is indicated by the blue line. Black polygons are high TWIHR zones, indicating DOCI source areas. 

 

Figure 6. Share of surface runoff on total runoff generation (blue line) and of high-TWIHR zone water exchange flux on total exchange 
flux in the model site (red). Data was smoothed to daily values for better visualization. The gap in the blue graph in January 2018 is 
due to an ungauged flood event. Cumulative positive water exchange flux of high TWIHR (black) and low TWIHR (yellow/khaki) 450 
source zones shown on second y axis. Grey bars indicate modeling dates for a wet situation on 13 December 2017, right after an 
event and at dry conditions and on 29 August 2018, amidst of a longer dry period in summer. 
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3.3 Surface DOC export from high TWIHR and low TWIHR source zones 

During the model period, DOCI source wells had a median DOC concentration of 5.8 mg L-1 which was 2.3 times higher than 

for the DOCII source wells. We assumed the DOC concentrations to stay in a range of mean ± SD throughout the year (cf. 455 

Figure 4b, c). DOC export was then roughly calculated by multiplying mean ± SD of DOCI and DOCII concentrations with the 

absolute surface runoff volumes from the respective high and low TWIHR zones. With that mean overall export from high 

TWIHR zones exceeded that from low TWIHR zones in about 70 % of the time although making up only 14.6 % of the total 

area. In absolute numbers, high TWIHR zones exported roughly 1.5 times the amount of DOC (7.1ꞏ106 g) to the stream than 

low TWIHR zones (4.6ꞏ106 g). This amounts to a nearly 20 times higher area-normalized DOC export from high TWIHR zones 460 

than from low TWIHR zones. Highest disparity between the export of the two source zones was during events in autumn and 

spring when water in the low TWIHR zone infiltrated rather into the ground (no DOC export from low TWIHR zones, Figure 7) 

while high TWIHR zones exported DOC (positive spikes). Infiltrating conditions for the high TWIHR zone only occurred during 

summer events when DOC export was generally at the minimum (mean daily export rates of 3.1 and 17.3 g d-1 for low and 

high TWIHR zones, respectively) whereas equally high DOC export occurred in winter (234.2 g d-1 and 267.2 g d-1 for low and 465 

high TWIHR zones, respectively). The median export from the high TWIHR zone was above that from low TWIHR zone in non-

winter conditions, with the highest disparity between medians in spring and autumn (Figure 7). Then high TWIHR zones 

exhibited exfiltrating conditions, whereas water in low TWIHR zones kept infiltrating. 

 

Figure 7. Absolute DOC surface export (25, 50 and 75 percentiles) from high (DOCI quality) and low (DOCII quality) TWIHR source 470 
zones. Underlying DOC concentration percentiles based on all riparian groundwater samples of each source zone. Cumulative 
positive DOC export (25, 50 and 75 percentiles) from high and low TWIHR zones shown on the second y axis. 
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4 Discussion 

4.1 Chemical and hydrological classification of riparian DOC source zones 

We chemically classified riparian groundwater samples with regards to DOC composition throughout the year and compared 475 

them to the DOC composition in event- and base-flow stream water in order to detect dominant riparian DOC source zones 

during different hydrological conditions. Clustering the riparian samples revealed two distinct DOC pools in the RZ (DOCI 

and DOCII), differing in their concentrations and molecular characteristics, thus representing different biogeochemical and 

physicochemical settings within the RZ. The DOCI pool reflects processed plant-derived organic matter with low 

bioavailability (higher degree of aromatic, oxidized compounds, low fraction of heteroatoms). The molecular character of the 480 

DOCI indicates low organic matter turnover presumably due to oxygen limitation even in the topmost soil layers, similar to 

typical wetland sites (Tfaily et al., 2018). Accordingly, DOCI source zones are connected to constantly low DTW values and 

high TWIHR values indicating waterlogging. In turn this may explain the conservation of DOCI due to anaerobic conditions 

(LaCroix et al., 2019). In contrast, the DOCII quality can be attributed to increased microbial processing of organic matter from 

organic rich top-soil layers. Matching our observations, the DOCII compounds are generally characterized by microbial, 485 

secondary metabolites (aliphatic, heteroatom enriched molecules) and DOC which is not adsorbed to mineral phases (small, 

low aromatic and oxygen depleted molecules) as typically found in deeper soil layers (Shen et al., 2015; Kaiser and Kalbitz, 

2012; LaCroix et al., 2019).  

