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Abstract. Understanding how water resources vary in response to climate at different temporal and spa-

tial scales is crucial to inform long-term management. Climate change impacts and induced trends may

indeed be substantially modulated by low-frequency (multi-year) variations, whose strength varies in time

and space, with large consequences on risk forecasting systems. In this study, we present a spatial classi-

fication of precipitation, temperature and discharge variability in France, based on a fuzzy clustering and5

wavelet spectra of 152 near natural watersheds between 1958 and 2008. We also explore phase-phase and

phase-amplitude causal interactions between time scales of each homogeneous region. Three significant time

scales of variability are found in precipitation, temperature and discharge: 1 year, 2-4 years and 5-8 years.

The magnitude of these time scales of variability is however not constant over the different regions. For

instance, Southern regions are markedly different from other regions, with much lower 5-8 years variability10

and much larger 2-4 years variability. Several temporal changes in precipitation, temperature and discharge

variability are identified during the 1980s and 1990s. Notably, in the Southern regions of France, we note a

decrease in annual temperature variability in the mid 1990s. Investigating cross-scale interactions, our study

reveals causal and bi-directional relationships between higher and lower-frequency variability, which may

feature interactions within the coupled land-ocean-atmosphere systems. Interestingly, however, even though15

time-frequency patterns (occurrence and timing of time scales of variability) were similar between regions,

cross-scale interactions are far much complex, differ between regions, and are not systematically transferred
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from climate (precipitation and temperature) to hydrological variability (discharge). Phase-amplitude inter-

actions are indeed absent in discharge variability, although significant phase-amplitude interactions are found

in precipitation and temperature. This suggests that watershed characteristics cancel the negative feedback20

systems found in precipitation and temperature. This study allows for a multi-time scale representation of

hydro-climate variability in France, and provides unique insight into the complex non-linear dynamics of

this variability, and its predictability.

1 Introduction

Hydroclimate variability represents the spatio-temporal evolution of hydrological (e.g. discharge, ground-25

water level) and climate variables (e.g. precipitation and temperature), which are directly impacting hydro-

logical variability. Studying how hydrological variables react to climate variability and change is a major

challenge for society, in particular for water resource management, flood and drought mitigation planning

(IPCC, 2007, 2014, 2021). However, hydrological variability is expressed at multiple time scales (Labat,

2006; Schaefli et al., 2007; Massei et al., 2007, 2017), for which driving mechanisms remains poorly charac-30

terised and understood. As suggested in Blöschl et al. (2019), understanding the spatio-temporal scaling, i.e.

how the general dynamics driving hydrological variability change at spatial and temporal scales, represents a

major challenge toward improved prediction systems (Gentine et al., 2012). Understanding spatio-temporal

scaling required to identify regions, i.e. the maximum spatial scale in which the dynamics remain unchanged

despite its non-linearity, is critical (Hubert, 2001). Hydrological variability is by definition non-linear (Labat,35

2000; Lavers et al., 2010; McGregor, 2017), as it results from complex interactions between atmospheric dy-

namics and catchment properties that may vary at different time scales (e.g. soil characteristics, water table,

karstic systems, vegetation covers;(Gudmundsson et al., 2011; Sidibe et al., 2019)). Such interactions be-

tween processes at different time scales, i.e. cross-scale interactions (Paluš, 2014; Jajcay et al., 2018), have

never been studied to further understand hydrological variability. It has also been shown that hydroclimate40

variability is inherently non-stationary, with time dependence of the mean and variance due to changes in the

controlling factors (e.g. Coulibaly and Burn (2004); Labat (2006); Dieppois et al. (2013, 2016); Massei et al.

(2017)).This results in difficulties in characterizing and predicting the hydrological variability at different

spatio-temporal scales (Gentine et al., 2012; Blöschl et al., 2019).
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While different time scales have been identified in hydrological variability (Coulibaly and Burn, 2004;45

Labat, 2006; Dieppois et al., 2013, 2016; Massei et al., 2017), very little has been done to: i) explore how

spatially coherent are those time scales, ii) identify regions in which the statistical characteristics of all

ranges of variability remain unchanged. Studying 231 stream gauges throughout the world, Labat (2006)

highlighted different time scales of discharge variability over the different continents. At the regional scale,

Smith et al. (1998) established a clustering of 91 US stream gauges based on their global wavelet spec-50

tra, i.e. dominant time scales, and found five homogeneous regions. Similarly, Anctil and Coulibaly (2004)

and Coulibaly and Burn (2004) established a clustering of Southern Québec and Canada streamflow, based

on the timing of both the 2-3 and 3-6 year time scales. In Europe, Gudmundsson et al. (2011) identified

different regions according to the magnitude of decadal discharge variability. In France, such a cluster-

ing, based on time-frequency patterns of discharge variability, as well as its relation to climate variability55

(e.g. precipitation and temperature), has not yet been explored. In addition, all studies mentioned above ei-

ther isolated particular time scales of variability or averaged the variability across time scales (e.g. global

wavelet spectra), which is equivalent to a linearization of the system (Hubert et al., 1989). These stud-

ies thus ignore potential feedback mechanisms, e.g. between soil moisture, precipitation, and temperature

(Materia et al., 2021; Ardilouze et al., 2020; Bellucci et al., 2015). In the presence of feedback mechanisms, interactions occur over different time scales, also called cross-scale interactions (Christophe Bouton, 2017).60

However, while studying cross-scale interactions have gained increasing interest in other fields, such as neu-

rosciences (e.g. Onslow et al. (2014); Wang et al. (2014)), cross-scale interactions are poorly understood

in climate and hydrological sciences. New strategies have recently been developed to facilitate such studies

(Jajcay et al., 2018). Cross-scale interactions are however very relevant to hydroclimate studies, in particular

when searching for climate drivers (or predictors) of hydrological signals, as they will reveal climate time65

scales that are causality linked to each time scale of hydrological variability.

