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Abstract. We present a Bayesian geostatistical model for mean annual runoff that incorporates simulations from a process-

based hydrological modelby treating the simulations .
::::

The
::::::::::
simulations

:::
are

::::::
treated

:
as a covariate in the statistical model. The

regression coefficient of the covariate
:::
and

:::
the

:::::::::
regression

:::::::::
coefficient

:
is modeled as a spatial fieldsuch that

:
.
::::
This

::::
way the re-

lationship between the covariate (simulations from a hydrological model) and the response variable (observed mean annual

runoff) is allowed to vary within the study area. Hence, it is a spatially varying coefficient. A preprocessing step for including5

short records in the modeling is also suggested and we obtain a model that can exploit several data sourcesby
:
.
:::
By using state

of the art statistical methods
:::
fast

::::::::
inference

::
is

:::::::
achieved.

The geostatistical model is evaluated by predicting mean annual runoff for 1981-2010 for 127 catchments in Norway based on

observations from 411 catchments. Simulations from the process-based HBV model on a 1 km × 1 km grid are used as input.

We found that on average the proposed approach outperformed a purely process-based approach (HBV) when predicting runoff10

for ungauged and partially gauged catchments: .
:
The reduction in RMSE compared to the HBV model was 20 % for ungauged

catchments and 58 % for partially gauged catchments, where the latter is due to the preprocessing step. For ungauged catch-

ments the proposed framework also outperformed a purely geostatistical method with a 10 % reduction in RMSE compared

to the geostatistical method. For partially gauged catchments however, purely geostatistical methods performed equally well

or slightly better than the proposed combination approach. It is not surprising that purely geostatistical methods perform well15

in areas where we have data. In general, we expect the proposed approach to outperform geostatistics in areas where the data

availability is low to moderate.

1 Introduction

Runoff is defined as the flow of water that is generated from excess rainwater or meltwater, and that flows on the ground surface

or within the soil towards a stream (?). Runoff indices of different types (annual runoff, seasonal runoff, maximum runoff) are20

needed for a variety of purposes, e.g. for designing infrastructure, water supply and hydropower reservoirs, for assessment of

water quality and ecosystems and for allocation of water resources between stakeholders. The temporal variability of runoff
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can also be used to study runoff’s sensitivity to climate change.
:
. In spite of the large interest in

:::::::::
importance

::
of

:::::::
accurate

:
runoff

estimates, the majority of the catchments in the world are ungauged, i.e. runoff measurements for deriving the relevant indices

are not available and must therefore be predicted. This is known as the prediction of runoff in ungauged basins problem (PUB)25

and is a key challenge in hydrology (?).

When
:::::
There

:::
are

:::
two

:::::
main

:::::::::
approaches

:::
for predicting runoff in ungauged basinsthere are two main approaches: process-based

approaches and statistical approaches. When taking a statistical approach
:
In

::::::::
statistical

::::::::::
approaches, data from gauged catchments

are used to develop a statistical relationship between the observed runoff and relevant variables like precipitation, temperature,

land use and elevation. Next, the
:::
The statistical relationship is

::::
next used to make predictions for ungauged sites . Data-driven,30

statistical methods have been successfully used to predict several flow indices in the literature
::::
with

:::::::::
uncertainty (see e.g. ????),

and in
:
.
::
In

:
this article we consider a particular type of statistical models, namely geostatistical models. In geostatistical models

it is assumed that locations that are close in space have more in common than locations that are located far away from each

other, and this is formulated mathematically through a covariance function
::::::
propose

::
a
:::::::::::
geostatistical

::::::
model

:::
for

:::::
mean

::::::
annual

:::::
runoff (see e.g.

:
??). In the field of hydrology, the geostatistical

::::::
several

:::::::::::
geostatistical

::::::::::
approahces

::::
have

::::
been

::::::::
suggested

:::::
(??),

:::
but35

::
the

:
Top-Kriging method proposed by ? has been shown to be particularly suitable for modeling catchment (areal ) referenced

data (?), but other geostatistical approaches have also been suggested (??)
::::
areal

:::::::::
referenced

:::::
runoff

::::
data

:::
(?).

Process-based hydrological models on the other hand,
::
are

:::::::
different

:::::
from

::::::::
statistical

:::::::
models

::
by

::::
that

::::
they use physical rela-

tionships for e.g. conservation of mass and energy to simulate continuous flow series from which
::::::
estimate

:
the flow index of

interestcan be derived. The input variables are as for the data-driven methods
::
to

:::
the

::::::::::::
process-based

::::::
models

:::
are

:
variables like40

precipitation, temperature and land use. Data from gauged catchments are used for validation purposes and parameter
:::
and

:::::
model

:
calibration (see e.g. ??). The HBV model is an example of a process-based hydrological approach commonly used to

estimate runoff in the Nordic counties (?). Other process-based models are discussed in ???.

In this article we suggest a geostatistical model for mean annual runoff that incorporates the simulations from a process-based

model. The strength of process-based models is that they
:::
The

::::::
ability

::
to account for well-known, physical relationships between45

the input variables(e. g. temperature and precipitation) and the output variables (e.g. runoff) and this way produce consistent

hydrological estimates. The geostatistical
::::::::
variables,

::
is

:
a
::::
main

::::::
benefit

::
of

:::::
using

:
a
::::::::::::
process-based

::::::
model.

:::::::::::
Geostatistical

:
approaches

on the other hand provide uncertainty quantification and are typically better at ensuring a good fit between the runoff data and

the model in areas where we have observations. However, the geostatistical estimates are often poor if the number of streamflow

observations is low or if the
:::
The

::::::::
drawback

:::
of

:::
the

:::::::::::
geostatistical

::::::::::
approaches

:::
are

::::
that

::::
they

:::::
often

::::::
depend

:::
on

:
a
::::::::
relatively

:::::
high50

::::::
gauging

:::::::
density

:::
and

::::::::
perform

:::::
poorly

::
if
:::
the

:
underlying process is complex (?). Our working hypothesis is that

::::::::
Motivated

:::
by

::::
these

:::::::
benefits

:::
and

::::::::::
drawbacks,

:::
we

:::::::
develop a model that combines geostatistics with a process-based hydrological model will

give better runoff predictions than one of the model types alone
:::::::
approach.

There exist work based on similar ideas in the literature. One example is found in ?where the authors estimated the

contamination level within the soil. This was done by using
::
In

::
?,

:::
the

:::::::
authors

::::
used

:
a process-based model to simulate flowa55

number of times and then computing empirical variograms based on the results. Next, the variograms were used for Kriging,

which is
:::::::
empirical

::::::::::
variograms

::::
were

:::::::::
computed

:::::
based

:::
on

:::
the

::::::::::
simulations

:::
and

::::
used

:::
as

:::::
input

::
in

:::::::
Kriging,

:
a class of commonly
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used geostatistical models (see e.g. ??). In ? external drift Kriging
:::
The

::::
goal

::::
was

::
to

:::::::
estimate

:::
the

::::::::::::
contamination

::::
level

::::::
within

:::
the

:::
soil

:
.
::
In

::
?,

:::::::
Kriging

::::
with

:::::::
external

::::
drift was used for interpolation of streamflow temperatures

:
, where a physical relationship be-

tween mean annual stream temperature and stream gauge altitude was combined with the Top-Kriging approach. Considering60

models
::::::::
? present

:
a
::::::
model for mean annual runoff , we find a model in ? where the authors combined

:::::
where

:
a Budyko water

balance model
::
is

::::::::
combined with a geostatistical approach. In ? mean annual runoff was estimated by a Kriging approach that

is able to incorporate
::::::::::
geostatistical

:::::::
method

:::
that

:::::::::::
incorporated

:
basin characteristics through a function g(·) and residual Krig-

ing. The model was demonstrated with catchment elevation as input, but the input to g(·) could also be simulations from a

process-based model. The above papers all concluded that the geostatistical models that included process-based information65

gave better results than the alternative purely data-driven geostatistical approaches.

Following these
::
In

:::
this

:::::
paper, we suggest a Bayesian model for mean annual runoff where the observed runoff is used as

the response variable and where mean annual simulations from a process-based hydrological model are incorporated through

::::
used

::
as a covariate. To connect the response variable (runoff) to the covariate(simulations from a process-based model), we use

a spatially varying coefficient (SVC). Spatially varying coefficients have gained popularity in environmental modeling later70

years because there now exist computers and algorithms that are able to tackle the computational complexity they introduce

(see e.g. ???). In a model with a spatially varying coefficient, the relationship between the response variable and the covariate

is allowed to vary within the study area (???)
::::::::
(??????), i.e. differently from a simple linear regression model where this

:::
the

relationship is restricted to be constant. The motivation behind using a spatially varying coefficient in our runoff model
:::
this

:::::
work, is that we assume that the process-based model is more accurate in some areas than others, and that the accuracy follows75

regional patterns.

There are several ways to implement a spatially varying coefficient. One possibility is to
:::::
option

::
is

::
to

::::::
simply divide the study

area into regions and let a given coefficient have one value for each region, like in e.g. ?. However, this approach requires

that the user divides the study area into regions based on expert knowledge and this division is not always intuitive. An

alternative approach where we avoid this issue, is to model the regression coefficient as a spatial field, more specifically a
::
as

::
in80

::
?.

:::::::::::
Alternatively,

:::
the

:::::::::
regression

:::::::::
coefficient

:::
can

::
be

::::::::
modeled

::
as

::
a Gaussian random field (GRF) as described in e.g. ?. Through

the GRF , information about
:::
The

:::::
GRF

::::::::::
regionalizes

:
the regression coefficient at

::::
from locations with data is regionalized to

locations without data , following
::::::::
according

::
to

:
a spatial dependency structure. In this paper, we adopt the approach from ?and

interpolate the relationship between the response variable (runoff data) and the covariate (simulations from a process-based

model) from gauged catchments to ungauged catchments. In addition to the spatially varying coefficient, we also include a85

standard
::::::
include

:::
an

:::::::
additive spatial effect (GRF). This makes our model able to capture two different dependency structures,

e.g. spatial dependency due to both short ranged and long ranged hydrological processes.

By our article, we aim to contribute towards finding improved methods for runoff interpolation. In this context, we believe

that it is
:::::
When

:::::::::::
constructing

:
a
::::::
runoff

::::
map,

:::
we

::::
find

::
it
:
important to exploit all available data, also data from partially gauged

catchments, which is what we call catchments
:
.
:::::::
Partially

:::::::
gauged

:::::::::
catchments

:::
are

::::::::::
catchments

:
that only have short records of90

data, from a subset of the target period. Motivated by this
:
In

::::
this

:::::
work, we propose how short records can be modeled in

the spatially varying coefficient model together with data from fully gauged catchments. More specifically, we suggest to
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use the approach from ? as a preprocessing technique for record augmentation for partially gauged catchments
::
to

:::::::::
preprocess

::
the

:::::
short

:::::::
records before further analysis with the spatially varying coefficient model. The approach from ? is a geostatistical

record augmentation procedure that is
:::::::::::
preprocessing

::::::::
procedure

::::
fills

::
in

:::::::
missing

::::::
annual

:::::::::::
observations,

::::
and

:::
has

:::::
been shown to95

work well for flow indices and study areas that are dominated by runoff patterns that are repeated over time . Repeated runoff

patterns are often seen for runoff observations of longer temporal scale, such as annual runoff, and particularly in areas where

runoff is driven by constant factors such as topography, through e.g. orographic precipitation. In our proposed approach, the

preprocessed
:
?.
:::::
After

:::
the

::::::::::::
preprocessing,

:::
the

:
short records are incorporated into the spatially varying coefficient model through

an observation likelihood that supports both data from fully gauged catchments and preprocessed data from
:::
data

:::::
from

::::
both100

::::
fully

:::
and

:
partially gauged catchments . Differences in measurement uncertaintiesbetween the two data types are taken into

account through knowledge based prior distributions
::::
with

:::::::
different

::::::::::
observation

::::::::::
uncertainties.

The main objective of this article is to present a framework for mean annual runoff interpolation
:::::::::
estimation that exploits sev-

eral relevant data sources: Precipitation data, temperature data and land-use through the process-based covariate, and data from

fully gauged and partially gauged catchments through the observation likelihood. The framework is made
:::::::::::::
computationally105

feasible by using state of the art statistical methods such as INLA and SPDE (??) that allows
::::::::
(integrated

::::::
nested

:::::::
laplace

:::::::::::::
approximations)

::::
and

:::
the

:::::
SPDE

:::::::::
(stochastic

::::::
partial

:::::::::
differential

::::::::
equation)

::::::::
approach

::
to

::::::
spatial

::::::::
modeling

::::
(??).

::::::
These

::::
tools

::::::
enable

fast and approximate inference for computationally expensive Bayesian methods. We
:::::::
Bayesian

::::::
spatial

::::::
models.

