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Responses to Reviewer #1 1 

Point #1 2 
Review to Yang et ., 2021, Bias-correcting individual inputs prior to combined calibration leads to more 3 
skillful forecasts of reference crop evapotranspiration. HESSD.  4 

In this study, the authors investigated a critical issue in the forecasting of short-term reference crop 5 
evapotranspiration (ETo) based on NWP outputs. It is getting popular that weather forecasts from NWP 6 
models are used to predict water loss through evapotranspiration. Such information is highly valuable for 7 
the effective management of water resources, particularly in arid/semi-arid regions. This investigation 8 
develops a new methodology that effectively corrects errors in ETo forecasts, and adds extra skills to 9 
statistical calibration. I believe this new post-processing strategy could benefit future NWP-based ETo 10 
forecasting. To improve this work, the authors should pay special attention to the following key issues:  11 

Response: We appreciate the reviewer's insightful comments. We also believe the findings of 12 
this work could contribute to improving future NWP-based ETo forecasting. We address your 13 
constructive comments thoroughly and carefully and believe this work has been improved 14 
significantly. Please find more details in our point-by-point response.  15 

 16 

Point #2 17 
1, Presentation of the results could be improved. Currently, the authors use maps to show/compare 18 
results from different model experiments. These figures could demonstrate the spatial patterns of 19 
modeling results. However, it might be more useful if the authors could summarize regional results in a 20 
different way, such as using boxplots. I believe that will better show readers the overall statistical 21 
information across the whole country than simply plotting the results as maps.  22 

Response: Thank you for the valuable suggestions. We create boxplots for all the maps shown 23 
in the main text. Since we already have 10 figures in the main text and 18 figures in the 24 
supplementary material, we think it is better not to add too many new figures. We combine 25 
these new boxplots with maps for Figures 2-6 and 8-9, which have extra zoom for adding new 26 
subplots. For Figures 1 and 7, which already include many subplots, we present the 27 
corresponding boxplots in the Supplementary Material. Please find the boxplots as follows: 28 

 29 

 30 

 31 

 32 

 33 
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 34 

Figure 2 Boxplot summarizing improvements in r in raw ETo forecasts following bias-correction to 35 
input variables 36 

 37 

 38 

Figure 3 Boxplot summarizing bias in calibrated ETo forecasts 39 

 40 

 41 
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 42 

Figure 4 Boxplot summarizing differences in absolute bias between calibrated ETo forecasts from 43 
Calibration 2 with Calibration 1 44 

 45 

 46 

 47 

Figure 5 Boxplot summarizing correlation coefficient between calibrated ETo forecasts from 48 
Calibration 2 and AWAP ETo data 49 

 50 
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 51 

 52 

Figure 6 Boxplot summarizing differences in the correlation coefficient (calibrated forecasts vs. 53 
AWAP ETo) between Calibrations 2 and 1 54 

 55 

 56 

Figure 8 Boxplot summarizing differences in CRPS skill scores between the calibrated forecast 57 
from Calibration 2 with those from Calibration 1 58 
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 59 

Figure 9 Boxplot summarizing the alpha index in the calibrated ETo forecasts 60 

 61 

Figure S12. Boxplot of biases in raw ETo forecasts constructed raw (blue) and bias-corrected 62 
inputs (pink) 63 

 64 
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 65 

Figure S13. Boxplot of CRPS skill score in raw (pink) and calibrated ETo forecast (blue) from 66 
Calibration 2 67 

 68 

Point #3 69 
2, Implications for ETo forecasting at the monthly or seasonal scales should be further discussed. ETo 70 
forecasting based on monthly or seasonal climate forecasts from GCMs is also widely performed. This 71 
study develops the new strategy for short-term forecasts. The applicability of this method to ETo 72 
forecasting based on GCM forecasts should be briefly discussed, to benefit a broader range of readers.  73 

