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Abstract. Understanding how water resources vary at different temporal and spatial scales in response to climate is crucial

to inform long-term management. Climate change impacts and induced trends may indeed be substantially modulated by

low-frequency (multi-year) variations, whose strength varies in time and space, with large consequences on risk forecasting

systems. In this study, we present a spatial classification of precipitation, temperature and discharge variability in France,

based on a fuzzy clustering and wavelet spectra of 152 near natural watersheds between 1958 and 2008. We also explore5

phase-phase and phase-amplitude causal interactions between time scales of each homogeneous region. Three significant time

scales of variability are found in precipitation, temperature and discharge: 1 year, 2-4 years and 5-8 years. The magnitude of

those time scales of variability is however not constant over the different regions. For instance, Southern regions are markedly

different from other regions, with much lower 5-8 years variability and much larger 2-4 years variability. Several temporal

changes in precipitation, temperature and discharge variability are identified during the 1980s and 1990s. Notably, we note10

a sudden decrease in annual temperature variability in the mid 1990s in the Southern half of France. Investigating cross-

scale interactions, our study reveals causal and bi-directional relationships between higher and lower-frequency variability,

which may feature interactions within the coupled land-ocean-atmosphere systems. Interestingly, however, even though time-

frequency patterns (occurrence and timing of time scales of variability) were similar between regions, cross-scale interactions

are far much complex, differ between regions, and are not systematically transferred from climate variability (precipitation and15

temperature) to hydrological variability (discharge). Phase-amplitude interactions are indeed absent in discharge variability,

although significant phase-amplitude interactions are found in precipitation and temperature. This suggests that watershed

characteristics cancel the negative feedback systems found in precipitation and temperature.This study allows for a multi-time

scale representation of hydro-climate variability in France, and provides unique insight into the complex non-linear dynamics

of this variability, and its predictability.20

1 Introduction

Hydroclimate variability represents the spatio-temporal evolution of hydrological variables (e.g. discharge, groundwater level)

and climate variables (e.g. precipitation and temperature), which are directly impacting hydrological variability. Studying how
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hydrological variables react to climate variability and change is a major challenge for society, in particular for water resource

management, flood and drought mitigation planning (IPCC, 2007, 2014). However, hydrological variability is expressed at25

multiple time scales (Labat, 2006; Schaefli et al., 2007; Massei et al., 2007, 2017), for which driving mechanisms remains

poorly characterised and understood. As suggested in Blöschl et al. (2019), understanding the spatio-temporal scaling, i.e.

how the general dynamics driving hydrological variability change at spatial and temporal scales, represents a major challenge

toward improved prediction systems (Gentine et al., 2012). Understanding spatio-temporal scaling required to identify regions,

i.e. the maximum spatial scale in which the dynamics remain unchanged despite its non-linearity, is critical (Hubert, 2001).30

Hydrological variability is by definition non-linear (Labat, 2000; Lavers et al., 2010; McGregor, 2017), as it results from

complex interactions between atmospheric dynamics and catchment properties that may vary at different time scales (e.g.

soil characteristics, water table, karstic systems, vegetation covers;(Gudmundsson et al., 2011; Sidibe et al., 2019)). Such

interactions between processes at different time scales, i.e. cross-scale interactions (Paluš, 2014; Jajcay et al., 2018), have

however never been studied to further understand hydrological variability, as well as its link to climate. It has also been shown35

that hydroclimate variability is inherently non-stationary, with sudden changes in the dynamics of the system, due to a change

in the balance between its driving physical processes (e.g. Coulibaly and Burn (2004); Labat (2006); Dieppois et al. (2013,

2016); Massei et al. (2017)).This results in difficulties in characterizing and predicting the hydrological variability at different

spatio-temporal scales (Gentine et al., 2012; Blöschl et al., 2019).

While different time scales have been identified in hydrological variability at both regional and global scales (Coulibaly40

and Burn, 2004; Labat, 2006; Dieppois et al., 2013, 2016; Massei et al., 2017), very little has been done to explore how

spatially coherent are those time scales, and therefore to identify regions in which the statistical characteristics of all ranges

of variability remain unchanged. Studying 231 stream gauges throughout the world, Labat (2006) highlighted different time

scales of discharge variability over the different continents. At the regional scale, Smith et al. (1998) established a clustering

of 91 US stream gauges based on their global wavelet spectra, i.e. dominant time scales, and found five homogeneous regions.45

Similarly,Anctil and Coulibaly (2004) and Coulibaly and Burn (2004) established a clustering of Southern Québec and Canada

streamflow, based on the timing of both the 2-3 and 3-6 year time scales. In Europe, Gudmundsson et al. (2011) identified

different regions according to the magnitude of decadal discharge variability. In France, such a clustering, based on time-

frequency patterns of discharge variability, as well as its relation to climate variability (e.g. precipitation and temperature), has

not yet been explored. In addition, all studies mentioned above either isolated particular time scales or averaged the variability50

across time scales (e.g. global wavelet spectra), which is equivalent to a linearization of the system (Hubert et al., 1989).