In this study, we investigate the spatial homogeneity of hydroclimate variability in France, across time

scales. We aim at identifying homogeneous regions according to specific time-frequency patterns? From the

determination of homogeneous regions of hydroclimate variability, we will explore cross-scale interactions

that may result from feedback processes between catchment properties and hydroclimate variability.70

This study therefore have major implication for the comprehension of hydroclimate dynamics and their

interactions with large-scale climate drivers, and catchment properties. In addition, as recently suggested

in Scaife and Smith (2018), improved characterization of the different timescales of variability and their
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interactions could help optimising ensemble-based hydrological forecasting systems, through identifying

climate ensemble members that better match the observed realisation.75

The work is divided into the following sections. Data and methods are introduced in Section 2. In Section

3, we establish homogeneous regions for precipitation, temperature and discharge variability based on their

time-frequency patterns and then explore cross-scale interactions for each region of homogeneous variability

in precipitation, temperature and discharge. Finally, discussions of the main results and conclusions are

provided in Section 4.80

2 Data and methodology

2.1 Hydrological and climate data

The data consist of precipitation, temperature and discharge time series located over 152 watersheds (Fig-

ure 1,2a,2b) Discharge time series were extracted from French Reference Hydrometric Newtork compiled

by Giuntoli et al. (2013b). This network of stations identifies near-natural watersheds (i.e. with negligible an-85

thropogenic modifications) with long-term high-quality hydrometric data. According to Giuntoli et al. (2013a)

this subset of stations does not show abrupt changes and trends that could have resulted from anthropogenic

influence. The period 1968-2008 was chosen by Giuntoli et al. (2013b) as being the best trade-off in terms

of data availability over the different regions. Here, this database was further subset to 152 watersheds in

order to select complete monthly timeseries (i.e. without missing values), only (Figure 1). Precipitation and90

temperature data have been estimated from the 8 km-grid Safran surface reanalysis dataset (Vidal et al.,

2010), and has been subset to a common period (1968-2008). For this study, precipitation and temperature

have been averaged over each watershed area (Caillouet et al., 2017). Each station is thus representative of

one watershed.

2.2 Methods95

The methodology described below, and summarized on the workflow (Figure 2), is applied to precipitation,

temperature and discharge data sets.
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2.2.1 Continuous wavelet transforms

For each of the 152 watersheds continuous Wavelet analysis is used to identify at which time scales and time

locations the amplitude of variability (i.e. local variance) is the strongest (Figure 2c, (Torrence and Compo, 1998)).100

Here we employ interchangeably the words "time scale" and "frequency", though frequency implies a pe-

riodic variability, which is not a necessary condition in continuous wavelet analysis. For any finite energy

signal x, it is possible to obtain a time-frequency representation by projecting the time series on a func-

tion called the mother wavelet, which quantifies the amplitude of the time series variability at a given time

scale and time location. This mother wavelet can be translated in time, to quantify the variability at pre-105

cise time locations, but also scaled so that variability at different time scales can be quantified as well

(Torrence and Compo, 1998; Grinsted et al., 2004). A mother wavelet at a time scale a and time location b

is called a daughter wavelet. Daughter wavelets are calculated as:

ψa,b =
1√
a
ψ(
t− b
a

) (1)

The left hand side (LHS) term is the daughter wavelet of scale a and time translation b at time t. For the sake110

of simplicity, we will refer to b as the time location. The first right hand side (RHS) term is the scaling of

the mother wavelet ψ and the last one is the time translation. The projection of the signal onto each scale a

of the form:

WTψ[x](a,b) = 〈x,ψa,b〉=
∫
R

x(t)ψa,b(t)dt (2)

LHS term contains the wavelet coefficients WT , i.e. how large is the amplitude of variability at the time115

scale a and time location b. If the mother wavelet (and hence the daughter wavelets as well) is complex,

wavelet coefficients are complex as well , and both the amplitude and instantaneous phase of the time series

can be computed around time location b and time scale a . Wavelet coefficients represent the inner product

of the signal, daughter wavelet of scale a and time location b (Centre). The norm of their square is called

the wavelet power and represents the amplitude of the oscillation of signal x at scale a and centred on time120

location b. As it is impossible to capture the best resolution in both time scale and time location simultane-

ously, here, we used a Morlet mother wavelet (order 6), which offers a good trade-off between detection of

scales and localisation of the oscillations in time (Torrence and Compo, 1998). Visualization of a continuous
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wavelet transform is called a scalogram. Figure 2c shows a collection of scalograms, with time location on

the horizontal axis, and time scale on the vertical axis. Yellow colors show the time scales and time locations,125

when the amplitude of the time series’ variability is maximum. A major advantage of continuous wavelet

transform compared to other signal analysis methods, such as the Fourier transform, is that wavelet analysis

takes non-stationarity into account. Non-stationarity is the time location dependence of both the mean and

variance of a time series.

130

Because the daughter wavelet translates and scales up, overlap in time and frequency can occur, and

wavelet coefficients can be overestimated, requiring statistical significance tests (Torrence and Compo, 1998).

This redundancy may give rise to peaks in the wavelet coefficients (meaning, high variability detected) even

in the case of a random noise (Ge, 2007). Torrence and Compo (1998) used Monte-Carlo simulations to assess the statistical significance of the continuous wavelet transform of their time series. Just as with any other statistical analysis, the performance of statistical tests is an open debate. It has been shown that while the significance test of Torrence and Compo (1998) may not unravel all significant wavelet coefficients, their false detection rate is low for as long as the mother wavelet chosen is adapted to the time series (Ge, 2007). By using a Morlet Wavelet of order 6, we ensure that such statistical significance tests keep the false detection rate low (Ge, 2007). Because the significance tests aim is to ensure large peaks are exceeding the range of variability that would be occurring in a random noise, statistically significant wavelet coefficient are always those with large wavelet coefficients values, for any given time scale.

135

For the reminder of this study, the terms "intra-seasonal","annual", and "inter-annual" refer to variations

at "<1yr", "1yr", "2-4yr" and "5-8yr" time scales, respectively.

