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Abstract. Groundwater recharge (GWR) is a strategic hy-
drologic variable, and its estimate is necessary to implement
sustainable groundwater management. This is especially true
in a global warming context that highly impacts key win-
ter conditions in cold and humid climates. For this reason,
long-term simulations are particularly useful for understand-
ing past changes in GWR associated with changing climatic
conditions. However, GWR simulation at the regional scale
and for long-term conditions is challenging, especially due
to the limited availability of spatially distributed calibration
data and due to generally short observed time series. The
objective of this study is to demonstrate the relevance of
using a water budget model to understand long-term tran-
sient and regional-scale GWR in cold and humid climates
where groundwater observations are scarce. The HydroBud-
get model was specifically developed for regional-scale sim-
ulations in cold and humid climate conditions. The model
uses commonly available data such as runoff curve numbers
to describe the study area, precipitation and temperature time
series to run the model, and river flow rates and baseflow es-
timates for its automatic calibration. A typical case study is
presented for the southern portion of the Province of Quebec
(Canada, 36 000 km2). With the model simultaneously cali-
brated on 51 gauging stations, the first GWR estimate for the
region was simulated between 1961 and 2017 with very little
uncertainty (≤ 10 mm/yr). The simulated water budget was
divided into 41 % runoff (444 mm/yr), 47 % evapotranspira-
tion (501 mm/yr), and 12 % GWR (139 mm/yr), with pref-

erential GWR periods during spring and winter (44 % and
32 % of the annual GWR, respectively), values that are typ-
ical of other cold and humid climates. Snowpack evolution
and soil frost were shown to be a key feature for GWR simu-
lation in these environments. One of the contributions of the
study was to show that the model sensitivity to its parameters
was correlated with the average air temperature, with colder
watersheds more sensitive to snow-related parameters than
warmer watersheds. Interestingly, the results showed that the
significant increase in precipitation and temperature since the
early 1960s did not lead to significant changes in the annual
GWR but resulted in increased runoff and evapotranspira-
tion. In contrast to previous studies of past GWR trends in
cold and humid climates, this work has shown that changes
in past climatic conditions have not yet produced significant
changes in annual GWR. Because of their relative ease of
use, water budget models are a useful approach for scientists,
modelers, and stakeholders alike to understand regional-scale
groundwater renewal rates in cold and humid climates, espe-
cially if they can be easily adapted to specific study needs
and environments.

1 Introduction

Groundwater recharge (GWR) generally refers to the portion
of precipitation that infiltrates into the ground and eventu-
ally reaches the water table (Doble and Crosbie, 2017; Scan-
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lon et al., 2002). It links meteorological events to subsequent
aquifer responses and usually defines renewal rates of the un-
confined aquifers in cold and humid climates (Gleeson et al.,
2011; Kløve et al., 2017; Meyzonnat et al., 2018; Rivera,
2014). GWR is influenced by climate, land cover, vegeta-
tion, topography, as well as soil type (Douville et al., 2013;
Fu et al., 2019; Jasechko et al., 2014). It is recognized as
a strategic hydrologic variable for sustainable groundwater
management (Foster and Ait-Kadi, 2012; Wada et al., 2010).
Consequently, spatiotemporal GWR estimates at the regional
scale and analysis of past changes and trends linked to cli-
mate variations or climate changes are particularly important
for water resource managers (Ashaolu et al., 2020; Brun-
ner et al., 2004; Larocque et al., 2018). This is especially
true in cold and humid climates where warming temperatures
specifically impact key winter conditions (Aygün et al., 2020;
Grinevskiy et al., 2021; Nygren et al., 2020).

Models are among the most common ways to estimate
GWR and are usually developed for specific climate and hy-
drogeological conditions (Healy and Scanlon, 2010; Scanlon
et al., 2002). Their complexity varies widely with the use
of few (< 10) to numerous (> 100) parameters and with the
need to provide simple input data (e.g., precipitation and tem-
perature time series) to detailed input data (e.g., spatially dis-
tributed time series of precipitation, temperature, solar radi-
ation, wind, relative humidity, normalized difference vegeta-
tion index, soil water content, groundwater levels, river flow
rates) (Brunner et al., 2004; Crosbie et al., 2015). Spatiotem-
poral resolution is also highly variable between GWR mod-
els (Abdollahi et al., 2017; Döll and Fiedler, 2008; Hu et al.,
2019; Portoghese et al., 2005). GWR assessments based on
water budget approaches are widely used, providing useful
results and insights into GWR dynamics for an array of local
(field-scale) to regional studies (several 1000 km2) and for
a wide range of climatic conditions (Abdollahi et al., 2017;
Dripps and Bradbury, 2007; Dyer, 2019; Portoghese et al.,
2005; Zomlot et al., 2015).

Nevertheless, water budget models have strong limita-
tions. In such models, GWR is dependent on other terms
of the water budget, namely, evapotranspiration and runoff
(Crosbie et al., 2015; Jasechko et al., 2014; Scanlon et al.,
2002), which can be highly uncertain. Thus error propaga-
tion can be significant, especially where GWR rates are par-
ticularly low, such as in arid and semi-arid areas. However,
water budget approaches can be appropriate in cold and hu-
mid climates, where more water is available for infiltration
and groundwater and surface water are usually closely con-
nected (Gleeson et al., 2011; Meyzonnat et al., 2018; Rivera,
2014). In these conditions, the substantial volumes of wa-
ter stored in the snowpack through winter become rapidly
available for infiltration during spring snowmelt and the rel-
atively simple water budget models have been shown to pro-
vide results representative of those obtained with more com-
plex numerical models. For example, similar monthly and
annual GWR estimates were obtained in cold and humid cli-

mates with the Soil Water Balance model (SWB) and the
GFLOW analytical model (Hunt et al., 1998) by Dripps and
Bradbury (2007) in Wisconsin (USA) or with the HELP wa-
ter budget model (Schroeder et al., 1994) and the fully cou-
pled CATHY model (Camporese et al., 2010) by Guay et
al. (2013) in Quebec (Canada).

The association of regional-scale changes in GWR with
changing climatic conditions in cold and humid climates in
the last decades helped to develop a better picture of the po-
tential impacts of climate change on regional hydrology. In
the northern part of western Russia, Grinevskiy et al. (2021)
found that the warming temperature monitored between the
1965–1988 and 1989–2018 periods led to an increase in sim-
ulated GWR of up to +60 mm/yr (one-dimensional unsatu-
rated zone Hydrus model, Simunek et al., 2009) due to more
snowmelt and rainfall during winter. Inversely, Nygren et
al. (2020) used time series of groundwater levels in Sweden
and Finland to show that GWR decreased between the 1980–
1989 and 2001–2010 periods due to a switch from snowmelt-
to rain-dominated recharge events. Meanwhile, GWR has
been estimated in various studies in the cold and humid cli-
mate of southern Quebec (Canada), but they did not identify
obvious trends (Benoit et al., 2014; Chemingui et al., 2015;
Croteau et al., 2010; Gagné et al., 2018; Guay et al., 2013;
Larocque and Pharand, 2010; Lavigne et al., 2010; Levison
et al., 2014, 2016; Nastev et al., 2008; Rivard et al., 2009;
Rivera, 2014; Saby et al., 2016). This may be due to the rela-
tively short duration of the time series of the variables used as
a proxy for GWR (baseflows, groundwater levels; Rivard et
al., 2009) and due to the fact that very different models were
used in areas of contrasted sizes (Larocque et al., 2019).

The objective of this study was to demonstrate the rele-
vance of using a water budget model to understand long-term
transient and regional-scale GWR in cold and humid climates
where groundwater observations are scarce. The HydroBud-
get (HB) model (Dubois et al., 2021a) was used to simulate
the first long-term (57-year) and regional-scale (36 000 km2)
GWR estimates for watersheds of the St. Lawrence River in
southern Quebec (Canada) in a typical cold and humid cli-
mate case study. HydroBudget is a parsimonious water bud-
get model, capable of handling large amounts of data to sim-
ulate spatially distributed recharge. It was used here with a
robust automatic calibration approach using river flow rates
and baseflow estimates, along with a complete estimate of
model sensitivity and uncertainty of the simulated variables.

2 Study area

The case study area is located in the Province of Quebec (hu-
mid and cold climate), between the St. Lawrence River and
the Canada–USA border and between the Quebec–Ontario
border and Quebec City (35 800 km2) (Fig. 1). It is com-
prised of the watersheds of eight main tributaries of the St.
Lawrence River (numbered 1 to 8 from west to east) (Ta-
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ble 1). Watersheds W1 (Châteaugay River), W2 (Richelieu
River), and W4 (Saint-François River) are partially located
in the USA (42 %, 83 %, and 15 % of their total areas, re-
spectively). Topography is flat with low-elevation areas close
to the St. Lawrence River and higher elevations in the Ap-
palachian mountain range, associated with steeper slopes.
Land cover includes agriculture, forest, wetlands, urban uses,
and surface water (Fig. 2a). Agriculture dominates in the wa-
tersheds located in the St. Lawrence Platform, while forest
occupies most of the Appalachian watersheds.