While studying cross-scale interactions have retained increasing interest in other fields (e.g. Onslow et al. (2014); Wang et al.

(2014)), cross-scale interactions are poorly understood in climate and hydrological sciences. New strategies have recently been

developed to facilitate such studies (Jajcay et al., 2018). Cross scale interactions are however very relevant to hydroclimate

studies, in particular when searching for climate drivers (or predictors) of hydrological signals, as they will reveal climate time55

scales causally linked to each time scale of hydrological variability.

In this study, we investigate the spatial homogeneity of hydroclimate variability across time scales. For instance, can we

identify homogeneous regions according to particular time-scales? From the determination of homogeneous regions of hydro-
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climate variability, we will explore and discuss possible interactions between hydroclimate processes and catchment properties,

that may partially explain each region’s spectral content, through the study of their cross-scale interactions.60

This study therefore have major implication for the comprehension of hydroclimate dynamics and their interactions with

large-scale climate drivers, and catchment properties. The results of this study will provide guidance for operational uses, such

as seasonal to multi-year forecasting, as they highlight the time scales that need to be focused on when improving models.

The work is divided into the following sections. Data and methods are introduced in Section 2. In Section 3, we establish

homogeneous regions for precipitation, temperature and discharge variability based on their time-frequency patterns and then65

explore cross-scale interactions for each region of homogeneous variability in precipitation, temperature and discharge. Finally,

discussions of the main results and conclusions are provided in Section 4.

2 Data and methodology

2.1 Hydrological and climate data

Discharge time series were extracted from French Reference Hydrometric Newtork compiled by Giuntoli et al. (2013). This70

network of stations identifies near-natural watersheds with long-term high-quality hydrometric data. The period 1968-2008

was chosen by Giuntoli et al. (2013) as being the best trade-off in terms of data availability over the different regions. This

database was further subset to 152 watersheds by selecting only continuous monthly time series, i.e. without missing values

(Figure 1). Precipitation and temperature data have been estimated from the 8 km-grid Safran surface reanalysis dataset (Vidal

et al., 2010), which has been subset to a common period (1968-2008). For this study, precipitation and temperature have been75

averaged over each watershed area (Caillouet et al., 2017).

2.2 Methods

Figure 2 summarizes the different methods employed in this study.

2.2.1 Continuous wavelet transforms

Time-frequency patterns have first been extracted for each watershed and each variable using continuous wavelet transform (cf.80

Figure 2, (a)). For any finite energy signal x, it is possible to obtain a time-frequency representation by mapping it to a series of

sub-spaces spawned by a generating function, the mother wavelet, and its scaled versions (Torrence and Compo, 1998; Grinsted

et al., 2004). The time series is then represented in terms of a given scale and time location. The first subspace is generated

by a mother wavelet at scale 1 and its time translations. Then, other subspaces are generated by scaling the mother wavelet

up, referring to daughter wavelets, and time translating it. For each scale, one subspace is constructed. Daughter wavelets are85

usually calculated as:

ψa,b =
1√
a
ψ(
t− b
a

) (1)
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The left hand side (LHS) term is the daughter wavelet of scale a and time translation b at time t. The first right hand side (RHS)

term is the scaling of the mother wavelet ψ and the last one is the time translation. The projection of the signal onto each scale

a is of the form:90

WTψ[x](a,b) = 〈x,ψa,b〉=
∫

R

x(t)ψa,b(t)dt (2)

LHS term contains the wavelet coefficients, i.e. the coordinates of the signal in each subspace. If the mother wavelet (and hence

the daughter wavelets as well) is complex, wavelet coefficients are complex as well. Wavelet coefficients represent the inner

product of the signal and daughter wavelet of scale a and time translation b (Centre). The norm of their square is called the

wavelet power and represents the amplitude of the oscillation of signal x at scale a and centred on time t. As it is impossible to95

capture the best resolution in both frequency and time simultaneously, we used here a Morlet mother wavelet (order 6), which

offers a good trade-off between detection of scales and localisation of the oscillations in time (Torrence and Compo 1998).

Statistical significance is typically tested against a red noise using Monte Carlo simulations (Torrence and Compo 1998).

2.2.2 Image Euclidean Distance Clustering

We estimated similarities between wavelet spectra of each watersheds and, separately, on each variable. Distances between100

two-dimensional data, such as maps or wavelet spectra, are estimated using Euclidean distance between pairwise points (pED;

i.e computing f2(xi,yi)−f1(xi,yi)). However, such a procedure has no neighborhood notion, making it impossible to account

for globally similar shapes (cf. definition of global and local similarity in Wang et al. (2005)). To avoid this issue, we used the

Image Euclidean distance calculation method (hereinafter IEDC) developed by Wang et al. (2005). The IEDC method modifies

the pED equation in two ways (Wang et al., 2005): i) the distance between pixel values is computed not only pairwise, but for105

all indices; ii) a Gaussian filter, function of the spatial distance between pixels, is applied. The Gaussian filter then applies less

weight to the computed distance between very close and far apart pixels, while emphasizing on medium spaced ones (?).