2.2.2 Image Euclidean Distance Clustering

After each watershed wavelet spectrum is computed, we estimate the similarity between them, i.e. how sim-

ilar is the variability, for given scales and time locations, among all wavelet spectra (Figure 2d). Similarities140

between wavelet spectra are estimated from the entire wavelet spectrum, and not only on statistically signifi-

cant signals, to guarantee more consistent comparison between spectra. Distances between two-dimensional

data, such as wavelet spectra, are estimated using Euclidean distance between pairwise points (pED; i.e com-

puting f2(xi,yi)−f1(xi,yi)). However, such a procedure has no neighborhood notion, making it impossible

to account for globally similar shapes (Wang et al. (2005)). To avoid this issue, we used the Image Euclidean145

distance calculation method (hereinafter IEDC) developed by Wang et al. (2005). The IEDC method mod-

ifies the pED equation in two ways (Wang et al., 2005): i) the distance between pixel values is computed

not only pairwise, but for all indices; ii) a Gaussian filter, function of the spatial distance between pixels, is

applied. The Gaussian filter then applies less weight to the computed distance between very close and far

apart pixels, while emphasizing on medium spaced ones (Wang et al., 2005).150
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2.2.3 Fuzzy clustering

Fuzzy clustering has then been used to cluster the different watershed based on their similarities (Figure

2e). Fuzzy clustering is a soft clustering method (Dunn, 1973). While soft clustering spreads membership

over all clusters with varying probability, hard clustering attributes each station one and only one cluster

membership. Soft clustering is therefore better-suited when the spatial variability, originating from different155

stations’ hydroclimate characteristics, is smooth. For instance, precipitation and temperature patterns are

unlikely to change suddenly from one station to a neighboring one, and in turn, be markedly different from

the next neighbor (Moron et al., 2007; Hannaford et al., 2009; Rahiz and New, 2012). As such, several

stations tend to show transitional or hybrid patterns, and can potentially be member of different clusters,

limiting the robustness of hard clustering procedure (Liu and Graham, 2018).160

Fuzzy clustering performance is determined by the ability of the algorithms to recognize hybrid stations

(i.e. stations incorporating multiple features from different patterns observed in other coherent regions),

while allowing for a clear determination of the membership of stations with unique features (Kaufman and

Rousseeuw, 1990). Here, we used the FANNY algorithm (Kaufman and Rousseeuw, 1990), which has been

shown to be flexible, and to offer the possibility to adapt the clustering to the data, with optimal performance165

(Liu and Graham, 2018). In addition, rather than setting the number of clusters arbitrarily, we used an estima-

tion of the optimum number of clusters by first computing a hard clustering method: the consensus clustering

(Monti et al., 2003). Thus, the number of clusters providing the best stability (i.e. the minimal changes of

membership when adding new individuals) is considered optimal as recommended in Şenbabaoǧlu et al.

(2014). The different clusters’ memberships are then mapped to discuss the spatial coherence of each hydro-170

climate variable.

2.2.4 Cross-scale interactions

For each variable and each cluster, cross-scale interactions are explored (Figure 2f). Cross-scale interactions

refer to phase-phase and phase-amplitude couplings between time scales of a given time series (Paluš, 2014;

Scheffer-Teixeira and Tort, 2016). Here, coupling means that the state (either phase or amplitude) of a signal175

y is dependent on the state of a signal x, and describes causal relationship (Granger, 1969; Pikovsky et al.,

2001), which refers to information transfer from a time scale of a signal to another.
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Figure 3 describes the necessary setting and characteristics of cross-scale interactions. A variable f mea-

sures the dynamics of a a system (e.g. precipitation or temperature variability). This system is modelled as a

coupling of two componentsX and Y . The components interact with each other in a perturbation-dampening180

(X , Y , respectively), so that f(t) =X(.., t)−Y (.., t) (Figure 3a). The interactions between the components

occur through the connections CXY and CY X , with a given strength (here C.. = 2), and this perturbation-

dampening interaction forms a negative feedback (i.e. increase in X activity triggers Y activity, dampening

X activity which in turn lowers X activity, thus lowering Y activity, allowing X activity to increase again,

and so on (Figure 3a).). The connection CXX enables X to grow first before Y dampens it. This connection185

CXX forms a positive feedback. i.e. increases inX activity will be more severe asX activity is high. BothX

and Y receive inputs φX , φY from driving processes (e.g. moisture advection, convective processes) (Figure

3a). Depending on both the mean and time scales of φX and φY , the strength ofCXX ,CXY andCY X ,X and

Y may show coupled behaviors. For instance, in Figure 3b, every fourth ridges of YPP (t) is synchronized

with a ridge of X(t) (Figure 3b, top and middle panels), thus forming a phase-phase interaction. The direc-190

tion of the interactions depends on the inputs φX , φY , and the connections CXX , CXY and CY X . fPP (t) is

the difference between X(t) and YPP (Figure 3b, bottom panel). Because the interaction between X and Y

depends on both inputs and connections, interactions may lead to a cross-scale relationship only for certain

values of X or Y (Figure 3c). Thus, depending on the phase of either X or Y , the amplitude of the driven

component may increase/decrease when the cross-scale interaction takes place, and return to normal when it195

is out of phase compared to the driving component. This describes a phase-amplitude interaction. In Figure

3b, YPA amplitude decreases when X is at its maximum (i.e. when its phase is a ridge; Figure 3c, top and

middle panels). Similarly to the phase-phase interaction, fPA(t) is the difference between X(t) and YPA(t)

(Figure 3c, bottom panel). Because phase amplitude are very dependent on inputs φX and φY , connections

between spatially distant physical processes are likely to give rise to phase-amplitude interactions (Nandi200

et al., 2019). In summary, there are three elements needed for cross-scale interactions between multiple,

coupled processes, to arise: i) an oscillating forcing φX must drive X . An additional forcing φY on Y may

also be present; ii) X must have positive feedback on itself so that it grows faster than Y ; iii) Y must show

dampening effect on X (XY or Y X negative feedback). The presence and characteristics of cross-scale

interactions depend on the strength and frequencies of φX ,φY , intrinsic frequencies of X,Y and coupling205

strengths CXY ,CY X ,CXX ,CY Y (Figure 3).Thus, detection of cross-scale interactions in time series is an
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indication of the presence of all those characteristics in the hydroclimate system, e.g. precipitation-land pro-

cesses, which helps in investigating potential processes at play.