Response: We agree with the reviewer that ETo forecasting with longer forecast horizons 74 
(e.g., monthly and seasonal) based on GCM forecasts is increasingly performed, and it is 75 
necessary to evaluate whether the calibration strategy developed in this investigation is 76 
applicable to the GCM-based seasonal ETo forecasting. As we have shown in this manuscript, 77 
the reduction of error propagation from the input variables to ETo is the key reason why the 78 
new strategy has better performance using raw input variables. We expect this will be the 79 
case for GCM-based seasonal forecasting. However, testing this idea will be beyond the scope 80 
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of this current study. To highlight the necessity of adopting this strategy in seasonal ETo 81 
forecasting, we add the following paragraph to section 4.2 (Implications for forecasting of 82 
integrated variables and future work): 83 

"The applicability of the calibration strategy developed in this study to seasonal ETo forecasting should 84 
be further investigated. Seasonal ETo forecasting based on GCM climate forecast has been increasingly 85 
performed (Tian et al., 2014; Zhao et al., 2019b). In these investigations, raw ETo forecasts were also 86 
constructed directly with raw GCM climate forecasts. As a result, it is expected that these investigations 87 
have suffered from error propagation from input variables to seasonal ETo forecasts. Whether the 88 
calibration strategy (strategy ii) developed in this study will be applicable to seasonal ETo forecasting 89 
warrants further investigations." 90 

 91 

Point #4 92 
Specific comments:  93 

Line 20, rewrite this sentence. Not clear 94 

Response: we replace the original sentence: 95 

"This calibration strategy is expected to enhance future NWP-based ETo forecasting." 96 

with 97 

" We anticipate that future NWP-based ETo forecasting will benefit from adopting the calibration 98 
strategy developed in this study to produce more skillful ETo forecasts." 99 

 100 

Point #5 101 
Line 74 Calibrate->calibrate 102 

Response: We correct the typo accordingly.  103 

 104 

Point #6 105 
Line 80 compiled as the inputs….. 106 

Response: We improve the sentence of:  107 

"Weather forecasts from the ACCESS-G2 model are compiled to generate ETo forecasts." 108 

with: 109 

"Weather forecasts from the Australian Community Climate and Earth System Simulator G2 version 110 
(ACCESS-G2) model are extracted as inputs for the calculation of raw ETo forecasts." 111 

 112 
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Point #7 113 
Line 95 10m -> 10 m. 114 

Response: We add a space between the number and the unit. We also check the entire 115 
manuscript to correct the format of units.  116 

 117 

Point #8 118 
Line 107-108, need to clarify what the anomaly and climatological mean are referring to  119 

Response: To clarify how the anomaly and climatological mean are derived, we replace the 120 
sentence:  121 

"Our recent investigation suggests that ETo forecast calibration based on anomaly and climatological 122 
mean produces more skillful calibrated forecasts than calibrating ETo forecasts directly." 123 

with: 124 

" Our recent investigation suggests calibrating ETo anomalies, which are calculated as departures from 125 
the climatological mean,  could produce more skillful calibrated forecasts than calibrating ETo forecasts 126 
directly." 127 

 128 

Point #9 129 
Line 165 consider rewriting this sentence. Does not read well.  130 

Response: We replace the original sentence of  131 

"Once we obtain all the parameters for the BN distribution (equation 4), a conditional distribution is 132 
established for 𝑜𝑜(𝑡𝑡) when a raw forecast (𝑓𝑓(𝑡𝑡)) is provided." 133 

with: 134 

" With the optimized parameters (means, standard deviations, and correlations) for the BN distribution 135 
(equation 4), a conditional distribution for o(t) for a given raw forecast (f(t)) is derived." 136 

 137 

Point #10 138 
Line 172, what is specific month 139 

Response: we replace "specific" with "unselected" to make the wording more specific. 140 

 141 

Point #11 142 
Figures in Results: shouldn't the figures be centralized? 143 
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Response: The original format following a template from HESS. After we add boxplots to 144 
these maps, the empty space for each figure is significantly reduced. We keep them aligned 145 
to the left to be consistent with the provided template.    146 