:

::
To

:
evaluate the modelby assessing the model’s ability to produce a satisfactory gridded runoff map with corresponding

uncertainty estimates and by evaluating the predictive performance of the method for fully gauged, partially gauged and110

ungauged catchments. For this purpose, we use ,
:::
we

:::::::
estimate

:
mean annual runoff observations from

:
in

:
Norway. Simulations of

mean annual runoff produced by the process-based HBV model are used as a covariateand the HBV simulations are available

on a .
::::
The

:::::::::
evaluation

:::::
assess

:::
the

:::::::
model’s

::::::
ability

::
to:

1km× 1 km grid for the whole country.We compare our results to
:
)
:::::::
Produce

:
a
::::::::::
satisfactory

::::::
gridded

::::
map

:::
for

:::::
mean

:::::
annual

::::::
runoff

::::
with

:::::::::
uncertainty

::::::::::::
quantification.115

::
2)

::::::
Predict

:::::
runoff

:::
for

:::::::
partially

:::::::
gauged

:::
and

::::::::
ungauged

::::::::::
catchments.

:

::
As

::::::::
reference

:::::::
models

:::
we

:::
use

:
a purely process-based reference model (the HBV model) and a purely geostatistical model

(Top-Kriging).

In the next section (Section 2), we present the available Norwegian runoff data and model input. Here, we describe the

process-based HBV model and how it was used to produce simulations on a grid. In Section 3 we introduce background theory,120

relevant statistical models and notation. Further, in Section 4, we step by step present the suggested mean annual runoff model,

where the preprocessing step for including short records is described in Section 4.4. The experimental set-up for evaluating the

model is presented in Section 5, and in Section 6 and 7 we present and discuss our results. Finally, we summarize and conclude

in Section 8.
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2 Model input125

2.1 Runoff data

To evaluate the proposed geostatistical approach, we use mean annual runoff data from Norway from the time period 1981-2010

provided by the Norwegian Water Resources and Energy Directorate (NVE). The mean annual runoff observations have unit

mm/year and were derived by aggregating daily measurements of streamflow from Norwegian catchments, for hydrological

years that starts September 1st and ends August 31st. If a catchment had less than 365 daily observations for a specific year,130

this annual observation was considered missing.

Furthermore, we only use data from catchments where human activities have had negligible impact. To select catchments,

we used the regulation capacity of hydropower reservoirs as a criterion, i.e. the ratio between the mean annual runoff and the

reservoir storage capacity. If this ratio was smaller than 0.2 for a catchment, we assumed that the change in stored water could

be ignored. Catchments with a ratio larger than 0.2 were omitted from the analysis
:::
the

::::::::
catchment

::::
was

:::::::
included

::
in

:::
the

::::::::
analysis,135

::::::::
assuming

:::
that

:::
the

::::::
annual

:::::::
changes

::
in

:::::
water

:::::::
storage

::
is

:::::
small

::::::::
compared

::
to

:::
the

::::::
annual

::::::
inflow

:::::::
volume.

::::
The

:::::::::
assumption

::::
was

::::
also

:::::::
checked

::
for

::
a
:::::
subset

:::
of

::
the

::::::
target

::::::::::
catchments,

:::
and

:::
we

:::::
found

::::
that

:::
the

:::::::
standard

::::::::
deviation

::
of

::::::
annual

:::::::
changes

::
in

:::::::
reservoir

:::::::
storage

:::
was

::::
less

::::
than

:
2
::
%

::
of

::::::
annual

::::::
inflow.

After carrying out
:::::::::
performing

:
the data cleaning procedureexplained above, there were data available from 127 catch-

ments that were fully gauged in the 30 year target period, 1981-2010. Averaging these 30 years, gave the 127 streamflow140

measurements of mean annual runoff that
::::
The

::::::
average

::::::
runoff

::
for

:::::
these

:::::::::
catchment are shown in Figure 1a in

:::
with

::::
unit mm/year.

In addition, there were annual observations available from 284 additional catchments. These were not fully gauged in the study

period (1981-2010), but
:::::::
partially

::::::
gauged

:::::::::
catchments

:
.
:::::
These

:
had at least 1 annual runoff observation between 1965 and 2010.

We refer to these catchments as partially gauged catchments and their
::::
2010

::::
and

::::
their

::::::::
observed mean annual runoff is shown

in Figure 1b. In Figure 1c we also show the
:::
The

:
number of annual observations available between 1981-2010 for each of145

these catchments
:
is
::::::
shown

::
in

::::::
Figure

::
1c. The average record length is 12 years (median 9.5 years) for 1981-2010, but 15 years

(median 16 years) if we consider the longer time period from 1965 to 2010.

In our analysis, we use the short runoff records from the partially gauged catchments from 1965-2010 to estimate the mean

annual runoff for the same catchments for 1981-2010. This is done by applying a record augmentation preprocessing step

before fitting the full SVC model presented in this article (see Section 4.4). In the preprocessing step, spatial interpolation is150

performed to fill in missing annual observations. The reason for including years before 1981 here, is that it makes it possible

to include more catchments in our analysis, i.e. catchments that only have data from before 1981.

In Figure 1d we show the annual runoff observations for individual years. Here, it is apparent that the spatial variability

of the Norwegian annual runoff is large: It ranges from around 400 mm/year to around 6000 mm/year. The mean annual

runoff follows the spatial pattern we see in Figure 1b, with large observations in the western part of the country and smaller155

observations in eastern part each year. The pattern is mainly caused by the orographic precipitation that occurs when humid

winds from the Atlantic ocean are elevated over the mountains in western Norway. This gives large precipitation amounts in

the western parts of the country, while the eastern parts are left in the rain shadow.
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(a) Catchmens that are fully gauged in the study period

(1981-2010).
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(b) Fully and partially gauged catchments (1965-2010).

6400

6800

7200

7600

8000

0 300 600 900
Easting

N
or

th
in

g

0
10
20
30

Years  

(c) Number of annual observations available for 1981-

2010.
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(d) Observed annual runoff from fully gauged and partially

gauged catchments (1965-2010).

Figure 1. Mean annual runoff for Norwegian catchments (upper plots) derived from daily streamflow observations. There are annual runoff

data available from 127 fully gauged catchments and from 284 partially gauged catchments. We plot subcatchments in front of larger,

surrounding catchments in all of our plots. Figure 1c shows the number of annual observations that are available for each catchment in the

study period (1981-2010). If the number is equal to 0, it means that there is at least one annual observation available from 1980 or earlier

years, more specifically between 1965 and 1980. The reference system used is UTM33N EUREF89 with coordinates given in km. Figure 1d

shows the annual observations available for all catchments and years.
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(a) Gridded product from the HBV model.
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Figure 2. A mean annual runoff (1981-2010) product simulated by the HBV model (Figure 2a). The product is delivered on a 1 km × 1

km grid. Figure 2b shows the fit between the HBV product and the actually observed streamflow for the fully gauged (orange) and partially

gauged catchments (green).

2.2 Gridded simulations from the HBV model

We
::
In

:::
this

:::::
study,

:::
we use a gridded mean annual runoff product simulated by the HBV model as a covariate in our

:
a geostatistical160

model. This
:::
The

::::
first

:::::::::
application

:::
of

:::
the

::::::
gridded

:::::
HBV

::::::
model

::
in

:::::::
Norway

:
is
::::::::

reported
::
in

::
?,

:::
and

::
it
::
is

::::::
applied

::
in
:::::::
several

::::::
studies

::
to

:::::
assess

:::::
runoff

::::
and

:::::
water

::::::
balance

::
in

:::::::
Norway

::::
(e.g.

::
in

:::::
???).

::
In

:::
this

:::::
case,

:::
we

:::
use

:
a
::::
data

::::::
product

::::
that was already available from the

data provider NVE’s databaseand is shown in
:
.
:::
See

:
Figure 2a. The gridded product was delivered on a 1 km × 1 km grid and

is based on simulations of daily time series of runoffwhere interpolated
:
.
::::::::::
Interpolated

:
temperature and precipitation were used

as inputs together with
::::
input

::::::::
together

::::
with

:::::::
gridded land use characteristics. The daily

::::
Daily

:
simulated time series of runoff165

were aggregated to mean annual runoff (mm/year) for our reference period 1981-2010. We refer to ? for details.
::::::::::
??? detailed

::::::::::
descriptions

::
of

:::
the

:::::::::
algorithms

::::
used

::
in

:::
the

:::::
HBV

::::::
model,

:::
and

::
to

::::
? for

::::::
details

:::::
about

:::
the

:::::::
specific

::::::
product

::
in
::::::
Figure

:::
2a.

The HBV (Hydrologiska Byråns Vattenbalansmodell) model is a conceptual hydrological model that accounts for the key

hydrological processes in a Nordic climate. The first application of the gridded HBV modelin Norway is reported in ?, and it is

applied in several studies to assess runoff and water balance in Norway (e.g. in ???). The HBV model is applied as a gridded170

model, typically on a daily time scale, and the water balance is estimated for each grid cell in a discretization of the study

area, where the grid cells are characterized by elevation and land use. Different land use classes are associated with specific

parameters that control the snow processes, interception storage, evapotranspiration and subsurface moisture storage, and

runoff generation. Based on the parameterization of these key hydrological processes, the HBV model sieve the precipitation

into runoff (blue water) an evapotranspiration (green water). It is therefore the land use characteristics in each grid cell that175

controls the proportion of precipitation that generates runoff. We refer to ??? for detailed descriptions of the algorithms used

in the HBV model.
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To determine the parameters in the HBV model, it is common to perform a global calibration procedure . The calibration

procedures performed on the product in Figure 2a are described in ?: Key parameters associated with each land use class were

tuned, aiming at minimizing the
::::
based

:::
on

::::::::::
streamflow

:::::::::::
observations.

::::
The

:::
aim

::
is
::
to
:::::::::

minimize global bias and the errorsbased180

on streamflow observations, and
:
.
:::::
When

:::::::::
producing

:::
the

:::::
map

::
in

::::::
Figure

:::
2a,

:
streamflow observations from 141 fully gauged

catchments were used for the calibration. Mark
::::::
Remark

:
that since we use the HBV product that already was available from the

data provider NVE’s database, the calibration catchments are not necessarily the same catchments we use in our geostatistical

model. However, most of the 141 calibration catchments probably coincide with the 127 fully gauged catchments in Figure

1a
:::
See

::::
? for

::::::
details

:::::
about

:::
the

:::::::::
calibration

::::::::
procedure.185

As the parameters of the HBV model are calibrated globally, there are still local biases in the runoff grid calculated by the

HBV model
::::
HBV

:::::::
model’s

::::::::::
predictions relative to the observed streamflow. This can be seen in Figure 2b and ?? where we

visualize the difference between the mean annual runoff provided by the HBV model and the actually observed mean annual

runoff. The figures were produced by aggregating the gridded data in Figure 2ato the catchment areas in Figure 1b. Next, the

average within each catchment was plotted with the actually
::::::
(Figure

:::
2a)

:::
and

:::
the observed mean annual runoff .190

In the scatter plot in Figure 2b, we
::::::
(Figure

::
1).

::::
We see that the fit between the HBV model and the observed streamflow is

close to linear for smaller
:::::::::
catchments

::::
with

::::
low observations of mean annual runoff. However, for

:::
For observations over 2000

mm/year, the relationship is more skewed: The HBV model seems
::::
HBV

:::::
model

:::::
tends

:
to overestimate the mean annual runofffor

the most extreme values. By using the proposed geostatistical approach, we aim to produce a runoff map that improves the

fit. In Figure ??, the ratio between the observed mean annual streamflow and the HBV product is visualized spatially. Here, it195

looks like there is some spatial trend where catchments that are located close in space have similar ratios. This is an indication

that a spatially varying coefficient model is appropriate.

3 Methodological background

Before presenting the proposed runoff estimation approach, we briefly describe background theory and the statistical models

we use to build our models.200

3.1 Bayesian statistics and hierarchal modeling

When taking a statistical approach to hydrological modeling, the relationship between some observations y = (y1, ...,ym) and

the hydrological process of interest x= (x1, ...,xn) is expressed through a statistical distribution, often through an observation

likelihood which we denote by π(y|x). In this article, we
:::
We take a Bayesian approach to statistics (see e.g.??). This means

that
:
In

::::::::
Bayesian

::::::::
statistics,

:
the random variable x is associated with a probability distribution that expresses what we know205

about the underlying process of interest. Before the statistical analysis is conducted, our beliefs are expressed mathematically

through a so-called prior distribution, denoted π(x). The prior distribution can e.g.
::::
This

:::
can

:
be constructed based on expert

knowledge about the hydrological process under study or based on earlier experiments. The goal of the Bayesian analysis, is

8



to update π(x) based on data y. This can be done by using Bayes’ formula:

π(x|y) =
π(x)π(y|x)

π(y)
, . (1)210

:::::
where

::::::
π(y|x)

::
is
::::

the
::::::::::
observation

::::::::
likelihood

::::
that

::::::::
connects

:::
the

::::::::
observed

:::::
values

::::::::::::::
y = (y1, ...,ym)

::
to

:::
the

:::::
target

:::::::
variable

:::
x.