The balance between X and Y determines if the feedback is either positive or negative (Peters et al., 2007).

Note that cross-scale interactions can occur from large-scale to small-scale processes, and vice-versa. For210

instance atmospheric circulation at seasonal time scales, influences inter-annual and decadal time scales,

which in turn influence seasonal variations (Hannachi et al., 2017).

Following Paluš (2014) and Jajcay et al. (2018), we choose the conditional mutual information (CMI) sur-

rogates method, combined with wavelet transforms. First, using a Morlet mother wavelet, the instantaneous

phase and amplitude at time t and scale s of the signal are obtained. Next, the conditional mutual informa-215

tion, I(φx(t);φy(t+τ)−φy(t)|φy(t)) for the phase and I(φx(t);Ay(t+τ)|Ay(t)),Ay(t−η)),Ay(t−2η))

for the amplitude is computed. In the case of phase-phase relationships, the CMI measures how much the

present phase of x contains information about the future phase of y knowing the present value of y. Phase-

phase interactions can be uni- or bi-directional. It is possible for a single time scale to drive another, which in

turn, drives back the original one, describing feedback interactions. For phase-amplitude relationships, CMI220

measures how much the present phase of x contains information of the future amplitude of y knowing the

present and past values of y. The statistical significance of the CMI measure is assessed using 5000 phase-

randomized surrogates, having the same Fourier spectrum, mean and standard deviation as the original time

series, as in Ebisuzaki (1997). Paluš (2014) has shown that this number of surrogates is ideal for statistical

significance, in the context of hydroclimate time series. The computational cost is however high, with ap-225

proximately one week of computing for a time series of 50 years, on a 32-core xeon computer. The present

computations were done on the Myria cluster, hosted by the Centre Régional Informatique et d’Applications

Numérique de Normandie (www.criann.fr).

3 Spatio-temporal clustering of hydrological variability

The wavelet transform corresponding to each watershed’s monthly time series have been computed and all230

152 watersheds’ wavelet transforms have been checked for similarities using IEDC fuzzy clustering to iden-

tify and characterize homogeneous regions of hydroclimate variability over France. Once the homogeneous

regions have been identified, an average time series for each region was computed. The global wavelet spec-
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trum of this time series quantified the total variance expressed at each time scale, while its wavelet spectrum

characterized how this variance is distributed in the time (location) and frequency (scale) domains. In addi-235

tion, so as to focus on inter-annual time scales, we computed the wavelet spectrum of the time series filtered

at the annual time step. Cross-scale interactions were then investigated for each homogeneous region.

3.1 Precipitation

3.1.1 Time-frequency patterns

Seven regions with homogeneous time-frequency patterns are identified (Figure 4a): North-western (green),240

North-eastern (blue), Centre-North (red), Centre-western (pink), Centre-eastern (black), South-western (yel-

low) and South-eastern (dark green). Figure 4a shows that all watersheds converge toward singular clusters,

meaning that all regions are highly coherent (i.e. pie charts in Figure 4a show one dominant color).

In all regions, precipitation is varying at different time scales, ranging from intra-seasonal to inter-annual

scales (i.e. 2-8 years; Figure 4b). South-western and -eastern are dominated by annual (1yr) variability,245

while their inter-annual variability (2-8yr) is low and reversely for other regions. In addition, statistically

significant areas in continuous wavelet spectra however show that those time scales of variability are non-

stationary (Figure 4c), with temporal changes in terms of amplitude discriminating the different regions. For

instance, South-western regions are characterized by quasi-continuous significant annual variability until

the late 1980s, while other watersheds show sparsely significant annual variability (Figure 4c). Similarly,250

although there is significant inter-annual variability in all watersheds from the late 1980s, during this period,

South-western and -eastern regions do not show significant inter-annual variations (Figure 4c). After remov-

ing the <=1yr time scales (i.e.the seasonal cycle), focusing on inter-annual time scales, significant variability

at 2yr (South-western) and 5yr (South-western and South-eastern) time scales emerge for the Southern re-

gions. The largest variations (i.e. coloured circles) occur over shorter periods of time than in other regions255

(Figure 5b).

In summary, different regions with coherent precipitation variability are identified, and are characterised

by three time scales of variability: intra-seasonal, annual and inter-annual. The amplitude of those time scales

of variability however differs in time and over the French territory. Mediterranean regions (South-western

and -eastern) have comparatively weaker inter-annual variability as compared to annual time scales. The260
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differences between regions are both dependent on the local expression of the climate forcing and watershed

characteristics. Because those physical processes are in interaction, studying cross-scale interactions in pre-

cipitation brings more insight on the dynamics behind the spectral characteristics of each region (Boé, 2013;

Materia et al., 2021; Bellucci et al., 2015; Ardilouze et al., 2020).

3.1.2 Cross-scale interactions265

Figure 6 shows cross-scale interactions for each cluster of precipitation variability (cf. Figure 4).

North-eastern, South-eastern, North-centre, North-western and Centre-eastern regions all show the phase

of a 5-8yr variability driving the variability of smaller time scales (Figure 6a, blue, dark green, red, green,

black, lower half of the graph). This cross-scale interactions is however more pronounced in North-eastern

and South-eastern regions (Figure 6a). Similarly, eastern regions exclusively show 5−8yr→ 2−4yr inter-270

actions, while other regions show self-interacting 5-8yr variability (Figure 6a). The upper half of the graph,

which refers to higher-frequency driving lower-frequency variability, is populated by North-centre, South-

eastern, North-western and North-eastern regions (Figure 6a, red, dark green, green and blue). South-eastern

shows cascade phase-phase interactions, i.e. 2−3yr→ 5−4yr→ 6−5 (Figure 6a, dark green). In addition,

both South-eastern and North-western regions show mirror interactions with their lower half counterparts,275

e.g., 5− 6yr↔ 4− 5yr (Figure 6a, dark green, green mirror patches about the diagonal). We also note that

phase-phase interactions are very weak over the South-western regions, and absent in the centre-western

regions.

