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Abstract. Recent developments in hydrology have led to a new perspective on runoff processes, extending beyond the classical 

mass dynamics of water in a catchment. For instance, stream flow has been analyzed in a thermodynamic framework, which 

allows the incorporation of two additional physical laws and enhances our understanding of catchments as open environmental 

systems. Related investigations suggested that energetic extremal principles might constrain hydrological processes, because 10 

the latter are associated with conversions and dissipation of free energy. Here we expand this thermodynamic perspective by 

exploring how macro and micro hillslope structures control the free energy balance of Hortonian overland flow. This may 

ultimately help understanding why these structures have evolved to their present shape. To this end, we develop a general 

theory of surface runoff and of the related conversion of geopotential energy gradients into other forms of energy, particularly 

kinetic energy as driver of erosion and sediment transport. We then use this framework to analyze how combinations of typical 15 

hillslopes profiles and width distributions control the spatial patterns of steady state stream power and energy dissipation along 

the flow path. Additionally, we provide a first order estimate whether and when rills reduce the overall energy dissipation 

compared to sheet flow. Finally, we relate accumulated stream power of linear hillslopes to slope angles, closing the loop to 

Horton’s original formulation of erosion force. The analytical analysis of stream power reveals that the common formulation, 

a function of the depth-discharge product is a reduced version of the more general equations if we neglect changes in velocity 20 

and discharge in space. The full equations of stream power result in maximum energy fluxes in space for sinusoidal and 

exponential hillslope profiles, while linear and negative exponential forms unlimitedly increase these fluxes in the downstream 

direction. Depending on geometry, rill flow increases or decreases kinetic energy fluxes downslope, effectively counteracting 

or increasing the dissipation of potential energy. For accumulated power in space for steady state runoff, we find that on linear 

hillslopes a slope angle of 45° maximizes the conversion of potential energy into dissipation and an angle of 35° maximizes 25 

the conversion of potential energy into kinetic energy. 
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1 Introduction 

Surface runoff processes are of key importance to stream flow generation, flash floods and erosion processes. From an energy-30 

centered perspective, surface runoff formation and concentration are just two of the varieties of manifestations of how energy 

gradients in open environmental systems emerge and dissipate. Effective rainfall adds potential energy to the hillslope surface, 

causing a potential energy difference between upslope catchment areas and the stream channel. A small part of this potential 

energy gradient is converted into kinetic energy of overland flow, while the vast majority is dissipated via friction into heat 

(Loritz et al., 2019). The morphology and width function of hillslopes are expected to play an important role, as they reflect 35 

different geomorphological stages and correspond to different locations of the hillslope within the catchment (Kirkby, 1971). 

For instance, early-stage negative exponentially shaped hillslopes are formed by soil creep, while later stage linear slope 

profiles result of soil wash with increasing gullying, which ultimately leads to the characteristic exponential profiles of rivers 

(Kirkby, 1971; Leopold and Langbein, 1962). Similarly, overland flow accumulation of hillslopes in upstream catchment 

ranges is mostly characterised by a downslope convergence (Troch et al., 2004), while hillslopes in downstream parts of the 40 

catchment tend to diverge (Berne et al., 2005). This suggests that form and surface geometry reflect the past overland flow 

functionalities and erosion processes of hillslopes (Kirkby, 1971). The pressing question is how to quantify these relations 

between form, geomorphological age and past overland flow functioning? Here, we propose that a thermodynamic perspective 

on surface runoff and the related energy conversions in space and time hold clues to answers.  

The application of thermodynamic laws and energetic concepts to surface runoff processes is of course not new (Yang, 1971; 45 

Kleidon et al., 2013). It dates back to the work by Leopold and Langbein (1962) on the role of entropy in the evolution of 

landforms. Howard (1971, cited in Howard 1990) suggested that river junctions minimize stream power. Much effort has been 

put into the understanding of the formation and evolution of river networks, and whether they form in accordance with 

energetic minimization or maximization principles (Rodiguez-Iturbe et al., 1992; Rinaldo et al., 1992; Howard, 1990; Rinaldo, 

1999; Kleidon et al., 2013). This was largely inspired by the obvious structural similarity of river networks to other networks 50 

in nature such as the cardiovascular system in the human body (West et al., 1997; Zamir, 1976). Especially the idea that non-

ephemeral drainage patterns are a result of minimization of energy dissipation (Howard, 1990; Rodriguez-Iturbe et al., 1992) 

or maximization of power in sediment transport (Kleidon et al., 2013) has been tested several times. This idea relates to the 

more general hypothesis that open hydrological systems evolve to a meta-stable, thermodynamically optimal configuration, as 

proposed in a range of studies (Zehe et al., 2013; Kleidon et al., 2014; Zhang and Savenije, 2018). Hillslope-scale rill networks 55 

are another prime manifestation of such networks and their emergence and topology affect the aforementioned conversion and 

dissipation of potential energy into kinetic energy and heat. The common assumption here is that concentrated rill flow reduces 

the volume specific dissipative loss due to a larger hydraulic radius (Berkowitz and Zehe, 2020), which causes larger flow 

velocities compared to sheet flow. The geometry and topology of these drainage networks are however transient, as a response 

to transient flows of water and sediments, and these networks develop in a self-reinforcing manner (Gómez et al., 2003; Rieke-60 

Zapp and Nearing, 2005b; Berger et al., 2010). Starting at the hillslope top continuing downstream micro rills emerge at some 
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critical distance, and usually continue in parallel for some time before they merge into larger rills, sometimes drifting apart 

again and remerging until they might even expand into larger gullies (Achten et al., 2008; Faulkner, 2008) and finally the river 

channel. This transitional emergence of a structured drainage network was firstly stated in Playfair’s Law (cited in Horton, 

1945) and has since then been observed in a variety of studies (Emmett, 1970; Abrahams, 1994). One might hence state that 65 

the current structure of the hillslope surface including the rill network at one scale, or the catchment and river network at the 

next higher scale is a fingerprint of the physical work overland flow has performed on the sediments up to then (Paik and 

Kumar, 2010). A driving question in this context is whether hillslope scale rill systems (Favis-Mortlock et al., 2000) and river 

networks evolve towards a meta-stable energetically optimal configuration, which minimizes overall energy dissipation- or 

energy expenditure (Rodriguez-Iturbe et al., 1992, Ijjász-Vásquez et al., 1993) and thus maximizes stream power.  70 

Motivated by their similarity to river networks, several studies tested whether hillslope scale rill networks develop in 

accordance with the minimum energy expenditure theory of river systems (Gómez et al., 2003; Rieke-Zapp and Nearing, 

2005b; Berger et al., 2010). In line with Rodrigo-Iturbe et al. (1992) these studies assume that the flow velocity tends to be 

uniform throughout the rill network and discharge is hence proportional to the drainage area. Optimal Channel Network (OCN) 

models assume a contributing area equal to the discharge of a channel segment, which implies constant velocity, and therefore 75 

focus on the spatial arrangement of these channel segments with regard to optimality. However, the assumption of a constant 

velocity has been substantially criticized (Paik and Kumar, 2010). This is because studies of rivers (Ibbitt, 1997) and 

particularly rill systems (Emmett, 1970; Parsons et al., 1990) as well as laboratory experiments (Shao et al., 2005) showed that 

the transitions of sheet- to rill- to river flow and the increasing downslope flow accumulation lead to an accelerated flow 

velocity. This implies that less energy per unit area and per unit discharge is dissipated and clearly speaks against the idea of 80 

an equal energy expenditure per unit area. Hillslopes, as mass-accumulating systems, are furthermore characterized by a 

downslope transition of sheet to rill flow. We thus argue that not only the spatial arrangement and topology of the rill network 

but also the size and arrangement of contributing inter-rill areas (and their secondary side slopes) in concert with the hillslope 

form and its width function control Hortonian overland flow accumulation, its speed, and the related energy conversions 

(Parsons et al., 1990). This implies that a hillslope has several options to reach an energetically optimal configuration in time 85 

and space, rills and the contributing area, form, and width function may adjust.  

The main objective of this study is hence to explore the spatially distributed nature of Hortonian overland flow accumulation 

and the related energy conversions. Instead of exclusively focusing on the role of networks and their spatial arrangement, we 

focus on the entire hillslope i.e., how different hillslope forms and width functions affect kinetic energy generation and 

potential energy dissipation in response to different effective rainfall forcings. We propose that despite the similarity of 90 

hillslope and river runoff, their energetic functioning is distinctly different. This is largely because river elements are mainly 

fed from the upstream discharge (Kleidon et al., 2013) while hillslope elements receive substantial water masses through 

rainfall input and upslope runon. We will show that the latter causes a trade-off in the potential energy of overland flow as an 

increasing mass of water flows along a continuously declining geopotential. These antagonistic effects imply that potential 

energy of overland flow peaks at a distinct point in space along the hillslope. To show this, we present a general theory, which 95 
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puts overland flow on hillslopes into an energy-centred, thermodynamic framework by taking advantage of recent advances to 

understand energy conversion processes of Earth systems (Kleidon, 2016). Based on this theory we explore how the spatial 

location and magnitude of the power and potential energy maxima depend on effective rainfall intensity, hillslope form and its 

width function during steady state and discuss the implications for hillslope morphology. This aspect requires establishing a 

link between the free energy balance of overland flow, its attacking forces and critical shear stress, and thus its implication for 100 

erosion processes. In this context, critical shear stress is defined as a threshold that triggers movement of soil particles (Zehe 

and Sivapalan, 2009) by surface runoff. As forces on the bed material relate to gradients in potential energy along a flow path, 

the space-time distribution of potential energy, its’ conversion into kinetic energy (power), and its dissipation are directly 

linked to this force. Horton (1945) used this connection and developed a theory relating energy dissipation and bed shear stress 

for steady state systems with negligible mass accumulation such as rivers. The revised equation known today as the depth-105 

slope product (Bangold, 1966) is applied in many erosion prediction models for the calculation of bed shear stress. Here, we 

show that our theory is in line with these works and how it is applicable beyond. In a related study, we plan to expand this 

theory and analysis to transient conditions for lumped and later on spatially distributed hillslope system, exploring the role of 

rill networks and spatially heterogeneous roughness elements, using numerical models. 