 147 

Point #12 148 
Line 360, not calibrate directly, should be without correcting forecasts of the inputs 149 

Response: Thank you for the suggestion. The key message we want to present here is that 150 
statistical models may not be able to correct all errors in integrated variables (such as ETo). 151 
However, when the input variables are corrected first, error propagation from inputs to 152 
integrated variables, particularly for the errors which could not be corrected by calibration 153 
models, will be reduced. To make it clear, we improved the original sentence of:  154 

"Our investigation suggests that improving the input variables may help correct errors that could not be 155 
fixed when calibrating the integrated variables directly." 156 

with: 157 

"Our investigation suggests that improving the input variables could effectively reduce error propagation 158 
from inputs to integrated variables. This extra step is proven to be particularly useful in reducing errors in 159 
the integrated variables that could not be corrected through calibration." 160 

 161 

Point #13 162 
Line 365, consider rewriting this sentence  163 

Response: Thank you for the suggestion. We replace the original sentence: 164 

"As a result, using a more sophisticated calibration method to correct errors in input variables, is expected 165 
to further improve forecasts of these input variables, resulting in more significant improvements in the 166 
final calibrated ETo forecasts." 167 

with: 168 

" If a more sophisticated calibration method is employed to the input variables, error propagation from 169 
input variables to ETo forecasts will likely be further reduced. As a result, we anticipate that the 170 
calibrated ETo forecast will gain further improvements in forecast skills." 171 

 172 

Point #14 173 
Line 377-378, two' calibration models' consider to rewrite 174 

Response: We improve the original sentence: 175 
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"Additional investigations using other calibration models will help clarify whether the improvements will 176 
hold for other calibration models." 177 

With 178 

" Additional evaluations will be needed to verify whether forecast skills will be improved using strategy ii 179 
but based on a different calibration model. " 180 

 181 

Point #15 182 
Line 385, in the calibrated forecasts 183 

Response: We add the missing 'in' to this sentence.  184 

 185 

Point #16 186 
Line 386, consider making it shorter and clearer 187 

Response: We improve the following sentence: 188 

"Further investigation indicates that the contribution of improving input variables to the ETo forecasting 189 
tends to be independent of the calibration method applied to raw ETo forecasts." 190 

With 191 

" Further investigation indicates that the improvements tend to be independent of the calibration method 192 
applied to ETo forecasts." 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 
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Responses to Reviewer #2 206 

Point #1 207 
Comments on â��Bias-correcting individual inputs prior to combined calibration leads to more skillful 208 
forecasts of reference crop evapotranspirationâ�� by Yang et al. This study evaluated two calibration 209 
strategies for simulating reference crop evapotranspiration. The two strategies are (1) calibration 210 
directly applied to raw ETo forecast constructed with raw forecast of input variables; (2) bias-correcting 211 
input variables. The bias-correcting algorithm has been proved to be more feasible. Although this study is 212 
of significance, improvements and revision can make the study stronger and more compelling.  213 

Response: We appreciate the reviewer's insightful suggestions and comments on the 214 
manuscript. We address comments from the reviewer carefully and improve the manuscript 215 
accordingly. Please see details in our point-by-point response.  216 

 217 

Point #2 218 
Core of my concerns is the results presentation and discussion, many sections are superficial; the results 219 
are simply described, more insightful explanation and discussion are needed. See below for my 220 
suggestion. A moderate revision can easily address these comments. So I suggest a moderate revision.  221 

Response: We appreciate the reviewer's constructive comments. We improve the analysis 222 
and presentations by (1) creating boxplots to summarize results plotted as maps to better 223 
demonstrate results quantitatively, (2) performing statistical analyses  (t-test) when 224 
comparing results from different Calibrations, (3) providing more statistical information in the 225 
Results section, and (4) Comparing findings of this work with published investigations. We 226 
further explain these improvements in detail as follows: 227 