Bergeron (2016) used 251 climate stations located in the
study area to produce spatially interpolated temperature and
precipitation data with a daily time step for the 1961–2017
period on a 10 km resolution grid. The high density of mea-
surements during this period generated minimal error on the
interpolated data, with a root mean square error (RMSE) of
3 mm/d for precipitation (mean bias of +0.1 mm/d), 2.5 ◦C
for minimal temperature (mean bias of −0.5 ◦C), and 1.5 ◦C
for maximal temperature (mean bias of +0.1 ◦C; Bergeron,
2016). Based on these data, average annual precipitation
for the study area is 1090 mm (Table 1), including 275 mm
falling as snow during winter (November to March). Precip-
itation is distributed relatively evenly throughout the year,
and although total precipitation is similar for all of the water-
sheds, it is higher in the mountainous zones than in the low-
lands (Fig. 2c). The average annual temperature is 5 ◦C (Ta-
ble 1), with average monthly temperature varying between
−15 ◦C (in January and February) and 20 ◦C (in July and Au-
gust). Regionally, temperatures decrease from the southwest
to the northeast (Fig. 2d).

The study area includes two main geological units: the
sedimentary basin of the St. Lawrence Platform and the Ap-
palachian mountain range (metasedimentary) (Malo, 2018;
Fig. 2c). The bedrock of the St. Lawrence Platform is com-
posed of slightly deformed Cambro-Ordovician fractured
bedrock consisting of limestone, shale, and mixed shale and
fine sandstone. The bedrock of the Appalachians is com-
posed of highly deformed schist, quartzite, and phyllites
(Thériault and Malo, 2018).

The bedrock is unevenly covered with unconsolidated
Quaternary sediments from the last glaciation–deglaciation
cycle, mainly composed of glacial, marine, fluvial, and lacus-
trine deposits. In this area, sediment depositional modes de-
termine the geological nature of the superficial materials and
the pedology (Fig. 2b). Thin (< 5 m) and relatively coarse su-
perficial deposits (aeolian sands, till, and various glacial de-
posits) are found over the bedrock in the uphill areas. These
deposits get thicker (5 to 20 m) in the valleys and in topo-
graphic depressions, with a wider mix of grain sizes result-
ing from the different depositional modes (fluvial, lacustrine,
and marine). Closer to the St. Lawrence River, the thickness
of the Quaternary deposits can reach several tens of meters,
where silty clays from the Champlain Sea are covered with
sandy materials (IRDA, 2008).

Regional fractured bedrock aquifers flow from the Ap-
palachians to the St. Lawrence River (south/southeast to
north/northwest). The aquifers are moderately productive
and shallow, with the water table 3 to 5 m from the sur-
face (Meyzonnat et al., 2018). They are in unconfined condi-
tions upstream, where bedrock outcrops or under coarse su-
perficial deposits, and reach semi-confined to confined con-
ditions once the bedrock is covered by finer sediments in
the valleys and close to the St. Lawrence lowlands (Rivera,
2014). Limited-extent shallow aquifers have been identified
in the local superficial coarse deposits. Previous local or
watershed-scale recharge studies have identified recharge ar-
eas upstream, mostly on the outcropping bedrock and in
coarse glacial sediments, while the St. Lawrence tributaries
drain groundwater over most of the study area. Gagné et
al. (2018) showed that in the main GWR zones, the hydroge-
ological system has a rapid response, and most of the GWR
rapidly reaches the nearby drainage system. The overall con-
figuration corresponds to topographically driven water ta-
bles (Gleeson et al., 2011), with hydrogeological watersheds
matching superficial watersheds, and can reasonably be con-
sidered to have a closed watershed water budget.

Daily flow rates are available from 51 gauging sta-
tions spread throughout the eight main tributary watersheds
(CEHQ, 2019; Fig. 1), with watershed areas ranging from
30 to 3000 km2. Data missing for up to 5 consecutive days
were linearly interpolated to optimize the length of the avail-
able time series. These 51 stations all have full-year measure-
ments for more than 3 consecutive years, and the presence of
ice most likely affects winter flow measurements.

3 Method

3.1 HydroBudget

HydroBudget (HB; Dubois et al., 2021a) is a spatially dis-
tributed GWR model that computes a superficial water bud-
get on grid cells of regional-scale watersheds with outputs
aggregated into monthly time steps. The model uses com-
monly available meteorological data (daily precipitation and
temperature, spatialized if possible) and spatially distributed
data (pedology, land cover, and slopes). It is based on sim-
plified process representations and is driven by eight param-
eters that need to be calibrated. These parameters are uni-
form over the grid and held constant through time (Table 2).
Coded in R, HB uses a conceptual lumped reservoir to com-
pute the soil water budget on a daily time step (Appendix A).
For each grid cell and each time step, precipitation is divided
between runoff (R), evapotranspiration (ET), and infiltration
that could reach the saturated zone (potential GWR), with a
monthly time step (Fig. 3; Dubois et al., 2021b).

Calculations begin with the vertical processes by first de-
termining the available liquid water (vertical inflow, VI),
which is the sum of rain and snowmelt, with a 0 ◦C air tem-
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Figure 1. Location of the study area and watersheds.

Table 1. Characteristics of the studied watersheds.

Elevation Area Land cover Temp. Precip.
(m a.s.l.) (km2) (% of total area) (◦C) (mm/yr)

Median Min Max Agriculture Forest Wetland Urban Water

W1. Châteaugay* 51 0 330 2219 62 26 5 6 1 6.5 952
W2. Richelieu∗ 40 7 865 4414 55 28 3 11 3 6.3 1039
W3. Yamaska 80 6 757 4792 57 34 3 5 1 5.9 1080
W4. Saint-François∗ 312 4 1044 9068 23 62 7 4 4 4.8 1123
W5. Nicolet 150 2 585 3591 48 44 4 3 1 5.1 1076
W6. Bécancour 140 4 652 3380 36 53 7 3 1 4.5 1103
W7. Du Chêne 90 15 130 461 36 45 14 3 2 4.5 1092
W8. Chaudière 340 10 1108 7879 23 66 7 3 1 3.9 1092

∗ Part of the watershed is located in the USA – the presented values are for the Quebec part only.

perature threshold for rain or snow and a two-parameter (TM
andCM) degree-days approach (Massmann, 2019). If the soil
is frozen (two parameters, TTF and FT), the entire VI will
produce R directly. Otherwise, VI can flow as runoff, infil-
tration, evapotranspiration, and eventually percolation as po-
tential GWR.

Runoff is calculated using the runoff curve number (RCN)
method (USDA-NRCS, 2004, 2007) on a cell-by-cell basis
(two parameters, tAPI and frunoff), similarly to what is done in
the SWAT model (Arnold et al., 2012; Neitsch et al., 2002).
The RCN is attributed per cell based on its pedology, land
cover, and slope following the USDA-NRCS method adapted
for the Quebec environment (Dubois et al., 2021b; Monfet,
1979). The remaining water (VI – runoff) is considered to
be infiltration (I ) reaching a soil reservoir for which storage
capacity is driven by one parameter (swm). If I exceeds avail-

able storage, saturation excess is added to R. Otherwise, ac-
tual evapotranspiration (AET) is calculated as the minimum
of PET (calculated using the formula of Oudin et al., 2005)
and the available water in the soil reservoir. The residual soil
water is mobilized as potential GWR (one parameter, finf) or
stored for the next time step.

HydroBudget thus calculates potential GWR, the recharge
that could reach the aquifer, if (1) the geological material be-
low the soil horizon allows deep percolation to occur, (2) no
additional storage or losses occur in the unsaturated zone be-
low the soil, and (3) no significant groundwater evapotranspi-
ration occurs (Doble and Crosbie, 2017). Actual GWR cor-
responds to the part of potential GWR that would reach the
water table, and potential GWR is therefore a maximum.
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Table 2. Description of the eight HydroBudget parameters.

Parameter∗ Range from the literature

Degree-days snowmelt model Melting temperature –
TM (◦C)

Air temperature threshold for snowmelt −2 to 2 (Massmann, 2019)

Melting coefficient –
CM (mm/◦C/d)

Melting rate of the snowpack 2 to 12 (Massmann, 2019)

Freezing soil conditions Threshold temperature
for soil frost – TTF (◦C)

Air temperature threshold for soil frost −20 to 0 (Henry, 2007)

Freezing time – FT (d) Duration of air temperature threshold to
freeze the soil

5 to 30 (Henry, 2007)

Runoff Antecedent precipita-
tion index time – tAPI
(d)

Time constant to consider the soil in
dry or wet conditions based on previous
precipitation event

1 to 5 (Lal et al., 2015)

Runoff factor – frunoff
(–)

Correction factor for runoff computed
with the RCN method for the partition-
ing between runoff and infiltration into
the soil reservoir

→ 1 (Neitsch et al., 2002)

Lumped soil reservoir Maximum soil water
content – swm (mm)

Soil reservoir storage capacity, maxi-
mum height of water stored in a 1 m soil
profile

50 to 900 (Croteau et al., 2010)

Infiltration factor – finf
(d−1)

Fraction of soil water that produces
deep percolation at each daily time step

< 0.1 to 1 (Croteau et al., 2010)

∗ Parameters are uniform over the grid and constant through time.