2 Theory 110 

2.1 The hillslope surface as open thermodynamic system  

To frame surface flow processes into a thermodynamic perspective we define the surface of a hillslope as an open 

thermodynamic system (OTS) (Kleidon, 2016; Zehe et al., 2013). In this sense, the hillslope exchanges mass, momentum, 

energy and entropy with its environment (Fig. 1 and 2) Rainfall adds mass at a certain height and thus free energy in the form 

of potential energy along the upper system boundary at a certain altitude and at the lower boundary mass, and free energy 115 

leaves the system due to surface runoff or via infiltration as subsurface flow (Zehe et al., 2013). In the following, we elaborate 

the joint mass, energy and momentum budgets of overland flow systems from a thermodynamic point of view. (see e.g. Kleidon 

et al., 2013; Kleidon, 2016). 

Table 1: Overview of the different symbols used in this study 

symbol unit description 

𝑼 [kg m2 s-2] internal energy of a thermodynamic system 

𝑾 [kg m2 s-2] available energy to perform work by the thermodynamic system 

𝑯 [kg m2 s-2] thermal energy of the thermodynamic system 

𝑬𝒇

𝒑𝒆
 [kg m s-2] potential energy of the water flow 

𝑬𝒇
𝒌𝒆 [kg m s-2] kinetic energy of the water flow 

𝑱𝒇,𝒊𝒏

𝒑𝒆
 [kg m s-3] potential energy flux entering the system 

𝑱𝒇,𝒐𝒖𝒕

𝒑𝒆
 [kg m s-3] potential energy flux leaving the system 
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𝑱𝒇,𝒊𝒏
𝒌𝒆  [kg m s-3] kinetic energy flux into entering system 

𝑱𝒇,𝒐𝒖𝒕
𝒌𝒆  [kg m s-3] kinetic energy flux leaving the system 

𝑱𝑷,𝒊𝒏

𝒑𝒆
 [kg m s-3] precipitation entering the system as potential energy flux 

𝑱𝒊𝒏𝒇,𝒐𝒖𝒕

𝒑𝒆
 [kg m s-3] infiltration leaving the system as potential energy flux 

𝑷𝒇 [kg m s-3] power to create kinetic energy of system 

𝑫𝒇 [kg m s-3] dissipation of free energy of flow into different kind of energy 

𝒎 [kg] mass 

𝒗 [m s-1] velocity of runoff, parallel to bed slope 

𝒗𝑻 [m s-1] vertical fraction of v 

𝑭𝒂𝒄𝒄 [kg m s-2] acceleration force 

𝑭𝒅 [kg m s-2] drag force 

𝑱𝒐𝒖𝒕
𝒑

 [kg m s-2] momentum output of system 

𝑱𝒇

𝒑𝒆
 [kg m2 s-3] advective potential energy flux 

𝑱𝒇
𝒌𝒆 [kg m2 s-3] advective kinetic energy flux 

𝑬𝒔𝒑
𝒑𝒆

 [m2 s-2] specific potential energy 

𝑬𝒔𝒑
𝒌𝒆 [m2 s-2] specific kinetic energy 

𝝆 [kg m-3] density of water with value of 1000 

𝒈 [m s-2] gravitational acceleration with value of 9.81 

𝑸 [m3 s-1] discharge 

𝒉 [m] vertical distance of centre of mass of system to hillslope end 

𝒃 [m] hillslope width 

𝑷𝒆𝒇𝒇 [m s-1] effective rainfall intensity  

𝑰 [m s-1] rainfall intensity 

𝑯 [m] water column depth of surface runoff 

𝒏 [m-1/3 s] manning coefficient 

𝑺 [-] slope of bed level 

𝒛 [m2 s2] geopotential of bed level to reference level  

𝑿𝑯𝑺 [m] length of hillslope, parallel to reference surface 

𝑳𝑯𝑺 [m] length of hillslope, parallel to bed level 

𝑹 [m] hydraulic radius 

𝑨 [m2] wetted area of discharge  

𝒓 [m] radius of semi-circled rills 

𝒎 [-] number of semi-circled rills 

𝒅𝑶𝑻𝑺 [m] sloped flow path length of surface runoff 

𝝉𝒃 [kg m-1 s-2] bed shear stress 

 120 
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2.2 Free energy and momentum balance in overland flow 

With the first law of thermodynamics we express energy conservation of surface runoff in the following form: 

𝑑𝑈

𝑑𝑡
=

𝑑(𝐻)

𝑑𝑡
+

𝑑𝑊

𝑑𝑡
 (1) 

which states that a change in the internal energy U [Joule] of a system consists of the transfer of heat H [Joule] to the system 

plus the amount of work W [Joule] performed by the system. Here, we add performed work to the internal energy, as in an 

open environmental system the amount of energy dW does not leave the system but rather is converted into some other kind 125 

of energy that stays inside the system (Kleidon, 2013). Note that the capacity of a system to perform work is equivalent to the 

term “free energy”, whereas heat is associated with the dissipation of free energy and production of thermal entropy. The latter 

reflects the second law of thermodynamics, which states that entropy is produced during irreversible processes. The free energy 

of surface runoff at any point on the hillslope corresponds to the sum of its potential and kinetic energy if we neglect pressure 

work (i.e. assuming constant pressure), mechanical work (i.e. no shaft work such as pumps and turbines) and chemical energies. 130 

We apply for each considered energy type Eq. (1), meaning an influx of energy causes a gradient, which can be depleted to 

create another type of energy. For potential energy we consider the part which corresponds to the topographic difference 

between precipitation input and runoff output as available potential energy, which is due to an influx of free energy from 

precipitation. Potential energy of infiltration excess water at the hillslope surface is converted into kinetic energy of overland 

flow, and kinetic energy is dissipated into heat (Figure 1). In this two-box scheme we consider only the energies of water flow. 135 

In order to highlight spatial distribution of energy we subdivide the hillslope into segments along the horizontal flow path x 

(Figure 2) with given width b(x) and express fluxes in W m-1. We can thus write the energy balance equations for any segment 

x of the hillslope OTS: 

 

𝑑𝐸𝑓
𝑝𝑒

(𝑥)

𝑑𝑡
= 𝐽𝑓,𝑖𝑛

𝑝𝑒 (𝑥) − 𝐽𝑓,𝑜𝑢𝑡
𝑝𝑒 (𝑥) + 𝐽𝑃,𝑖𝑛

𝑝𝑒 (𝑥) − 𝐽𝐼𝑛𝑓,𝑜𝑢𝑡
𝑝𝑒 (𝑥) − 𝑃𝑓(𝑥) (2) 

𝑑𝐸𝑓
𝑘𝑒(𝑥)

𝑑𝑡
= 𝑃𝑓(𝑥) − 𝐷𝑓(𝑥) + 𝐽𝑓,𝑖𝑛

𝑘𝑒 (𝑥) − 𝐽𝑓,𝑜𝑢𝑡
𝑘𝑒 (𝑥) (3) 

 140 

Fluxes with superscript “pe” relate to potential energy and fluxes with superscript “ke” relate to kinetic energy. Subscript “f” 

relates to surface runon and runoff, subscript “inf” to infiltration and subscript “P” to precipitation (see table 1). Eq. (2) 

accounts for all changes of potential energy of runoff 𝐸𝑓
𝑝𝑒

 and Eq. (3) is the energy balance of kinetic energy of water 𝐸𝑓
𝑘𝑒. We 

further define 𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒

[𝑊 𝑚−1 ], 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 [𝑊 𝑚−1], 𝐽𝑃𝑒𝑓𝑓

𝑝𝑒 [𝑊 𝑚−1] (𝐸𝑞. (4) 𝑡𝑜 (6)),as the net boundary energy fluxes which surface 

runon (𝐽𝑓,𝑖𝑛
𝑝𝑒

[𝑊 𝑚−1], 𝐽𝑓,𝑖𝑛
𝑘𝑒 [𝑊 𝑚−1]), precipitation and infiltration (𝐽𝑃,𝑖𝑛

𝑝𝑒
[𝑊 𝑚−1], 𝐽𝑖𝑛𝑓,𝑜𝑢𝑡

𝑝𝑒
[𝑊 𝑚−1]), as well as surface runoff 145 

(𝐽𝑓,𝑜𝑢𝑡
𝑝𝑒

[𝑊 𝑚−1], 𝐽𝑓,𝑜𝑢𝑡
𝑘𝑒 [𝑊 𝑚−1]) , set on the system. 𝑃𝑓 [𝑊 𝑚−1]  is the transfer from potential to kinetic energy and 