:
The

resulting distribution π(x|y) is called the posterior distribution, and represents what we know about the underlying process

after some evidence is taken into account, i.e. data. As our information about x is summarized through a statistical distribution,

a
:::::
based

::
on

:::
our

:::::
data.

::::
One

::
of

:::
the

::::::
benefits

:::
the

::::::::
Bayesian

::::::::::
framework,

:
is
::::
that

:
a
:
full uncertainty specification

::
for

:::
the

:::::
target

:::::::
variable

::
x

is directly available . This is one of the benefits of taking a Bayesian approach. However, if
::::::
through

:::
the

::::::::
posterior

::::::::::
distribution.215

:
If
:
a point prediction is of interest, the median, mean or mode of the posterior distribution π(xi|y) can be used as a summary

statistic, for any xi ∈ x.

In this article, we present a Bayesian
:::
The

::::::::::::
geostatistical

:::::
runoff

::::::
model

:::
we

::::::::
propose,

::
is

::::
also

:
a
:
hierarchical modelfor mean

annual runoff. Hierarchical modeling is a popular modeling framework as hierarchical .
:::::::::::
Hierarchical models make it possible

to formulate rather complex models by specifying a set of simpler models (see e.g. (?)). This is done in a hierarchical structure.220

For example if we are interested in modeling
:::::
model

:
runoff, we can assume that the true underlying runoff x is observed

through data y that are associated with some measurement uncertainty. Further can we assume that the runoff has some

spatial or temporal variability that can be modeled by a statistical distribution with parameters θ = (θ1, ...,θk). The parameters

could e.g. be variance and correlation parameters, and as we use the Bayesian framework, the parameter vector θ is as x

associated with prior and posterior distributions. Mathematically ,
:::::::::::::
Mathematically

:::
can

:
the above model can be expressed in a225

stage-wise manner: Here, the first level contains the
::::
three

::::::
stages:

::::
The observation likelihood

:
, π(y|x,θ)that connects the data

to the underlying processes. The second level is often referred to as the
:
,
:::
the

:
latent model or process model and contains the

prior distribution π(x|θ) of the random variables in x given the underlying parameters θ. The third level contains the prior

distribution of the model parameters
::::::
π(x|θ)

:::
and

:::
the

:::::
prior

::::::::::
distributions π(θ). The goal of the Bayesian analysis, is to determine

the posterior distributions of both x and θ] given data y as before.230

3.2 Gaussian random fields (GRFs)

Random fields (RFs) are often used to model spatial correlation in geostatistical models for hydrological variables (see e.g.

???). In this article, we will use the most common class of random fields to model runoff, namely
:::
use

:
Gaussian random

fields (GRFs)
:
to

::::::
model

:::::
runoff. A continuous field {x(u);u ∈ D} defined on a spatial domain D is a Gaussian random field

if (x(u1), ...,x(un))T ∼N (µ,Σ),
:
where N (·, ·) is a multivariate normal distribution with expected values given by vector235

µ and covariance given by the covariance matrix Σ (?). The covariance matrix is central in spatial statistics as it specifies

the dependency structure of the variable of interest. Often
:::::::
Typically, a matrix element (i, j) is generated by using a known

covariance function C(ui,uj) that models the correlation of the target variable between two locations Cov(x(ui),x(uj).

This
:::
The

:
covariance function typically has a marginal variance parameter σ2 and a range parameter ρ that characterize the

underlying spatial field:
:
. The marginal variance describes the spatial variability of the target variable, while the range is a240

measure of how correlation decays with distance.
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In our work we use a stationary Matérn covariance function to model the covariance of mean annual runoff. The Matérn

covariance function is defined as:

C(ui,uj) =
σ2

2ν−1Γ(ν)
(κ||uj −ui||)νKν(κ||uj −ui||), (2)

where Kν is the modified Bessel function of second kind and order ν > 0, Γ(·) is the gamma function and ||uj −ui|| is the245

Euclidean distance between the two locations ui,uj ∈Rd. Further, is σ2 the marginal variance and κ is a scale parameter

(?). Empirically, it has been shown that the parameters ν and κ can be used to express the spatial range through the following

relationship; ρ=
√

8ν/κ,
::
as

ρ=
√

8ν/κ,
:::::::::

(3)

where ρ is defined as the distance at which the correlation between two locations has dropped to 0.1 (?).250

As κ and σ2 are constant in Equation , the Matérn covariance model is stationary in space. The reason for using a Matérn

covariance function in our work, is that it comes with computational benefits: It makes it possible to use the SPDE
::::::::
stochastic

:::::
partial

:::::::::
differential

::::::::
equation

::::::
(SPDE)

:
approach to spatial modeling from ? which

:::
(?).

:::
The

::::::
SPDE

::::::::
approach is described in Section

4.6
:::
and

::
is

::::
used

::
to

:::::
make

::
the

::::::::
proposed

::::::
model

:::::::::::::
computationally

:::::::
feasible. In addition, the Matérn class of covariance functions has

many useful properties and ? advice to use it.255

3.3 Existing geostatistical models used for runoff interpolation

There exist several geostatistical models for interpolation of hydrological variables. In this work we refer to two of them: the

Top-Kriging approach from ? and the geostatistical method for exploiting short records from ?.

3.3.1 Top-Kriging

Kriging approaches are a set of approaches that can be used to predict spatial variables at unobserved locations
:::::::::
commonly

::::
used260

::
for

::::::
spatial

:::::::::::
interpolation. In Kriging approaches, the variable of interest is modeled as a random field x(u). An

:
,
:::
and

:::
an estimate

of the random field x(u0) at an unobserved location u0 ∈R2 can be expressed as the weighted sum of a set of observations

x(ui), ...,x(un), i.e. as

x̂(u0) =

n∑
i=1

λix(ui), (4)

where λi for i= 1, ..n are interpolation weights that must be determined (?). The interpolation weights can be specified by265

finding the set of weights that minimize the
:::
are

:::::
found

:::
by

:::::::::
minimizing

:::
the

:
mean squared error between the estimate x̂(u0) and

the true x(u0), and that give
::::::::
assuming zero mean expected error. A linear estimator with these properties is called the best

linear unbiased estimator (BLUE).

The estimation of the Kriging weights requires evaluations of the covariance function
:::
(or

:::::::::
variogram) of the involved random

field,
:
and the covariance typically depends on the distance between the observation locations ui. However, runoff observations270
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Figure 3. Time series of annual runoff for 8 catchments in Norway that are located in the same region. The time series are almost parallel,

indicating that the spatial patterns of runoff are repeated over time.

are linked to catchment areas rather than to single point locations, and this should be
:
.
::
In

:::
the

::::::::::
Top-Kriging

::::::::
approach

:::
(?),

::::
this

::
is

taken into account when calculating the covariance. One way to do this is by using Top-Kriging ?, which is a a Kriging approach

particularly suitable for interpolation of areal referenced hydrological variables. The method treats
::
by

:::::::
treating

:::
the runoff obser-

vations as areal referenced in the covariancecalculations and this way ensures that
:::::
when

:::::::::
computing

:::
the

:::::::::
covariance.

::::
This

::::::
makes

:
it
:::::::
possible

::
to

::::::
weight

:
an observation from a subcatcment gets a higher Kriging weight than an observation

:::::::::::
subcatchment

:::::
more275

:::
than

:::::::::::
observations

:
from a nearby, non-overlapping catchment. According to ??

:::::::::
catchments.

:
Top-Kriging is one of the lead-

ing methods for interpolation of catchment referenced variables
:::::
runoff

::::
(??), and we hence use it as a geostatistical reference

methodin this article.

3.3.2 Geostatistical method for exploiting short records

In addition to Top-Kriging, we refer to the geostatistical method suggested in ? . This is a
::
To

:::::::
include

:::::
short

::::::
records

::
in
::::

our280

::::::
model,

:::
we

::::
use

:::
the method

::::
from

::::
? as

:
a
::::::::::::
preprocessing

::::
step.

::::
The

::::::
method

::
is
::
a

::::::::
Bayesian

::::::::::
hierarchical

:::::::::::
geostatistical

:::::
model

::::
that

::
is

particularly suitable for making predictions in
:::::
filling

::
in

:::::::
missing

::::
data

:::
for catchments that have short records of data relative to

their neighboring catchments. The model in ? is a Bayesian hierarchical geostatistical model that
:
It

:
models several years of

(annual) runoff simultaneously through two GRFs: one that describes the long-term spatial variabilityin the study area, and

one that describes year dependent spatial effects. The method weights the two GRFs relative to each otherand if .
::
If
:
long-term285

effects dominate, the potential information stored in short records is large.

In this paper, we use the method from ? as a preprocessing step for making inference about the partially gauged catchments

in the dataset before further analysis with the spatially varying coefficient model. This way we increase the size of the dataset

and are able to fully exploit all the available data in our study area, Norway. See Section 4.4 for further description of the

preprocessing step.290
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The method from ? has its benefits when modeling flow indices and study areas where there are characteristic spatial patterns

of runoff
:::::
runoff

::::::
follows

::::::
spatial

:::::::
patterns that are repeated over time. This is the case for our target variable, Norwegian annual

runoff, that is driven by orographic precipitation caused by repeated wind patterns from the Atlantic ocean (?). Example data

::::
from

:::::::
Norway are shown in 3, representing a setting for which record augmentation can have a large value. The repeated spatial

pattern is recognized by that the time series are almost parallel over time, i.e. the ranking of the catchments, from wet to dry,295

is approximately constant. For variables and areas that are not driven by such characteristic spatial patterns, the method in ?

provides a more classical form of spatial interpolation, similar to Krigingmethods.

The method from ? is available for both point and areal referenced data. In this article
::::::::::
application, we use it as a point

referenced model to save computational time. The point referenced model uses
:
,
:::
and the catchments centroids

::
are

:::::
used as the

observation locations. Although an areal model is more realistic for runoff data, we
:::
We expect the point referenced model to be300

sufficiently good for our area of use
::::
study

:
for two reasons: 1) We are only using the model to make predictions for catchments

where we have at least one annual observation and 2) we are not going to use the posterior uncertainty of the model, as the final

prediction uncertainty is determined by the spatially varying coefficient model. The results in ? show that the point referenced

model gives results that are approximately as good as
::::::
similar

::
to

:
the areal referenced model for partially gauged catchments

when we only are interested in the posterior mean and not the posterior standard deviation
:::::::
posterior

:::::
means

::::
and

:::
not

::::::::
posterior305

:::::::
standard

::::::::
deviations.

4 A spatially varying coefficient (SVC) model for incorporating process-based simulations and short records

We now present a
:::
the

::::::::
proposed geostatistical Bayesian hierarchical model for mean annual runoff that incorporates simulations

from a process-based model through a spatially varying coefficient and supports data from both fully gauged and partially

gauged catchments. It is a three stage model that contains a
:::
and

::
its

:::::
three

::::::
stages:

::
A process model, an observation model and310

prior distributionsas outlined in Section 3.1.

4.1 Process model for true mean annual runoff

4.1.1 Underlying point
:::::
Point model

Assume that mean annual runoff (mm/year) is a continuous process that occurs for any point u ∈R2 in the landscape. We

model the true mean annual runoff q(u) at a point location or a (small) grid cell u as315

q(u) = β0 +(β1 +α(u)) ·h(u)+x(u); (SVC model)(SVC model)
:::::::::

(5)

x(u)|(ρx,σx)∼GRF(ρx,σx) β0 ∼N (0,(10000 mm/year)2)

α(u)|(ρα,σα)∼GRF(ρα,σα) β1 ∼N (0,100002)

where β0 is an intercept with a normal distributed prior. The variable h(u) is a covariate that contains the simulated value

generated by a process-based hydrological model at point location or a grid cell u, and (β1 +α(u)) defines a spatially varying320
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coefficient (SVC). The spatially varying coefficient consists of one fixed effect β1 and one component α(u) that changes

in space. The spatial variability of α(u) is introduced by modeling it as a
::::::::
stationary Matérn Gaussian random field given a

range parameter ρα and a marginal standard deviation parameter σα. This way the relationship between the true mean annual

runoff q(u) and the simulations made by the hydrological model h(u) is allowed to
:::
can

:
vary in the study area.