3.2 Calibration strategy

The HydroBudget model is calibrated on superficial water-
sheds, based on the hypotheses that (1) surface watersheds
match hydrogeological watersheds and that (2) the rivers
drain unconfined aquifers. Under these conditions, for any
given watershed, potential GWR should be similar to river
baseflow at the outlet, and the sum of runoff and potential
GWR should be equal to the total flow at the outlet. Dripps
and Bradbury (2007) and Guay et al. (2013) have shown
that results of GWR water budget models (SWB and HELP,
respectively) compared better to groundwater flow models
(GFLOW and CATHY, respectively) at the monthly time step
than at a daily time step. Thus, runoff, AET, and potential
GWR were computed with HB with a daily time step, and the
results were aggregated on monthly time steps. Calibration
and validation of the model and analysis of the results were
all performed on the monthly aggregated results. Also, the
calibration and validation of the model were performed under
the hypothesis that no major land use change occurred during
the simulation period (i.e., land use was held constant).

The daily river flow rates used for calibration were those
from 51 gauging stations (Fig. 1). Baseflows were estimated
from the flow rate time series following the proposition of
Ladson et al. (2013) with the Lyne and Hollick filter (Lyne
and Hollick, 1979) and using a stochastic calibration and
30 filter passes. To compare the effects of the baseflow filters

on GWR simulation, baseflows were also estimated with the
Eckhardt (2005) and Chapman (1991) filters for the gauging
stations of W6. As aquifers generally discharge into super-
ficial water bodies in southern Quebec, baseflows estimated
with recursive filters are considered an acceptable proxy of
GWR dynamics. Total flows and baseflows were divided by
the area of the given watershed to provide flow values in mil-
limeters per year and thus facilitate the comparison of cali-
bration results between watersheds of very different sizes.

The model was simultaneously calibrated for all the gaug-
ing stations using the automatic calibration procedure of the
R package caRamel (Monteil et al., 2020) to obtain a re-
gionalized set of parameters. Up to 5000 model calls were
used, with several successive optimizations to confirm the
reproducibility of the results, as recommended by Monteil et
al. (2020). Model performance was assessed using the Kling–
Gupta efficiency (KGE) calculated with total monthly mea-
sured and simulated total flow (KGEqtot ) as well as monthly
baseflow and monthly potential GWR (KGEqbase ). The KGE
is preferred here over the Nash–Sutcliffe efficiency because
it better represents the low-flow periods (Gupta et al., 2009).
Each river flow time series was divided into a calibration
period (first two-thirds) and a validation period (last third),
therefore allowing the objective functions to be computed per
period.

The caRamel algorithm (Monteil et al., 2020), a combi-
nation of the multi-objective evolutionary annealing simplex
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Figure 2. (a) Land cover (reclassified from Bissonnette et al., 2016),
(b) soil types (IRDA, 2008), (c) mean precipitation (1961–2017) as
well as the areas of the St. Lawrence Platform (hatched) and the
Appalachians, and (d) mean temperature (1961–2017) (Bergeron,
2016).

algorithm (MEAS; Efstratiadis and Koutsoyiannis, 2008) and
the non-dominated sorting genetic algorithm II (ε-NSGA-
II; Reed and Devireddy, 2004), automatically calibrated the
eight HB parameters to maximize KGEqtot and KGEqbase val-
ues. The algorithm produces an ensemble of parameter sets
(called generation) to run the model, downscales the gener-
ation to the parameter sets that optimize the objective func-
tions, and creates a new set of parameters that produces bet-
ter results. To produce new generations and ensure that the
optimization tends toward a global maximum, the algorithm
samples the parameter sets that individually maximize the
two objective functions, KGEqtot and KGEqbase , samples the
parameter sets that maximize the minimum values of the two

Figure 3. HydroBudget processes, including the eight calibrated pa-
rameters in red.

objective functions, and increases the variance of each pa-
rameter.

The eight HB parameters were optimized for each gauging
station, grouped by river watershed to save computational
time (from 51 individual optimizations to 8 grouped opti-
mizations producing 8 sets of calibrated parameters), such
as

(KGEqtot)ws =
1
Nws

∑Nws

station=1
(KGEqtot)station, (1)(

KGEqbase

)
ws =

1
Nws

∑Nws

station=1
(KGEqbase)station, (2)

with (KGEqtot)ws the KGEqtot obtained over a river water-
shed (group of gauging stations), (KGEqtot)station the KGEqtot

obtained for a gauging station, Nws the number of gaug-
ing stations per watershed, (KGEqbase)ws the KGEqbase ob-
tained over a river watershed (group of gauging stations), and
(KGEqbase)station the KGEqbase obtained for a gauging station.

Finally, the set of parameters that allowed one to reach the
best compromise was chosen by identifying the highest mean
KGE value (KGEmean):

KGEmean = 0.4×
(
KGEqtot

)
ws+ 0.6×

(
KGEqbase

)
ws. (3)

The weights attributed to each objective function in KGEmean
were arbitrarily chosen to select the calibrated parameter set
that maximizes the reproduction quality of the baseflows,
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considered to be the proxy for GWR (KGEqbase ), without
losing the benefits of the multi-objective optimization (Ap-
pendix Table A1).

The eight sets of eight calibration parameters were region-
alized (uniform calibration parameters over the grid), using
the normalized densities of stations per group (number of sta-
tions per square kilometer) as weights. The grid-wise uni-
form calibration parameters used for the simulation were ob-
tained:

xregionalized =

∑8
ws=1

Nws
areaws

× xws∑8
ws=1

Nws
areaws

, (4)

with xregionalized one of the eight calibration parameters re-
gionalized, xws one of the eight calibration parameters op-
timized for the gauging stations of a river watershed, and
areaws the area of the watershed (km2).

Finally, the 100 best compromises of each group of gaug-
ing stations were used to produce the 100 best regionalized
parameter sets, and the HB model was run with these param-
eters, estimating uncertainty from the standard deviation.

3.3 Model sensitivity

Using the R package Sensitivity (https://CRAN.R-project.
org/package=sensitivity, last access: February 2021), the
Morris global sensitivity approach (Morris, 1991), enhanced
by Campolongo et al. (2007), was performed for the eight
groups of gauging stations and for the two objective func-
tions, KGEqtot and KGEqbase . The analysis consists of ran-
domly and individually changing the eight calibration pa-
rameters of the model (one model call per change) until all
have been changed and starting again from a new combina-
tion of random values to measure the individual effects of the
tested parameters, known as the elementary effects. A repe-
tition represents one model call for an initial set of parame-
ters followed by eight model calls, one for each parameter. A
large number of repetitions (> 20) limits the convergence of
the sensitivity measurement toward a local maximum. The
n number of repetitions produces n number of elementary
effects per parameter, the absolute values of which are av-
eraged (µ∗) to sort the parameters from most (highest µ∗

value) to least sensitive (lowest µ∗ value).

4 Results

4.1 Model sensitivity and model calibration

The model sensitivity was obtained with 60 repetitions of
the design for the eight groups of gauging stations, repre-
senting 540 model calls for each group. The relative sensi-
tivity of the model varied markedly between the groups of
gauging stations for the simulated river flow rates (Fig. 4a)
but appears to be more constant for the simulated poten-
tial GWR (Fig. 4b). Flow rates were mostly sensitive to the

snow-related parameters (TM and CM), except for the west-
ern watersheds, where the frunoff was more important. The
simulated potential GWR was most sensitive to frunoff and
least sensitive to snowmelt parameters (TM and CM) for all
the watersheds. The ranking from the second- to fifth-highest
sensitivity of potential GWR only slightly varied between
groups of gauging stations. River flow rates and potential
GWR clearly showed limited sensitivity to the soil freezing
time (FT), with only a slightly higher sensitivity for the east-
ern watersheds W7 and W8. Overall, the potential GWR was
more sensitive to parameter variations than river flow since
all the µ∗ values for the river flow were lower by a factor 2 to
10 than for the potential GWR (values not presented here).

In a preliminary step, the calibration process was per-
formed with the W6 (Bécancour) group of stations. Up to
5000 model runs were performed, and the 25 best com-
promises were extracted to compare the equifinality in the
solutions. The KGEmean for this watershed varies within a
range of ±0.005 in calibration and ±0.02 in validation (Ap-
pendix Table A1). Furthermore, the variability of the opti-
mized parameters of the 25 best compromises was very lim-
ited, therefore allowing one to assume that the optimization
per gauging station group converged. Calibration for this wa-
tershed was relatively short (e.g., 5 min for a 3380 km2 water-
shed, 500 m resolution grid (13 500 cells), for 57 years with
15 cores and 50 GB of RAM), and convergence was repeat-
edly attained before 1000 model runs. The objective func-
tions, the calibrated parameters, and the interannual potential
GWR values showed very limited sensitivity to the weights
chosen for the computation of the KGEmean (Appendix Ta-
ble A1). As the absolute value of baseflow changed with the
filter method, the interannual GWR varied in consequence.
The calibrated parameters with the different baseflow esti-
mates slightly varied but remained in the parameter ranges
described in Table 2. The objective functions were simi-
lar, between 0.7 and 0.8, except for KGEqbase in validation,
which was slightly lower with the Eckhardt (2005) and Chap-
man (1991) filters than with the Lyne and Hollick (1979) fil-
ter.