Phase-amplitude interactions are presented in Figure 6b. The lower half of the graph, which refers to

lower-frequency driving higher-frequency variability, shows 5−8yr→ 2−4yr interactions for western and280

North-centre regions (Figure 6b, pink, yellow, green, red). Centre-eastern regions are also showing lower-

frequency variability driving higher-frequency variability, but between 8yr→ 6yr variability (Figure 6b).

Notably, the North-western region is the only one with cross-scale interactions driving the annual cycle

(Figure 6a, green). In the upper half of the graph, which refers to higher-frequency driving lower-frequency

variability, we only find North-centre and North-eastern regions, showing 2−4→ 4yr and 3−4yr→ 7−8yr285

phase-amplitude interactions (Figure 6b, blue, red). Note that North-centre, North-eastern and Centre-eastern

regions show phase-amplitude and phase-phase interactions at very similar time scales (Figure 6a,b, red,

blue, black), while time scales of phase-amplitude and phase-phase interactions do not match in Centre-
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western and North-western and South-western regions (Figure 6a, b, pink, green, yellow). Regions to the

East thus appear to have both phase-phase and phase-amplitude interactions at the same time scales, while290

western regions are more characterized by phase-amplitude interactions.

The precipitation cross-scale interactions can be of different forms: phase-phase, phase-amplitude, uni-

or bi-directional, from lower to higher time scales and vice versa. The presence of cross-scale interactions

seems to be tied to specific spatial locations, suggesting different internal dynamics, over the different regions

of homogeneous precipitation variability. Interestingly, cross-scale interactions tend to converge toward spe-295

cific time scales, notably 2-4yr and 5-8yr, which were linked to ocean-atmosphere variability, such as the

North Atlantic Oscillation, in previous hydroclimate studies over France (Feliks et al., 2011; Fritier et al.,

2012; Dieppois et al., 2016; Massei et al., 2017). In addition, the presence of mirror interactions also indicate

strong bidirectional negative feedback.

3.2 Temperature300

3.2.1 Time-frequency patterns

In temperature, nine regions with homogeneous time-frequency patterns are identified (Figure 7a): North-

western-high (pink), North-western-low (black), North-eastern (blue), Centre-eastern (red), Centre-western

(green), South-eastern-high (yellow), South-eastern-low (brown), South-western-high (dark green) and South-

western-low (purple). Fuzzy clustering shows that watersheds typically converge toward singular clusters,305

defining highly coherent regions (Figure 7a). This is however not true for the Centre-western region, which

is characterized by a mix of spectral characteristic defining other regions (cf. red, green, black, yellow and

purple pie charts, Figure 7a).

Using monthly data, temperature is primarily varying on an annual time scale, with very similar ampli-

tudes for all regions (Figure 7b-c).Since the dominant annual variability masks the other time scales, we use310

the annual time step to study inter-annual variability (Figure 8a-b). Focusing on this inter-annual variability,

significant temperature variations indeed emerge at 2-4yr and 5-8yr time scales, and show different timings

and amplitudes over the different regions (Figure 8a-b). All regions show 5-8yr variability, but, compared

to northern regions, southern regions show significantly stronger variations on 2-4yr time scale (Figure 8a).
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Similarly, while stronger 2-4yr variability occur in the 1980s and 1990s in the South-western-low region,315

other regions show significant 2-4yr variability from the 2000s, only (brown, Figure 8b).

3.2.2 cross-scale interactions

Figure 9 shows cross-scale interactions for each cluster of temperature variability identified in Figure 8a.

For temperature, phase-phase interactions are mostly concentrated in the upper half of the graph, which

refers to higher-frequency modulating lower-frequency (Figure 9a). Notably, a 2− 6yr→ 6− 8yr phase-320

phase interaction appears more pronounced over Northern regions (Figure 9a, blue, red, pink, black). The

Centre-western region shows similar phase-phase interactions, but at 1−3yr→ 4−6yr time scales (Figure

9a, green). In the lower half of the graph, which refers to lower-frequency modulating higher-frequency,

interactions are found at very similar timescales, but at slightly higher frequency, for all regions (e.g.

, 2− 5yr→ 1− 4yr variability,Figure 9a). Temperature in the South-western-low region, however, show325

slightly different characteristics with phase-phase interactions between lower- and higher-frequency occur-

ring between 7− 8yr→ 3− 4yr and 7− 8yr→ 3− 4yr variability (Figure 9a, purple).

Temperature phase-amplitude interactions are mostly acting on the 3-4yr time scale for all regions (Figure

9b). In particular, in temperature, more pronounced phase-amplitude interactions are found over the South-

western-low region (Figure 9b, purple), consistently with previous studies on phase-amplitude interactions in330

European temperature (Palus, 2014; Jajcay et al., 2016). Over South-western regions, temperature, however,

shows both 3−8yr→ 3−4yr and 2−4yr→ 4−7yr phase-amplitude interactions (Figure 9b, brown, purple).

Furthermore, it should be noted that temperature variability interactions occur between very similar time

scales over a number of regions (Figure 9b, pink, red, yellow, purple). According to Paluš (2014), interactions

between very similar time scales, or the same time scales, can only occur if, at least, two processes are335

present.

As for precipitation, in temperature, phase-phase and phase-amplitude cross-scale interactions are region-

dependent, and can be uni- or bi-lateral. However, in temperature, most phase-phase interactions occur

from higher- to lower-frequency variability, while phase-amplitude interactions tend to occur from lower-

to higher-frequency variability. Similarly, while time scales of variability that are involved for phase-phase340

and phase-amplitude interactions are very similar in precipitation, they differ largely in temperature (Figure

9b). This suggests that, in temperature, the processes driving phase-phase and phase-amplitude cross-scale
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interactions are different. It also suggests that the processes driving cross-scale interactions are different in

temperature and in precipitation..