(1)  Adding boxplots to Results 228 

We create boxplots for results shown as maps (Figures 1 to 9 in the main text). We combine 229 
these boxplots with maps for Figures 2-6, 8-9, which have extra zoom for adding new 230 
subplots. For Figures 1 and 7, which already include many subplots, we present the 231 
corresponding boxplots in the Supplementary Material. We also update the main text 232 
accordingly. Please find the boxplots as follows: 233 

 234 

 235 

 236 

 237 
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 238 

Figure 2 Boxplot summarizing improvements in r in raw ETo forecasts following bias-correction to 239 
input variables 240 

 241 

 242 

Figure 3 Boxplot summarizing bias in calibrated ETo forecasts 243 

 244 

 245 
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 246 

Figure 4 Boxplot summarizing differences in absolute bias between calibrated ETo forecasts from 247 
Calibration 2 with Calibration 1 248 

 249 

 250 

 251 

Figure 5 Boxplot summarizing correlation coefficient between calibrated ETo forecasts from 252 
Calibration 2 and AWAP ETo data 253 

 254 
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 255 

 256 

Figure 6 Boxplot summarizing differences in the correlation coefficient (calibrated forecasts vs. 257 
AWAP ETo) between Calibrations 2 and 1 258 

 259 

 260 

Figure 8 Boxplot summarizing differences in CRPS skill scores between the calibrated forecast 261 
from Calibration 2 with those from Calibration 1 262 
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 263 

Figure 9 Boxplot summarizing the alpha index in the calibrated ETo forecasts 264 

 265 

Figure S12. Boxplot of biases in raw ETo forecasts constructed raw (blue) and bias-corrected 266 
inputs (pink) 267 

 268 
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 269 

Figure S13. Boxplot of CRPS skill score in raw (pink) and calibrated ETo forecast (blue) from 270 
Calibration 2 271 

 272 

（2）Conducting t-tests to compare results from different Calibrations.  273 

We conduct t-tests (Table S1) to evaluate raw forecasts of the five input variables (Figures S2 274 
to S6). T-tests were also conducted in the evaluation of bias, correlation coefficient, and CRPS 275 
skill score (Figures 1-3, 6-9) of forecasts produced in Calibrations 1 and 2(Table S2).  276 

In the calculation of t statistics, we use the Spatial Degrees of Freedom (SDOF), rather than 277 
using the total grid cells in the study area, to account for the spatial correlation in the t-test. 278 
The SDOF is substantially smaller than total grid cells (Toth, 1995).  Wang and Shen (1999) 279 
investigated SDOF of GCM outputs and reported a range of 90-120, out of 738 grid cells for 280 
the southern hemisphere. In this study, we use 50 as the SDOF for our t-tests. Considering the 281 
large amount of total grid cells (281,622) in this study, we believe that 50 is a conservative 282 
estimate of SDOF for this investigation. We calculated the t-statistics and evaluate whether 283 
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they are statistically significant using the SDOF of 50. Results of the t-tests (Tables S1 and S2) 284 
are added to the supplementary material.  285 

 286 

Reference： 287 

Toth, Z.: Degrees of freedom in Northern Hemisphere circulation data, Tellus, Ser. A, 47 A(4), 288 
457–472, doi:10.3402/tellusa.v47i4.11531, 1995. 289 

Wang, X. and Shen, S. S.: Estimation of spatial degrees of freedom of a climate field, J. Clim., 290 
12(5 I), 1280–1291, doi:10.1175/1520-0442(1999)012<1280:EOSDOF>2.0.CO;2, 1999. 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 
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Table S1 Results of t-tests (t-statistic) for raw forecasts of input variables   302 

     Tests 
 
 
Lead 
times 

Test if bias in 
raw Tmax 
forecasts is 
different from 
zero (Figure 
S2) 

Test if bias in 
raw Tmin 
forecasts is 
different from 
zero (Figure 
S3) 

Test if bias in 
raw vapor 
pressure 
forecasts is 
different from 
zero (Figure S4) 

Test if bias in 
raw solar 
radiation 
forecasts is 
different from 
zero (Figure S5)  

Test if bias in 
raw wind 
speed forecasts 
is different 
from zero 
(Figure S6) 