In light of these results, calibration of the rest of the gaug-
ing station groups was thus undertaken with 1500 model runs
in order to save computational time. Also, the stochastic cal-
ibration and 30 passes of the Lyne and Hollick (1979) filter
developed by Ladson et al. (2013) were retained for the base-
flow estimate, and weights of 0.4 and 0.6 were associated
with KGEqtot and KGEqbase , respectively, for the computation
of KGEmean. Following regionalization, a satisfactory fit was
observed between the calibrated model and measured flow
rates and baseflows for all gauging station groups (Table 3).
The KGEmean varied between 0.64 and 0.82 (average= 0.72)
for the calibration period and between 0.62 and 0.77 (av-
erage= 0.69) for the validation period. The objective func-
tions were very similar between the two periods, confirming
the satisfactory calibration of the model and its capacity to
reproduce the water budget over a long period, considering
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Figure 4. Relative sensitivity of the eight model parameters to the simulated river flow rates (a) and to the simulated potential groundwater
recharge (b) for the eight groups of gauging stations. The relative parameter ranking is reported in the bars from the most sensitive, 1, to the
least sensitive, 8.

that calibration and validation span 1961 to 2017, and for the
entire study area. The mean bias in simulated river flow rates
and potential GWR varied between−9 and 5 mm/month (Ta-
ble 3). The uncertainty computed with the 100 best regional-
ized parameter sets was ≤ 10 mm/yr for the three simulated
variables (Table 4).

4.2 Simulated potential groundwater recharge for
1961–2017

The calibrated HB model was used to simulate potential
GWR for the entire study area on a 500 m× 500 m grid for
the 1961–2017 period. Examples of the simulated monthly
baseflows (Lyne and Hollick filter) and potential GWR are
illustrated in Fig. 5 for the downstream stations in W3, W7,
and W8. The simulated potential GWR compared favorably
with baseflows estimated using the Lyne and Hollick (1979)
digital filter. Maximum values were reached simultaneously
in April, during the spring month(s) of maximum VI. A sec-
ond baseflow and GWR peak was observed and simulated
in November–December of most years. The lowest values
were reached in July to September (high AET rates) and
February (minimum VI). Similar matching results in tim-
ing and amplitude were obtained for the river flow (not pre-
sented here). Simulated AET was null in the winter until
the spring thaw, after which it quickly reached its highest
value (> 100 mm/month) in July and decreased at the end of
August, reaching null values again in November. Compara-
ble results were obtained for the other gauging stations (not
shown).

The distribution of GWR rates showed a zone of low GWR
rates (< 140 mm/yr) in the western part of the study area

(flat and clayey St. Lawrence Platform), mainly in W1, W2
(except for its southeastern part), the central and northwest-
ern parts of W3, and the northern part of W4, W5, W6,
and W7 (Fig. 6a). A zone with higher GWR rates (140 to
280 mm/yr, locally > 280 mm/yr) covered the southern parts
of W3, W4, W5, W6, and W8 (Appalachians). Areas of high
GWR rates in the central parts of the study area (W2, W3,
W4, W5, and W6) also corresponded to the zones of higher
precipitation (Fig. 2c). The regional GWR–precipitation ra-
tio (Fig. 6b) identified the areas of preferential recharge with
ratios > 0.15, corresponding to areas of potential GWR rates
> 140 mm/yr mainly located in the Appalachians (southern
parts of W2 and W3 and W4 to W8). In the St. Lawrence
Lowlands (W7 and lower portions of W4, W5, W6, and W8)
and on the Appalachian Piedmont (central portions of W3),
the ratios > 0.2 were associated with superficial coarse ma-
terials disconnected from the regional water table, meaning
that the simulated potential GWR probably did not reach the
fractured bedrock aquifer.

4.3 Partitioning and seasonality of the water budget

Across the study area, the average simulated runoff was
444 mm/yr (41 % of total precipitation), the average simu-
lated AET was 501 mm/yr (47 % of total precipitation), and
the average simulated potential GWR was 139 mm/yr (12 %
of total precipitation) (Table 4). Mean annual GWR rates ac-
counted for less than 140 mm/yr in watersheds mainly lo-
cated in the St. Lawrence Platform (W1, W2, and W3 to a
certain extent) and for more than 140 mm/yr for the water-
sheds mainly located in the Appalachians (W4 to W8), ac-
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Table 3. Objective functions for the simulated outputs, for calibration and validation periods, and for mean bias over the entire period of
measurement.

Gauging stations Calibration Validation Mean bias (all periods –
mm/month)

Number Measur. period KGEqtot KGEqbase KGEmean KGEqtot KGEqbase KGEmean River flow Pot. GWR

W1∗ 2 1980–2013 0.80 0.65 0.71 0.79 0.63 0.70 3 −1
W2∗ 5 1973–2017 0.76 0.56 0.64 0.75 0.53 0.62 5 1
W3 14 1965–2017 0.76 0.64 0.69 0.79 0.57 0.66 5 0
W4∗ 8 1961–2009 0.81 0.71 0.75 0.85 0.71 0.77 −4 1
W5 4 1961–2017 0.77 0.75 0.76 0.76 0.59 0.66 −9 −3
W6 8 1961–2017 0.84 0.61 0.70 0.71 0.63 0.66 −2 −5
W7 2 1993–2017 0.92 0.75 0.82 0.86 0.72 0.77 2 0
W8 8 1961–2015 0.80 0.67 0.72 0.77 0.64 0.69 −4 −3

∗ The presented values are for the stations of the watershed that are completely located in Quebec.

Table 4. Simulated runoff, actual evapotranspiration (AET), and potential groundwater recharge (GWR) and uncertainty for the study area
between 1961 and 2017 for annual values, winter, spring, summer, and fall and for the eight watersheds (W1 to W8).

Runoff AET Pot. GWR

mm/yr Win. Spr. Sum. Fall mm/yr Win. Spr. Sum. Fall mm/yr Win. Spr. Sum. Fall

W1∗ 368± 8 13 % 47 % 16 % 24 % 482± 5 2 % 30 % 48 % 20 % 109± 4 38 % 46 % 3 % 14 %
W2∗ 430± 9 12 % 48 % 16 % 24 % 498± 5 1 % 29 % 50 % 19 % 119± 5 36 % 45 % 4 % 15 %
W3 442± 10 12 % 48 % 17 % 24 % 507± 5 1 % 28 % 52 % 19 % 139± 5 35 % 44 % 4 % 17 %
W4∗ 485± 9 11 % 50 % 17 % 22 % 512± 4 1 % 25 % 55 % 18 % 147± 6 31 % 42 % 8 % 19 %
W5 438± 10 10 % 50 % 17 % 23 % 502± 5 1 % 26 % 54 % 19 % 144± 6 32 % 43 % 6 % 19 %
W6 465± 9 8 % 53 % 16 % 23 % 501± 4 1 % 25 % 56 % 18 % 151± 6 28 % 44 % 7 % 21 %
W7 453± 8 6 % 56 % 15 % 23 % 512± 4 1 % 25 % 56 % 18 % 154± 5 26 % 46 % 8 % 20 %
W8 470± 10 7 % 53 % 18 % 23 % 494± 4 1 % 24 % 57 % 18 % 145± 6 27 % 42 % 10 % 21 %
∗ Part of the watershed is located in the USA – the presented values are for the Quebec part only. Winter: December, January, February; spring: March, April, May; summer: June, July,
August; fall: September, October, November.

cording to the two zones of high and low GWR rates previ-
ously described.

The seasonality of the water budget varied with more im-
portant winter runoff and potential GWR (and higher spring
AET rates) in the western watersheds than in the eastern wa-
tersheds (Table 4). Summer and fall AET and potential GWR
were less important in the western watersheds than in the
eastern ones. Runoff and potential GWR clearly peaked dur-
ing spring (51 % and 44 % of the annual value, respectively)
due to the snowmelt event in all watersheds. These variations
in seasonal proportions of each variable were driven by the
regional temperature gradient (decreasing temperature from
west to east).

Partitioning of runoff, AET, and potential GWR according
to soil type showed maximum runoff rates for organic de-
posits, often associated with wetlands, and minimum rates
over clay (Fig. 7a). The highest AET rates occurred over
coarse sediment and the lowest rates over clay, while the
highest potential GWR rates were found in coarse deposits
and the lowest ones in clayey areas. Steepening slopes pro-
duced more runoff and a slight increase in potential GWR
(not for slopes > 8 %) (Fig. 7b). The increase in GWR rates

associated with steeper slopes can be linked to the presence
of coarser material usually corresponding to glacial deposits
on hillsides (high infiltration rates). Low runoff rates were
associated with the flat and clayey areas of the St. Lawrence
Platform, where annual precipitation is the lowest of the
study area (Fig. 2c). A clear contrast was visible in the effect
of land cover on the water budget (Fig. 7c), with the highest
runoff rates over wetlands and the lowest ones in forested ar-
eas. The highest AET rates were found for wetlands, while
the lowest ones were found for urban areas. The highest po-
tential GWR rates were associated with forested areas and
the lowest ones with wetlands.