The close agreement between DOCI characteristics and according stream water samples in April and December indicates a 

predominant connectivity of the DOCI pool with the stream during wet conditions and high groundwater levels. Here the DOCI 490 

quality did not show significant differences between April and December indicating a replete DOC pool with constant 

contribution to the overall DOC quality in the stream. In contrast, the DOCII composition was reflected in the stream water 

composition in December but not in April, indicating the influence of seasonality on this pool. Less organic matter input and 

lower biogeochemical process rates in winter and at the same time increased DOC export (at higher groundwater levels) may 

specifically deplete the DOCII pool (Werner et al., 2019). The composition of DOCII samples in April thus may represent a 495 

pool of DOC of low solubility with low sorption affinity which was not depleted during high groundwater levels in winter 

(saturated and with larger molecular weight).  

Variations in stream DOC composition also appeared at the shorter event time scale. Fully saturated riparian conditions caused 

hydrological mixing of the DOCI and DOCII  pool in December, leading to a stream DOC signal that was in-between the two 

riparian DOC pools. On the other hand, DOCI and stream water DOC compositions are converging during events at non-500 

saturated soil conditions. Consequently, changing source contributions from both riparian DOC pools are induced by the 

prevailing hydrological situation and therefore have to be considered as a general mechanism of DOC export in the catchment. 

Observed shifts between distributions of stream and riparian DOC composition might be due to near- and instream processing 

(Dawson et al., 2001; Battin et al., 2003), but also inter- and intra-annual variability of hydroclimatic drivers like seasonality 

or antecedent soil conditions (Werner et al., 2019; Köhler et al., 2009; Strohmeier et al., 2013; Futter and de Wit, 2008). Yet 505 
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we showed direct links between six major DOC molecular properties and the DOC concentration of riparian and stream water 

samples. In comparison to other studies, which use integrated or indirect signals to derive information on DOC characteristics, 

like (specific) UV absorption and spectrophotometric slopes values (Ledesma et al., 2018b; Werner et al., 2019), or 

conductivity and pH (Ploum et al., 2020), this allows a spatial explicit alignment of riparian DOC sources zones to stream 

water samples at high credibility. 510 

4.2 Hydrologic controls and quantification of riparian DOC export  

Additionally, the physically-based model HGS independently shows that the dominant runoff generating mechanism (and thus 

potential DOC export pathway) at the study site is surface runoff from DOCI source zones, because respective high TWIHR 

zones have a different hydrological setting that produces more runoff per unit area and reacts more direct to precipitation than 

DOCII source zones (with low TWIHR values). A first estimation reveals an overall dominance of DOCI export from high 515 

TWIHR zones during events, despite making up only about 15 % of the total study site. Consequently, DOC can be regarded 

as a site specific multi-facetted tracer that can provide a deeper insight into hydrologically controlled contributions of variable 

source zones: The whole RZ contributes rather uniformly to surficial DOC export during fully saturated soil conditions (e.g. 

during winter – as long as there is enough DOC available for transport) suggesting equal contributions from DOCI and DOCII 

source zones. Here a median large scale TWI will be enough to describe DOC export. In contrast, there is no surficial DOC 520 

export during dry situations. However in-between those two extremes, event-induced surficial DOC export is a function of soil 

wetness which regulates biogeochemical DOC processing and potential hydrological surface export (Werner et al., 2019). 

During such intermediate event situations, surface DOC export from high TWIHR zones increases whereas low TWIHR zones 

still depict zero surface export and stream water will shift to a DOCI dominated composition.  