2.2.3 Fuzzy clustering

Fuzzy clustering has then been used to cluster the different watershed based on their similarities (Figure 2, (b)). Fuzzy clustering

is a soft clustering method (Dunn, 1973). While soft clustering spreads membership over all clusters with varying probability,110

hard clustering attributes each station one and only one cluster membership. Soft clustering is therefore better-suited when the

spatial variability, originating from different stations’ characteristics, is smooth, such as in hydroclimate data. For instance,

precipitation and temperature patterns are unlikely to change suddenly from one station to a neighboring one, and in turn, be

markedly different from the next neighbor (Moron et al., 2007; Hannaford et al., 2009; Rahiz and New, 2012). As such, several

stations tend to show transitional or hybrid patterns, and can potentially be member of different clusters, limiting the robustness115

of hard clustering procedure (Liu and Graham, 2018).

Fuzzy clustering performance is determined by the ability of the algorithms to recognize hybrid stations (i.e. stations incor-

porating multiple features from different patterns observed in other coherent regions), while allowing for a clear determination
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of the membership of stations with unique features (Kaufman and Rousseeuw, 1990). Here, we used the FANNY algorithm

(Kaufman and Rousseeuw, 1990), which has been shown to be flexible, and to offer the possibility to adapt the clustering120

to the data, with optimal performance (Liu and Graham, 2018). In addition, rather than setting the number arbitrarily, in this

study, we used an estimation of the optimum number of clusters by first computing a hard clustering method: the consensus

clustering (Monti et al., 2003). Thus, the number of clusters providing the best stability (i.e. the minimal changes of member-

ship when adding new individuals) is considered optimal as recommended in Şenbabaoǧlu et al. (2014). The different clusters’

memberships are then mapped to discuss the spatial coherence of each hydroclimate variable.125

2.2.4 cross-scale interactions

For each variable and each cluster, cross-scale interactions have also been explored for the first time in hydrological sciences

(Figure 2, (c)). Cross-scale interactions refer to phase-phase and phase-amplitude couplings between time scales of a given

time series (Scheffer-Teixeira and Tort, 2016; Paluš, 2014). Here, coupling means that the state (either phase or amplitude) of a

signal y is dependent on the state of a signal x, and describes causal relationship (Granger, 1969; Pikovsky et al., 2001), which130

refers to information transfer from one part of a signal to another.

Figure 3 describes the necessary setting and characteristics of cross-scale interactions. A variable f(t) measures the dy-

namics of a physical process. This process is modelled as a coupling of two components X , and Y . The components interact

with each other in a perturbation-dampening (X , Y , respectively), so that f(t) =X−Y (Figure 3a). The interactions between

the components occur through the connections CXY and CY X , with a given strength (here C.. = 2), and this perturbation-135

dampening interaction forms a negative feedback system (Figure 3a). The connection CXX enables X to grow first before Y

dampens it, and both X and Y receive inputs φX , φY from other physical processes (figure 3a). Depending on both the mean

and time scales of φX and φY , the strength of CXX , CXY and CY X , X and Y may show coupled behaviors. For instance, in

Figure 3b, every fourth ridges of YPP (t) is synchronized with a ridge ofX(t) (Figure 3b, top and middle panels ), thus forming

a phase-phase interaction. The direction of the interactions depends on the inputs φX , φY , and the connections CXX , CXY140

and CY X . fPP (t) is the difference between X(t) and YPP (Figure 3b, bottom panel). Because the interaction between X and

Y depends on both inputs and connections, interactions may lead to a cross-scale relationship only for certain values of X or

Y (Figure 3c). Thus, depending on the phase of either X or Y , the amplitude of the driven component may increase/decrease

when the cross-scale interaction takes place, and go back to normal when outside of the phase of the driving component.

This is a phase-amplitude interaction. In Figure 3b, YPA amplitude decreases when X is at its maximum (i.e. when its phase145

is a ridge, Figure 3c, top and middle panels, respectively). Similarly to the phase-phase interaction, fPA(t) is the difference

between X(t) and YPA(t) (Figure 3c, bottom panel). Because phase amplitude are very dependent on inputs φX and φY ,

connections between spatially distant physical processes are likely to give rise of phase-amplitude interactions (Nandi et al.,

2019).

Following Paluš (2014) and (Jajcay et al., 2018), who compared the most used methods when studying causality, we choose150

the conditional mutual information (CMI) surrogates method, combined with wavelet transforms. First, using a Morlet mother

wavelet, the instantaneous phase and amplitude at time t and scale s of the signal are obtained. Next, the conditional mutual
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information, I(φx(t);φy(t+ τ)−φy(t)|φy(t)) for the phase and I(φx(t);Ay(t+ τ)|Ay(t)),Ay(t− η)),Ay(t− 2η)) for the

amplitude is computed. In the case of phase-phase relationships, the CMI measures how much the present phase of x contains

information about the future phase of y knowing the present value of y. Phase-phase interactions can be uni- or bi-directional.155

It is possible for a single time scale to drive another, which in turn, drives back the original one, describing feedback interac-

tions. For phase-amplitude relationships, CMI measures how much the present phase of x contains information of the future

amplitude of y knowing the present and past values of y. The statistical significance of the CMI measure is assessed using 5000

phase-randomized surrogates, having the same Fourier spectrum, mean and standard deviation as the original time series, as

in Ebisuzaki (1997). Paluš (2014) has shown that this number of surrogates is ideal for statistical significance, in the context160

of hydroclimate time series. The computational cost is however high, with approximately one week of computing for a time

series of 50 years, on a 32-core xeon computer. The present computations were done on the Myria cluster, hosted by the Centre

Régional Informatique et d’Applications Numérique de Normandie (www.criann.fr).