4.4 Temporal evolution of the simulated water budget
since the 1960s

HydroBudget simulated the temporal evolution of the water
budget in the study area from 1961 to 2017, thus producing
an exceptionally long simulated time series of runoff, AET,
and potential GWR for the area (Fig. 8). The effect of interan-
nual variability in precipitation appeared clearly in the sim-
ulated runoff, with low runoff rates (< 350 mm/yr) produced
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Figure 5. Examples of simulated monthly potential groundwater recharge (GWR) and baseflows estimated with the Lyne and Hollick (1979)
filter for the downstream gauging stations of W3 (a), W7 (b), and W8 (c).

during the driest year and high runoff rates (> 550 mm/yr)
produced during the wettest year (Fig. 8a, c). The sim-
ulated AET varied less than runoff, mainly between 450
and 560 mm/yr (Fig. 8d). Interannual variations of poten-
tial GWR were relatively high, ranging between 90 and
200 mm/yr, and seemed more influenced by precipitation
than by temperature variations (Fig. 8e).

The simulation period was split into three 19-year periods
(1961–1979, 1980–1998, and 1999–2017) to look for signif-
icant changes in input variables (precipitation and tempera-
ture) and simulated variables (Tukey test, p< 0.05) (Fig. 8).
Significant changes were found in the input variables be-
tween the 1961–1979 and 1999–2017 periods, with an in-
crease in temperature for all watersheds and an increase in
precipitation in five watersheds. These changes produced a
significant increase in AET for all watersheds except W1 and
an increase in runoff for three watersheds (W3, W6, and W8).
However, these changes in precipitation and temperature did
not impact the annual potential GWR, for which significant
increases were simulated between the 1961–1979 and 1980–
1998 periods only for W4, W6, and W8.

When considering the entire period (1961–2017), VI sig-
nificantly increased (Mann–Kendall test, p< 0.05) annually
for all watersheds except W5 and W7 and during winter (De-
cember to February) and summer (June to August) for all
watersheds except W1 and W7 during summer (Appendix
Table A2). Significant annual and seasonal temperature in-
creases were also observed for all watersheds and for all
seasons except W5 and W6 during spring. Similarly to VI,
runoff significantly increased annually for all watersheds ex-
cept W5 and W7 and during winter and summer for all wa-
tersheds except W1 during summer. Significant increases in
AET were also simulated for annual values and during win-
ter and spring, and unlike temperature, summer and fall AET
showed no significant trend except for W6 and W8 during
summer. Significant increases in potential GWR were sim-
ulated only for winter values for all watersheds except W1.
Interestingly, although increasing runoff and AET were ob-
served throughout the simulation period (1961–2017), no de-
creasing trends were simulated in potential GWR.
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Figure 6. (a) Average potential GWR simulated using the Hy-
droBudget model for the study area between 1961 and 2017 and
(b) GWR/precipitation ratio for the same period.

5 Discussion

5.1 Regional groundwater recharge dynamic in cold
and humid climates

Although river flows are well monitored by an extensive
gauging station network over long periods, groundwater-
level monitoring was initiated in the Province of Quebec only
at the turn of the century (MELCC, 2020). Recharge esti-
mates from these time series are yet to be produced. More-
over, a regional-scale lysimeter network still needs to be im-
plemented. Local ground truthing of HB simulation results
is thus limited by the lack of spatially distributed GWR esti-
mates from alternative field-based measurements, restricting
the verification of model results to comparisons with local
field and modeling studies.

The average simulated potential GWR for the study area
(139 mm/yr; 12 % of annual precipitation) is comparable
to values found in previous studies in the region. For ex-
ample, Chemingui et al. (2015) used the CATHY inte-
grated hydrological model in W1 to estimate GWR to be
200 mm/yr. Although this value is much higher than the one
obtained using HB in the same area (109 mm/yr), the result-
ing preferential recharge areas located close to the Canada–
USA border are similar with both approaches (i.e., 70 to
250 mm/yr in Chemingui et al., 2015, and 70 to 280 mm/yr
with HB). The average recharge rates simulated using the
HELP model, also calibrated using flow rates and baseflow

estimates, are similar to the HB-simulated potential GWR
rates in two watersheds of the study area: 86 mm/yr for W1
(Croteau et al., 2010) and 185 mm/yr for W8 (Benoit et al.,
2014) compared to 109 mm/yr and 145 mm/yr with HB, re-
spectively. Using the WaterGAP Global Hydrology Model
(WGHM; Döll et al., 2003) and a 0.5◦ spatial resolution,
Döll and Fiedler (2008) found GWR rates ranging from 100
to 300 mm/yr in southern Quebec, thus generally matching
the range of HB-simulated GWR. Wada et al. (2010) sim-
ulated much higher GWR rates over the study area (300
to 1000 mm/yr) with the global hydrological model PCR-
GLOBWB (Bierkens and van Beek, 2009) at a 0.5◦ spatial
resolution. These values do not match HB estimates, nor do
they match any other results for the study area.

The spatially distributed potential GWR values show a
clear difference between areas in the St. Lawrence Platform
(GWR< 140 mm/yr) and areas in the Appalachian geologi-
cal units (GWR> 140 mm/yr). Higher recharge occurs when
soils are coarser or in outcropping bedrock areas, which are
mostly located in the Appalachians and upstream in the wa-
tersheds, in accordance with what has been found in previ-
ous studies (Benoit et al., 2014; Croteau et al., 2010; Levison
et al., 2014). Spatial variations in GWR also correlate well
with land use, with preferential infiltration zones in forested
areas and lower infiltration rates over wetlands and urban ar-
eas. Overall, local surface conditions, such as soil type and
land use, mostly influence GWR rates. Similar results of
factors influencing GWR are reported by Batelaan and De
Smedt (2007) and Zomlot et al. (2015) in Belgium (oceanic
climate) and by Nielsen and Westenbroek (2019) in Maine
(USA – cold and humid climate).

Within the study area, potential GWR occurs mainly in
the spring (44 %) and winter (27 %–38 %), while almost no
GWR occurs in the summer (3 %–10 %), and a moderate
contribution occurs in the fall (14 %–21 %). Differences be-
tween watersheds in this seasonal dynamic seem to be driven
by the southwest–northeast decrease in temperatures, with
higher winter GWR rates obtained in the warmer western
watersheds and higher summer and fall GWR obtained in the
colder eastern watersheds. Similar observations can be made
for runoff and inversely for AET.

This spatiotemporal link between GWR and precipitation
and temperature patterns is coherent with that reported in
other studies. For example, Dierauer et al. (2018) used river
flow observations of 63 streams in the Rocky Mountains
(Canada and USA, snow-dominated hydrology) to link win-
ter conditions to GWR. The proportion of total precipita-
tion occurring in winter and winter temperature were iden-
tified as important variables for the variability of winter and
summer low flows. The seasonality of GWR is well docu-
mented in the humid conditions of northern Europe as well,
with an increase in the importance of winter events (rain-
dominated GWR) at the expense of the spring snowmelt
(snow-dominated GWR) with the increase in average tem-
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Figure 7. Median, 25th and 75th percentile, minimum, and maximum values for annual runoff, actual evapotranspiration (AET), and potential
GWR throughout the study area between 1961 and 2017, classified as a function of (a) soil type, (b) slope, and (c) land cover.

perature from north to south (Kløve et al., 2017; Nygren et
al., 2020).

Simulated GWR from the current study is inversely corre-
lated with AET, occurring preferentially when AET is low,
immediately following snowmelt and before the onset of soil
frost. Similar results are reported from other cold and humid
climates (Grinevskiy et al., 2021; Kløve et al., 2017; Okko-
nen and Kløve, 2011; Nygren et al., 2020). The importance
of snowmelt-related recharge evidenced by the simulations
has also been observed using field data. Using isotopic anal-
yses, Jasechko et al. (2017) have shown that high propor-
tions of total GWR occurring during winter were associated
with the amount of winter precipitation in central Canada and
worldwide with preferential infiltration periods during the
cold months (Jasechko et al., 2014). Wright and Novakowski
(2020) have linked increases in groundwater levels from ob-
servation wells to GWR events in the neighboring Province
of Ontario (Canada) during rain-on-snow and partial thaw
events, despite the presence of a frozen soil. They underline
the importance of winter recharge events in seasonally frozen
environments and their potentially increased importance in a
warming climate.