:::
The

:::::::::
α(u)h(u)

:::::::::
component

::::
also

::::::
ensures

::
a
::::::
model

:::::
where

:::
the

:::::
mean

::::
and

:::
the

:::::::
variance

:::
of

:::::
runoff

::::
can

::
be

::::::::::::::
inhomogeneous

::
in

::::::
space. For the fixed325

effect β1 we use a weakly informative normal prior distribution with zero mean and standard deviation 10000. This is the same

prior as for the intercept β0. In our application, we
::
We

:
use mean annual runoff simulations from the HBV model

::
as

:::::
input in

h(u), but gridded simulations from any relevant hydrological model can be used as input
::::::
applied.

The spatial dependency structure introduced by the spatially varying coefficient β1 +α(u) in Equation (5) models a similar

dependency structure as we would obtain from performing
::
get

:::::
from ratio interpolation, i.e. interpolation of the ratio between330

the observed runoff and a process-based covariate. Ratio interpolation is a method that has been used before in e.g. ? to improve

the results from
::
of

:
a process-based model. However, in our

:
In

::::
our

:::::
runoff

:
model, we also include an additional spatial effect

x(u) as we see in Equation
:::
that

::
is

:::::::
assumed

::
to
:::

be
:::::::::::
conditionally

::::::::::
independent

:::
of

::::
α(u). Like α(u), x(u) is modeled as a GRF

with
:
a
:::::::::
stationary Matérn covariance

:::::::
structure, but with range and marginal standard deviation ρx and σx respectively. The

GRF x(u) models a different dependency structure than α(u), more specifically a dependency structure
:::::::::
dependency

::::::::
structure335

similar to what we would obtain from performing
:::
get

::::
from

:
residual interpolation. Residual interpolation was used in e.g. ? to

improve the results from an initial multiple linear regression model.

The motivation behind including two spatial fields in our SVC model, is that it introduces flexibility to both the mean and the

standard deviation of the predicted mean annual runoff, and makes it possible to model underlying processes with both long

and short spatial ranges or large and small variances. Furthermore can the model itself detect which of the two dependency340

structures that are most prominent in the data and adjust the spatial components relative to each other.

4.1.2 Areal model

In Equation (5) we modeled runoff as a point referenced process. However,
:
,
:::
but

:
in practice, runoff is observed through

streamflow observations that are linked to catchment areas. Because of this, we now
:::::
areas.

:::
We

::::
thus introduce a model for the

true mean annual runoff inside a catchment area A. This is given by:345

Q(A) =
1

|A|

∫
u∈A

q(u)du, (6)

where q(u) is the mean annual point runoff from Equation (5) and |A| is the area of the target catchment. Hence, the
:::
The

true areal runoff is here given by the average point runoff integrated over the catchment area. However, in
::
In practice, it is not

computationally feasible to perform the integration in Equation (6). The solution to this problem
:::
Our

:::::::
solution is to approximate

the integral in Equation (6) by a sum. This is done by discretizing catchmentA to
:::
into

:
a regular grid LA and defining the mean350

annual runoff in catchment A as:

Q(A)≈ 1

nA

∑
u∈LA

q(u), (7)
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where nA is the number of grid nodes in the discretization of catchment A.
:::
The

::::
areal

::::::::::
formulation

::
in

::::::::
Equation

:
(7)

::::::
assumes

::
a

:::::
linear

::::::::::
aggregation

::
of

:::::
runoff

::::
over

:::
the

::::
grid

:::::
nodes

::::::::
included

::
in

:::
the

:::::::::
catchment

:::::::::::
discretization.

:::::
This

:
is
::::::::::

reasonable
::
for

::::::::
variables

::::
that

::
are

::::::::::::
approximately

:::::
mass

:::::::::::
conservative,

:::
like

:::
the

:::::
mean

::::::
annual

::::::
runoff.

:
355

We have now defined our final process model for runoff. This ,
:::::
which

:
is an areal model (Equation (7)) that builds on a point

specification of the underlying process (Equation (5)). Comparing
:::::
From equations (5) and (7), we see that calculating

::
in

:::::
order

::
to

:::::::
calculate

:
Q(A) requires an evaluation of the quantity

::
we

::::
have

::
to

:::::::
evaluate

:
h(A) =

∑
u∈LA h(u), i.e. we have to aggregate

::::
need the simulated values produced by the hydrological product h(u) for the grid nodes insideA. Consequently, the catchment

discretization should follow the same discretization as the gridded hydrological product that is used as input to h(u). In our360

case the HBV product comes on a regular grid with 1 km spacing. Mark that the
:::
The

:::::::
selected grid should be dense enough

to ensure an accurate approximation for the true areal runoff in Equation (7)and to avoid unrealistic results such as negative

runoff.

:
.

4.2 Observation model for mean annual runoff365

The true mean annual Q(A) runoff is not observed directly, but through areal referenced streamflow observations with uncer-

tainty. The
:::
We

:::::
model

:::
the

:
observed mean annual runoff in catchment Ai is here modeled as:

::
as:

:

yi =Q(Ai) + εi, (8)

where Q(Ai) is the areal referenced true mean annual runoff from Equation (7), and the εi’s are independent and identically

distributed error terms with prior N (0,si ·σ2
y). Here

:::::::::
N (0,siσ

2
y).

::::
The

::::::::
parameter

:
σy is a parameter describing

::::::::
describes the370

underlying standard deviation, while the si’s are fixed, predetermined scales that allow each observation to have its own

measurement uncertainty. This way heteroscedasticity can be introduced in a simple way. The values of the scales si are

further specified in Section 4.3.

It is convenient to use the areal formulation from
::
In

::::::::
Equation (8),

:::
all

::::::::::
components

:::
are

:::::::::
Gaussian,

::::::
which

:::::
means

::::
that

:::::
there

:
is
::

a
::::
risk

::
of

::::::::
obtaining

::::::::
negative

:::::
runoff

::::::::::
predictions

::::
from

:::
the

:::::::::
proposed

::::::
model.

::
To

::::::
avoid

:::::::
negative

:::::
runoff

:::::::::::
predictions,

:::
we

:::::
could375

:::
log

::::::::
transform

:::
the

:::::
runoff

::::
data

::::::
before

::::::::::
performing

:::
the

:::::::
analysis,

:::
but

::::
this

:::::::
requires

:::
that

:::
we

::::::
model

:::
the

:::::
runoff

:::::::::::
observations

::
as

:::::
point

::::::::
referenced

:::::::
instead

::
of

::::
areal

::::::::::
referenced.

:::
The

::::::
reason

::
is

::::
that

:::
the

::::
sum

::
in Equation (7) to model the observed

::::
does

:::
not

:::::
make

:::::
sense

::
for

:::
log

:::::::::::
transformed

:::::
runoff

:::::
data.

:::::::
Another

:::::
option

::
is
::
to
::::

use
:
a
:::::::::::
log-Gaussian

:::::::::
likelihood

:::
and

::::::::::::
log-Gaussian

::::::
random

:::::
fields

:::
for

:::::
x(u)

:::
and

:::::
α(u),

::::
such

::::
that

:::::::::
predictions

:::
for

:::::
x(u)

:::
and

:::::
α(u)

::::::
always

:::
are

::::::::
positive.

::
In

:::
this

:::::
work,

::::::::
however,

:::
we

::::
keep

:::
the

:::::
areal

::::::::::
formulation

:::
and

:::
the

:::::
more

:::::::::
interpretive

:::::::
versions

:::
of

:::
the

:::::
spatial

::::::
fields.

:::
For

:::::::::
Norwegian

:
mean annual runoff. The reason is that it allows us to

:
,380

:::::::
negative

:::::::::
predictions

:::
are

::::
quite

:::::::
unlikely

:::::::
anyway,

:::::
since

:::
the

::::::::::
observations

:::
are

:::
far

:::::
away

::::
from

:::::
zero.

:::
The

::::
areal

::::::::::
formulation

::::
also

:::::
gives

:
a
:::::
more

::::::
realistic

::::::::::
uncertainty

:::::
model

::::
and

::
let

:::
us constrain the mean annual runoff not only at certain gauging points, but over the

whole catchment area of the gauged catchments. However, bear in mind that the constraints imposed by the likelihood only

work as soft constraints. This means that the actually observed mean annual runoff over a catchment area is not guaranteed to
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be reproduced in the final predictive model. Whether the actually observed mean annual runoff is reproduced depends on e.g.385

the observation uncertainty siσ2
y. ::::::::

catchment
:::::
areas.

:

4.3 Prior distributions for model parameters

The third stage of the proposed hierarchical model for mean annual runoff consists of the prior distributions of the 5 model pa-

rameters, (ρα,σα,ρx,σx,σy). In this section we specify the prior distributionswe use in our experiments
::
our

:::::
prior

::::::::::
distributions.

Most of these
:::
the priors are constructed such that they are suitable for

::::::::
modeling Norwegian mean annual runoffdata, and should390

be revised before the model is used for other flow indices and/or study areas.

We start by constructing a prior for the measurement uncertainty expressed by siσ2
y . As stated in the previous subsection,

the variance parameter σ2
y is scaled with a fixed an predetermined scale si such that each observation of mean annual runoff

can have its own measurement uncertainty. A variance that changes with the observed value is reasonable when modeling

Norwegian mean annual runoff, because Norway is a diverse country when it comes to runoff generation: Most observations395

are between
:::
the

::::::::
variability

:::
of

:::::
runoff

::::::
across

:::
the

::::::
country

::
is

:::::
large.

::::
The

:::::::
observed

::::::
annual

::::::
runoff

:::::
varies

::::
from

:::::::
around 500 mm/year

and
:
to

:
4000 mm/year. With this in mind, we specify the scales si such that the measurement uncertainties depend on the

magnitude of the observed value, i.e. we assume
:::::
under

:::
the

::::::::::
assumption that larger observations of mean annual runoff have

larger measurement uncertainties than smaller observations of mean annual runoff. This is obtained by modeling the scales as

si = (0.025 · yi/1000)2, (9)400

where yi is the observed mean annual runoff in catchment Ai in mm/year. The number 0.025 was chosen according to expert

opinions from the data provider NVE: .
:
A standard deviation around 2.5 % is assumed to be reasonable. Further, are the scales

rescaled
:::
The

:::::
scales

:::
are

:::::::
divided by a factor of 1000 to get suitable values for the quantity si ·σ2

y .

Next, we need to
:::
We

::::
next specify a prior distribution for the standard deviation parameter σy . For thisparameter, we use a

penalized complexity (PC) prior as suggested by ?. The PC prior is chosen because it has convenient mathematical properties. It405

controls for overfitting by penalizing the increased complexity that arises when a more flexible model deviates from a simpler
:
,

:::
less

::::::
flexible

:
base model. The PC prior for the precision τ (or the inverse variance) of a Gaussian effect N (0, τ−1) is given by

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0, (10)

where λ controls the deviation penalty. The parameter λ can easily be specified through a probability α and a quantile u as

Prob(σ > σ0) = α, where σ0 > 0, 0< α < 1 and λ=− ln(α)/u, where σ = 1/
√
τ is the standard deviation of the Gaussian410

effect. For our application, we let α= 0.1 and σ0 = 1500 mm /year, and determine
:::::
define the PC prior for σy as follows:

Prob(σy > 1500 mm) = 0.1. (11)

This means that the prior probability that σy is larger than 1500 mm/year is 10 %. However, recall that the measurement

variance of yi is determined by siσ2
y and not by σ2

y alone. With the scales in Equation (9) and the PC prior for σy in Equa-

tion (11), a prior 95% credibility interval for the observation standard deviation for the mean annual runoff is (0.04,6)% of415
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the corresponding observed value yi for a catchment Ai, with the prior mean centered around 2.5%. Values in this range are

reasonable and reflect the data provider NVE assumptions about the uncertainty of the Norwegian mean annual runoff obser-

vations. Furthermore, we also want a quite narrow prior credible interval
::
By

:::::::
creating

::
a
::::::::
relatively

::::::
narrow

:::::
prior for siσ2

yin this

context: This way
:
, we influence the model to reproduce the actually observed runoff in

::
for

:
catchments where we have data,

through the likelihood in Equation .420

In ? the PC prior framework is used to develop a knowledge-based
:::::::::
informative, joint prior for the range and the marginal

variance of a Gaussian random field. We use this prior for constructing a joint prior distribution for the spatial marginal standard

deviation σα and the spatial range ρα for the spatially varying coefficient component α(u). The prior is specified through the

following probabilities and quantiles

Prob(ρα < 20 km) = 0.1, Prob(σα > 2) = 0.1, (12)425

where we a priori assume that the spatial range of the spatially varying coefficient is larger than 20 km. This is a reasonable

assumptionfor a study area that is approximately 40 km from west to east on its widest, and around 1600 km from north to

south
:
,
::
as

::
it

:
is
:::::
likely

::::
that

::::::::
locations

:::
that

:::
are

:::::
closer

::::
than

:::
20

:::
km

:::
are

::::::::
correlated

:::::
when

:
it
::::::
comes

::
to

::::::
annual

:::::
runoff. Based on Figure 2b

and Figure ?? we also
:::
we assume a prior that the ratio between the response variable Q(·) and the covariate h(·) varies with a

factor that has a standard deviation smaller than 2.430

Likewise, we use the PC prior from ? to specify a joint prior for the marginal standard deviation σx and the spatial range ρx

of the spatial effect
:::
field

:
x(u). We use the following probabilities and quantiles:

Prob(ρx < 20 km) = 0.1, Prob(σx > 2000 mm/year) = 0.1. (13)

Here, we again assume a prior that the range is larger than 20 km by taking the size of the study area into account. The

prior probability that the standard deviation of the Norwegian mean annual runoff is larger than 2000 mm/year is set to a low435

probability. This sounds
::
We

::::
find

:::
this

:
reasonable as most of the mean annual observations are between 500 mm/year and 4000

mm/year.