𝐷𝑓[𝑊 𝑚−1] is the remaining energy, which has not been conserved as potential or kinetic energy of the water flow and leaves 
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the system. 𝐷𝑓 is more than dissipation by friction, as it includes any other type of energy which was gained from the initial 

water flow energy gradient such as work needed for sediment transport. Dissipation means free energy that is lost as heat, 

kinetic energy transfer to the sediment is not dissipated, as it creates macroscopic motion. In the following, we neglect the 150 

kinetic energy transfer to sediments (and other mass) and refer to Df simply as the dissipation for all energy that is not conserved 

in the flow of water. As generally accepted, we assume that infiltration and precipitation act mostly on the potential energy 

and neglect their influences on kinetic energy. The net energy fluxes are thereby defined as: 

 

𝐽𝑓,𝑖𝑛
𝑝𝑒 (𝑥) − 𝐽𝑓,𝑜𝑢𝑡

𝑝𝑒 (𝑥) = 𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒 (𝑥) (4) 

𝐽𝑃,𝑖𝑛
𝑝𝑒

(𝑥) − 𝐽𝑖𝑛𝑓,𝑜𝑢𝑡
𝑝𝑒

(𝑥) = 𝐽𝑃𝑒𝑓𝑓
𝑝𝑒

(𝑥) (5) 

𝐽𝑓,𝑖𝑛
𝑘𝑒 (𝑥) − 𝐽𝑓,𝑜𝑢𝑡

𝑘𝑒 (𝑥) = 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥) (6) 

 155 

 

Figure 1: The hillslope surface runoff as a two box open thermodynamic system 

 

With Eq. (2) to (6) the total free energy balance is: 

 

𝑑𝐸𝑓
𝑝𝑒(𝑥, 𝑡)

𝑑𝑡
+

𝑑𝐸𝑓
𝑘𝑒(𝑥, 𝑡)

𝑑𝑡
= 𝐽𝑓,𝑛𝑒𝑡

𝑝𝑒 (𝑥, 𝑡) + 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥, 𝑡) + 𝐽𝑃𝑒𝑓𝑓,𝑛𝑒𝑡

𝑝𝑒 (𝑥, 𝑡) − 𝐷𝑓(𝑥, 𝑡) (7) 
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This means that the change in total free energy of the system is the sum of the differences in the net boundary energy fluxes 160 

minus dissipation. In the case of steady state (
𝑑𝐸𝑓

𝑝𝑒(𝑥,𝑡)

𝑑𝑡
=

𝑑𝐸𝑓
𝑘𝑒(𝑥,𝑡)

𝑑𝑡
= 0), dissipation Df can be maintained if the net boundary 

fluxes are non-zero. It should be noted that within the balance of total free energy the net boundary fluxes of a kind may 

become negative, therefore seemingly the system exports more energy than is imported. What might seem like a violation of 

conservations is just the result of the transient mass balance. Downslope water movement does not just imply a reduction in 

its geopotential, but also that additional rainfall is added on this way. In such a distributed mass accumulating system, it is 165 

therefore possible that the gain in mass per unit length adds more potential energy than is converted into kinetic energy. From 

a more traditional Navier-Stokes momentum balance centered point of view this corresponds to an increase in momentum 

while the velocity is constant. Considering the momentum balance in Eq. (8) (modified after Kleidon et al., 2013), we can see 

that the accelerating force per unit length 𝐹𝑎𝑐𝑐[𝑁]  depends on total mass m [kg], whereas the counteracting drag force of 

turbulent flow 𝐹𝑑  [𝑁] is direct proportional to the square of the velocity v [m s-1]. The total output of momentum flux 𝐽𝑜𝑢𝑡
𝑝

[N] 170 

however, is dependent on both mass and velocity therefore facilitating momentum dynamics where the change of momentum 

is due to a mass increase without change in flow velocity (dv/dt=0). 

𝑑(𝑚 ∗ 𝑣)

𝑑𝑡
= 𝐹𝑎𝑐𝑐(𝑚) − 𝐹𝑑(𝑣

2) − 𝐽𝑜𝑢𝑡
𝑝 (𝑚, 𝑣) =

𝑑𝑚

𝑑𝑡
∗ 𝑣 +

𝑑𝑣

𝑑𝑡
∗ 𝑚 (8) 

2.3 Steady state spatially distributed energy of overland flow 

2.3.1 Energy flow between thermodynamic sub systems 

In order to analyze the distribution of energy conversion processes in space we speak of open thermodynamic subsystems 175 

(𝑂𝑇𝑆𝑠𝑢𝑏) that are assumed to be in steady state as shown in Fig. 2. 
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Figure 2: Hillslope open thermodynamic system with spatial division into sub-OTS and energy flows from 

upstream and downstream (𝑱𝒊𝒏
𝒖𝒔 = 𝑱𝒊𝒏

𝒑𝒆
+ 𝑱𝒊𝒏

𝒌𝒆 𝒂𝒏𝒅 𝑱𝒐𝒖𝒕
𝒅𝒔 = 𝑱𝒐𝒖𝒕

𝒑𝒆
+ 𝑱𝒐𝒖𝒕

𝒌𝒆 ) as well as free energy reservoirs W1 and W2  

For each 𝑂𝑇𝑆𝑠𝑢𝑏 we apply Eq. (7) where potential and kinetic energy of the system do not change with time, so that: 

0 = 𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒

(𝑥) + 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥) + 𝐽𝑃𝑒𝑓𝑓

𝑝𝑒
(𝑥) − 𝐷𝑓(𝑥) (9) 

 For potential energy conversion (Eq. (2)) we obtain: 

𝑑𝐸𝑓
pe

(𝑥)

𝑑𝑡
= 0 = 𝐽𝑓,𝑛𝑒𝑡

𝑝𝑒 (𝑥) + 𝐽𝑃𝑒𝑓𝑓
𝑝𝑒 (𝑥) − 𝑃𝑓(𝑥) 

𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒

(𝑥) + 𝐽𝑃𝑒𝑓𝑓
𝑝𝑒

(𝑥) = 𝑃𝑓(𝑥) 

(10) 

While kinetic energy conversion (Eq. (3)) is as follows: 

𝑑𝐸𝑓
𝑘𝑒(𝑥)

𝑑𝑡
= 0 = 𝑃𝑓(𝑥) − 𝐷𝑓(𝑥) + 𝐽𝑓,𝑛𝑒𝑡

𝑘𝑒 (𝑥) 

𝑃𝑓(𝑥) = 𝐷𝑓(𝑥) − 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥) 

(11) 

To relate the spatial distribution of energy with energy fluxes we recall that the downslope mass flux �⃑⃑� *m is associated with 180 

downslope flux of kinetic and potential energy. The net fluxes correspond to the divergence of the kinetic and potential energy 

flow. 𝐽𝑓
𝑝𝑒/𝑘𝑒

 [watt] is here defined as the advective energy flux, which is the product of specific energy Esp [joule kg-1] and 

flow rate 𝜌 ∗ 𝑄 [kg s-1] (Eq. (13)). As per definition of Eq. (4) to (6), Jf,net  is positive for a decrease of energy flux over the 

control volume and therefore has the opposite sign to change in energy: 
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𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒/𝑘𝑒

= −𝑑𝑖𝑣 (𝐽𝑓
𝑝𝑒/𝑘𝑒(𝑥)) (12) 

𝐽𝑓
𝑝𝑒

= 𝐸𝑠𝑝
𝑝𝑒

(𝑥) ∗ 𝑄(𝑥) =  𝑔 ∗ ℎ(𝑥) ∗ 𝜌 ∗ 𝑄(𝑥) (13 a) 

𝐽𝑓
𝑘𝑒 = 𝐸𝑠𝑝

𝑘𝑒(𝑥) ∗ 𝑄(𝑥) =
𝑣(𝑥)2

2
∗ 𝜌 ∗ 𝑄(𝑥) (13 b) 

𝐽𝑃𝑒𝑓𝑓
𝑝𝑒 (𝑥) = 𝜌 ∗ 𝑃𝑒𝑓𝑓(𝑥) ∗ 𝑔 ∗ ℎ(𝑥) ∗ 𝑏(𝑥) (14) 

 185 

Inserting the expressions for specific potential and kinetic energy (Eq. (13)) into Eq. (12), we can apply the derived energy 

balance (Eq. (10)) for the calculation of power to create kinetic flow energy and Eq. (11) for the dissipation of flow energy 

per unit length in [W m-1]:  

𝑃𝑓(𝑥) = 𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒 (𝑥) + 𝐽𝑃𝑒𝑓𝑓

𝑝𝑒 (𝑥)

= 𝜌 ∗ 𝑔 ∗ (−
𝑑𝑄(𝑥)

𝑑𝑥
∗ ℎ(𝑥) −

𝑑ℎ(𝑥)

𝑑𝑥
∗ 𝑄(𝑥) + 𝑃𝑒𝑓𝑓(𝑥) ∗ ℎ(𝑥) ∗ 𝑏(𝑥)) 

 

(15) 

𝐷𝑓(𝑥) = 𝑃𝑓(𝑥) + 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥)

= 𝜌 ∗ 𝑔 ∗ (−
𝑑𝑄(𝑥)

𝑑𝑥
∗ ℎ(𝑥) −

𝑑ℎ(𝑥)

𝑑𝑥
∗ 𝑄(𝑥) + 𝑃𝑒𝑓𝑓(𝑥) ∗ ℎ(𝑥) ∗ 𝑏(𝑥))         

−
1

2
∗ 𝜌 ∗ (

𝑑𝑄(𝑥)

𝑑𝑥
∗ 𝑣(𝑥)2 + 2 ∗ 𝑣(𝑥) ∗

𝑑𝑣(𝑥)

𝑑𝑥
∗ 𝑄(𝑥)) 

(16) 