Day 1 -8.96** 1.66 -3.18** 11.83** 16.04** 
Day 2 -8.16** 2.65** -3.43** 11.39** 16.50** 
Day 3 -8.19** 2.68** -3.77** 11.81** 16.57** 
Day 4 -8.12** 2.56** -4.05** 12.17** 16.56** 
Day 5 -7.87** 2.41** -4.09** 12.45** 16.45** 
Day 6 -7.70** 2.27** -4.21** 11.88** 16.45** 
Day 7 -7.73** 2.22** -4.33** 10.81** 16.29** 
Day 8 -7.70** 2.17** -4.30** 11.41** 16.56** 
Day 9 -7.44** 2.20** -4.18** 11.95** 16.82** 

The Spatial Degrees of Freedom (SDOF) is 50 in the tests; ** indicates statistically significant differences at the 95% 303 
confidence interval. 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 
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 314 

Table S2 Results of t-tests (t-statistic) for performance evaluation  315 

          
Tests 
 
 
 
 
Lead 
times 

Comparison 
of bias in raw 
ETo 
forecasts 
constructed 
with vs. 
without bias 
correction 
(Figure 1) 

Test if r in raw 
ETo forecasts 
constructed 
with raw and 
bias-corrected 
input variables 
are different 
(Figure 2) 

Test if bias 
in 
calibrated 
ETo 
forecasts 
from 
Calibration 
2 (Figure 
3) is 
different 
from zero 

Test 
differences in 
absolute bias 
between 
calibrated ETo 
forecasts from 
Calibrations 2 
and 1 (Figure 
4)  

Test 
difference in r 
between 
observations 
and calibrated 
ETo forecasts 
from 
Calibrations 2 
and 1 (Figure 
6)  

Comparison 
of CRPS 
skill score 
between 
raw and 
calibrated 
ETo 
forecasts 
(Figure 7) 

Test 
difference in 
CRPS skill 
score of 
calibrated 
ETo forecasts 
from 
Calibrations 2 
and 1 (Figure 
8) 

Test 
difference 
in α-index 
between 
Calibratio
ns 2 and 1 
(Figure 
S14) 

Test if 
difference 
in CRPS 
skill scores 
between 
Calibrations 
3 and 4 
(Figure 
S17) 

Day 1 -9.76** 7.26** 1.80 -4.08** 5.73** 27.59** 11.53** -0.54 11.81** 
Day 2 -9.86** 7.13** 1.91 -3.93** 4.93** 29.03** 10.86** -1.47 10.26** 
Day 3 -9.86** 7.01** 2.07** -3.68** 4.43** 31.14** 9.77** -1.81 9.16** 
Day 4 -9.81** 7.04** 2.27** -3.54** 4.01** 33.77** 8.58** -1.17 8.33** 
Day 5 -9.71** 7.09** 2.40** -3.36** 3.75** 38.11** 7.16** -2.09** 7.25** 
Day 6 -9.54** 7.33** 2.60** -3.37** 3.17** 42.59** 6.44** -1.28 6.66** 
Day 7 -9.34** 7.40** 2.76** -3.26** 2.69** 44.38** 6.15** -1.99 6.25** 
Day 8 -9.04** 7.54** 2.98** -3.13** 2.32** 45.57** 5.85** -1.57 5.67** 
Day 9 -9.21** 7.50** 3.13** -2.91** 1.85 51.91** 5.05** -1.70 4.95** 

The Spatial Degrees of Freedom (SDOF) is 50 in the tests; ** indicates statistically significant differences at the 95% 316 
confidence interval. 317 

 318 

 319 
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(3) Improving the Results section 320 

We add more specific information in describing the key findings of this study and introduce 321 
the results of the statistical analyses (Tables S1 and S2). Since we modified many sentences, 322 
we decide not to list them here. Please see details in the revised manuscript.  323 

(4) Improving the Discussion section 324 

We further compare the findings of this investigation with existing studies in discussion:  325 