3 Spatio-temporal clustering of hydrological variability

The wavelet transforms corresponding to each set of variables and each watershed have been computed and checked for165

similarities using IEDC fuzzy clustering to identify and characterize homogeneous regions of hydroclimate variability over

France. Cross-scale couplings were then investigated for each homogeneous region.

3.1 Precipitation

3.1.1 Time-frequency patterns

Seven regions with homogeneous time-frequency patterns are identified (Figure 4a): North-western (green), North-eastern170

(blue), Centre-North (red), Centre-western (pink), Centre-eastern (black), South-western (yellow) and South-eastern (dark

green). Based on fuzzy clustering, except for the Northern Alps regions, which show a mix of different regions (i.e. Centre-

eastern, Centre-western, North-eastern, Centre-North and North-western), most regions are dominated by a spectral character-

istic, defining a single member (i.e. cluster), suggesting a greater spatial coherence. Note that Centre-eastern, Centre-western,

North-eastern, Centre-North and North-western regions are characterized by mountainous ranges, where there is a significant175

part of solid precipitation, which may contribute to membership mixing, and weaker spatial coherence in those regions. Simi-

larly, Northern regions are split between oceanic influence (to the west), inland (Centre) and mountainous ranges. Centre and

Southern regions are delineated by mountain and valleys spatial extent (cf. Figure 1b).

In all regions, on average, precipitation is varying at different time scales, ranging from seasonal to inter-annual (i.e. 2-8

years; Figure 4b). Continuous wavelet spectra however show that those time scales of variability are non-stationary (Figure180

4c), with temporal changes in terms of amplitude discriminating the different regions. For instance, South-western regions

are characterized by quasi-continuous annual variability until the late 1980s, while other watersheds show sparsely significant

annual variability (Figure 4c). Similarly, although there is significant inter-annual variability in all watersheds from the late
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1980s, there is no significant inter-annual variability over the South-western and -eastern regions (Figure 4c). After removing

the seasonal cycle, focusing on inter-annual time scales, significant fluctuations at 4 and 8 years emerge for the South-western185

and -eastern regions, but are much less pronounced and significant over shorter periods of time than in other regions (Figure

5).

In summary, different regions with coherent precipitation variability are identified, and are characterised by three time scales

of variability: intra-seasonal, annual and inter-annual. The amplitude of those time scales of variability however differs in time

and over French territory. The Northern-Alps appear much less coherent, and seems to share spectral characteristics with other190

regions, especially those characterized by the presence of mountain ranges.

3.1.2 cross-scale interactions

Figure 6 shows cross-scale interactions for each cluster of precipitation variability (cf. Figure 4).

North-eastern, South-eastern, North-centre, North-western and Centre-eastern regions all show the phase of a 5-8yr vari-

ability driving the variability of smaller time scales (Figure 6a, blue, dark green, red, green, black, lower half of the graph).195

This cross-scale interactions is however more pronounced in North-eastern and South-eastern regions (Figure 6a). Similarly,

eastern regions exclusively show 5− 8yr→ 2− 4yr interactions, while other regions show self-interacting 5-8yr variability

(Figure 6a). The upper half of the graph, which refers to higher-frequency driving lower-frequency variability, is populated

by North-centre, South-eastern, North-western and North-eastern regions (Figure 6a, red, dark green, green and blue). South-

eastern shows cascade phase-phase interactions, i.e. 2− 3yr→ 5− 4yr→ 6− 5 (Figure 6a, dark green). In addition, both200

South-eastern and North-western regions show mirror interactions with their lower half counterparts, e.g., 5− 6yr↔ 4− 5yr

(Figure 6a, dark green, green mirror patches about the diagonal). We also note that phase-phase interactions are very weak over

the South-western regions, and absent in the centre-western regions.

Phase-amplitude interactions are presented in Figure 6b. The lower half of the graph, which refers to lower-frequency driving

higher-frequency variability, is populated by 5− 8yr→ 2− 4yr interactions for western and North-centre regions (Figure205

6b, pink, yellow, green, red). Centre-eastern regions are also showing lower-frequency variability driving higher-frequency

variability, between 8yr→ 6yr variability (Figure 6b). Notably, the North-western region is the only one with cross-scale

interactions driving the annual cycle (Figure 6a, green).In the upper half of the graph, which refers to higher-frequency driving

lower-frequency variability, we only find North-centre and North-eastern regions, showing 2−4→ 4yr and 3−4yr→ 7−8yr

phase-amplitude interactions (Figure 6b, blue, red). Note that North-centre, North-eastern and Centre-eastern regions show210

phase-amplitude and phase-phase interactions at very similar time scales (Figure 6a,b, red, blue, black), while time scales of

phase-amplitude and phase-phase interactions do not match in Centre-western and North-western and South-western regions

(Figure 6a, b, pink, green, yellow). Regions to the East thus appear to have both phase-phase and phase-amplitude interactions

at the same time scales, while western regions are more characterized by phase-amplitude interactions.