The energy, which is dissipated per unit length (that is per 𝑂𝑇𝑆𝑠𝑢𝑏, along the horizontal flow path x), depends on the net 

potential plus the net kinetic energy flow plus the additional energy input per time through precipitation. With the assumption 190 

that change of velocity in space is close to zero and 
𝑑𝑄(𝑥)

𝑑𝑥
= 𝑃𝑒𝑓𝑓 ∗ 𝑏(𝑥) Eq. (16) becomes: 

𝐷𝑓(𝑥) = 𝑃𝑒𝑓𝑓 ∗ 𝜌 ∗ 𝑔 ∗ 𝑏(𝑥) ∗ (−ℎ(𝑥) −
𝑣𝑐𝑜𝑛𝑠𝑡

2

2 ∗ 𝑔
) − 𝑄(𝑥) ∗ 𝜌 ∗ 𝑔 ∗

𝑑ℎ(𝑥)

𝑑𝑥
  (17 a) 

Eq. (17a) is the representation of a system where the change in velocity in space is very small in comparison to the geopotential 

gradient and can be neglected. We can also see that the first term scales with Peff and the second with Q. With precipitation 

usually decreasing and discharge increasing in downstream direction, there will be a flow path length where we can reduce 

Eq. (17a) to its second term (𝑃𝑒𝑓𝑓(𝑥) ≪ 𝑄(𝑥)): 195 

𝐷𝑓(𝑥) = −𝑄(𝑥) ∗ 𝜌 ∗ 𝑔 ∗
𝑑ℎ(𝑥)

𝑑𝑥
  (17 b) 
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This could be the case for a larger stream and explain how systems with small variation of mass minimize energy dissipation 

by flattening of their geopotential gradients (
𝑑ℎ(𝑥)

𝑑𝑥
 approaches very small values). As more and more mass accumulates along 

the flow path, dissipation of discharge power is less controlled by changes in velocity or mass. This results in an increasingly 

flattened geopotential gradient and therefore a negative exponential distribution of geopotential (Leopold and Langbein, 

1962). 200 

2.3.2 Power dynamics of a sequence of sub-OTS 

For each sub-OTS along the hillslope we observe a net potential, a net kinetic energy flux and an effective rainfall flux 

𝐽𝑓,𝑛𝑒𝑡
𝑝𝑒

 ,  𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒  and 𝐽𝑃𝑒𝑓𝑓

𝑝𝑒
. These fluxes define the boundary conditions of the subsystems, whereas the change in these fluxes 

along the hillslope are the result of work performed by the sub-OTS. In order to examine the changes in energy along a flow 

path we need to relate discharge with mass (flow depth). As we assume that the change of flow depth H is much smaller than 205 

the change of water level (
𝑑𝐻

𝑑𝑥
≪

𝑑ℎ

𝑑𝑥
), we compute H with the Manning-Strickler equation (Eq. (18)). For sheet flow, the 

hydraulic radius is approximated as the water depth. 

𝐻(𝑥) = (𝑛 ∗
𝑄(𝑥)

𝑏(𝑥) ∗ √𝑆
)

3
5

 (18) 

𝑣(𝑥) = 𝑛−
3
5 ∗ (

𝑄(𝑥)

𝑏(𝑥)
)

2
5

∗ 𝑆
3
10 (19) 

Where n is the Manning coefficient in s m-1/3. Eq. (19) is another form of Eq. (18) that estimates the distribution of velocity 

along the horizontal flow path for the hillslope-OTS. We approximate energy gradients with topographic slope S, which we 

consider appropriate as long as change in geopotential is much larger than change in water depth. 210 

Eq. (18) and (19) are sensitive to hillslope topography z(x), b(x) and precipitation I(x). Depending on the distribution of width, 

length and geopotential, energy conversion processes will show spatial and temporal differences. For the same hillslope surface 

area, a converging width distribution leads to higher discharge at shorter flow path distances than diverging widths. Similarly, 

linearly distributed morphology provides different geopotential gradients in comparison to e.g. an exponentially sloped terrain 

(compare Fig. 3 and Fig. 4). Even if we consider rainfall as spatially homogeneous, its intensity will influence energy 215 

conversions. In the following section, we analyse these sensitivities and deduce patterns of energy conversion dynamics of 

surface runoff. Finally, we calculate maximum energy conversion rates, distributed in space but also of the whole hillslope. 

The integral in space over the net boundary fluxes of energy in time [W m-1] is the total energy in time [W] that converts into 

some other form of energy (Eq. (20)). 

𝑃𝑓(𝑥) = ∫ 𝑃𝑓(𝑥)𝑑𝑥
𝑥

0

 (20 a) 
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𝐷(𝑥) = ∫ 𝐷𝑓(𝑥)𝑑𝑥
𝑥

0

 (20 b) 

𝐽𝑘𝑒(𝑥) = ∫ 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥)𝑑𝑥

𝑥

0

 (20 c) 

3 Applications  220 

3.1 Distributed energy dynamics as function of rainfall, hillslope form and width 

In this section, we define different examples of hillslope configurations and effective rainfall forcing. We distinguish four 

typical hillslope forms, characterized by either a linear, sinusoidal, exponential or a negative exponential geopotential function 

along a representative flow path x (Fig. 4(a)): 

𝑧𝑙𝑖𝑛(𝑥) = −
𝑧𝑚𝑎𝑥

𝑥𝐻𝑆
∗ 𝑥 + 𝑧𝑚𝑎𝑥  (21 a) 

𝑧𝑠𝑖𝑛(𝑥) =
𝑧𝑚𝑎𝑥

2
∗ cos(

𝑥

𝑥𝐻𝑆
∗ 𝜋) +

𝑧𝑚𝑎𝑥

2
  (21 b) 

𝑧𝑒𝑥𝑝(𝑥) = 𝑒−𝑥∗2∗𝑘 ∗ 𝑧𝑙𝑖𝑛(𝑥)  (21 c) 

𝑧𝑛𝑒𝑔(𝑥) = −𝑒𝑥∗𝑘 ∗ −𝑧𝑙𝑖𝑛(𝑥)  (21 d) 

All hillslope forms start at zmax, the maximum specific geopotential in m2 s-2, and end at zero, depleting all available 225 

geopotential gradients. In our examples, we assumed zmax as the specific geopotential of 10 m altitude multiplied by the gravity 

of the earth of 9.81 m2 s-2, and a projected hillslope length XHS of 100 meters (see Fig. 4(a)). K is a smoothing factor for the 

exponential functions and equals 0.01 m-1. Four simple forms have been chosen as they represent the different 

geomorphological stages of a hillslope under erosion in time, starting with zneg as the youngest formation (largest gradients 

towards the end) and ending with zexp and zsin as older formations (smaller gradients towards the end). 230 

These different forms we then combine with three different width distributions, which are either constant, converging or 

diverging. In our analysis we keep the projected area constant at 5000 m2 for all configurations, which results in an equal total 

runoff from all hillslope forms for a given effective rainfall intensity. Fig. 3 shows the three types of width distributions 

considered in this study for linearly sloped terrain. Finally, we computed steady state runoff for effective rainfall intensities of 

5-, 10-, 20- and 50-mm hr-1 either without runon (Q0=0) or with 20 kg s-1 runon (Q0=0.02 m3 s-1), which is roughly a quarter 235 

of the maximum accumulated runoff at 50 mm hr-1 rainfall (compare Fig. 4, panels (c) and (d)). It should be noted that we 

considered one case with no rainfall and runon only (I=0; Q0>0). We included this scenario to highlight the differences between 

runon without rainfall accumulation and runoff with rainfall accumulation when calculating spatial energy dynamics. The 

differently dotted lines in Fig. 4, panels (b),( c) and (d) represent the three hillslope width distributions and show their influence 

on runoff accumulation. Nevertheless, the total runoff at the end of the hillslope is independent of width distribution as the 240 

projected area remains equal for all hillslope forms. 
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Figure 3: Linear hillslope OTS with different functions of hillslope width 

 

 

Figure 4: Topography and width of the different hillslopes (panels a and b), resulting steady state discharge along the hillslope for 

the case of no and constant runon of 20 kg s-1 (panels c and d). The line types in panels c and d correspond to the width functions 245 
in panel b 
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For all combinations of runoff accumulation and hillslope topography, we computed the steady state spatial distribution of 

water mass and flow velocity using Eq. (18) and Eq. (19) and a Manning-Strickler value of 0.1 s m-1/3. We then computed 

fluxes of potential flow energy 𝐸𝑓
𝑝𝑒

, kinetic flow energy 𝐸𝑓
𝑘𝑒  , effective rainfall and power Pf to convert potential to kinetic 

energy per unit flow length with Eq. (12) to Eq. (15).  250 

3.2 The role of rills: A first order assessment 

The previous applications are meant to shed light on how different hillslope forms, width and rainfall forcing affect steady 

state energy conversions. However, from Eq. (16) we can see that loss of energy per unit length also depends on flow velocity. 