5.2 Trends in groundwater recharge in cold and humid
climates in the past decades

Warming temperatures have been recorded in the cold and
humid climates of the Northern Hemisphere since the mid-
dle of the 20th century. Mean annual temperature increased
by +2 to +3 ◦C between 1954 and 2003, and this increase
was more marked between December and February (up to
+4 ◦C for the same period) (Arctic Climate Impact Assess-
ment, 2004). In eastern Canada, temperature warming up to
+1 to +3 ◦C has been identified for the 1948–2016 period

(Vincent et al., 2018), leading to important changes in the
seasonal distribution, and particularly to an increase in win-
ter precipitation and a decrease in accumulated snow dur-
ing the cold season (Kong and Wang, 2017). This work has
shown that although the simulated potential GWR was not
impacted by the long-term increases in precipitation or tem-
perature on an annual time step for the 1961–2017 period,
these changes produced significant increases in annual runoff
and AET and may not have been sufficient yet to propagate to
potential GWR. As observed with past data for winter trends
in potential GWR, under changing climate conditions, sea-
sonal and monthly GWR could increase during periods with
more available liquid water and low AET rates (late fall, win-
ter, early spring). Inversely, GWR could decrease for periods
of enhanced AET rates (warmer temperature) such as late
spring, summer, and early fall.

In Canada, other authors have looked for trends in ob-
served time series of groundwater levels for the snow-
dominated region of British Columbia (Allen et al., 2014)
or across the country (Rivard et al., 2009), but each time,
no coherent pattern could be identified. This could be due
to short time series or insufficient data coverage. In west-
ern Russia, Grinevskiy et al. (2021) simulated an increase in
GWR between the 1965–1988 and 1989–2018 periods with
a surface energy balance coupled to the Hydrus unsaturated
zone model. The GWR increase was due to a warmer win-
ter, leading to a decrease in soil frost depth and an increase
in the winter soil-water storage. Interestingly, the warming
temperatures did not produce AET increases, which was in-
terpreted to be due to a sharp decrease in wind speed. In-
versely, Nygren et al. (2020) identified a significant decrease
in groundwater depth time series across Finland and Swe-
den between the 1980–1989 and 2001–2010 periods. These
authors showed that the deeper groundwater levels were
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Figure 8. Median, 25th and 75th percentiles, and minimum and maximum fluxes of (a) temperature, (b) precipitation, (c) simulated runoff,
(d) simulated AET, and (e) simulated potential GWR and significant changes (Tukey test, p< 0.05) between the 1961–1979 period and the
1980–1998 and 1999–2017 periods for the eight watersheds (orange color).

linked to decreasing GWR patterns associated with shorter
snowmelt periods and longer periods of intensive evapotran-
spiration. In comparison, the temperature increase observed
in southern Quebec over the 1961–2017 period was probably
not large enough to produce such a change.

An outcome of this work was to show that the regional
long-term potential GWR simulations with a water budget
allowed identification of the impacts of a changing climate
on the past GWR conditions by positioning the trends (or
absence of significant trends) in the globally changing hy-
drologic dynamic. Also, it emphasized the high responsivity

of the hydrologic dynamic of the cold months to the climate
changes in the cold and humid climates.

5.3 Implications for water management

This study has shown that the use of a GWR water bud-
get model relatively easily produced long-term spatially dis-
tributed GWR values at the regional scale, with an accept-
able spatial resolution and monthly time steps. The average
GWR rate for the region, based on the new regional esti-
mate, is 139 mm/yr, with lower aquifer renewal rates in the
St. Lawrence Platform (< 140 mm/yr) than in the Appalachi-
ans (> 140 mm/yr). Preferential infiltration areas correspond
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to forested areas (170 mm/yr) and areas covered by coarse
sediments (180 mm/yr) or outcropping bedrock (150 mm/yr).
The decreasing temperature from west to east impacts the
intra-annual GWR dynamic, imposing higher winter GWR
in the warmer watersheds, from 38 % of annual recharge in
W1 to 27 % in W8. Inversely, summer and fall GWR rates are
lower in the western watersheds (3 % and 14 %, respectively,
in W1) than in the eastern watersheds (10 % and 21 %, re-
spectively, in W8). Furthermore, the warming temperatures
since 1961 did not negatively affect GWR until 2017, due
to a simultaneous increase in precipitation and higher win-
ter GWR, compensating for the increase in AET. However,
with more intense and faster climate change, this dynamic
could change in the near future if temperature warming was
to exceed precipitation increase.

Based on the study results, GWR maps should be in-
cluded in land management planning to avoid impacting ar-
eas of preferential recharge, such as forests, areas covered
by coarse material, and zones of outcropping bedrock. Al-
though the GWR–precipitation ratio in eastern North Amer-
ica seems to be 0.25 and higher (Jasechko et al., 2014, based
on the global simulation of Wada et al., 2010), areas of pref-
erential recharge can be identified in the study area based
on a GWR–precipitation ratio higher than 0.15 (the world-
wide mean in Jasechko et al., 2014). These represent essen-
tial areas for the quantitative replenishment of groundwater
resources and therefore the most vulnerable areas in terms
of water quality of southern Quebec. Forested areas should
be prioritized for future preservation and forest conservation
policies implemented for groundwater resource protection.
Although it has been shown that wetlands are often con-
nected to the water table in southern Quebec (Bourgault et
al., 2014), they are not considered to be preferential infiltra-
tion areas in HB. Separate studies will be necessary to inves-
tigate their role in regional groundwater flow. Considering
the substantial influence of winter on the regional hydrology,
one of the novel outcomes of this study, and that changes in
the winter dynamic could highly influence the entire hydro-
logic dynamic of cold regions (Jasechko et al., 2014, 2017),
additional winter-related research should target gauging of
winter river flows, soil frost modeling, and enhancing the
vertical inflow and snowpack modeling and would probably
require the development of the winter monitoring network.

It is important to underline that actual GWR is most likely
lower than potential GWR, especially where superficial de-
posits are thick and have low hydraulic conductivity or where
impermeable sediments are present at depth and may induce
confined conditions for underlying aquifers. To overcome
this, Rivard et al. (2013) and Gagné et al. (2018) applied a
40 % reduction coefficient in the semi-confined areas of W5
to estimate actual GWR from potential GWR and assumed
that no recharge occurred over confined aquifers.

5.4 Contributions to and limitations of water budget
models in groundwater recharge simulation

HydroBudget was specifically developed to simulate spa-
tial and temporal variations in potential GWR at the re-
gional scale, for long periods and for regions where win-
ter largely affects the intra-annual hydrologic dynamic. The
model can reasonably be used where hydrogeological and su-
perficial watersheds are similar, where regional groundwa-
ter flow converges to rivers, and when a monthly resolution
is sufficient. Although the model does not compute water
routing, groundwater–surface water feedback, or evapotran-
spiration from groundwater, and produces potential GWR,
the satisfying simulation results found in this work justify
the water budget calculation scheme used in HB, resulting
in an easy-to-use and computationally efficient model. Fur-
thermore, the uncertainty analysis showed that the calibra-
tion method provides an interestingly small uncertainty for
the simulated variables and a mean bias similar to that of the
input data.

The impact of long and cold winters was included in HB
through the widely used degree-days method that represents
snowpack evolution (Massmann, 2019) and through the rep-
resentation of freezing soil conditions with a threshold tem-
perature and a duration of the threshold temperature to freeze
the soil (TTF and FT, respectively). The results showed that
the simulated potential GWR was sensitive to TTF, while
both flow rates and potential GWR had limited sensitivity
to FT (Fig. 4). The colder watersheds were more sensitive to
these parameters, while the simulations of river flows in the
warmer watersheds were less sensitive to the snow-related
parameters. These results underline the importance of includ-
ing soil freezing in GWR modeling for cold regions, as did
other studies in cold and humid climates (Grinevskiy et al.,
2021; Nemri and Kinnard, 2020; Okkonen and Kløve, 2011).
This work pinpoints the need for more research on winter
recharge to better understand the processes involved.

Several existing water budget models (HELP; HydroBud-
get; SWB; water balance GIS tool; Huet et al., 2016) use
the RCN curve number method (USDA-NRCS, 2004) as a
simplification for runoff calculation. This method, developed
specifically for the US context, has been criticized for its em-
pirical basis (Ogden et al., 2017). However, it is continuously
adapted and used for new environments and different size ar-
eas and is well documented and easy to use (Bartlett et al.,
2016; Lal et al., 2015; Miliani et al., 2011; Ross et al., 2018).
Notably, it is used to estimate runoff in the SWAT hydro-
logical model (Neitsch et al., 2002) and is calibrated specifi-
cally in the Quebec climate and geological context (Gagné et
al., 2013; Monfet, 1979). In water budget models, the RCN
method drives the partitioning of the simulated water budget
into runoff and water available for AET and GWR, therefore
making the related parameters (tAPI and frunoff) particularly
sensitive in their simulation (e.g., frunoff is the most sensitive
parameter for potential GWR in HB; Fig. 4). Because it is
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based on land cover, topography, soil types, and seasonal hu-
midity, the RCN method reflects the spatial variability of the
large study area, which probably contributes to the ability of
HB to simulate the surficial water budget and discriminate its
partitioning depending on the superficial conditions (superfi-
cial geology, land cover).