The precipitation cross-scale interactions can be of different forms: phase-phase, phase-amplitude, uni- or bi-directional,215

from lower to higher time scales and vice versa. The presence of cross-scale interactions seems to be tied to specific spatial

locations, suggesting different internal dynamics, over the different regions of homogeneous precipitation variability. Inter-
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estingly, cross-scale interactions tend to converge toward specific time scales, 2-4yr and 5-8yr, which were linked to ocean-

atmosphere variability, such as the North Atlantic Oscillation, in previous hydroclimate studies over France (Feliks et al., 2011;

Fritier et al., 2012; Dieppois et al., 2016; Massei et al., 2017). However, the presence of mirror interactions also indicate strong220

bidirectional negative feedback, which might refer to interaction between ocean-atmospheric variability and land-surface pro-

cesses (Mariotti et al., 2018). Soil moisture has been shown to be either a positive or negative feedback while several negative

feedbacks have been identified in both ocean-atmosphere and land-ocean interactions (Boé, 2013; Sejas et al., 2014).

3.2 Temperature

3.2.1 Time-frequency patterns225

In temperature, nine regions with homogeneous time-frequency patterns are identified (Figure 7a): North-western-high (pink),

North-western-low (black), North-eastern (blue), Centre-eastern (red), Centre-western (green), South-eastern-high (yellow),

South-eastern-low (brown), South-western-high (dark green) and South-western-low (purple). Fuzzy clustering shows that

watersheds typically converge toward singular clusters, defining highly coherent regions (Figure 7a). This is however not true

for the Centre-western region, which is characterized by a mix of spectral characteristic defining other regions (cf. red, green,230

black, yellow and purple pie charts, Figure 7a).

Using monthly data, temperature is primarily varying on an annual time scale, with very similar amplitudes for all regions

(Figure 7b-c). However, differences between those regions can be explained by temporal changes in inter-annual variability,

which can only be significantly detected after removing the seasonal cycle (Figure 8a-b). Focusing on inter-annual variability,

significant temperature variations indeed emerge at 2-4yr and 5-8yr time scales, and show different timings and amplitudes over235

the different regions (Figure 8a-b). All regions show 5-8yr variability, but southern regions show significantly higher amplitude

of the 2-4yr variability than northern regions (Figure 8a). Similarly, While stronger 2-4yr variability variability occur in the

1980s and 1990s in the South-western-low region, other regions show significant 2-4yr variability from the 2000s, only (brown,

Figure 8b).

3.2.2 cross-scale interactions240

Figure 9 shows cross-scale interactions for each cluster of temperature variability identified in Figure 8a.

For temperature, phase-phase interactions are mostly concentrated in the upper half of the graph, which refers to higher-

frequency modulating lower-frequency (Figure 9a). Notably, a 2− 6yr→ 6− 8yr phase-phase interaction appears more pro-

nounced over Northern regions (Figure 9a, blue, red, pink, black). The Centre-western region shows similar phase-phase

interactions, but at 1− 3yr→ 4− 6yr time scales (Figure 9a, green). In the lower half of the graph, which refers to lower-245

frequency modulating higher-frequency, interactions are found at very similar timescales, but at slightly higher frequency, for

all regions (e.g. , 2− 5yr→ 1− 4yr variability). Temperature in the South-western-low region, however, show slightly differ-

ent characteristics, phase-phase interactions between lower- and higher-frequency occurring between 7− 8yr→ 3− 4yr and

7− 8yr→ 3− 4yr variability (Figure 9a, purple).
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Temperature phase-amplitude interactions are mostly acting on the 3-4yr time scale for all regions (Figure 9b). In particu-250

lar, in temperature, more pronounced phase-amplitude interactions are found over the South-western-low region (Figure 9b,

purple), which consistent with previous studies on phase-amplitude interactions in European temperature (Palus, 2014; Jajcay

et al., 2016). Over South-western regions, temperature, however, shows both 3−8yr→ 3−4yr and 2−4yr→ 4−7yr phase-

amplitude interactions (Figure 9b, brown, purple). Furthermore, it should be noted that temperature variability interactions

occur between very similar time scales over a number of regions (Figure 9b, pink, red, yellow, purple). According to Paluš255

(2014), interactions between very similar times, or the same times, can only occur if, at least, two processes are present.