4.4 Preprocessing step for incorporating short records (PP)

We now present an extension of the model that makes it possible to include short records in the analysis of
::::::::
proposed mean

annual runoff . For catchments that are fully gauged in the time period of interest, observations yi of mean annual runoff are440

directly available. However, often there are also short records of data available from partially gauged catchments that only have

annual observations available from a subset of the target period or from years before the target period. To incorporate the latter

in our geostatistical model , we use the geostatistical model
::::::
model.

:::
The

::::::::
extension

::
is
::::::
based

::
on

:::::
using

:::
the

:::::::::::
geostatistical

::::::
model

described in Section 3.3.2 as a preprocessing step for partially gauged catchments. The preprocessing step is used to fill in

missing annual runoff observations
::::::::::
observations

::::::
and/or

:::::::
augment

:::::
short

::::::
records

:
for the partially gauged catchmentsin order to445

get better approximations .
:::::
After

:::::
filling

::
in

:::
the

:::::::
missing

:::::
years,

:::
we

:::
get

:
a
::::::::::
preliminary

:::::::
estimate

:
of the mean annual runoff here. For

this purpose, the observations from 1965-2010 from Figure 1b are used. Next, the predictions of mean annual runoff (posterior
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mean) for 1981-2010 obtained from this approach are used
:::
for

::::
these

::::::::::
catchments.

:::::
These

::::::::
estimates

:::
are

::::
next

::::
used

:
as observations

yi in the observation likelihood in Equation ,
::::
SVC

::::::
model together with data from fully gauged catchments.

The data
::::::::::
observations yi we obtain from the preprocessing step are probably more uncertain than the data from the fully450

gauged catchments. To reflect this, we use a different prior
::
for

:::
the

:
observation uncertainty for the preprocessed data than for

::::::::
compared

::
to

::::
that

::
of the fully gauged catchments’data. Recall that the prior observation variance for a fully gauged catchment

was given by siσ2
y where si was a fixed predetermined scale given by si = (0.025 · yi/1000). For partially gauged catchments

we replace this scale by

sPP
i = (0.10 · yi/1000), (14)455

where PP denotes that the observation yi from catchment Ai is preprocessed. In practice, each partially gauged catchment

could have its own scaling factor, but in this demonstration we use the same scaling factor for all partially gauged catchments

for simplicity. With the scales in Equation (14), a 95 % credible interval for the prior standard deviation
√
siσ2

y becomes

(0.1,24) % of the observed value for the partially gauged catchments, while it is only (0.04,6) % for data from fully gauged

catchments.460

By including the preprocessing step , we have the possibility to
:::
The

::::::::::::
preprocessing

:::
step

:::
let

::
us exploit streamflow observations

from catchments that have down to one annual observation,
::::
and

:::
the

::::
short

::::::
record

:::::
could

:::
also

:::
be

::::
from

:::
the

:::::
period

::::::
before

:::
the

:::::
study

:::::
period

:::::
starts. As explained in Section 3.3.2 the preprocessing step should work well for study areas and flow indices that are

::
is

:::::
expect

::
to

:::::::::
contribute

::::::::
positively

::
to

:::
the

::::::
model

::
if

::
the

::::
flow

:::::
index

:::
of

::::::
interest

::
is driven by repeated spatial patterns over time. If this

is not the case, the preprocessing step only performs classical geostatistical spatial interpolation and can be skipped to save465

computational time.

4.5 Full model specification

We have proposed a model for mean annual runoff that can incorporate process-based simulations ,
:::
and

:
data from fully gauged

and partially gauged catchments. We can now specify the full, Bayesian, hierarchical modelfor mean annual runoff as follows:

:::
The

:::
full

::::::
model

:::
can

::
be

::::::::
specified

::
in

::
as

:
a
::::::::::
hierarchical

::::::
model

::::
with

::::
three

::::::
levels,

:::::
where

:::
the

::::
first

::::
level

::
is

::
he

::::::::::
observation

:::::::::
likelihood,470

π(y|x,σy)
::::::::

=

n∏
i=1

(I{Catchment Ai is fully gauged} ·N (Q(Ai),siσ2
y) +

::::::::::::::::::::::::::::::::::::::::::::::::

I{Catchment Ai is partially gauged} ·N (Q(Ai),sPP
i σ

2
y),

:::::::::::::::::::::::::::::::::::::::::::::

(15)

::
the

::::::
second

:::::
level

::
is

:::
the

:::::
latent

::::
field,

:

π(x|θ)
:::::

= π (x(u1), ...,x(um)|ρx,σx)
::::::::::::::::::::::::

475

·π (α(u1), ...,α(um)|ρα,σα) ·π(β0) ·π(β1),
::::::::::::::::::::::::::::::::::::

(16)
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:::
and

:::
the

::::
third

::::
level

::
is
:::
the

:::::
prior

::::::
model,

π(|,σy)∼
n∏
i=1

(I{Catchment Ai is fully gauged} ·N (Q(Ai),siσ2
y) +I{Catchment Ai is partially gauged} ·N (Q(Ai),sPP

i σ
2
y) Observation likelihoodπ(|θ) = πx(), ...,x()|ρx,σx·πα(), ...,α()|ρα,σα ·π(β0) ·π(β1) [Latent Model]π(σy,)= π(ρx,σx) ·π(ρα,σα) ·π(σy). Prior

(17)

Here
:::::
Above, y is a vector containing all observations yi, ...,yn of mean annual runoff for catchmentsA1, ...,An. The function

I(·) is an indicator function that is equal to one if its argument is true and zero otherwise, allowing for data from both fully480

gauged and partially gauged catchments. Mark
::
We

:::
see

:
that the likelihood specification for the fully and partially gauged

catchments is the same, except for the difference in measurement uncertainty expressed through the predetermined scales si

and sPP
i . Further is the

:::
The

:
variable x

:
is
:
a vector that contains all the latent variables, i.e. the two fixed effects β0 and β1,

and the two Gaussian random fields x(u1), ...,x(um) and α(u1), ...,α(um) for all grid nodes u1, ..,um that are used in the

discretization of the catchment areas. Finally is θ a parameter vector that contains ρx,σx,ρα and σα. Together with σy it defines485

all the model parameters.

In Figure 4 we visualize the proposed approach in a flow chart. We emphasize that the SVC model can be used with

or without incorporating preprocessed short records. To mark results where preprocessed data are involved, we will use the

subscript PP in the remainder of this text
::
the

:::::
paper.

Precipitation,
temperature,

land use...

Simulations from a 
process-based

hydrological model
on a grid

h(u)

Data from fully
gauged

catchments
yi

Preprocessed data 
from partially

gauged
catchments

yi

SVC model

Runoff predictions
for grid cells q(u) 
and catchment 

areas Q(A)

O
pt

io
na

l

Ca
lib

ra
tio

n

Figure 4. Workflow for estimating runoff for grid nodes q(u) and for catchment areas Q(A).

4.6 Approximate inference490

The goal of Bayesian inference is to estimate the posterior distributions of the variables and parameters of interest, as described

in Section 3.1. In this case
::
To

:::::
make

::::::
runoff

:::::::::
predictions

::::
q(u)

::::
and

::::::
Q(A), we need to estimate x and θ given data yin order to
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predict the mean annual runoff q(u) and Q(A) for our grid cells u and catchments A. Traditionally, inference on hierarchical

models of this type
:::::::
Bayesian

::::::::::
hierarchical

:::::::
models has been done by using Markov Chain Monte Carlo (MCMC) methods (?).

However, when considering mean annual runoff for the whole country of Norway, the dimension of the vector of latent variables495

x is large and hence also the
:::
the computational complexity of carrying out a MCMC procedure . To solve this problem and

make the
:
is
:::::
large

:::::
when

:::
the

:::::::::
dimension

::
of

::
x

::
is

:::::
large.

::
To

:::::
make

:::
the

::::::::
proposed

:
model computationally feasible, integrated nested

Laplace approximations (INLA) are used. The INLA methodology was suggested by ? and can be used for making approximate

Bayesian inference on latent Gaussian models (LGMs), i.e. hierarchical models where the latent field x is Gaussian. As the

latent variables contained in x are given Gaussian prior distributions given the model parameters, this requirement is fulfilled500

for our SVC model. The INLA methodology is based on Laplace approximations, sparse matrix calculations and numerical

integration schemes, and we refer to ? for details.

Furthermore, it is also computationally challenges related to performing
:::::::::::::
computationally

::::::::::
challenging

::
to
:::::

make
:::::::::

statistical

:::::::
inference

:::
on

::::::
spatial

::::::
models.

::::
The

::::::
reason

::
is

:::
that

::
it

::::
takes

::::
time

:::
to

::
do

:
matrix operations on the covariance matrices of GRFs when

we have
::::
there

:::
are many target locations, and our model contains not only one GRF, but two. To solve this issue, .

:::
To

:::::
ensure

::::
fast505

:::::::
inference

:::
for

:::
our

::::
two

::::
field

::::::
model, we use the SPDE approach to spatial modeling, as suggested by ?. The approach is based on

the fact that a GRF with Matérn covariance matrix can be expressed as the solution of a stochastic partial differential equation

(??). An approximate solution of the SPDE can be obtained by using the finite element method (see e.g. ?), where the resulting

approximation is given on a triangular mesh. This mesh approximation has
::::
gives

:
computational benefits compared to the exact

GRF solution. This ,
::::
and enables fast inference for spatial models (??).510

The INLA and SPDE methodology is
::::::::::::
methodologies

:::
are

:
implemented in the r-package INLAand has

:
,
:::::
which

:
since its

introduction
:::
has

:
been used within a range of different fields. See ?????? and www.r-inla.org for some examples. The

approximations used in the SPDE and INLA framework are in general accurate and reliable when the likelihood is Gaussian,

as in this application, and as long as the triangular mesh used in the finite element computations is dense enough relative to

the spatial variability of the target variable. A mesh that is too coarse can in our application lead to unrealistic results such as515

negative runoff.

5 Experimental set-up and evaluation scores

5.1 Experimental set-up
:::::::
Making

:
a
:::::::
gridded

:::::
mean

:::::::
annual

::::::
runoff

::::
map

:::
for

:::::::::
1981-2010

The goal of the article is to present and evaluate the geostatistical framework that incorporates process-based simulations and

short records. We evaluate the proposed approach in terms of making a gridded mean annual runoff map that improves the520

original HBV map in areas where we have observations, and in terms of performing accurate predictions for ungauged and

partially gauged catchments. These two evaluation settings are described in Section 5.1.1 and 5.2 respectively.
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5.1.1 Making a gridded mean annual runoff map for 1981-2010

To evaluate the proposed approach for runoff estimation, we fit
::
use

:
the SVC model described in Section 4 to the Norwegian

::
to

::::::
produce

::
a
::::::
gridded

:
mean annual runoff data. The observations in Figure 1b are used. These are observations from 127

::::
map

:::
for525

:::::::::
1981-2010

:::
for

:::
the

::::
same

::
1

:::
km

::
×

:
1
::::
km

:::
grid

::
as

:::
the

:::::
HBV

::::::
model

:::
was

::::::::
delivered

:::
on

::::::
(Figure

::::
2a).