In a mass accumulating system, average flow velocity increases through accumulation and acceleration of mass. The latter is 

associated with dissipation of the flow energy and the efficiency of energy conversion processes. For discharge in steady state, 255 

average flow velocity can only increase if friction per discharge decreases. Although we want to emphasize that friction itself 

is a more complicated matter as it conveys a multitude of micro- and macroscopic processes, for simplicity we make use of 

the standard definition of Manning-Strickler (Eq. (18)), with resistance to flow consisting of geometry (hydraulic radius) and 

surface roughness (Manning-Strickler coefficient) (for a given energy gradient) only. Assuming that surface roughness is fixed, 

we can then relate the geometry of the surface to efficiency of energy conversion of surface runoff. Rills are of special interest 260 

to us, as they are the direct result of surface adaptation to high Hortonian surface runoff rates (Berger et al., 2010). In the 

following, we intend to derive a first order assessment of the transition from sheet- to rill flow. In a first step, we consider a 

cross section with width b of 30 m and a given discharge Qs of 0.1 m3 s-1 that is driven downslope by an energy gradient Ie of 

0.1 m m-1 (Figure 5 (a)). In accordance with the theory, we imagine a sheet of water with height hs of roughly 0.016 m (Eq. 

(18)) or total sheet flow area AS of approximately 0.5 m2 flowing downslope. 265 

  

Figure 5: a) Sketch of cross section with sheet flow QS and b) Rill flow, each of m channels carries QR at rim full conditions. 

In a second step we simulate the formation of rills by inserting m channels into the surface of the cross section (Figure 5 (b)). 

Each channel is idealized by a half circled cross section with radius r and area 𝐴𝑅 =
𝑟2∗𝜋

2
 and carries a flow of 𝑄𝑅 =

𝑄𝑆

𝑚
. We 

assume each channel to be filled to the rim with water, exploiting the maximum rill conductance. With 𝑣 =
𝑄

𝐴
 ,the ratio of the 270 

average velocity of sheet flow vS and rill flow vR as a function of rill number m is: 
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𝑣𝑅

𝑣𝑆

= 𝑚 ∗
𝐴𝑆

𝐴𝑅

=
2 ∗ 𝑏 ∗ ℎ𝑠

𝑚 ∗ 𝑟2 ∗ 𝜋
 (22) 

Further using Eq. (19) to replace the velocity terms: 

𝑅𝑅

𝑅𝑆

= (
2 ∗ 𝑏 ∗ ℎ𝑠

𝑚 ∗ 𝑟2 ∗ 𝜋
)

3
2

 (23) 

 

3.3 Stream power and erosional force 

Finally, yet importantly, we relate our theory to the theory by Horton (1945) about stream power and erosional force. This is 275 

straightforward, as physical work relates to force times displacement, which implies that power is the product of the driving 

force and flow velocity. While the accelerating downslope force relates to the creation of kinetic energy and thus power Pf, 

the counteracting friction force relates to its dissipation. The steady state spatial distribution of power relates hence to the 

distribution of forces acting on the bed material as well as on the water and suspended sediment particles along the hillslope. 

Based on these insights Horton (1945) developed a theory of maximum erosion as water accumulates downslope. By 280 

combining the DuBoys equation with Manning’s law he expressed the energy which is liberated per unit time and unit flow 

area [W m-2] as 

𝑃𝐻𝑜𝑟𝑡𝑜𝑛(𝑥) = 𝜌 ∗ 𝑔 ∗ 𝐷(𝑥) ∗ 𝑣𝑇(𝑥) = 𝜌 ∗ 𝑔 ∗ (𝑛 ∗
𝑄(𝑥)

𝑏(𝑥)
)

3
5

∗ 𝑣 ∗
sin𝛼

tan0.3 𝛼
 (24) 

Where 𝛼 is the degree slope angle and n the Manning-Strickler coefficient in [s m-1/3]. The force per unit area has the units [kg 

m-1 s-2]. Horton’s equation is based on the assumption that energy that is dissipated per unit length can be deducted from the 

steady state formulation for loss of potential energy, neglecting changes in kinetic energy. Horton claimed that his formula led 285 

to a maximum divergence of energy flow (or maximum erosion force) at the maximum value of the term  𝑓𝑠 =
sin 𝛼

tan0.3 𝛼
, which 

he termed slope function. We believe that Horton’s initial formulation (Eq. (24), compare Horton, 1945) has to be adjusted for 

variation of the flow area on which the energy conversion processes act (forces act on 𝑑𝑂𝑇𝑆 not on dx, compare Fig. 6) with 

variation of the slope angle. Therefore, for larger values of 𝛼, Eq. (24) has to be adjusted by a factor of cos−1 𝛼 which 

ultimately leads to the well-known equation of stream power per flow area [W m-2] in steady state (Bagnold, 1966): 290 

𝑃𝐵𝑎𝑛𝑔𝑜𝑙𝑑(𝑥) = 𝜌 ∗ 𝑔 ∗ 𝐷(𝑥) ∗ 𝑣(𝑥) ∗
sin𝛼

cos 𝛼
= 𝜌 ∗ 𝑔 ∗

𝑄(𝑥)

𝑏(𝑥)
∗ tan𝛼 (25 a) 

 Eq. (25 a) divided by flow velocity leads to Eq. (25 b), the depth-slope product (Bangold, 1966) and is still used today for the 

calculation of bed shear stress 𝜏𝑏 in N m-2 = kg m-1 s-2.  

𝐹𝑒𝑟𝑜𝑠𝑖𝑜𝑛(𝑥) =
𝑃𝐵𝑎𝑛𝑔𝑜𝑙𝑑(𝑥)

𝑣(𝑥)
= 𝜌 ∗ 𝑔 ∗ 𝐷(𝑥) ∗ 𝑆 (25 b) 
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Figure 6: Flow accumulation within a sub-OTS and relation of mean flow velocity v(x) and flow area dOTS to slope angle 𝜶 

Comparing Eq. (25 b) with our formulation of dissipation (Eq. (16)) we can see that this traditional equation is a reduced 295 

version of the general expression of stream power. Assuming steady state with no change in velocity and mass Eq. (16) 

becomes Eq. (25 b) or the equivalent Eq. (17 b). Here we provide therefore a full description of stream power of surface runoff 

and can distinguish four cases (see Table 2). 

Table 2: Four cases of dissipation of surface runoff energy 

 Assumption Dissipation 

1. Full equation Eq. (16) 

2. Hortonian stream power: 
𝑑𝑄(𝑥)

𝑑𝑥
= 0 and 

𝑑𝑣(𝑥)

𝑑𝑥
= 0 Eq. (25 a); Eq. (17 b) 

3. 𝑑𝑄(𝑥)

𝑑𝑥
= 0  𝐷𝑓(𝑥) = 𝜌 ∗ 𝑔 ∗ (−

𝑑ℎ(𝑥)

𝑑𝑥
∗ 𝑄𝑐𝑜𝑛𝑠𝑡 −

1

𝑔
∗ 𝑣(𝑥) ∗

𝑑𝑣(𝑥)

𝑑𝑥
∗ 𝑄𝑐𝑜𝑛𝑠𝑡)  

4. 𝑑𝑣(𝑥)

𝑑𝑥
= 0  𝐷𝑓(𝑥) = 𝜌 ∗ 𝑔 ∗ (−

𝑑𝑄(𝑥)

𝑑𝑥
∗

𝑣𝑐𝑜𝑛𝑠𝑡
2

2∗𝑔
−

𝑑ℎ(𝑥)

𝑑𝑥
∗ 𝑄(𝑥))  

 300 

In the following, we first computed for a linear hillslope with varying slope angles Pf, 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 and Df with the full equation (Eq. 

(16)) and analyzed results for maximum values. Secondly, we computed Pf, 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 and Df for a single linear hillslope but for all 

four cases (Table 2) and compared the results to the standard computation of stream power and erosional force after Horton 

and Bangold (Eq. (25 a) and Eq. (25 b)). We finally integrated the spatially distributed energy fluxes over the whole hillslope 

for all slope angles with Eq. (20) and compared the results with the analytical solution (Appendix A). 305 
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4 Results 

4.1 Spatial distribution of energy and power 

 4.1.1 Spatial maxima of potential energy 

Generally, we found that the trade-off of downslope mass accumulation and declining geopotential leads to a distinct potential 

energy maximum, which has a clear dependence on the slope form, width function and strength of rainfall forcing (Figure 7). 310 

This implies that the hillslope can be sub-divided into three classes of spatial energy dynamics:  

1) 
𝑑𝐸𝑓

𝑝𝑒(𝑥)

𝑑𝑥
> 0  

2) 
𝑑𝐸𝑓

𝑝𝑒(𝑥)

𝑑𝑥
= 0 

3) 
𝑑𝐸𝑓

𝑝𝑒(𝑥)

𝑑𝑥
< 0  

Within the first interval potential energy flux increases along the flow path, as the additional mass from rainfall adds more 315 

energy to the sub-OTS than flows out. At a certain distance (interval 2), energy outflow equals energy input through 

precipitation plus upstream inflow and we observe an energetic maximum. Within the third interval, energy outflow is 

continuously larger than energy inflow, effectively depleting the accumulated geopotential of interval 1. Overall, we observe 

for a mass accumulating hillslope OTS from top to foot that net potential energy first accumulates, at some distance peaks and 

then decreases. At the end of the hillslope all available potential energy has completely converted into some other kind of 320 

energy. 

 

 

Figure 7: Distribution of potential energy 𝑬𝒇
𝒑𝒆

 per unit length in [Joule m-1] as a function of a) hillslope width b) geopotential 

distribution (form) and c) rainfall intensity I 325 

 Figure 7 (a) shows that the location of the energetic maximum moves upslope when changing the width function from 

divergent (div), over parallel (const) to convergent (conv). The magnitude of the absolute value of the maximum increases in 

a similar fashion. The distribution of geopotential from top to bottom clearly influences the location and size of maxima (Figure 
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7 panel (b)). Interestingly a hillslope with a negative exponential form, which is morphologically the youngest, has by far the 

largest potential energy maximum and therefore highest geopotential difference with the hillslope end. Larger differences 330 

mean more available potential energy to perform work within the specified hillslope distance, which might result in enhanced 

erosion in comparison to e.g. sinusoidal or exponential hillslope forms. In line with this theory about morphological ages is 

also the growth of energy gradients from exponential and sinusoidal to negative exponential (old, smaller gradients to young, 

larger gradients). Similarly, rainfall intensity can increase or decrease absolute maxima as well as gradients (panel c)). 