4.3 Implications for DOC export modeling 525 

Recent studies conclude that lateral DOC export is not well researched, but is an important component of the global DOC 

budget (Zarnetske et al., 2018; Wen et al., 2020). In this regard, we found that surficial DOC export dominated overall lateral 

DOC export in our study site. Yet surface DOC export is underrepresented in current model-conceptualizations of lateral DOC 

export (Dick et al., 2015; Ledesma et al., 2018a; Bracken et al., 2013; Ploum et al., 2020). Reasons for the exclusion might be 

due to the high complexity of representing the spatio-temporal heterogeneity of surface export in modeling concepts or just 530 

because it does not play an important role in other catchments. With this study on TWIHR, we present a proxy of small scale 

heterogeneities in surface runoff generation and respective DOC export that bears the potential to improve existing DOC export 

models and could lead to new approaches and concepts for better DOC export modeling. Adding a TWIHR based dynamic 

source zone activation term could greatly improve the mechanistic basis of lumped, parsimonious models potentially leading 

to a more accurate upscaling of DOC export from RZs, especially for RZs with minimal slopes that tend to have highest 535 

groundwater levels and thus surface runoff. A general, coarse-scale relationship between soil moisture and potential surface 

runoff generation has already been proposed based on a catchment-scale topography-driven runoff proxy (Gao et al., 2019, 
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Birkel et al., 2020). The mechanistic connection between TWI and surface DOC export in our study represents a similar general 

mechanism that is applicable for the whole riparian zone in small catchments (similar TWIHR values should result in similar 

runoff generation). In contrast, small scale topographical proxies of DOC export based on the presented TWIHR have the 540 

potential to more accurately represent distinct zones of DOC export during differing hydrological situations. Then weather 

data can subsequently be used to estimate which distinct source zones (hot spots) contribute to DOC export during a 

precipitation event (hot moment), thus overcoming the restrictive dichotomy of the hot-spot hot-moment concept (Bernhardt 

et al., 2017).  

5 Conclusions 545 

Chemical classification of riparian groundwater samples via ultra-high resolution FT-ICR-MS revealed two distinct DOC 

pools (DOCI and DOCII) in the riparian zone. Degrading plant material presumably contributes most to an aromatic, oxygen-

rich DOC pool with high concentrations, located in regions of high wetness and local topographic depressions. This DOCI 

pool tends to be available for microbial degradation (Mostovaya et al., 2017), can be photodegraded (Wilske et al., 2020), and 

can be relatively easily removed through sedimentation (Dadi et al., 2017) or during drinking water treatment (Raeke et al., 550 

2017). However, it also has a potential for disinfection byproduct formation (Wang et al., 2017) when not removed sufficiently. 

The second pool (DOCII) reflects microbially processed, mobile DOC with lower concentration and larger compositional 

variability across seasons. Respective source zones of DOCI and DOCII can be separated and mapped by a threshold value in 

high-resolution TWI (TWIHR). The identification of source zones was achieved via independent measures (unsupervised 

chemical classification, and TWI-based physical flux modeling) indicating high credibility. Additionally, hydrological 555 

modeling revealed that the dominant runoff generation mechanism in the study site was surface runoff. Here DOCI source 

zones, which make up 15 % of the total study site provided 1.5 times more DOC for export than the remaining 85 % of the 

area associated with the DOCII pool. Furthermore, highest discrepancy between the DOCI and DOCII surface export was during 

events at intermediate wetness states (neither completely saturated nor very dry). Overall, this is a strong indication that DOCI 

sources rather than DOCII sources get exported into the stream during event situations.  We therefore conclude that certain 560 

thresholds in TWIHR, which are based on actual wetness state, can identify explicit source zones of surficial DOC export from 

riparian zones. Thus TWIHR in turn defines the relative contributions from different source zones with more unique DOC source 

signals in the stream during dry and transitional periods whereas mixed signals occur during very wet conditions. In contrast 

to other studies in northern till catchments (e.g. Ledesma et al. (2018b)), this study highlights that surface DOC export from 

the riparian zone plays an important role for lateral DOC export from hydromorphic soils with overall low topographic relief. 565 

Therefore we want to emphasize that surface export should be acknowledged in respective DOC export models. Delineating 

activated source zones for DOC export by topographic proxies of lateral, spatial heterogeneity (here represented by TWIHR) 

can help to identify source zones in existing DOC models or provide a mechanistic basis for improved model conceptualization 

for lateral DOC export modeling.  
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