3.3 Discharge345

3.3.1 Time-frequency patterns

Six regions with homogeneous time-frequency patterns are identified in discharge (Figure 10a): North-

western (black), North-eastern (blue), North-Centre (red), Centre-western (green), South-eastern (yellow)

and South-western (pink). However, several watersheds, especially in the South, show memberships to mul-

tiple regions, suggesting lower spatial coherence in discharge than in precipitation and temperature. Lower350

spatial coherence, however, could mostly be explained by: i) mixing of solid and liquid precipitation in

driving discharge variability in the Alps; and ii) the local heterogeneity of precipitation due to convective

dynamics in the Pyrenees (Gottardi et al., 2008; Büntgen et al., 2008; Hermida et al., 2015) . Nevertheless,

the number of significant homogeneous regions is lower in discharge than in precipitation and temperature,

and northern regions are particularly coherent.355

Using monthly data, discharge is mainly varying on annual time scales, as determined through the global

wavelet spectra (Figure 10b). In addition, unlike other regions, South-eastern watershes shows significant

intra-seasonal variability (Figure 10b). Continuous wavelet spectra show that both annual and intra-seasonal

variability can be non-stationary, with temporal changes in terms of amplitude discriminating the different

homogeneous regions of discharge variability (Figure 10c). For instance, annual variability is only significant360

for specific periods in the South-eastern watersheds, while other regions show quasi-continuous significant

annual variability (Figure 10c). Similarly, in the South-eastern region, intra-seasonal discharge variability

sparsely appears significant from the 1980s, while they are absent in other regions (Figure 10b).

After removing the seasonality, focusing on inter-annual variability, North-eastern watersheds stand out

as having continuous significant inter-annual variability throughout the time series, with 4-5yr and 5-8yr365

variability before and after the 1990s, respectively (Figure 11b). South-eastern and -western regions also

stand out, as they show 2-4yr variability in the mid-1970s and 2000s (Figure 11b, yellow, pink). In addition,

South-eastern regions do not show significant variability in discharge at time scales greater than 4yr (Figure

11a-b).
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Different coherent regions are thus identified for discharge variability. In addition, these homogeneous re-370

gions correspond well with regions identified in precipitation and temperature variability. As in precipitation

and temperature, those regions seem strongly impacted constrainedperature, southern regions, which may

appear more complex in term of climate and its link to land-surface processes, appear much less spatially

coherent in discharge.

3.3.2 cross-scale interactions375

An important question concerning discharge cross-scale interactions is whether interactions found in either

precipitation or temperature are also present in discharge. Phase-phase interactions that were found in precip-

itation are also identified in discharge, in particular over the North-eastern, South-eastern and North-western

regions (blue, yellow and black; Figure 6a, Figure 12a). Phase-phase interactions that were identified in

temperature are much less evident (Figure 9a, Figure 12a). It should also be noted that many small patches,380

describing phase-phase interactions in precipitation and temperature, are systematically not transferred to

discharge variability (Figures 6a, 9a, 12a). Instead, discharge variability seems to exclusively preserve large

patches of phase-phase interactions (Figures 6a, 9a, 12a), suggesting that catchment properties are modulat-

ing the climatic signals (i.e. precipitation and temperature). Such filtering of climate signals is even more

pronounced in certain regions, such the North-centre, where phase-phase interactions are absent in discharge385

(Figure 12a), but were identified in precipitation and temperature (Figure 6a, 9a).

More importantly, there is no phase-amplitude interaction in discharge (Figure 12b). This points out that

watershed properties modulate the interacting processes in precipitation and temperature.Because our data

set is mostly composed of low groundwater support, those modulations are unlikely to result from the water

table, especially as phase-phase interactions are inherited from precipitation. In addition, further analysis on390

Paris’ Austerlitz gauging station, which includes very large groundwater support, reveals the same absence

of phase-amplitude interaction in discharge (not shown, Flipo et al. (2020)). Possible explanations include

the frequency partitioning of watershed compartments or integration process along the river network breaks

any spatial connection and thus smooths out and flattens phase-amplitude interactions (Schuite et al., 2019)

Cross-scale interactions are only of phase-phase nature in discharge. All phase-phase interactions in dis-395

charge seem to be primarily related to precipitation, even though the strong correlations between rainfall and

temperature makes it difficult to detect. However, differences between regions of homogeneous discharge
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variability are very similar to those detected in precipitation. Further work is however needed to understand

why phase-amplitude cross-interactions are absent in discharge variability. Catchment properties appear to

involve positive rather than negative feedback, thus resulting in a loss of phase-amplitude interactions.400

4 Discussions and Conclusions

4.1 Spatial variability of homogeneous hydroclimate variability in France

As recommended by Blöschl et al. (2019), characterizing the different scales of spatial and temporal vari-

ability, as well as their interactions, remains one of the most important challenges in hydrology. In this study,

we unravelled homogeneous regions of hydroclimate variability in France, accounting for non-stationarity405

and non-linearity, bringing additional information over previous, regime-based, classifications in France or

elsewhere (Champeaux and Tamburini, 1996; Bower and Hannah, 2002; Sauquet et al., 2008; Snelder et al.,

2009; Joly et al., 2010; Gudmundsson et al., 2011). This was achieved through a clustering analysis based

on time-frequency patterns of precipitation, temperature and discharge variability over 152 watersheds. We

then studied the spatio-temporal characteristics of each homogeneous region, including characteristic time410

scales of hydroclimate variability (i.e. precipitation, temperature and discharge) and cross-scale interactions.

Our study reveals different coherent regions of precipitation, temperature and discharge variability. Yet,

some watersheds are characterized by a mix of spectral characteristics from surrounding regions, or re-

gions with the same topographic characteristics. Those coherent regions are homogeneously distributed over

France in precipitation and discharge, but show larger discrepancies in term of spatial extension in temper-415

ature. According to previous clustering of hydroclimate variability over France, Northern regions are more

homogeneous than what was found here (Champeaux and Tamburini, 1996; Sauquet et al., 2008; Snelder

et al., 2009; Joly et al., 2010), and show lower spatial coherence. In particular, here, we demonstrate that

both the amplitude and timings of the different time scales of hydroclimate variability differentiate the re-

gions, highlighting the need for accounting for non-stationary behaviours in global to regional hydroclimate420

study. Overall, hydroclimate variability displays intra-seasonal (<1yr), annual ( 1yr) and inter-annual (2-4yr

and 5-8yr) time scales. Our results, which were focused on the French territory, are therefore consistent with

time scales of variability identified over the world major rivers (Labat, 2006).
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The time scales identified in this study have been shown to be important in climate processes, such as the

North Atlantic Oscillation, or the Gulf Stream front (Massei et al., 2007; Feliks et al., 2010; O’Reilly et al., 2017).425

Their interactions with watershed characteristics likely leads to their local expression with local processes,

playing an important role in feedback mechanisms dampening or enhancing how the climate variability is

expressed at the local scale(Haslinger et al., 2021; Materia et al., 2021; Bellucci et al., 2015).