Although larger rainfall intensities have no influence on the downslope location of the maxima, they do influence the spatial 335 

distribution of energetic gradients resulting in more power during the energy conversion processes. We state that the 

distribution of potential energy in space as a function of hillslope width, form and rainfall intensity seems to go hand in hand 

with the timeline of erosional processes. 

4.1.2 Runoff vs. runon systems 

We now separate cases that accumulate runoff in downslope direction from cases with runon and transitory states (compare 340 

Figure 4, panels (c) and (d)). In Figure 8, panel (a) we plotted 𝐸𝑓
𝑝𝑒

(𝑥) of all considered geopotential distributions z(x) with a 

constant width for a rainfall intensity of 50 mm hr-1 without runon (Q0=0). Contrarily, panel c) shows the potential energy 

distribution for a runon-only system without rainfall (I=0) and Q0 of 20 kg s-1. Panel b) represents the transition from a runoff-

only to a runon-only system with a rainfall of 50 mm hr-1 and runon of 20 kg s-1. 

 345 

Figure 8: Distribution of potential energy 𝑬𝒇
𝒑𝒆

 per unit length in [Joule m-1] a) without runon Q0 but with rainfall runoff 

accumulation b) with runon and runoff accumulation and c) with runon but without runoff accumulation 

From these calculations, it appears that runoff accumulating systems show distinct energy conversion dynamics in comparison 

to runon systems, where runon outplays rainfall accumulation. Most strikingly, the accumulation of runoff in space 

energetically counteracts the depletion of geopotential gradients and leads to an energetic maximum. This stands in contrast 350 

to pure runon systems where energy is continuously depleted downslope. In between the two extremes, we observe transitions, 

which can result in local maxima, such as in the example of a linear slope (zlin(x), Figure 8 (b)) depending on rainfall and 

runon intensities.  
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The unrealistically high potential energies for zsin(x) and zneg(x) (Figure 8, panels (b) and (c)) within the first 20 meters of the 355 

hillslopes are due to our assumption that the energy gradient can be approximated by slope of terrain for the calculation of 

flow depth. The real gradient can be calculated by solution of the shallow water equations, which has been done in numerous 

studies and is out of scope for this analysis. 

4.1.3 Spatial patterns of power and dissipation 

In a second step, we calculated power and dissipation per unit flow length in W m-1. We express Pf power to create kinetic 360 

energy as per definition of Eq. (12) as the result of net boundary fluxes including precipitation. At this point we emphasize 

that Pf must not be confused with the net kinetic energy flow 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 (𝑥), which is related to the gradient of kinetic energy 

(compare Eq. (13)). In the standard model of energy conversion of surface runoff, potential energy is depleted, power Pf 

therefore larger than zero, and kinetic energy is created, the divergence of kinetic energy flow being smaller than zero (Jin-

Jout<0). Dissipation is the sum of the divergence of potential and kinetic energy flow, with the latter being a fraction of the 365 

former, which leads in turn to positive values for the dissipation of energy flow. Figure 9 shows the sensitivity of power and 

dissipation distributions (Pf, 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒  and Df) to the climatic-topographic combinations as in section 4.1.1.  

For all hillslope forms, our calculations show that a converging width function increases Pf and a diverging width function 

decreases Pf (Figure 9 (a)). If more rainfall falls at higher geopotentials (converging widths), the available potential energy to 

be converted is larger than on hillslopes with diverging widths, which accumulate the larger share of runoff at the lower end. 370 

We also note that a converging width results in a limitation of the growth of power in contrast to diverging and constant widths, 

which increase power without limitation of growth in downslope direction. Figure 9 (b) shows how the geopotential 

distribution Z(x) influences Pf. Exponential and sinusoidal distributions result in a point along the flow path with a maximum 

rate of energy conversion, whereas negative exponential and linear distributions unlimitedly increase power in downslope 

direction. For hillslope forms with a power limitation (z(x) = sinusoidal, exponential) converging widths lead to a power 375 

maximum that is relatively farther upstream than it is the case for diverging widths. Figure 9 (c) leads us to the conclusion that 

the rainfall intensity merely has a linear scale effect on the magnitude of Pf and does not influence its relative spatial 

distribution. 

 

Figure 9 panels (d) to (f) show results for the divergence of kinetic energy flow 𝐽𝑛𝑒𝑡
𝑘𝑒 . With regard to the width function (Figure 380 

9 (d)) converging widths increase 𝐽𝑛𝑒𝑡
𝑘𝑒 , especially at the lower end where flow is highly concentrated and decrease 𝐽𝑛𝑒𝑡

𝑘𝑒  for 

diverging widths. Negative exponential and linear morphological forms show an increase in downslope direction, whereas 

exponential and sinusoidal forms limit the divergence of the flow of kinetic energy to a maximum at a certain flow distance 

(Figure 9 (e)). The latter distribution is especially interesting as we observe positive values, which we interpret as a loss of 
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kinetic energy in downslope direction (Jin-Jout>0). Figure 9 (f) essentially repeats the results of Figure 9 (c), rainfall intensity 385 

scales the magnitude of energy flow.  

 

In terms of dissipation, results (Figure 9 panels (g) to (i)) are almost identical to the results of Pf, which is of little surprise as 

for our examples kinetic energy flow is on average more than 1000 times smaller than potential energy flow. Recalling that 

dissipation Df in its essence is loss of free available energy per unit length, we put surface runoff into an energy-centered 390 

perspective. Our calculations show that all hillslope types with spatial mass accumulation will result in either spatially limited 

divergence of energy flow or an unlimited increase thereof in downstream direction. Depending on hillslope configuration, 

energy conversion processes can result in a spatial dissipation maximum. Certain types of hillslope forms spatially limit Df 

whereas others seemingly unlimitedly increase Df. From our examples, hillslopes with sinusoidal and exponential distributions 

of geopotential limit the accumulation of energy and lead to spatial maxima of dissipation. In contrast, hillslopes with linear 395 

and negative exponentially shaped topographies do not limit the creation of free energy and therefore do not lead to spatial 

maxima of Df. Although not noticeable in our plots (Figure 9 (g)), dissipation of converging hillslopes has decreased in 

comparison to constant width and has increased for diverging width. Converging flow increases the divergence of kinetic 

energy flow, or in other words more kinetic energy is accumulated in downstream direction for the same discharge. 

 400 
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Figure 9: a) to c): Spatial distribution of power Pf to create kinetic energy. d) to f): Kinetic energy flow 𝑱𝒇,𝒏𝒆𝒕
𝒌𝒆  and g) to i): Dissipation 

of energy flow in [Watt m-1]. Column 1: Rainfall intensity 50 mm hr-1 and linear hillslope form but varying hillslope widths (constant, 

converging, diverging). Column 2: Rainfall intensity 50 mm hr-1 and constant hillslope width but varying hillslope forms (linear, 

sinusoidal, exponential, negative exponential). Column 3: Linear hillslope form and constant hillslope width but varying rainfall 405 
intensities. 
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4.2 Influence of rills on dissipation 410 

From the previous section it became clear that energy conversion rates are distributed in space. For sheet flow we have shown 

that hillslope gradients along the flow path are the principal mechanism for redistribution of energy. In this section we analyse 

rill flow, which leads to redistribution of energy and therefore an alteration of energy conversion rates in space. In our thought 

experiment we allow a given amount of discharge to flow down on a given surface. We then calculated hydraulic sheet flow 

conditions and the equivalent hydraulic radius as well as the number of idealized rills (compare Figure 5) and plotted the result 415 

in Figure 10 (a). In this sense, a ratio RR/RS above unity means an increase of flow velocity, while a ratio below unity would 

imply a decrease of rill flow velocity vS in comparison to sheet flow velocity vR. Interestingly, smaller number of rills increase 

flow velocity and larger numbers of rills decrease flow velocity. We can also observe a critical rill number mcrit, which relates 

to the number of rills that would be necessary for equal velocities of rill and sheet flow (vR=vS). By setting RR=RS this number 

can be calculated to equal 𝑚𝑐𝑟𝑖𝑡 =
1

2∗𝜋
∗

𝑏

ℎ𝑠
 (Figure 10 (a)).    420 

 

Figure 10: a) Ratios of hydraulic radius and velocity of rill flow and sheet flow; b) Relative critical rill number and relative radius 

for accumulation of discharge  

As pointed out in the previous section, discharge accumulates on hillslopes and flow rates grow in downslope direction. We 

can therefore compute the critical rill number and the resulting rill radius r as a function of growing discharge (Figure 10 (b)). 425 

For comparison, we plotted in Fig. 10 (b) the relative values of r and mcrit. We note that for an increase in discharge rill radius 

grows, while the critical number of rills decreases. So to say, many small rills form at the upstream beginning of the rill system, 

which transition into ever fewer yet larger rills. This sentence is true if vR is larger or equal to vS, which implies a decrease of 

dissipation. Alternatively, one could say that in order to maintain a constant flow velocity along the flow path of a mass 

accumulating system, we would expect to see a convergence of many small rills into fewer larger ones. In conclusion, we state 430 

that rill flow is not necessarily leading to more kinetic energy per discharge volume. Only up to a limited number of rills, rill 

flow increases flow velocities and therefore kinetic energy. According to the first law of thermodynamics an increase in net 

kinetic energy flux would imply a decrease of dissipation as the total energy flux stays constant (Eq. (1)). Our results show 
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that if velocity does not decrease in downstream direction (the direction of mass accumulation), rills converge into fewer larger 

rills either maintaining constant velocities (if m=mcrit) or decreasing dissipative losses through increases in relative rill 435 

velocities (if m<=mcrit). 