:::
For

:::
the

:
fully gauged catchments

:
,

::
we

::::
use

:::
the

::::
data from 1981-2010 and 284 partially gauged catchments from 1965-2010. For the

:
to

::::::::
compute

:::
the

:::::
mean

::::::
annual

:::::
runoff

:::
yi,:::::

while
:::
for

:::
the

:
partially gauged catchments ,

:::
we

:::
use

:
the preprocessing step

::
on

:::
the

::::
short

:::::::
records

:
(PP) described in

Section 4.4 is performed before further analysissuch that short records can be incorporated into the observation likelihood. The

workflow is hence as visualized in Figure 4.530

The result of the above procedure is a
:
.
::
In

:::
the

::::::::::::
preprocessing

::::
step,

::::
data

:::::
from

:::::::::
1965-2010

:::::
were

::::
used

::
to

::::::::
estimate

:::
the mean

annual runoff map for 1981-2010on the same grid as the HBV model in Figure 2a. We evaluate .
:

:::
We

:::::::
evaluate

:::
the

:::::
model

::
in

:::::
terms

::
of whether the new map improves

::::::::
represents

::
an

:::::::::::
improvement

::::::::
compared

::
to
:
the original HBV

map
:
.
::::
This

::
is
:::::
done by investigating how well the new map fits with the actually observed runoff from the fully gauged and

partially gauged catchments.535

In addition to the experiment described above, we repeated the experimentwhen omitting
:
,
:::
but

:::::::
omitted

:
partially gauged

catchments and short records from the analysis. This was done to show that the SVC model works regardless of the prepro-

cessing step. These results can be found in Appendix A.

5.1.1 Cross-validation for ungauged and partially gauged catchments

5.2
::::::::::::::

Cross-validation
:::
for

::::::::
ungauged

::::
and

::::::::
partially

:::::::
gauged

::::::::::
catchments540

We next assess
::::::
evaluate

:
the framework’s ability to perform accurate mean annual runoff for ungauged and partially gauged

catchments. This is done by a cross-validation assessmentof
:
,
::::::
where

::
we

:::
do

::::::::::
predictions

:::
for the 127 fully gauged catchments

from
:
in

:
Figure 1a. The 127 fully gauged catchments are divided into five groups or folds:

:
. The four first folds have 25 so-

called target catchments, while the fifth fold has 27 target catchments. The cross-validation folds are rather large because of the

computational complexity of the problem. In turn, the streamflow data corresponding to each fold are removed from the dataset,545

while the remaining observations are used to predict the mean annual runoff for these catchments for 1981-2010. The likelihood

consists of preprocessed observations from partially gauged catchments and observations from fully gauged catchments, i.e.

around 400 observation catchments in total. Hence, the workflow is as in Figure 4. However, mark
::::::
Remark

:
that we don’t

calibrate the HBV model for each cross-validation fold: The
:
,
::
as

:::
the HBV product was a pre-made productavailable in the data

provider’s database, and we use the same HBV product for all experiments without any modifications.550

In our evaluation, we compare the predictive performance of the SVC model
::::
SVC

:::::
model

:
with the process-based HBV

model. Hence, the
::::
HBV

::::::
model.

::::
The original simulations from the HBV model shown in Figure 2a are

:::::
hence

:
used as they areas

process-based reference predictions. For evaluation purposes, the values in Figure 2a are aggregated and averaged to catchment

runoff for the catchments in Figure 1.
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We also compare our approach to the purely geostatistical Top-Kriging (TK) approach. Top-Kriging is used to predict mean555

annual runoff in ungauged catchments based on a weighted sum of observations from nearby catchments, as
::::
(TK)

::::::::
approach

described in Section 3.3. For this purpose,
::::
Here,

:::
we

::
fit

:
a covariance model based on a multiplication of a modified exponential

and fractal variogram model is fitted to the
:
to
:::

the
:::::

mean
::::::
annual

::::::
runoff data. This was used because it was the default option

::
is

::
the

:::::::
default

::::::::
variogram

::::::
model in the R package rtop

::
(?). As for the SVC model, data from both fully gauged catchments and

preprocessed partially gauged catchments are used for Top-Kriging
::
as

::::
input, and we mark the Top-Kriging results by TKPP to560

emphasize that preprocessed data are usedas input. For fully gauged catchments, the standard deviation of the observations is

set to 2.5 % of the observed value yi in the Top-Kriging approach. For
:
,
:::::
while

:::
for

:
partially gauged catchments the standard

deviation is set to 10 % of the observed value. This is done
:::
The

::::
aim

::
is

:
to make the

::::::::::
Top-Kriging

:
results as comparable as

possible to our proposed SVC model
::
the

:::::
SVC

:::::
model

::::::
results.

In addition to evaluating Top-Kriging and the HBV model, we also include prediction results from the preprocessing step565

(PP)
:::::::::::
preprocessing

::::
step

::::
(PP)

:
alone, without performing any further analysis. The PP predictions come from the purely geosta-

tistical method described in Section 3.3.2. We include the PP results to make the Top-Kriging and SVC results more transpar-

ent: .
:
These methods use the PP results as input data , representing observations from

::
for

:::
the

:
partially gauged catchments (see

Section 4.4).

The described cross-validation procedure is first performed when the 127 target catchments are treated as ungauged. Hence,570

we
::
We

:
have the following setting:

Ungauged catchments (UG): The target catchments in each cross-validation fold are treated as totally ungauged (UG) in

the time period of interest (1981-2010) and their observations are removed from the dataset. Observations from fully gauged

catchments (1981-2010) from other cross-validation groups and observations from partially gauged catchments (1965-2010)

are used to make predictions.575

We also evaluate the predictive performance of the model when the 127 target catchments are treated as partially gauged by

doing the following experiment:

Partially gauged catchments (PG): The target catchments in each cross-validation fold are treated as partially gauged (PG).

By this we mean that each target catchment is
::
are

:
allowed to have a few

:
3
:
annual observations in the study period (1981-2010),580

in this case 3 annual observations. These are drawn randomly from
::::::::
randomly

::::::
drawn

::::
from

:::::
years

:
1981-2010for each target

catchment. The remaining 27 observations from the target catchment are removed (and observations from before 1981). The

preprocessing step from Section 4.4 is used to make inference about the mean annual runoff for the target catchments before

using these as observed values in the SVC model or Top-Kriging. In addition, observations from
::::::::::
Observations

:::::
from nearby

fully gauged catchments (1981-2010) and partially gauged neighboring catchments (1965-2010) are included in the likelihood585

as before.

The same cross-validation groups are used for all experiments, such that the results become comparable across methods.

The randomly drawn short records of length 3 are also the same for Top-Kriging and the SVC approach.
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In addition to the above experiments, we carried out a cross-validation for the UG setting when omitting catchments with590

short records and preprocessed data. These results can be found in Appendix A.

5.3 Evaluation scores

To evaluate the accuracy of the predictions obtained from the cross-validation, we use three evaluation scores. These are the

root mean square error (RMSE), the absolute normalized error (ANE) and the Nash-Sutcliffe model efficiency coefficient

(NSE), which are defined as:595

RMSE =

√√√√ 1

n

n∑
i=1

(yi− Q̂(Ai))2, (18)

ANEi =
|yi− Q̂(Ai)|

yi
, (19)

and

NSE = 1−
∑n
i=1(Q̂(Ai)− yi)2∑n

i=1(yi− y)2
. (20)600

Here, Q̂(Ai) is the predicted mean annual runoff in catchment Ai, yi is the corresponding observed value and y denotes the

average observed mean annual runoff over all study catchments i= 1, ...n. For the suggested SVC model, we use the posterior

mean of Q(A) as the predicted value (Equation (7)). As a summary statistic for ANEi, we use the average ANEi over all

catchments i= 1, ..n. A low average ANEi or a low RMSE corresponds to accurate predictions. The NSE on the other hand

takes values between −∞ and 1, and the closer the model efficiency is to 1, the more accurate the model is. The ANE and the605

NSE are different from the RMSE in being scale-independent evaluation scores.

The three above scores are suitable for evaluating prediction bias, but they do not evaluate the models’ uncertainty quantifi-

cation. For this reason we introduce two additional evaluation scores: the continuous ranked probability score (CRPS) and the

90 % coverage. The CRPS is in general given by

CRPS(F,y) =

∞∫
−∞

(F (s)− 1{y ≤ s})2ds,610

where y is the observed value and F (·) is the predictive cumulative distribution (?). From the above definition, we see that

:::
The

:
CRPS takes the whole posterior distribution F (·) into account, unlike RMSE, ANE and NSE that only consider point

predictions. A low CRPS corresponds to an accurate prediction, and the CRPS increases if the observed value y falls outside

the posterior predictive distribution F (·). In this application, we assume F (·) to be Gaussian distributed with expected value

given by the predicted mean annual runoff and standard deviation equal to the corresponding predictive standard deviation.615

The Gaussian assumption should be reasonable, as the posterior distributions of the predicted runoff typically are symmetric

with light tails. We use the average CRPS over the 127 fully gauged catchments as a summary score.
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(a) Posterior mean SVCPP.
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(b) Difference (SVCPP minus HBV).
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(c) Posterior standard deviation SVCPP.

Figure 5. Posterior mean of q(u) for all grid nodes u, difference between the new map and the original HBV map and posterior standard

deviation of q(u).

Finally, the
:::
The

:
90 % coverage is defined as the probability that 90 % of the observed values are covered by the corresponding

90 % posterior prediction intervals. This probability is computed empirically based on the predictions for the 127 fully gauged

catchments, assuming that the SVC and Top-Kriging predictions follow a Gaussian distribution. If the empirical probability is620

close to 0.9for a model, it suggests that the model provides an appropriate uncertainty quantificationfor the underlying variable.

6 Results

In Section 6.1 we present the gridded mean annual runoff map obtained from the experiment described in Section 5.1.1. Next,

in Section 6.2, we present the results from the cross-validation described in Section 5.2. Together, the two experiments show

how the suggested framework performs for fully gauged, partially gauged and ungauged catchments in Norway.625

6.1 Gridded mean annual runoff map for 1981-2010

In Figure 5a we present the runoff map produced by the SVCPP approach. The difference between the new map and the original

HBV product is visualized in Figure 5b, while the map’s uncertainty estimates are shown in Figure 5c. Recall that the subscript

PP refers to that the method uses preprocessed data. Figure 5b shows that the SVCPP map gives lower values of mean annual

runoff in western Norway compared to the original HBV map. The difference is around 700-1500 mm/year. In eastern Norway,630

the original HBV map and the SVCPP maps are approximately equal, both in south-east and north-east. Around the glacier

called Svartisen, located in northern Norway in the area where Norway is most
::::
quite

:
narrow, the mean annual runoff of the

SVCPP map is lower than the mean annual runoff of the original HBV mapwith a difference .
::::
The

:::::::::
difference

::::
here

::
is around

1500 mm/year.

We see from Figure 5a that the SVCPP map preserves most of the details provided by the original gridded HBV product in635

Figure 2a. The runoff map produced by SVCPP also looks visually good without e.g. unrealistic jumps or obvious disconti-
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Table 1. Posterior median (0.025 quantile , 0.975 quantile) for the parameters of the SVCPP model.

Parameter [unit] SVCPP

β0 [mm/year] 153 (110,196)

β1 [1] 0.83 (0.78,0.90)

ρx [km] 10.7 (5.4,26.1)

σx [mm/year] 117 (33.8,292)

ρα [km] 39.2 (29.4,51.9)

σα [1] 0.24 (0.21,0.27)

σy [mm/year] 205 (177,1000)

nuities. One exception is a line or discontinuity close to the Finnish border, north-east in Figure 5a, but this line was already

present in the original HBV product in Figure 2a.

The reason that most of the details from the original HBV map are preserved, is that the covariate h(u) makes a large

contribution to the final model with a regression coefficient β1 that is estimated to be 0.83. This can be seen in Table 1 where640

we present the parameter estimates of the SVC model. In Table 1 we also see that the marginal standard deviations σα and σx

of the two spatial fields α(u) and x(u) are significant in
:
of

:::::::::::
considerable magnitude, confirming that there indeed is a regional

trend in the fit between the original HBV product and the actually observed mean annual runoff. The regional trend can be

studied in Figure 6 where we have included
::::
show a visualization of the two spatial fields α(u) and x(u). We see that the spatial

pattern in Figure 5a mostly originates from the spatially varying coefficient component α(u) for SVCPP (Figure 6a). The other645

GRF x(u) contributes with more local adjustments in the mean annual runoff (Figure 6b). Hence, the
:::
The spatial fields have

:::::
hence picked up both short ranged and long

::::
long

::::::
ranged

:::
and

:::::
short ranged processes.

Next, considering the
:::
The posterior standard deviation of the SVCPP model in Figure 5c , we see

:::::
shows

:
two trends: (i) The

model gives a posterior uncertainty that
:::::::
posterior

::::::::::
uncertainty follows the pattern we see in the original HBV map in Figure

2a and (ii) if we look closelyat Figure 5c, we see that
:
, the uncertainty is decreased in areas where there are observations,650

particularly around the centroids of the gauged catchments. Here, it is the spatially varying coefficient (β1 +α(u)) ·h(u) from

Equation (5) that causes pattern (i). Including only
:
,
:::::
while

::::
only

:::::::::
including the GRF x(u) would only give pattern (ii).