As for precipitation, phase-phase and phase-amplitude cross-scale interactions are region-dependent, and can be uni- or

bi-lateral, in temperature. However, in temperature, most phase-phase interactions occur from higher- to lower-frequency vari-

ability, while phase-amplitude interactions tend to occur from lower- to higher-frequency variability. Similarly, while time

scales involved for phase-phase and phase-amplitude interactions are very similar in precipitation, they differ largely in tem-260

perature (Figure 9b). This suggests that the processes driving phase-phase and phase-amplitude cross-scale interactions are

different in temperature, and also different between temperature and precipitation. As previously suggested for precipitation,

such cross-scale interactions might refer to negative feedbacks between ocean, atmosphere and land-processes, which can be

noticeably different in temperature. Temperature variability is mostly derived from changes in heat advection from the North-

Atlantic oceans over most of the French territory, except for the Mediterranean regions that are strongly influenced by the265

Mediterranean Sea (Scherrer, 2006; Sodemann and Zubler, 2010). In addition, temperature’s feedback processes (i.e. positive

or negative) are extremely region-dependent (Lorenz et al., 2016; Levine et al., 2016; Levine, 2019). Nevertheless, such feed-

back processes could result from regional changes in soil moisture, as well as from heat exchanges between ocean and land,

especially over the coastal regions (Lambert et al., 2011; Sejas et al., 2014).

3.3 Discharge270

3.3.1 Time-frequency patterns

Six regions with homogeneous time-frequency patterns are identified in discharge (Figure 10a): North-western (black), North-

eastern (blue), North-Centre (red), Centre-western (green), South-eastern (yellow) and South-western (pink). However, several

watersheds, especially in the South, show memberships to multiple regions, suggesting lower spatial coherence in discharge

than in precipitation and temperature. Lower spatial coherence, however, could mostly be explained by mixing of solid and275

liquid precipitation in driving discharge variability in the Alps and from the local heterogeneity of precipitation due to con-

vective dynamics in the Pyrenees. Nevertheless, the number of significant homogeneous regions is lower in discharge than in

precipitation and temperature, and northern regions are particularly coherent.

Using monthly data, discharge is mainly varying on annual time scales, as determined through the global wavelet spec-

tra (Figure 10b). Unlike other regions, South-eastern watersheds, however, shows significant intra-seasonal variability, even280

using monthly data (Figure 10b). Continuous wavelet spectra show that both annual and intra-seasonal variability can be

non-stationary, with temporal changes in terms of amplitude discriminating the different homogeneous regions of discharge
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variability (Figure 10c). For instance, annual variability is only significant for specific periods in the South-eastern watersheds,

while other regions show mostly constant annual variability (Figure 10c). Similarly, in the South-eastern region, intra-seasonal

discharge variability sparsely appears significant from the 1980s, absent from the other regions (Figure 10b).285

After removing the seasonality, focusing on inter-annual variability, North-eastern watersheds stand out as having continuous

significant inter-annual variability throughout the time series, with 4-5yr and 5-8yr variability before and after the 1990s,

respectively (Figure 11b). South-eastern and -western regions also stand out, as they show 2-4yr variability in the mid-1970s

and 2000s (Figure 11b, yellow, pink). In addition, South-eastern regions do not show significant variability in discharge at time

scales greater than 4yr (Figure 11a-b).290

Different coherent regions are thus identified for discharge variability. In addition, these homogeneous regions correspond

well with regions identified in precipitation and temperature variability. As in precipitation and temperature, those regions seem

strongly impacted by the presence of mountain ranges (cf. Figure 1b). However, compared to precipitation and temperature,

southern regions, which may appear more complex in term of climate and its link to land-surface processes, appear much less

spatially coherent in discharge.295

3.3.2 cross-scale interactions

A major question concerning discharge cross-scale interactions is whether interactions found in either precipitation or temper-

ature are also present in discharge. Phase-phase interactions that were found in precipitation are also identified in discharge,

in particular over North-eastern, South-eastern and North-western regions (blue, yellow and black; Figure 6a, Figure 12a).

Phase-phase interactions that were identified in temperature are much less evident (Figure 9a, Figure 12a). It should also be300

noted that many small patches, describing phase-phase interactions in precipitation and temperature, are systematically not

transferred to discharge variability (Figures 6a, 9a, 12a). Instead, discharge variability seems to exclusively preserve large

patches of phase-phase interactions(Figures 6a, 9a, 12a), suggesting that catchment properties are modulating the climatic

signals (i.e. precipitation and temperature). Such filtering of climate signals is even more pronounced in certain regions, such

the North-centre, where phase-phase interactions are absent in discharge (Figure 12a), but were identified in precipitation and305

temperature (Figure 6a, 9a).