The AET corresponded to 47 % of the annual precipita-
tion (501 mm/yr), a result similar to those reported in previ-
ous work in the study area (Benoit et al., 2014; Croteau et al.,
2010; Guay et al., 2013). Considering the vegetation cover of
southern Quebec (45 % of the area of forest and 6 % of wet-
lands), its relatively large water availability, with an average
of 1090 mm/yr of precipitation evenly distributed throughout
the year, the topography-driven water table, and the shallow
depth of the aquifers, groundwater–vegetation–atmosphere
exchanges are probably intensive (Koirala et al., 2017; Xu
and Liu, 2017). The configuration of the HB model, with
a soil lumped reservoir for AET–potential GWR partition-
ing, is therefore conceptually suitable (Cuthbert et al., 2019).
AET computation is driven by two parameters, i.e., the runoff
factor (frunoff), influencing the partitioning between runoff
and infiltration into the soil reservoir, and the soil reservoir
parameter (swm), determining the reservoir capacity. Evapo-
transpiration calibration data would be useful to better con-
strain these two parameters, but measured values are rarely
available for this variable.

The simulated transient GWR was calibrated with base-
flows computed using regressive filters from river flow rate
time series. Although Partington et al. (2012) showed that
the association between baseflows and GWR is not always
satisfactory and that different baseflow separation methods
can lead to differences in volumes and timing (Gonzales et
al., 2009; Zhang et al., 2017), baseflows are generally con-
sidered an acceptable proxy for GWR in cold and humid
climates (Chemingui et al., 2015; Dierauer et al., 2018; Ri-
vard et al., 2009). They are widely used for the calibration of
GWR simulations (Batelaan and De Smedt, 2007; Croteau et
al., 2010; Dripps and Bradbury, 2007; Gagné et al., 2018; Ri-
vard et al., 2013). In this work, using baseflow estimated with
the Lyne and Hollick (1979), Eckhardt (2005), and Chapman
(1991) filters influenced the proportion of baseflow in total
river flow and consequently led to variations in simulated po-
tential GWR (Appendix Table A1). However, the quality of
the simulations was comparable due to parameter variations
that remained in the possible range of the parameters (Ta-
ble 2).

Having a model that is fully coded in an open-source lan-
guage leaves the option of reshaping its structure and con-
ceptual model to specific study needs and environments.
Changes to the model could include, for example, changing
the PET calculation to a formula considered to be more suit-
able for a specific local context, defining a different runoff
computation method that would better represent local con-
ditions, modifying the representation of the soil reservoir by
spatializing it, or using other calibration data, such as obser-

vation of AET or other baseflow filters. However, it should
be kept in mind that increasing the complexity of the pro-
cess representation would increase the number of parameters
to be calibrated and most likely increase computation time
as well. An original contribution of this work was to show
that the tested calibration method combined with a region-
alized parameter set offers a very acceptable solution that is
highly reproducible and could be applied in less monitored
regions. Apart from being relatively simple to use, the HB
model has high potential for non-hydrogeologist users, espe-
cially if the computational time is limited and the update of
observation data and the automatic calibration procedure are
easy tasks. Hydrogeologist modelers might be interested in
including HB as a complementary tool for comparative pur-
poses when using integrated models or when in need of GWR
estimates for groundwater flow models.

6 Conclusion

Groundwater recharge is a strategic hydrologic variable that
needs to be estimated for sustainable groundwater man-
agement, especially within the global warming context that
highly impacts winter conditions in the cold and humid
climate regions. It is a challenge to simulate groundwa-
ter recharge at the regional scale and for long-term con-
ditions because of long computational times and the large
number of calibration data required to produce reliable re-
sults, especially because groundwater observations often re-
main too scarce for such spatiotemporal scales. The objec-
tive of this study was to demonstrate the relevance of us-
ing a water budget model to understand long-term transient
and regional-scale GWR in cold and humid climates where
groundwater observations are scarce. As a typical case study,
the HydroBudget model was automatically calibrated with
river flow rates and baseflow estimates to simulate long-
term regional-scale GWR in the cold and humid climatic
conditions of southern Quebec. With the model simultane-
ously calibrated on 51 gauging stations, GWR was simulated
between 1961 and 2017 at the regional scale (36 000 km2)
with very little uncertainty (< 10 mm/yr). GWR estimates
at this scale, including eight tributary watersheds of the St.
Lawrence River with a monthly time step and 500× 500 m
resolution, were not available until now. The study demon-
strated that the ability of the HB model to simulate snow-
pack evolution and soil frost appears to be a key feature
for GWR simulation. Another outcome of this work was to
show that the model sensitivity to its parameters is correlated
with the average air temperature of the watershed, making
the simulated water budget in watersheds with lower tem-
perature more sensitive to snow-related parameters than the
warmer watersheds. Nevertheless, additional research focus-
ing on snow melting and freezing soil processes would help
to better constrain the model for the winter and spring peri-
ods, consequently helping better anticipate future changes.
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Water budget partitioning has proven to be highly useful
for linking changing climatic conditions to trends and evolu-
tion in regional GWR in the last 6 decades. The water bud-
get is partitioned into runoff (41 %, 444 mm/yr), AET (47 %,
501 mm/yr), and potential GWR (12 %, 139 mm/yr). This
study shows that groundwater recharge peaks in the spring
(44 % of annual recharge) and is high during winter (32 %
of annual recharge). Interestingly, the long simulation period
made it possible to identify a significant increasing trend of
GWR during winter and no decreasing trends during sum-
mer, despite warmer temperatures. This is most likely be-
cause increases in AET are compensated by increases in pre-
cipitation. In contrast to previous studies of past GWR trends
in cold and humid climates, this work has shown that changes
in past climatic conditions have not (yet) produced signif-
icant changes in annual potential GWR but have impacted
runoff and AET. However, considering the intense and fast
climate change expected in future decades, the water budget
partitioning and the regional GWR could decrease if temper-
ature warming were to exceed the increase in precipitation.

Besides providing essential long-term and regional-scale
data on regional GWR, a water budget model with a rel-
ative ease of use, such as HB, and that can be calibrated
regionally with available data can be extremely useful for
non-hydrogeologist users from water management and en-
vironmental agencies. It can be used to implement water re-
source conservation policies, anticipate the impacts of cli-
mate change, and identify additional research required.

Appendix A

Equations used in the HydroBudget model (adapted from
Dubois et al. (2021b), the eight calibration parameters, uni-
form over the grid and constant through time, are identified
with bold characters).

A1 Degree-days snowmelt model

Determining whether the temperatures generate snowfall.

If Tt ≤ 0,
then snowfallt = PTOTt , (A.1.1)
else snowfallt = 0. (A.1.2)

Determining whether the temperature generates snowmelt,
calculating snowmelt and VI.

If Tt ≤ T M,

then snowpackt = snowpackt−1+ snowfallt , (A.1.3)
else snowmeltt = CM× (Tt −T M)× snowpackt−1, (A.1.4)
and snowpackt = snowpackt−1− snowmeltt . (A.1.5)
If Tt > 0,

then VIt = PTOTt + snowmeltt , (A.1.6)
else VIt = snowmeltt . (A.1.7)

t is the current daily time step, Tt is the air temperature (◦C),
snowfallt is the snowfall in snow water equivalent (mm),
PTOTt is the total precipitation (mm), T M is the melting
temperature (◦C), snowpackt is the snowpack in snow wa-
ter equivalent (mm), snowpackt−1 is the snowpack in snow
water equivalent at the previous time step (mm), snowmeltt
is the liquid water produced by snowmelt (mm), CM is the
melting coefficient (mm ◦C−1 d−1), and VIt is the vertical
inflow (mm).

A2 Runoff computation

Computing the antecedent soil conditions.

APIt =
t∑

t=t−tAPI

VIt (A.1.8)

Computing the values of RCN for dry and humid soil condi-
tions based on equations from Monfet (1979).

RCNdry = 0.00865 ×f runoff × RCN2
+ 0.0145

×f runoff ×RCN+ 7.39846, (A.1.9)

RCNwet =−0.00563 ×f runoff ×RCN2
+ 1.45535

×f runoff ×RCN+ 10.82878. (A.1.10)

Adjusting the RCN value based on the antecedent soil condi-
tions.

If 1 July≤ t < 1 September,
if APIt < 50,
then RCNt = RCNdry. (A.1.11)
If APIt > 80,
then RCNt = RCNwet, (A.1.12)
else RCNt = f runoff ×RCN. (A.1.13)
If 1 June≤ t < 1 July or 1 September≤ t < 10 October,
if APIt < 18.5,
then RCNt = RCNdry. (A.1.14)
If APIt > 37,
then RCNt = RCNwet, (A.1.15)
else RCNt = f runoff.×RCN (A.1.16)
If 10 October≤ t < 1 June,
if APIt < 11,
then RCNt = RCNdry. (A.1.17)
If APIt > 22,
then RCNt = RCNwet, (A.1.18)
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else RCNt = f runoff×RCN. (A.1.19)

Computing runoff (with conditions on the soil frost).