“This investigation further highlights the importance of statistical calibration in NWP-based ETo 326 
forecasting (Medina and Tian, 2020). According to an investigation across 40 sites in Australia, raw ETo 327 
forecasts constructed with NWP outputs reasonably captured the magnitude and variability of ETo, but 328 
forecast skills better than climatology were only limited to the first 6 lead times (Perera et al., 2014). Our 329 
investigation suggests that statistical calibration could substantially improve forecast skills and 330 
successfully extend the skillful forecasts to lead time 9 across Australia. Findings of this investigation 331 
agree well with the site-scale short-term ETo forecasting based on GCM outputs (Zhao et al., 2019a) in 332 
the improvements of forecast skills through statistical calibration. Calibrated forecasts from Calibration 2 333 
demonstrate similar skills as Zhao et al. (2019a) across three Australian sites. Thanks to the capability of 334 
SCC in calibrating short-archived forecasts (Wang et al., 2019), we achieve the improvements based on 335 
much shorter archived raw forecasts (3-year vs. 23-year) than Zhao et al. (2019a). Calibrated forecasts 336 
from Calibration 2 also demonstrate low biases (0.32-0.95%) comparable with calibrated ETo forecasts 337 
(0.49-0.63%) based on the Bayesian Model Averaging (BMA) model and weather forecasts from three 338 
NWP models in the U.S. during 2014-2016 (Medina and Tian, 2020).” 339 

 340 

Point #3 341 
Lines 11, fully implemented.  342 

Response: we change it to 'fully implemented '. 343 

 344 

Point #4 345 
Line 27, â��divergentâ�� emphasizes completely different assumption, you can just use replace it 346 
different to ensure a general term. 347 

Response: We replace the word ‘divergent’ with 'different'. 348 

 349 

Point #5 350 
 Line 38, physical processes of the atmosphere, it is unclear, atmospheric circulation or atmospheric wind 351 
formation, or physical processes in the atmosphere  352 

Response: Thank you for the suggestion. We change the sentence as follows:  353 
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" ETo is affected jointly by temperature, vapor pressure, solar radiation, and wind speed (Bachour et al., 354 
2016; Luo et al., 2014). Prediction models using these weather variables as inputs allow for 355 
representations of atmospheric dynamics and often produce reasonable ETo forecasts (Torres et al., 356 
2011)." 357 

 358 

Point #6 359 
Section 3.1, 3.2, the authors described the results in the figures. However, most of those text are vague, 360 
please provide more specific (quantitative) information to support your statement. When you compare 361 
different results or method, it is better to report some statistic results (p value, r2, etc). 362 

Response: We appreciate the constructive comments. We conduct statistical analysis to 363 
quantify the difference between different model runs, and update the Results section 364 
accordingly. Details of the t-tests could be found in our response to your comments point #2. 365 

 366 

Point #7 367 
for example, line line 223-225, you report the overprediction in Tmax, and underpredict in Tmin in 368 
different regions. If it is underprediction, what is the range of that underprediction, same for 369 
overprediction, are these different statistically significant? There are many similar issues in other 370 
sections.  371 

Response: We appreciate the reviewer's valuable suggestions. We agree with the reviewer 372 
that more statistical information is needed. We conduct statistical analysis to quantify errors 373 
in raw forecasts (Table S1), and update contents in Results accordingly.  Statistical analyses 374 
could be found in our response to your comment #2. Here is the updated description of errors 375 
in raw forecasts of input variables:  376 