:::
The

:::::::::
component

:::::::::
α(u)h(u)

:::
this

::::
way

::::::
allows

:::
for

:
a
::::::::

variance
:::
that

::
is
::::::::::::::

inhomogeneous
::
in

:::::
space

:::::
given

:::
the

::::::::::::
process-based

:::::::
product

:::::
h(u).

Figure 5c further shows that the SVC model gives quite high posterior standard deviations in a small area in western Norway,

south of Sognefjorden. This can be explained by that this both is an area where we have few observations (see Figure 1b) and655

where the original HBV map performs poorly and overestimates the true runoff.

In Figure 7 we present a scatter plot that shows the fit between the runoff map in Figure 5a and the observed
::::::::
catchment mean

annual runoff. The scatter plot is obtained by aggregating the grid nodes in Figure 5a to the catchment areas in Figure 1b. The

results show that the SVCPP map corresponds considerably better with the observed runoff for the fully gauged catchments than

the original HBV map from Figure ??
:::::
(Figure

::::
2b). The original HBV map gave a correlation of 0.933 between the predictions660
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Figure 6. Posterior means for the two GRFs x(u) and α(u) for SVCPP ::
for

:::
the

::::::::
Norwegian

:::::::
mainland.

and the observations for the fully gauged catchments, while the corrected SVCPP map gives a correlation approximately equal

to 1.

Figure 7. Scatter plot showing the predicted mean annual runoff for SVCPP and the observed mean annual runoff from fully gauged (orange)

and partially gauged catchments (green).

We also investigated the correlation between the map and the observed runoff for the partially gauged catchments where we

only have 1-29 years of measurements in the 30 year time period of interest (Figure 7). For these catchments, the original HBV

model gave a correlation of 0.917. The SVCPP map gives correlation 0.986. The correlations and Figure 7 indicate that the665

SVCPP map provides a better fit for the partially gauged catchments than the original HBV map. Here, we can not be entirely

25



Table 2.
::::::::
Predictive

:::::::::
performance

:::
for

::
the

::::::::::::
cross-validation

::::::::::
experiments

::::
when

:::
the

::::
target

:::::::::
catchments

::
are

::::::
treated

::
as

:::::::
ungauged

::::
(UG)

:::
and

:::::::
partially

:::::
gauged

::::
(PG)

:::
for

:::
the

::::
HBV

::::::
model,

::
the

::::::::
suggested

::::
SVC

:::::
model

:::
and

:::
for

:::::::::
Top-Kriging

:::::
(TK).

:::::
Recall

:::
that

::::::::
subscript

::
PP

::::
refer

::
to

:::
the

::::::::::
geostatistical

::::::::::
preprocessing

::::
step.

::::
The

:::::
results

::::
from

:::
the

::::::::::
geostatistical

:::::::::::
preprocessing

::::::
method

::::
(PP)

:::
are

:::
also

:::::::
included

::
as

::
a
:::::::
reference

:::::::
(without

:::
any

::::::
further

::::::
analysis)

:::
for

:
a
:::::
better

::::::::::
understanding

::
of
:::
the

::::
other

::::::
results.

:::
The

:::
best

::::::
method

:::
for

:::
each

::::::::
evaluation

:::::::
criterion

::
is

:::::
marked

::
in
::::
bold.

Ungauged target (UG) Partially gauged target (PG)

HBV SVCPP TKPP PP SVCPP TKPP PP

RMSE (mm/yr) 394 315 350 389 166 181 134

ANE 0.180 0.111 0.125 0.192 0.054 0.053 0.047

NSE 0.815 0.881 0.854 0.771 0.968 0.961 0.978

CRPS (mm/yr) 235 145 173 209 73 77 71

Coverage (90 %) × 0.83 0.91 0.96 0.95 0.94 1

sure because the underlying observations from the partially gauged catchments in Figure 7 only are approximations of the true

runoff between 1981-2010, computed based on 1-29 annual observations from this time period. It is however a good sign that

the fit for the partially gauged catchments (green) is not as good as for the fully gauged catchments (orange). Since we don’t

know the underlying truth for the partially gauged catchments, the SVC model should not necessarily reproduce the observed670

value.

6.2 Cross-validation for ungauged and partially gauged catchments

In Table 2 we present the results from the cross-validation assessment described in Section 5.2. Here, we compare our

geostatistical model to the process-based HBV model and to the purely geostatistical Top-Kriging (TK) method in terms

of predicting mean annual runoff for ungauged (UG) and partially gauged (PG) catchments for 1981-2010. For reference, we675

have also included an evaluation of the prediction results provided by the preprocessing method alone (PP) without doing any

further analysis. The PP results come from the purely geostatistical method from ?.

Predictive performance for the cross-validation experiments when the target catchments are treated as ungauged (UG) and

partially gauged (PG) for the HBV model, the suggested SVC model and for Top-Kriging (TK). Recall that subscript PP refer

to the geostatistical preprocessing step, i.e. preprocessed data from partially gauged catchments are used in both Top-Kriging680

and the SVC approach. The results from the geostatistical preprocessing method (PP) are also included as a reference (without

any further analysis) for a better understanding of the other results. The best method for each evaluation criterion is marked in

bold.

For ungauged catchments (UG), we find that the RMSE of our SVCPP method is 20 % lower than the RMSE of the HBV

model. Compared to Top-Kriging, the SVCPP model gives 10 % lower RMSE. The ranking between the models is the same also685

for the ANE, NSE and CRPS. When it comes to uncertainty quantification, Top-Kriging gives the best uncertainty representa-
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Figure 8. Predictive performance of the methods (HBV, SVCPP and TKPP) for predictions in ungauged catchments (UG) performed by cross-

validation. The first plot shows the fit between the predictions and the observations for the methods. The remaining plots show the ANE

for each of the 127 cross-validation catchments plotted against some selected catchment attributes; more specifically the observed runoff,

catchment area, median catchment elevation, utm33
::::::
UTM33

:
north and utm33

::::::
UTM33

:
east. The fitted curves are regression splines (made

by geom_smooth() in R)that make it easier to see trends in the predictive performance.

tion for ungauged catchments according to the 90 % coverage, with 0.91 coverage. However, SVCPP also performs acceptable

with 0.83 coverage on a cross-validation performed on (only) 127 catchments.

In Table A1 in the Appendix, we include the methods’ predictive performance for ungauged catchments when not using the

preprocessing step
:::
and

:::::
short

::::::
records

:
(SVC and TK). Hence, we only used observations from the 127 fully gauged catchments690

in the observation likelihood. These results give the same ranking between the methods as before, but with one exception:
:
.

SVC performs approximately as good as Top-Kriging in terms of 90% coverage, with coverages of 0.87 and 0.94 respectively.

From Table A1 we also mark
:::::
notice that the difference in performance between the SVC model and Top-Kriging is larger for

this setting, where we omitted the short records, than for the setting where we included the short records
:::
had

:::::
fewer

::::::::::
observations.

This is reasonable as we can expect the SVC model to be more robust than a purely data-driven model if the data availability695

is poorer. This was also a main motivation for incorporating process-based simulations into a geostatistical model.

Further, we compared the predictive performance for ungauged catchments (UG) for the SVCPP approach, the HBV model

and Top-Kriging (TKPP) across the study area and across catchment attributes in terms of the absolute normalized error (ANE).

This is visualized for some selected catchment attributes in Figure 8. We see that the HBV model in general tends to over-
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estimate the mean annual runoff. It gives the highest ANE values in the south-western part of the country, and particularly700

for catchments at higher elevations (800-1400 m a.s.l). The latter might be due to the interpolated precipitation product used

as input in the HBV-model, where orographic enhancement of precipitation is accounted for by an elevation gradient. Since

precipitation gauging stations seldom are located at high elevations (?), the precipitation is actually extrapolated to the highest

altitudes giving rise to biases in the precipitation field. Figure 8 further shows that the two geostatistical approaches (SVCPP

and TKPP) perform better than the HBV model for catchments with mean elevations in the range 800-1400 m a.s.l. . This705

demonstrates that the SVC approach is able to compensate for its poor HBV input in these areas.

The lines in Figure 8 next show that Top-Kriging and SVCPP in general tend to follow the same trends across catchments

attributes: For exampledo they both perform particularly .
::::
For

:::::::
example,

::::
both

:::::::
perform

:
well for catchments with large drainage

areas, supporting existing results from ? regarding the predictive performance of Top-Kriging. For catchments with large

drainage areas, there are typically data from overlapping subcatchments available which makes areal referenced geostatistical710

models particularly appropriate. The two geostatistical approaches also perform well for catchments located in the eastern

parts of Norway. In the south-eastern Norway we find catchments with larger drainage areas and most of them are located at

relatively low elevations. The runoff in such catchments are typically easier to predict. The data availability is also good in

the south-eastern parts of Norway, making geostatistical approaches particularly suitable . A trend describing differences in

the predictive performance between Top-Kriging and the
:::::::
suitable

::
for

:::::::::::
geostatistical

:::::::::
modeling.

::
It

::
is

::::
hard

::
to

:::
see

:
a
:::::

clear
:::::
trend

::
in715

::::
when

:
SVCPP approach is harder to see

:::::::
performs

:::::
better

::::
than

:::::::::::
Top-Kriging from Figure 8, but we notice that Top-Kriging (and

the HBV model) in general produce more extreme ANE values than the SVC model.

So far in this subsection, we have only discussed the methods’ ability to predict runoff in ungauged catchments. We now

consider the results for the
:::
We

::::
next

:::::::
consider

:::
the

::::::::::
performance

::
of

:::
the

::::::
models

:::
for predictions in partially gauged (PG) catchments.

Recall that for the PG case, there are 3 annual observations available from the target catchments (out of 30) and that these are720

preprocessed as described in Section 4.4 before further analysis in the mean annual runoff model. The results for the partially

gauged catchments are shown
:::
The

::::::
results in Table 2 and we see

::::
show

:
that we obtain a large reduction in the predictive

performance for the SVCPP,PG case compared to the case when we have no data from the target catchments (SVCPP,UG):
:
.

The reduction in RMSE is 47 %when comparing these two settings. The improvement for SVCPP,PG compared to the HBV

model is 58%. Compared to Top-Kriging, the SVCPP approach is slightly better in terms of RMSE, but approximately equally725

good in terms of ANE, NSE, CRPS and 90 % coverage. Table 2 also shows that the Top-Kriging estimates are substantially

improved when including preprocessed short records from the target catchments in the likelihood (PG compared to UG for

TKPP).

The improved performance of TKPP and SVCPP for the PG case is mainly caused by the preprocessing procedure’s ability to

perform (very) accurate predictions of Norwegian mean annual runoff when a few annual observations are available. This can730

be understood from the results in Table 2 where
::
In

:
2
:
we see that the input data provided by the preprocessing step (PP) alone

gives predictions that are better than the predictions of the SVCPP and TKPP approaches. The improved results for TKPP and

SVCPP however, show that the two geostatistical methods are able to incorporate
:::::
exploit

:
the good performance of the PPmethod
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in their spatial interpolation procedures
::
PP,

:
and that the SVC approach indeed can be used to combine both process-based data

and data from fully gauged and partially gauged catchments.735

7 Discussion

We have presented a geostatistical model for
:::::
mean annual runoff that incorporates simulations from a process-based model

through a spatially varying coefficient and shown how short records can be included in the modeling by using the methodology

from ? as a preprocessing step for partially gauged catchments
::
for

::::::
filling

::
in

::::::
missing

::::::
values.

In a preliminary study we tested models with only one spatial field, i.e. only
::::
either

:
x(u) or α(u) was included in Equation740

(5). These models performed quite well in terms of both posterior mean and posterior uncertainty for the Norwegian dataset,

which indicates that it for many study areas might be satisfactory to use a model with only one spatial field (i. e. similar to only

performing ratio interpolation or only residual interpolation).
::
for

:::::
many

:::::
study

:::::
areas. However, our preliminary experiments also

showed that a model with two spatial fields (α(u) and x(y)) often gave a more more realistic spatial distribution of uncertainty

than a model with only x(u) or only α(u)
::
one

::::::
spatial

::::
field. Further, in Figure 6 we saw

::::::
Figure

:
6
:::::::
showed that the model was745

able to capture both short and long ranged processes through its two fields, which can be a useful model property that can

avoid that the model smooths out the process-based covariate too much. In general, the importance of x(u) compared to α(u)

depends on the study area, the data availability and the quality of the process-based input model.

Table 2 showed that Top-Kriging and the SVC approach both were able to exploit the preprocessing method’s ability to

perform accurate predictions for partially gauged catchments. However, for these catchments TKPP and SVCPP performed750

slightly poorer than the preprocessing input model alone (PG in Table 2). This is not necessarily a problem: The preprocessing

method (PP) is designed to be particularly suitable for record augmentation, while TK and SVC have other strengths. We also

::
for

:::
the

:::::::
partially

:::::::
gauged

:::::::::
catchments

:::::
(PG).