4.2 cross-scale interactions

Feedback mechanisms can occur between any physical processes of the hydroclimate system, and identify-430

ing or attributing the nature of these processes is an intractable issue using observational data. Nevertheless,

we can use the mandatory conditions for cross-scale interactions to arise, to discuss the processes that are

potentially at play (Figure 3). In precipitation, cross-scale interactions involve lower-frequency time scales

driving higher-frequency time scales. North Atlantic climate variability encompasses various processes, such

as North Atlantic Oscillation or sea surface temperature anomalies, that drives climate variability (Feliks435

et al., 2010; O’Reilly et al., 2016). Thus, moisture advection from the North Atlantic area could poten-

tially act as a positive feedback forcing. Moisture advection has indeed been shown to impact western

Europe precipitation, especially in wintertime (Sun et al., 2020; O’Reilly et al., 2017). Zonal moisture ad-

vection is only forcing precipitation variability when the region is not affected by blocking weather regimes

(Haslinger et al., 2019, 2021). Furthermore, vegetation, temperature and soil moisture, which are themselves440

interacting with each other, can act as a dampening forcing, dampening the precipitation. The precipitation-

temperature, precipitation-soil moisture and precipitation-vegetation feedback have indeed been shown to

reach a negative sign depending on prior state of the soil (Liu et al., 2006; Berg et al., 2015; Liu et al., 2006).

However, the sign of temperature-soil moisture-vegetation feedback on precipitation have been shown to

be spatially dependent at the global scale. For instance, while temperature and soil-moisture have large445

effects in Western Europe, vegetation feedback is stronger and mostly of positive sign in Northern Eu-

rope (Woodward et al., 1998; Liu et al., 2006; Yang et al., 2018).In our results, South-eastern region shows

inter-annual phase-phase interactions (Figure 6a) in contradiction with recent literature: for instance, in the

Mediterranean Region, Ardilouze et al. (2020) found no negative soil-moisture precipitation feedback for

inter-annual scales, however, the authors used two climate models to simulate soil moisture sensitivity to450

precipitation forcing, and note that this variability is much larger in in century long reanalysis, such as
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NOAA’s 20CR. For other regions, inter-annual negative soil-moisture feedback was found by Boé (2013),

while Sejas et al. (2014b) found negative ocean-land temperature differences precipitation feedback. Simi-

lar results were found in Bellucci et al. (2015) where interactions between compartments of the atmospheric

circulation at intraseasonal time scale were found to produce significant interannual variations..455

-annual temperature variability is tied to both soil state and atmospheric circulation, but that relation is lo-

cation dependent. Large scale patterns, such as the North Atlantic Oscillation are shown to be source of both

inter-annual precipitation and temperature variability, especially during winter-time, including for South-

western France (Pepin and Kidd, 2006; O’Reilly et al., 2016). At more local scales, sea surface temperature

anomalies has have been shown to interact with near-surface air temperature through sea-land heat exchanges460

regions(Lambert et al., 2011; Sejas et al., 2014a; Zveryaev, 2015). Soil moisture and evapotranspiration de-

mand can enhance or dampen near-surface temperature variability (Miralles et al., 2012; Materia et al., 2021).

Here, in temperature, phase-phase interactions are particularly interesting because they arise from higher

frequency time scales driving lower frequency time scales (Figure 9a). As shown by Peters et al. (2004,

2007), higher frequency processes can spread to lower frequency ones by the means of intermediate time465

scales processes. High-frequency soil-moisture enhancing lower frequency large scale circulation may ex-

plain temperature cross scale interactions.

Regarding cross-scale interactions in discharge variability, the absence of phase-amplitude was particu-

larly interesting. As our discharge data set is mostly composed of low groundwater support, the absence of

phase-amplitude interactions is unlikely to result from the water table, especially as phase-phase interactions470

are inherited from precipitation. To test this hypothesis, we computed cross-scale interactions on the gaug-

ing station at Paris Austerlitz, which was not included in our original dataset, as it shows large groundwater

support and anthropogenic influence. Results at Paris Austerlitz are consistent with other regions, and do not

show any phase-amplitude interactions (not shown). As it has been shown that spatial heterogeneity (in the

variable dynamics) favors cross-scale interactions, one possible explanation is that converging of runoff into475

the main drain cancels that spatial heterogeneity and thus phase-amplitude variability (Peters et al., 2007).

In this study, we interpreted cross-scale interactions based on the mandatory structure for such interactions

to arise, the identified interacting time scales, comparison of cross-scale interactions in both precipitation,

temperature and discharge. Dedicated studies are needed to explore in depth the drivers of those interac-
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tions, as feedback mechanisms are complex, and likely different for each variable, even though phase-phase480

interactions in discharge clearly show the signature of those identified in precipitation.

4.3 Conclusion

Those findings allow for a better identification of climate deterministic processes controlling hydroclimate

variability, notably using cross-scale analysis, which could help identifying more robust climate drivers.