4.3 Stream power and erosion 

As we have pointed out in Sec. 3.3, the distribution of forces acting on bed material is commonly estimated by Bangold’s 

formula (Eq. (25)). We developed an equation, which specifically accounts for non-uniform mass distribution and is 

particularly important for mass accumulating systems (Eq. (16)) as it incorporates changes of kinetic energy.  440 

To compare both equations we plotted in Figure 11 (a) a linear hillslope with a surface length lHS of 100 meters for slope angles 

from 1 degree to 82 degrees. The horizontal projected length decreases with increasing slope angle, which leads to less 

accumulation of rainfall for steeper slopes. Figure 11, panels (c) and (d) show the spatial distribution of potential and kinetic 

energy per unit flow length in Joule m-1. From comparison of the scales of both plots, it becomes clear that most potential 

energy is not converted into kinetic energy but is either transformed into some other form of free energy (e.g., pressure within 445 

bed material or sediment transport) or dissipated as heat and entropy. The plots in Figure 11 (c) show that potential energy 

peaks for all slope angles at a certain distance of projected flow length x with different magnitude. Similarly, kinetic energy 

(Figure 11 (d)) peaks with different magnitudes as a function of slope angle but, contrarily to potential energy, steadily 

increases from top to foot of the hillslope. Figure 11, panel (b) shows how divergence of potential and kinetic energy flows 

influence distribution of dissipation in space. As kinetic energy is only a small fraction of potential energy, dissipation is driven 450 

by potential energy conversion. From our results, we can see that larger slope angles lead to larger values of dissipation, which 

is in line with Bangold’s formula and underpins that Horton’s assumption of a maximum force for the maximum value of the 

slope function is not justified.  

We further deduct from these results that we have energetic and power maxima not only in space but also as a function of 

slope angle. There are two processes, which counteract in the formation of the energy budget: With an increase in slope angle 455 

the gradient that drives energy conversion increases, while at the same time. There is a decrease in the projected hillslope 

length and therefore the total amount of mass that falls onto the surface. Extracting the maximum value for each slope angle 

we note that potential energy peaks at roughly 45° (Figure 11 (c)), yellow lines) but kinetic energy at 28° (Figure 11 (d)), green 

lines). Divergence of dissipation increases with slope and largest values are obtained for steepest hillslopes (Figure 11 (b). 

  460 
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Figure 11: a) Linear, constant width hillslopes with length of 100 meters, width of 50 meters and increasing slope angles 𝜶 in degree; 

b) Spatial distribution of dissipation per unit flow length in [Watt m-1]; c) Distribution of potential energy and d) of kinetic energy 465 
per unit flow length in [Joule m-1] as a function of slope angle. 

With Eq. (12) and (13) we compute the divergence of the energy fluxes 𝑃𝑓 and 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒  in Watt per unit length, which we then 

integrate (Eq. (20)) to obtain the total accumulated power P, kinetic energy flow Jke and dissipation D in Watt (Figure 12) as 

a function of the flow path length. As the power P is the potential energy that is converted per unit time into some other form 

of energy, 𝐽𝑘𝑒 is the kinetic energy that is converted per unit time into some other form of energy. Comparison of the scales of 470 

Figure 12 (a) and Figure 12 (b) shows us once more that most of the potential energy does not convert into kinetic energy. Our 

results reveal that power and kinetic energy flow do not linearly relate to each other. Fig. 12 (a) shows that most of the potential 

energy per unit time is created for slope angles of 44° and that most of the kinetic energy flows at a slope angle between 33° 

to 38° (Fig. 12 (b)). In fact, we analytically solved the system of equations for runoff accumulation for a fixed hillslope length 

with varying slope angles and found that power P should peak at 45° and kinetic energy flow at 35° (see Appendix A). We 475 

note here, that although the values of 𝐽𝑘𝑒 are negative we speak of maximum instead of minimum values. In fact, negative 
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values of kinetic energy flux represent the amount of energy that is extracted from some source of energy and converted into 

kinetic energy per unit time. We therefore state that kinetic energy flux increases to a maximum for a slope angle of 35°, while 

most energy is created and dissipated at a slope angle of 45°. 

 480 

Figure 12: a) Accumulated power to convert potential into kinetic energy in Watt for a linear hillslope with constant surface area 

but varying slope angles from 1° to 82° b) Accumulated power to convert kinetic into some other type of energy in Watt for varying 

slope angles 

As pointed out previously, dissipation can be approximated by four cases (see Table 2). For the calculations presented in Figure 

11 and Figure 12 we applied the full equations, while in Figure 13, we present all four cases simultaneously for a single linear 485 

hillslope of the previously introduced hillslopes (Figure 11 (a)). We choose the hillslope with a slope angle of 45° to include 

maximum divergence of potential energy fluxes and plotted the results of Pf, 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒 and Df (Figure 13). As expected, the power 

to create kinetic energy is not affected by the different assumptions (Figure 13 (a)), the reduction of Eq. (16) to fewer terms 

has no influence on Pf. Similarly, as dissipation is almost completely the result of conversion of the potential energy, Df is 

neither influenced by the assumptions that reduce Eq. (16) (Figure 13 (c)). However, the reduction of the full equation for 490 

dissipation influences the result of 𝐽𝑓,𝑛𝑒𝑡
𝑘𝑒  (Figure 13 (b)). Whereas the full equations lead to the largest divergence of kinetic 

energy flux, the assumption that velocity does not change in space reduces the outcome and the assumption that discharge does 

not change in space reduces it even further. If we assume that neither velocity nor discharge change in space, kinetic energy 

fluxes stay constant and divergence becomes zero.  

 495 
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Figure 13: Calculation of Pf, 𝑱𝒇,𝒏𝒆𝒕
𝒌𝒆  and Df for a linear hillslope with 45° slope angle and different assumptions (as per Table 2) 

5 Discussion 

In our analysis, we have conclusively shown that hillslopes as mass-accumulating systems show a distinctly different energetic 500 

behaviour in comparison to runon systems. The latter, e.g. a river does not necessarily lead to energetic maxima in space. As 

soon as mass accumulation overweighs runon, which is usually the case for hillslopes, we will observe spatial maxima of 

potential energy. For these systems, a trade-off between mass gain and geopotential loss along a runoff flow path leads to 

energy maxima in space. To calculate the spatial distribution of energy we used the relation between mass and discharge as 

stated by Manning’s equation. With the resulting values of mass and velocity, we computed the power of surface runoff, which 505 

we set into a thermodynamic perspective through analysis of the energy balance and energy conversions. In this study we have 

exclusively focused on steady-state surface runoff on hillslopes, with the spatial accumulation and distribution dependent on 

rainfall intensity, hillslope morphology and width.  

 

We have shown that only certain configurations of hillslope forms and widths lead to spatial power maxima (sinusoidal, 510 

exponential distributions of geopotential). This is interesting for the development of hillslope geomorphology, as we expect a 

metastable system to be power limited. As we have presented in our results, an unlimited increase in power theoretically 

implies an unlimited increase in dissipation as well as kinetic energy. This would lead to ever increasing forces that act on the 

bed material, eroding more material in downstream direction and should result in ever growing slope angles (similar to a 

negative exponential distribution). Obviously, this kind of landscape is not what we observe in nature and we conclude that 515 

there must be some power limiting feedback, which allows power to peak at a certain distance and further downstream fade 

out in order to reach meta-stability. These kinds of feedbacks are well known in natural systems (Kleidon, 2016) and their 

interplay is believed to lead to some dynamic equilibrium over time and the formation of structure (Bejan, 2010). 
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In theory, this maximization of power and dissipation should have an observable physical significance for the runoff process. 520 

One hypothesis we propose, is that the distance where rills initiate, that is where the power is large enough to erode bed 

material, equals the point of maximum power of a meta-stable hillslope system. In many studies (Abrahams et al., 1994, Gomez 

et al., 2003), presence of rills is attributed to the minimization of dissipation, which we think is a rather incomplete picture. A 

surface geometry that is energetically more efficient, allows relatively more free energy to be conserved in the form of kinetic 

energy. However, our results indicate that the formation of rills cannot solely be attributed to minimization of dissipative 525 

losses. Depending on the precise rill geometries, the presence of rills can decrease or increase relative dissipation rates. First 

simple calculations presented in this study indicate that overall natural rill systems minimize dissipation, but we see the need 

of a hydraulically more thorough analysis of the transition of sheet- to rill flow. This study should account for energetic energy 

types which were neglected in this study, such as secondary currents and sediment transport. Furthermore, of the total energy 

balance, kinetic energy is only a minor contributor and most of the potential energy is always depleted into heat and entropy. 530 

We should also note at this point, that if over a certain area runoff accumulates in a more efficient way, there might be other 

areas where less water can accumulate, effectively decreasing efficiency. Considering these open questions and that only a 

small proportion of the total energy is represented by kinetic energy, it is questionable how big an impact the formation of rills 

really has on the total energy balance. We therefore think that the formation of rills is less an issue of the minimization of 

dissipation but rather a means of the redistribution of potential energy fluxes, which leads ultimately to a maximum of power 535 

in space and at the same time limits dissipation and erosion to achieve stability of the system. Our second hypothesis therefore 

is that rill formation is but one adaptation mechanism of hillslope surfaces to maximize and at the same time limit power and 

dissipation in space. This conclusion is in line with the results by Rieke-Zapp et al. (2005) and Rodriguez-Iturbe et al. (1992) 

who studied flow in drainage systems and found that loss of free energy minimizes within the network. As the drainage network 

is only one part of the land surface, we claim however, that this theory cannot explain the appearance of the network in the 540 

first place.  