:::::
When

:::::::::::
constructing

:::
the

::::::
models,

:::
we

:
did not want the SVC approach and Top-Kriging

to put too much weight on the more uncertain preprocessed short records. The latter was included in the model by specifying a

larger (prior) observation uncertainty for the partially gauged catchments (0-23 % of the observed value) compared to the fully755

gauged catchments (0-6 % of the observed value). We have not tested how this uncertainty specification affects the results, but in

future work, the SVCPP model and TKPP might
::::
could be improved by selecting the observation uncertainty for the preprocessed

data more carefully. The observation uncertainty for the partially gauged catchments can e.g. be set independently of the fully

gauged catchments and based on the record length of the short records. An option could also be to use the predictive uncertainty

of the preprocessing method to specify the (prior) measurement uncertainty for the partially gauged catchments in the SVC760

model and Top-Kriging.

In this paper
::
the

::::::
article,

:
we presented a framework for mean annual runoff

::::::::
estimating

:::::
mean

::::::
annual

::::::
runoff, which is one of

several key flow indices. The SVC framework can be used for other flow indices as well, but the computational complexity

makes it most suitable for flow indices of longer temporal scale or for modeling long-term averages. The user should also

know that the soft constraints imposed by
::
In Equation (7)and the observation likelihood in Equation ,

:::
we

::::
also assume a linear765

aggregation of runoff over the grid nodes that define the catchment discretization. This is reasonable for mean annual runoff,
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but not for all hydrological variables
:::::
which

::
is

::::::::::
particularly

:::::::::
appropriate

:::
for

:::::
mass

::::::::::
conservative

::::::::
variables

:::
like

::::::
annual

:::::
runoff. If the

modeler wants
::::
want

:
to avoid this model property

:::::::::
assumption, two simple modifications of the model

:::::
model

::::::::::::
modifications are

possible:

m1:
::
1) Make the runoff observations point referenced instead of areal referenced by using e.g. the catchment centroids as the770

target locations. This means omitting the integral
::
by

:::::
letting

:::::::::::::
Q(A) = q(uA)

:
in Equation (7)and letting Q(A) = q(uA) ,

:
where

uA is the centroid of catchmentA and q(·) is point runoff as defined in Equation (5). The drawback of this alternative is that the

model will weight observations from subcatchments similarly as observations from non-overlapping catchments and provide a

poorer uncertainty representation
:::
This

:::::::::::
modification

:::
also

::::::
allows

:::
for

:::::
doing

::::::::
inference

::
on

:::
log

:::::::::::
transformed

:::
data.

m2: Adding more flexibility to the model by adding more
:
2)

::::
Add

:::::
more

:
covariates or random noise outside the integral in775

Equation (7). This alternative preserves
::::
way the areal representation of catchments, but makes it

::
is

::::::::
preserved,

:::
but

::
it
::::::::
becomes

easier to violate the water balance constraintsover nested subcatchments. .
:

A potential weakness of the model proposed in this article,
:::::::
proposed

:::::
model

:
is that it uses a Gaussian likelihood. Hence, the

model can provide negative runoff predictions. This can happen particularly
::::::
consists

::
of

::::::::
Gaussian

::::::::::
components

::::::
which

:::
can

:::::
result

::
in

:::::::
negative

:::::
runoff

::::::::
estimates.

::::::::
Negative

::::::::
estimates

:::
can

:::::
occur

:
if the flow index and the corresponding study area have many runoff780

observations close to zero. The possibility of negative runoff
::::
This is another argument for using the SVC model mainly for

flow indices of a longer temporal scaleor for modeling long-term averages.

To avoid negative runoff predictions there are some modifications of the model that can be done: For example is it possible

to log transform the runoff data before performing the analysis, but this requires that we model the runoff observations as point

referenced as proposed in m1. The reason is that the sum in Equation , which is related to how we model catchment runoff,785

does not makes sense for log transformed runoff data. Other sources for negative predictions are the .
::::::::

Negative
::::::::::
predictions

:::
can

::::
also

:::::
occur

:
if
:::
the

:
discretization of the study area and

::
/or

:::
the

:::::
SPDE

:::::
mesh

::
is

:::
too

::::::
coarse

::::::
relative

::
to
:
the mesh used for making

inference (see Section 4.6). The discretization and the mesh should be dense enough to capture the spatial variability in the

study region. In this article the HBV simulations and the associated catchment discretization were delivered on a 1 × 1 km

grid and
::
of

:::
the

:::::
target

:::::::
variable.

::
In

:::
the

:::::
study

::::::::
presented

:::::
here, no negative values were produced.790

In the proposed model, we used the model from ? as a preprocessing step to exploit short records. The preprocessing step

can only be expected to improve the predictions for the partially gauged catchments if the study area and the flow index of

interest are driven by runoff patterns that are repeated over time, like the mean annual runoff in Norway. If this is not the case,

the preprocessing step performs a more classical form of spatial interpolation and can be omitted to save computational time.

The performance of the preprocessing step over different study areas and target variables is further discussed in ?.795

Figure 7 showed that the SVCPP gave a very good fit for the 127 fully gauged catchments, almost entirely reproducing the

actual observed mean annual runoff in the resulting gridded map. We emphasize that the proposed method is not guaranteed to

reproduce the observed value with the precision we saw in this case study. How good the fit becomes
:
is

:
for the fully gauged

catchments depends on e.g. the data quality, the gauging density and the complexity of the spatial variability of the underlying

hydrological processes.
:::::::
process.

::::::::
Obtaining

::
a

:::::::::
correlation

::::::
around

:
1
:::
for

:::
the

::::::
gauged

::::::::::
catchments,

:::
as

::
in

:::::
Figure

::
7,
::
is
:::
not

::::::::::
necessarily800

:::::::
desirable

::::::
either,

::
as

:
it
::::::
might

::::
affect

:::
the

:::
fit

::
for

:::
the

::::::::
ungauged

::::::::::
catchments

:::::::::
negatively.

::::
This

:::::
might

:::::::
explain

::
the

::::::::::::::
over-confidence

::
of

:::
the
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::::::
SVCPP ::::::

model,
::::::::
expressed

:::::::
through

:::
the

:::
83

::
%

::::::::
coverage

:::
for

:::
the

:::
UG

:::::
case,

::
in

:::::
Table

::
2.

::
It

::
is

:::::::
possible

::
to

::::::::
influence

:::
the

::::::
model

::
fit

:::
by

::::::
making

::::
the

::::
prior

::::::::::
observation

::::::::::
uncertainty

::
of

:::::
si ·σ2

y:::::
wider

::
or

::::::::
narrower.

:

In Norway the gauging density is moderate. We expect the suggested SVC model to outperform purely geostatistical methods

like Top-Kriging for gauging densities that are low to moderate. For data sparse areas, the process-based information provided805

by the HBV model is probably more importantthan in data dense areas. This claim is based on intuition about the models under

discussion, but is also indicated by our results: .
:

Top-Kriging is closer to the SVC model in predictive performance for the

dataset where we use data from 411 catchments (UG in Table 2) than for the reduced dataset where we only use data from

127 catchments (Table A1 in the Appendix ). This further suggests that if the gauging density is large relative to the spatial

variability, a purely geostatsitical approach will perform as good as the SVC model.810

Whether the suggested framework performs better than a purely geostatistical method is of course also connected to the

quality of the process-based input model and the calibration procedures performed on the hydrological product. However, we

have certainly shown that
::
our

::::::
results

:::::
have

::::::
clearly

:::::::::::
demonstrated

::::
that

::
it is possible to improve a process-based hydrological

product by using the suggested framework: .
:
All experiments showed that the SVC approach improved the predictions com-

pared to the original HBV simulations. This means that the
:::
The SVC model can

:::::
hence

:
be considered as an objective approach815

for correcting the simulations from a process-based model, and consequently reduce the need for more subjective, manual

corrections.

8 Conclusions

In this article we
::
We

:
have presented a Bayesian geostatistical model for annual runoff estimation that incorporates simulations

from a process-based hydrological through a covariate whose regression coefficient is allowed to vary in the study area accord-820

ing to a Gaussian random field. A preprocessing step for including short records in the modeling was also suggested such that

the model could exploit data from both fully gauged and partially gauged catchments.

The model was evaluated by predicting mean annual runoff data for Norway (1981-2010), and simulations from the process-

based HBV model were used to make the
::
as

:
a covariate. The results showed that the suggested framework outperforms a purely

process-based model when predicting runoff in ungauged and partially gauged catchments. The reduction in RMSE was 20 %825

for ungauged catchments and 58 % for partially gauged catchments. The increased predictive performance obtained compared

to a purely process-based model is connected to the quality of the process-based product and the calibration procedures per-

formed on it. However, all results show that the suggested framework is able to improve the predictions from a process-based

model. This means that the approach can
::::
The

:::::::
approach

::::
can

:::::
hence be used as a objective method for correcting process-based

runoff maps relative to data, which can reduce the need for more subjective, manual corrections. The large reduction in RMSE830

for partially gauged catchments also demonstrates that the preprocessing method from ? can be incorporated into the proposed

model to exploit short records.

Furthermore, the suggested model gave a 10 % lower RMSE than a purely geostatistical method (Top-Kriging) when predict-

ing runoff in ungauged catchments. Particularly if the gauging density is low to moderate, we expect the suggested framework
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:
is
::::::::

expected
:
to outperform purely geostatistical models. For partially gauged catchments that had a few annual streamflow835

observations available, a purely geostatistical method performed equally well (Top-Kriging) or slightly better (PP) than the

proposed approach. It is not surprising that a purely data-driven framework performs well in areas where there actually are

data. However, since
:::::
Since most study areas consist of a mix of ungauged, fully gauged and partially gauged catchments, the

proposed SVC model stands out as a good approach for making a consistent gridded runoff map for a larger area.
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Appendix A: Results when omitting short records

We repeat the experiments from Section 5.1.1 and 5.2 for ungauged catchments, but we only use observations from the 127850

fully gauged catchments in Figure 1a. The runoff data from the partially gauged catchments are simply removed from the

analysisand the workflow is as in Figure 4 without performing the optional preprocessing step. The experiments are included

to show that the SVC model works regardless of preprocessing.

The runoff map provided by the SVC model
:
, when not using short records, as described in Section 5.1.1, is shown in Figure

A1. The maps look similar to the maps in Figure 5, but the posterior uncertainty is larger in western Norway in Figure A1c.855

The reasons are that there are less observations available from western Norway in the dataset consisting only of fully gauged

catchments and that this is an area with large deviance between the original HBV map and the observed streamflow.

In Figure A2 we show the fit between the observed runoff and the runoff predicted by the map in Figure A1a. The fit is

very good for the fully gauged catchments, as before. The fit is also improved for the partially gauged catchments compared

to the original HBV map in Figure 2a. Here, the original HBV model gave correlation 0.917 between observed and predicted860
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(a) Posterior mean SVC.
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(b) Difference (SVC minus HBV).
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(c) Posterior standard deviation SVC.

Figure A1. Posterior mean of q(u) for all grid nodes, difference between the new map and the original HBV map and posterior standard

deviation of q(u). The model is fitted without including short records.

Figure A2. Scatter plot showing the predicted mean annual runoff (posterior mean of Q(A)) for SVC and the observed streamflow from

fully gauged and partially gauged catchments when short records are omitted from the likelihood.

values, while the map in Figure A1a gives correlation 0.924. However, when short records and preprocessing were included in

the analysis, the correlation was 0.986 (SVCPP in Figure 7). This illustrates the reduced predictive performance when omitting

short records from the analysis in Norway and in countries with similar temporal
:::::::::::::
spatio-temporal trends in annual runoff.

Finally, we present the
:::
The cross-validation results when using the dataset that only consists of fully gauged catchments, as

described in Section 5.2. The results
::
for

:::
the

::::::::::
experiments

::::::
where

:::
we

::::
omit

:::
the

::::
short

:::::::
records are summarized in Table A1. Again865

the SVC model performs considerably better than the HBV model and Top-Kriging in terms of RMSE, ANE, NSE and CRPS.

Mark
::::::
Remark

:
that the difference in performance from Top-Kriging is larger for this dataset (for UG), compared to when using
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Table A1. Predictive performance for cross-validation when the target catchments are treated as ungauged (UG) for the HBV model, the

suggested SVC model and for Top-Kriging (TK). Short records are omitted from the observation likelihood and the preprocessing step is not

performed. The best method for each evaluation criterion is marked in bold.

UG

HBV SVC TK

RMSE (mm/yr) 394 320 381

ANE 0.180 0.135 0.176

NSE 0.815 0.878 0.827

CRPS (mm/yr) 235 156 211

Coverage (90 %) × 0.87 0.94

the larger dataset that included short records (Table 2). This is reasonable as we can expect purely data-driven methods to

increase their performance when more data are available.
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