For instance, it is important to discriminate pure climate influence from climate-land processes interactions.485

This has large implications for seamless hydrological predictions based on climate information, as only

some parts of the climate signals are transferred to discharge systems. Thus, causal cross-scale relationship

could be used to inform and improve existing seasonal to multi-year seamless forecasting for hydrological

variability, including extremes (e.g. flood and drought). Preliminary work in this direction were recently

proposed by Jajcay et al. (2018), who developed a composite binning method enabling to forecast a particular490

time series based on conditional phase of another. Similarly, it would be of crucial importance to determine

whether hydrological models, which are commonly used in climate-impact assessments, are reproducing the

filtering-processes induced by the catchment properties, and identify those (Ducharne et al., 2020). Long

term hydroclimate variability only represents a fraction of the total variability, however, strong interactions

between high and low frequency variations have been highlighted. Those interactions are both spatial and495

temporal (Feliks et al., 2016). Owing to the recent addition of long term, high spatial resolution hydroclimate

data sets (e.g. Fyre reconstructions, Devers et al. (2020, 2021)), it is now possible to apply the clustering and

cross-scale analyses to better characterize the effects that long term hydroclimate variability (e.g. multi-

decadal) has on smaller time scales. The methodology presented in this work can enable deeper analyses

than those based on correlations, which may overlook some important hydroclimate processes.500

Code/Data Availability

Data

Safran Precipitation and Temperature dataset must be obtained from www.meteofrance.fr

Discharge data is available from http://www.hydro.eaufrance.fr

505
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Code

The code used for this study is available at https://github.com/ManuelFossa/Hess-2021-81

Pyclits python code used for Cross-scale interactions is available at https://github.com/jajcayn/pyclits
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Figure 1. Location of stream gauges (grey dots), corresponding watersheds (pale red, Brigode et al. (2020)), hydro-

graphic network (blue lines, Pella et al. (2012)), and orography in Safran dataset (grey scale, Vidal et al. (2010)

.
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Figure 2. The workflow of this study is repeated for precipitation, temperature and discharge data sets. (a) 152 near-

natural watersheds are selected. (b) Each watershed is represented by a monthly time series from 1968 to 2008, discharge

is measured at a gauging station, precipitation and temperature are averaged over the watershed. (c) The continuous

wavelet transform of each time series is computed, representing the time scale dependent, non-stationary variability

of each watershed. (d) The similarity between all 152 continuous wavelet transforms is computed and represented

as distance matrix. (e) top) Similar watersheds are grouped together into regions of homogeneous variability, using

a fuzzy clustering algorithm; middle) For each region, the relative importance of each time scale dependent variability

is represented with a global wavelet spectrum, and all regions global wavelet spectra are superimposed; bottom) The

continuous wavelet spectra of regions are superimposed. For clarity, only time scale and time locations with the most

significant variability are shown (coloured circles). (f) For each region, cross time scales interactions are computed.

top) phase-phase interactions identify any time scale’s phase that conditions another time scale’s phase.; bottom) The

phase-amplitude interactions characterize any time scale’s phase that conditions the amplitude of another time scale.
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Figure 3. A system with directional cross-scale interactions. a) A variable f(t) made of two components X and Y ,

connected through CXY and CY X in a perturbation-dampening scheme so that f(t) =X(t)−Y (t). Both X and Y

receive inputs φX and φY , respectively. CXX allows X to grow first. Depending on both inputs and connections, some

phase-phase or phase-amplitude interactions between X and Y can occur. b) an example of a phase-phase interaction,

with every fourth ridge of YPP coinciding with a ridge of X , with fPP (t) =X(t)−YPP (t) (top,middle and bottom

panels, respectively). c) an example of phase-amplitude interaction. X and YPA only interact when X reaches a ridge,

in which case YPA amplitude if lowered, yielding fPA(t) (Top, middle and bottom panels, respectively). (adapted from

Onslow et al. (2014))
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Figure 4. Clustering of precipitation time-frequency variability in France. (a) Classification map of the watersheds. Pie

charts slices show the three highest probability memberships. Pie charts denote fuzzy clustering memberships. (b) Global

wavelet spectra of homogeneous regions.(c) Wavelet spectra of homogeneous regions. For clarity, only time scales and

time locations 95% statistically significant and with the largest variability are shown (coloured circles).
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Figure 5. Inter-annual precipitation time-frequency variability in France. (a)Global wavelet spectra of homogeneous

regions. (b) Wavelet spectra of homogeneous regions. For clarity, only time scales and time locations with the 95%

statistically significant and largest variability are shown (coloured circles).
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Figure 6. Precipitation cross-scale interactions (95% significance level).The driving time scale is on the horizontal axis,

the driven on the vertical axis (i.e. the time scale x phase has a causal relationship with the phase/amplitude of the driven

time scale y). Lower(upper) half of the graph, below (above) the diagonal, show time scales acting on smaller (larger)

time scales. (a) Phase-phase causality. (b) Phase-amplitude causality.
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Figure 7. Clustering of temperature time-frequency variability in France. (a) Classification map of the watersheds. Pie

charts slices show the three highest probability memberships (b) Global wavelet spectra of regions. (c) Wavelet spectra

of homogeneous regions. For clarity, only time scales and time locations with the 95% statistically significant and largest

variability are shown (coloured circles).
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Figure 8. Inter-annual temperature time-frequency variability in France. (a) Global wavelet spectra of homogeneous

regions. (b) Wavelet spectra of homogeneous regions. For clarity, only time scales and time locations 95% statistically

significant and with the largest variability are shown (coloured circles).
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Figure 9. Temperature cross-scale interactions (95% significance level).The driving time scale is on the horizontal axis,

the driven on the vertical axis (i.e. the time scale x phase has a causal relationship with the phase/amplitude of the driven

time scale y). Lower(upper) half of the graph, below (above) the diagonal, show time scales acting on smaller (larger)

time scales. (a) Phase-phase causality. (b) Phase-amplitude causality
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Figure 10. Clustering of discharge time-frequency variability in France. (a) Classification map of the watersheds. Pie

charts slices show the three highest probability memberships (b) Global wavelet spectra of homogeneous regions. (c)

Wavelet spectra of homogeneous regions. For clarity, only time scales and time locations 95% statistically significant

and with the largest variability are shown (coloured circles).
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Figure 11. Inter-annual discharge time-frequency variability in France. (a) Global wavelet spectra of homogeneous

regions. (b) Wavelet spectra of homogeneous regions. For clarity, only time scales and time locations 95% statistically

significant and with the largest variability are shown (coloured circles).

31



Figure 12. Discharge cross-scale interactions (95% significance level).The driving time scale is on the horizontal axis,

the driven on the vertical axis (i.e. the time scale x phase has a causal relationship with the phase/amplitude of the driven

time scale y). Lower(upper) half of the graph, below (above) the diagonal, show time scales acting on smaller (larger)

time scales. (a) Phase-phase causality. (b) Phase-amplitude causality
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