If
1

F T

t∑
t=t−F T

Tt > TTF,

then Rt =

[
VIt − 0.2 × (1000/RCNt − 10)

]2
VIt − 0.8 × (1000/RCNt − 10)

, (A.1.20)

else Rt = VIt . (A.1.21)

APIt is the antecedent precipitation index (mm). tAPI is the
antecedent precipitation index time (d). RCN is the computed
value of the runoff curve number for the considered pixel
(–). f runoff is the runoff factor (–). RCNdry is the corrected
value of the runoff curve number for dry soil conditions (for
the Quebec environment) (–). RCNwet is the corrected value
of the runoff curve number for humid soil conditions (for
the Quebec environment) (–). RCNt is the considered value
of the runoff curve number for the time step (–). F T is the
freezing time (d). TTF is the threshold temperature for soil
frost (◦C). Rt is runoff (mm).

A3 Lumped soil reservoir

Computing infiltration as runoff excess.

Inft = VIt −Rt (A.1.22)

Computing saturation excess.

If
(
swm− sw′t−1

)
≥ Inft ,

then Excess Rt = 0, (A.1.23)
else Excess Rt = Inf− (swm− sw′t−1), (A.1.24)
Total Rt = Rt +Excess Rt . (A.1.25)

Computing the AET based on the soil water content.

If sw′t−1+ Inft −Excess Rt ≥ PETt ,
then AETt = PETt , (A.1.26)
swt = sw′t−1+ Inft −Excess Rt −AETt , (A.1.27)
else AETt = swt + Inft −Excess Rt , (A.1.28)
swt = 0. (A.1.29)

Computing the potential GWR based on the soil water con-
tent after the AET computation.

If swt > 0,
then GWRt = swt ×f inf, (A.1.30)
sw′t = swt −GWRt , (A.1.31)
else GWRt = 0, (A.1.32)
sw′t = 0. (A.1.33)

Inft is infiltration to the soil reservoir (mm). swm is maxi-
mum soil water content in the soil reservoir (mm). sw’t−1 is
soil water content at the end of the previous time step (mm).
Excess Rt is saturation excess produced by the soil reservoir
(mm). Total Rt is total runoff (mm). PETt is potential evapo-
transpiration (mm). AETt is actual evapotranspiration (mm).
swt is soil water content after the AET computation (mm).
GWRt is potential GWR (mm). f inf is the infiltration fac-
tor (d−1). sw’t is soil water content after the AET and GWR
computation (mm).

A4 Model output per grid cell

Rm =

n∑
t=1

Total Rt (A.1.34)

AETm =

n∑
t=1

AETt (A.1.35)

GWRm =

n∑
t=1

GWRt (A.1.36)

Rm is simulated monthly total runoff (mm), n is the number
of days in the considered month, AETm is simulated monthly
AET (mm), and GWRm is simulated monthly potential GWR
(mm).
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Table A1. Best compromises, interannual potential GWR, and optimized parameters obtained with the best compromises for the gauging
stations of W6 and ranges obtained with the 25 best compromises (before regionalization) using different calibration weights and different
baseflow separation methods.

Calibration Validation Interannual pot.

KGEmean KGEqtot KGEqbase KGEmean KGEqtot KGEqbase GWR (mm/yr)

Lyne and Hollick – KGEmean = 0.4×KGEqtot+ 0.6×KGEqbase

Best compromise 0.761 0.807 0.729 0.709 0.719 0.702 186
25 best compromises 0.758–0.761 0.781–0.820 0.718–0.745 0.697–0.716 0.706–0.739 0.673–0.721 181–194

Lyne and Hollick – KGEmean = 0.5×KGEqtot+ 0.5×KGEqbase

Best compromise 0.772 0.819 0.725 0.703 0.714 0.692 184
25 best compromises 0.770–0.772 0.805–0.825 0.718–0.737 0.698–0.706 0.704–0.715 0.682–0.704 181–188

Lyne and Hollick – KGEmean = 0.6×KGEqtot + 0.4×KGEqbase

Best compromise 0.782 0.825 0.719 0.702 0.713 0.694 181
25 best compromises 0.780–0.782 0.814–0.835 0.699–0.730 0.695–0.708 0.709–0.735 0.646–0.701 176–188

Eckhardt – KGEmean = 0.4× KGEqtot+ 0.6×KGEqbase

Best compromise 0.811 0.870 0.772 0.686 0.790 0.617 248
25 best compromises 0.810–0.811 0.867–0.872 0.769–0.772 0.680–0.686 0.786–0.790 0.608–0.618 248–252

Chapman- KGEmean = 0.4× KGEqtot+ 0.6×KGEqbase

Best compromise 0.801 0.870 0.756 0.695 0.762 0.650 208
25 best compromises 0.798–0.801 0.869–0.875 0.748–0.756 0.689–0.699 0.761–0.774 0.635–0.654 208–215

Optimized parameters

TM (◦C) CM (mm/◦/d) TTF (◦C) FT (d) tAPI (d) frunoff (–) swm (mm) finf (d−1)

Lyne and Hollick – KGEmean= 0.4×KGEqtot + 0.6×KGEqbase

Best compromise 0.5 4.0 −17.9 20.0 3.8 0.54 308 0.05
25 best compromises 0.2–0.8 3.5–4.4 −20.0 to −14.4 5.0–28.4 3.0–4.0 0.52–0.56 227–439 0.04–0.06

Lyne and Hollick – KGEmean = 0.5×KGEqtot + 0.5×KGEqbase

Best compromise 1.0 4.5 −19.0 28.4 3.0 0.54 300 0.05
25 best compromises 0.6–1.0 4.2–4.5 −19.0–14.8 13.7–28.4 3.0–3.3 0.51–0.56 252–366 0.05–0.06

Lyne and Hollick – KGEmean = 0.6×KGEqtot + 0.4×KGEqbase

Best compromise 1.0 4.5 −19.0 28.4 3.0 0.55 262 0.05
25 best compromises 0.5–1 3.5–4.5 −19.0 to −15.1 13.1–30.0 3.0–3.4 0.53–0.58 200–333 0.04–0.07

Eckhardt – KGEmean = 0.4×KGEqtot + 0.6×KGEqbase

Best compromise 0.0 3.0 −17.5 5.0 2.9 0.50 238 0.08
25 best compromises −0.2–0.2 3.0 −20.0 to −10.9 5.0–13.5 2.4–3.0 0.50 173–238 0.07–0.09

Chapman – KGEmean = 0.4×KGEqtot + 0.6×KGEqbase

Best compromise −0.3 3.0 −20.0 19.0 5.0 0.50 345 0.30
25 best compromises −0.4 to −0.2 3.0–3.2 −20.0 to −11.9 8.1–28.1 5.0 0.50–0.60 93–488 0.10–0.30
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Table A2. Annual and seasonal trends for vertical inflows (rain plus estimated snowmelt), observed temperatures, simulated runoff, simulated
actual evapotranspiration (AET), and simulated potential groundwater recharge (GWR) for the 1961–2017 period for the eight watersheds
(Mann–Kendall test; only p values> 0.05 are presented, otherwise a “–” is used; all trends are positive).

Vertical inflow Temperature

Year Win. Spr. Sum. Fall Year Win. Spr. Sum. Fall

W1∗ 0.041 0.006 – – – 0.000 0.001 0.029 0.002 0.001
W2∗ 0.003 0.001 – 0.020 – 0.000 0.001 0.019 0.001 0.002
W3 0.004 0.001 – 0.021 – 0.000 0.003 0.038 0.000 0.001
W4∗ 0.004 0.000 – 0.036 – 0.000 0.002 0.038 0.001 0.002
W5 – 0.000 – 0.006 – 0.000 0.003 – 0.002 0.002
W6 0.001 0.000 – 0.031 - 0.000 0.002 – 0.001 0.001
W7 – 0.001 – – – 0.000 0.001 0.024 0.000 0.000
W8 0.000 0.001 – 0.016 – 0.000 0.001 0.024 0.000 0.001

Simulated runoff Simulated AET Simulated pot. GWR

Year Win. Spr. Sum. Fall Year Win. Spr. Sum. Fall Year Win. Spr. Sum. Fall

W1∗ 0.031 0.023 – – – 0.020 0.000 0.001 – – – – – – –
W2∗ 0.012 0.001 – 0.009 0.017 0.006 0.001 0.000 – – – 0.050 – – –
W3 0.007 0.003 – 0.009 0.031 0.002 0.001 0.000 – – – 0.009 – – –
W4∗ 0.009 0.000 – 0.008 – 0.000 0.001 0.001 – – – 0.001 – – –
W5 – 0.003 0.013 0.001 – 0.012 0.002 0.002 – – – 0.018 – – –
W6 0.003 0.001 – 0.003 – 0.001 0.000 0.001 0.042 – – 0.002 – – –
W7 – 0.002 – 0.045 – 0.001 0.000 0.000 – – – 0.012 – – –
W8 0.000 0.001 – 0.001 0.014 0.000 0.000 0.001 0.028 – – 0.000 – – –

∗ Part of the watershed is located in the USA – the presented values are only for the Quebec part.
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