 

In the last part of the study, we tried to close the loop and calculate the power of surface runoff as a function of slope as 

originally presented by Horton. In contrast to Horton’s steady state assumption, which eliminates velocity from the equation, 

we specifically accounted for divergence of potential and kinetic energy flow. We have shown that our approach leads to the 545 

same results of power but not for the divergence of the kinetic energy flux. This flux is important, as in a pure surface runoff 

system without sediment transport and small flow depths, it is the only fingerprint of the minimization of dissipation. Although 

approximately on a scale of 1000 times smaller than dissipation and power, the spatial distribution and its magnitude might 

hold the clues to understanding the formation of rills and even channel systems. For the particular hillslope in Section 4.3, we 

found that slope angles of roughly 35° lead to a maximum kinetic energy flux, which might have some physically observable 550 

implication for bed shear stress. We think that more research is needed on the implications of spatial power rates distribution 

with regard to bed shear stress, but at least from an energy balance point of view we would expect that depending on the energy 

conversion dynamics, only a certain part of power effectively acts on the bed material. So far, we simply do not know which 
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percentage of the free energy is converted into heat. We hypothesize that energy conversion dynamics are not linear, which 

means that depending on the type and amount of free energy, the percentage of dissipation varies. An indication of this theory 555 

are the different slope angles of maximum kinetic and maximum potential energy flow (compare Fig. 12). We saw that for our 

example of a linear hillslope maximum kinetic energy flow can be observed for 35° slope angle while potential energy flow P 

peaks at 45°. This result implies that the change in kinetic energy is not proportional to the change in potential energy and the 

amount of free energy dissipated varies with the slope angle. Most energy per unit time is converted in a flow accumulating 

system such as hillslopes at 45° but most kinetic energy per unit time is created on hillslopes with 35° slope angles. From an 560 

energy point of view we could term hillslopes with a 35° angle as most efficient, as they permit more potential energy per unit 

time to be conserved as kinetic energy per unit time than any other slope angle. 

The presented analysis is more of a theoretical study, which might have most relevance in semi-arid and arid mountainous 

catchments, where Hortonian surface runoff is an important stream generation process (Dingmann, 2015). The inclusion of 

other hydrological processes on hillslopes, primarily infiltration will certainly influence our results but would go beyond the 565 

objectives of this study. There is evidence that infiltration is directly coupled to hillslope topography (Beven and Kirkby, 

1979), and should be accounted for in a future analysis.  

Furthermore, we already hinted at the inconsistency of approximating the energy gradient with the hillslope gradient as we 

have done in this analysis. As we have seen for some of the presented results, the slope gradient approximation leads to large 

uncertainties, especially when slopes become very small or very large. To overcome this issue, we intend to publish a second 570 

study, which will make use of numerical models, solving the momentum and mass balances and account for unsteady-state 

cases. 

6 Summary and Conclusion 

In this study we presented the formation of surface runoff on hillslopes from a thermodynamic point of view. The rate of 

energy conversion is different for runon and mass accumulating runoff systems. For steady-state runoff, we found that 575 

depending on mass distribution in space, there is a flow distance with maximum dissipation rate. Distribution of mass itself is 

a result of the erosion and deposition of sediment, shaping the surface and creating geopotential gradients. We therefore believe 

that this point of maximum energy flux should have some physical meaning and might be related to the initiation of rill flow, 

that is the accumulation of surface runoff in eroded micro channels. Depending on geometry and friction losses, these micro 

channels might allow more potential energy to be converted into kinetic energy and possibly other forms of free energy such 580 

as work for sediment transport or secondary currents, decreasing overall dissipation whilst increasing free energy locally. More 

kinetic energy leads to a depletion of the potential energy gradient and therefore limits the creation of ever more kinetic energy 

of the main flow direction. Similarly, more erosion and sediment transport deplete the driving geopotential gradient. Therefore, 

in the context of geomorphological development we conclude that flow accumulation serves as a limitation of power and is an 

expression of feedback to reach dynamic equilibrium. Over time power rates have to peak at a certain distance as an expression 585 

of counteracting energy conversion processes. Depending on local physical characteristics such as bedrock material, soil 
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development and climate, scales may vary but a general trend towards maximum energy conversion rates should be observable. 

Apart from spatial power rate maxima, we found that the maximum total power of a hillslope is a function of the slope angle. 

For a linear hillslope, power is largest for slope angles of 45°, while the most efficient runoff with maximization of kinetic 

energy flux occurs on a slope of 35°. This result indicates that minimization of dissipation and maximization of power are not 590 

equivalent for surface runoff processes. 
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Appendix A 

Derivation of maximum power angles for P, Jke and D. 685 

For varying slope angles α and constant hillslope length the accumulated discharge through precipitation is: 

𝑄(𝑥) = ∫ 𝑃𝑒𝑓𝑓 ∗ 𝑏(𝑥)
𝑥

0

𝑑𝑥 

Which for constant width b and the horizontal projection of the hillslope length lhs becomes: 

𝑄(𝑥 = 𝑙ℎ𝑠) = 𝑃𝑒𝑓𝑓 ∗ 𝑏 ∗ 𝑙ℎ𝑠 ∗ cos 𝛼        Eq. (A1) 

The second formula relates the flow depth, calculated by Manning Strickler to the varying slope angles: 690 

𝑑(𝑥 = 𝑙ℎ𝑠) = (
𝑄(𝑥 = 𝑙ℎ𝑠) ∗ 𝑛

𝑏 ∗ tan0.5 𝛼
)

0.6

 

which becomes with the formulation of (A1) for accumulated discharge: 

𝑑(𝑥 = 𝑙ℎ𝑠) = (
𝑃𝑒𝑓𝑓∗𝑏∗𝑙ℎ𝑠∗cos 𝛼∗𝑛

𝑏∗tan0.5 𝛼
)
0.6

= 𝑛0.6 ∗ 𝑃𝑒𝑓𝑓
0.6 ∗ 𝑙ℎ𝑠

0.6 ∗ cos0.6 𝛼 ∗ tan−0.3 𝛼    Eq. (A2) 

We now use these equations to calculate power P and maximum kinetic energy flow Jke as a function of slope angle. 

1. Power P(x=lhs) 695 

The total accumulated power in [W] at the end of the hillslope is: 

𝑃(𝑥 = 𝑙ℎ𝑠) = 𝜌 ∗ 𝑔 ∗ 𝑄(𝑙ℎ𝑠) ∗ ℎ 

where h is the average height at which rainfall falls onto the hillslope: 

ℎ = 0.5 ∗ 𝑙ℎ𝑠 ∗ sin𝛼 

With Eq. (A1) we obtain: 700 

𝑃(𝑥 = 𝑙ℎ𝑠) = 𝜌 ∗ 𝑔 ∗ 𝑃𝑒𝑓𝑓 ∗ 𝑏 ∗ 𝑙ℎ𝑠 ∗ cos 𝛼 ∗ 0.5 ∗ 𝑙ℎ𝑠 ∗ sin𝛼        Eq. (A3) 

Eq. (A3) shows a maximum at the maximum of 𝒇𝑷(𝜶) = 𝐜𝐨𝐬𝜶 ∗ 𝐬𝐢𝐧𝜶, which is at a slope angle of 45° or π/4 radians. 

2. Kinetic Energy Flow Jke 

Similarly, we can express accumulated kinetic energy flow at the end of the hillslope in [W] as a function of slope: 

Jke(𝑥 = 𝑙ℎ𝑠) =
𝜌

2
∗ 𝑣(𝑙ℎ𝑠)

2 ∗ 𝑄(𝑙ℎ𝑠) =
𝜌

2
∗ 𝑄(𝑙ℎ𝑠)

3 ∗ (𝑑(𝑙ℎ𝑠) ∗ 𝑏)−2 705 

With Eq. (A1) and Eq. (A2): 

𝐽𝑘𝑒(𝑥 = 𝑙ℎ𝑠) =
𝜌

2
∗ (𝑃𝑒𝑓𝑓 ∗ 𝑏 ∗ 𝑙ℎ𝑠 ∗ cos 𝛼)

3
∗ (𝑛0.6 ∗ 𝑃𝑒𝑓𝑓

0.6 ∗ 𝑙ℎ𝑠
0.6 ∗ cos0.6 𝛼 ∗ tan−0.3 𝛼 ∗ 𝑏)

−2
 

=
𝜌

2
∗ 𝑛−1.2 ∗ 𝑃𝑒𝑓𝑓

1.8 ∗ 𝑏 ∗ 𝑙ℎ𝑠
1.8 ∗ cos1.8 𝛼 ∗ tan0.6 𝛼            Eq. (A4) 

This equation shows a maximum at the maximum of 𝒇𝑱 = 𝐜𝐨𝐬𝟏.𝟖 𝜶 ∗ 𝐭𝐚𝐧𝟎.𝟔 𝜶, which is the case for a slope angle of 35°. 
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