But, more importantly, there is no phase-amplitude interaction in discharge (Figure 12b). This points out that watershed

properties modulate the interacting processes in precipitation and temperature. Since phase-amplitude interactions require

a negative feedback system, any change of the feedback sign (by either runoff or subsurface processes) can cancel those

phase-amplitude interactions. As our data set is mostly composed of low groundwater support, those modulations are unlikely310

to results from the water table, especially as phase-phase interactions are inherited from precipitation. In addition, further

analysis on Paris’ Austerlitz gauging station, which includes very large groundwater support, reveals the same absence of phase-

amplitude interaction in discharge (not shown, Flipo et al. (2020)). Possible explanations include the frequency partitioning

of watershed compartments or integration process along the river network breaks any spatial connection and thus smooths out

and flattens phase-amplitude interactions (Schuite et al., 2019).315

10

https://doi.org/10.5194/hess-2021-81
Preprint. Discussion started: 23 March 2021
c© Author(s) 2021. CC BY 4.0 License.



cross-scale interactions are only of phase-phase nature in discharge. All phase-phase interactions in discharge seem to

be primarily related to precipitation, even though the strong correlations between rainfall and temperature makes it difficult

to detect. However, differences between regions of homogeneous discharge variability are very similar to those detected in

precipitation. Further work is however needed to understand why phase-amplitude cross-interactions are absent in discharge

variability. Catchment properties appear to involve positive rather than negative feedback, thus resulting in a loss of phase-320

amplitude interactions.

4 Discussions an conclusions

As recommended by Blöschl et al. (2019), studying the different scales of spatial and temporal variability, as well as their

interactions, remains one of the most important challenges in hydrology. In this study, we unravelled homogeneous regions

of hydroclimate variability in France, accounting for non-stationarity and non-linearity, bringing additional information over325

previous, regime-based, classifications in France or elsewhere (Champeaux and Tamburini, 1996; Bower and Hannah, 2002;

Sauquet et al., 2008; Snelder et al., 2009; Joly et al., 2010; Gudmundsson et al., 2011). This was achieved through a clustering

analysis based on time-frequency patterns of precipitation, temperature and discharge variability over 152 watersheds. We then

studied the spatio-temporal characteristics of each homogeneous region, including characteristic time scales of hydroclimate

variability (i.e. precipitation, temperature and discharge) and cross-scale interactions.330

Our study reveals different coherent regions of precipitation, temperature and discharge variability. Yet, some watersheds

are characterized by a mix of spectral characteristics from surrounding regions, or regions with the same topographic char-

acteristics. Those coherent regions are homogeneously distributed over France in precipitation and discharge, but show large

discrepancies in term of spatial extension in temperature. According to previous clustering of hydroclimate variability over

France, Northern regions are more homogeneous than what was found here (Champeaux and Tamburini, 1996; Sauquet et al.,335

2008; Snelder et al., 2009; Joly et al., 2010), and show lower spatial coherence. In particular, here, we demonstrate that both

the amplitude and timings of the different time scales of hydroclimate variability differentiate the regions, highlighting the

need for accounting for non-stationary behaviours in global to regional hydroclimate study. Overall, hydroclimate variability

displays intra-seasonal (<1yr), annual ( 1yr) and inter-annual (2-4yr and 5-8yr) time scales. Our results, which were focused on

the French territory, are therefore consistent with time scales of variability identified over the world major rivers (Labat, 2006).340

Looking at the internal dynamics of each coherent region, i.e. phase-phase and phase-amplitude causal relationships, com-

plex interactions have been identified. Those interactions can be orientated from lower (higher) to higher (lower) time scales of

variability, can be uni- or bi-directional and even self-interacting. For all regions, even regions with very similar time-frequency

patterns, the cross-scale interactions are very different, which implies different internal dynamic (Paluš, 2014). As suggested

earlier, this might also highlight different interactions between ocean, atmosphere and land-surface processes over the dif-345

ferent regions of France. For instance, the interactions between atmosphere variability (either precipitation or temperature)

are known to be strongly modulated by interactions with land-surface processes, such as soil moisture, evapotranspiration,

and surface albedo (including snow and ice cover), and these processes are more or less important over the French territory
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(Ducharne et al., 2020). But more importantly, phase-phase interactions in discharge variability appear partly inherited from

precipitation and temperature. This suggests that the watershed characteristics do not entirely filter the interactions between350

ocean, atmosphere and land-processes driving precipitation and temperature. Interestingly, however, discharge variability does

not show any phase-amplitude causality, while such interactions are significant in precipitation and temperature. This suggests

that catchment properties substantially modulate the amplitude of the input climate signal (i.e. precipitation and temperature),

which are then not transferred to discharge variability. Such finding is consistent with previous studies, showing that infiltration

processes and ground water variability acts as a low-pass filter on the input precipitation and temperature variability (Massei355

et al., 2007). However, our hydrological data set contains very few watersheds with groundwater support. The processes driving

those amplitude modulations could not be fully explained within the scope of this study, and require further explorations.

Nevertheless, those findings allow for a better identification of climate deterministic processes controlling hydroclimate

variability, notably using cross-scale analysis, which could help identifying more robust climate drivers. For instance, it is

important to discriminate pure climate influence from climate-land processes interactions. This has large implications for360

seamless hydrological predictions based on climate information, as only some parts of the climate signals are transferred

to discharge systems. Thus, causal cross-scale relationship could be used to inform and improve existing seasonal to multi-

year seamless forecasting for hydrological variability, including extremes (e.g. flood and drought). Preliminary work in this

direction were recently proposed by Jajcay et al. (2018), who developed a composite binning method enabling to forecast a

particular time series based on conditional phase of another. Similarly, it would be of crucial importance to determine whether365

hydrological models, which are commonly used in climate-impact assessments, are reproducing the filtering-processes induced

by the catchment properties, and identify those (Ducharne et al., 2020). Long term hydroclimate variability only represents a

fraction of the total variability, however, strong teleconnections between long term and smaller than inter-annual time scales

have been highlighted. Those teleconnections result from both spatial and temporal interactions and feedback between the

hydroclimate processes (Feliks et al., 2016). Owing to the recent addition of long term, high spatial resolution hydroclimate370

data sets (e.g. Fyre reconstructions, Devers et al. (2020, 2021)) it is now possible to apply the clustering and cross-scale analyses

to better characterize the effects that long term hydroclimate variability (e.g. multi-decadal) has on smaller time scales. The

methodology presented in this work can enable deeper analyses than those based on correlations, which may overlook some

important hydroclimate processes.
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Figure 1. Location of stream gauges (grey dots), corresponding watersheds (pale red, Brigode et al. (2020)), hydrographic network (blue

lines, Pella et al. (2012)), and orography in Safran dataset (grey scale, Vidal et al. (2010)).
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Figure 2. Workflow of this study. (a) 152 monthly precipitation, temperature and discharge time series are extracted from IRSTEA’s water-

shed database. The following steps are applied to each variable. (b) the continuous wavelet spectrum for each watershed is computed. (c)

A distance matrix between wavelet spectra is then established; d.) A fuzzy clustering algorithm is used to build a classification map of the

watersheds based on their wavelet spectra.
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Figure 3. A system with directional cross scale interactions. a) A variable f(t) made of two components X and Y , connected through

CXY and CY X in a perturbation-dampening scheme so that f(t) =X(t)−Y (t). Both X and Y receive inputs φX and φY , respectively.

CXX allows X to grow first. Depending on both inputs and connections, some phase-phase or phase-amplitude interactions between X

and Y can occur. b) an example of a phase-phase interaction, with every fourth ridge of YPP coinciding with a ridge of X , with fPP (t) =

X(t)−YPP (t) (top,middle and bottom panels, respectively). c) an example of phase-amplitude interaction. X and YPA only interact when

X reaches a ridge, in which case YPA amplitude if lowered, yielding fPA(t) (Top, middle and bottom panels, respectively). (adapted from

Onslow et al. (2014))
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Figure 4. Clustering of precipitation time-frequency variability in France. (a) Classification map of the watersheds. Pie charts slices show

the three highest probability memberships. Pie charts denote fuzzy clustering memberships. (b) Global wavelet spectra for each cluster (95%

significance level against red noise). (c) Statistically significant wavelet spectra for each cluster.
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Figure 5. Inter-annual precipitation time-frequency variability in France. (a) Global wavelet spectra for each cluster. (b) Statistically signifi-

cant (95% significance level) wavelet spectra for each cluster.
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Figure 6. Precipitation cross-scale interactions (95% significance level).The driving time scale is on the horizontal axis, the driven on the

vertical axis (i.e. the time scale x phase has a causal relationship with the phase/amplitude of the driven time scale y). Lower(upper) half of

the graph, below (above) the diagonal, show time scales acting on smaller (larger) time scales. (a) Phase-phase causality. (b) Phase-amplitude

causality.
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Figure 7. Clustering of temperature time-frequency variability in France. (a) Classification map of the watersheds. Pie charts slices show

the three highest probability memberships (b) Global wavelet spectra for each cluster. (c) Statistically significant wavelet spectra for each

cluster.
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Figure 8. Inter-annual temperature time-frequency variability in France. (a) Global wavelet spectra for each cluster. (b) Statistically signifi-

cant wavelet spectra for each cluster.
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Figure 9. Temperature cross-scale interactions (95% significance level).The driving time scale is on the horizontal axis, the driven on the

vertical axis (i.e. the time scale x phase has a causal relationship with the phase/amplitude of the driven time scale y). Lower(upper) half of

the graph, below (above) the diagonal, show time scales acting on smaller (larger) time scales. (a) Phase-phase causality. (b) Phase-amplitude

causality
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Figure 10. Clustering of discharge time-frequency variability in France. (a) Classification map of the watersheds. Pie charts slices show the

three highest probability memberships (b) Global wavelet spectra for each cluster. (c) Statistically significant wavelet spectra for each cluster.
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Figure 11. Inter-annual discharge time-frequency variability in France. (a) Global wavelet spectra for each cluster. (b) Statistically significant

wavelet spectra for each cluster.
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Figure 12. Discharge cross-scale interactions (95% significance level).The driving time scale is on the horizontal axis, the driven on the

vertical axis (i.e. the time scale x phase has a causal relationship with the phase/amplitude of the driven time scale y). Lower(upper) half of

the graph, below (above) the diagonal, show time scales acting on smaller (larger) time scales. (a) Phase-phase causality. (b) Phase-amplitude

causality
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