“Raw forecasts of the five input variables demonstrate significant inconsistencies with the 377 
corresponding AWAP data (Figures S2-S6). In most parts of Australia, raw daily maximum 378 
temperature (Tmax) forecasts are lower than AWAP data by 1-2 °C. Overpredictions in Tmax 379 
are only found in coastal areas of northwestern Australia. The daily minimum temperature 380 
(Tmin) is underpredicted by more than 1.5 °C in western and central parts of Australia by the 381 
raw forecasts, but is overpredicted by ca. 1 °C in eastern and southern Australia. Vapor pressure 382 
is underpredicted in western and central regions by ca.14%, but is overpredicted by ca. 6% in 383 
coastal areas of southeastern Australia by the raw forecasts. Raw solar radiation forecasts are 384 
about 5% higher than AWAP data across Australia. Forecasted wind speed is higher than the 385 
reference data by more than 1 m s-1 (or by ca. 63%) in most parts of Australia. For each input 386 
variable, spatial patterns of biases in raw forecasts are consistent across the 9 lead times, 387 
demonstrating systematic errors in the raw NWP forecasts. According to our statistical test, 388 
overpredictions or underpredictions in raw forecasts of the input variables are statistically 389 
significant (P<0.05) for most lead times (Table S1).” 390 
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Point #8 391 
In the discussion section, I would be willing to see a comparison with other studies with different 392 
algorithms for the ETo simulation. Some quantitative comparison to elucidate the better performance of 393 
the new bias-correction algorithm needs to be done. I believe it will prove the reliability of the new 394 
algorithm. 395 

Response: We appreciate the constructive comments. This is the first continental-scale ETo 396 
forecasting in Australia. Previous NWP/GCM-based ETo forecasting in Australia is conducted 397 
at the site scale. As a result, in the original manuscript, our evaluation was primarily focused 398 
on the comparison against observations. In this area of weather/climate forecasting, different 399 
calibration models, based on different statistical theories have been developed and 400 
implemented. Previous comparisons suggest that the performance of these models varied 401 
with study areas, NWP models, and choice of evaluation metrics (Wilks, 2018), and there is 402 
no conclusion regarding which group of post-processing models has the best performance. 403 

More importantly, rather than developing a new calibration model, this investigation is to 404 
evaluate the necessity of including an extra step before ETo forecasts are calibrated. As we 405 
introduced in the main text, the objective of our investigations is to address a challenge 406 
commonly faced by NWP-based ETo forecasting. We expect the calibration strategy 407 
developed in this study will benefit ETo forecast calibrations broadly, no matter which 408 
statistical model is employed in ETo forecast calibration.  409 

However, we agree with the reviewer that comparison of model performance with other 410 
models will help readers better understand the robustness of our calibration. We review 411 
previous studies and add the following content to the Discussion section (4.1): 412 

“According to an investigation across 40 sites in Australia, raw ETo forecasts constructed with NWP 413 
outputs reasonably captured the magnitude and variability of ETo, but forecast skills better than 414 
climatology were only limited to the first 6 lead times (Perera et al., 2014). Our investigation suggests 415 
that statistical calibration could substantially improve forecast skills and successfully extend the skillful 416 
forecasts to lead time 9 across Australia. Findings of this investigation agree well with the site-scale 417 
short-term ETo forecasting based on GCM outputs (Zhao et al., 2019a) in the improvements of forecast 418 
skills through statistical calibration. Calibrated forecasts from Calibration 2 demonstrate similar skills as 419 
Zhao et al. (2019a) across three Australian sites. Thanks to the capability of SCC in calibrating short-420 
archived forecasts (Wang et al., 2019), we achieve the improvements based on much shorter archived raw 421 
forecasts (3-year vs. 23-year) than Zhao et al. (2019a). Calibrated forecasts from Calibration 2 also 422 
demonstrate low biases (0.32-0.95%) comparable with calibrated ETo forecasts (0.49-0.63%) based on 423 
the Bayesian Model Averaging (BMA) model and weather forecasts from three NWP models in the U.S. 424 
during 2014-2016 (Medina and Tian, 2020)." 425 

In addition, we also highlight the importance of testing the proposed calibration strategy 426 
(strategy ii) based on other calibration models in the future in section 4.2:  427 

“Third, further investigations based on other calibration models are needed to validate findings of this 428 
investigation. Our analyses based on two different methods (based on ETo anomalies vs. based on 429 
original ETo) demonstrate similar improvements in calibrated ETo forecasts with the adoption of bias-430 
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correction to input variables. Additional evaluations will be needed to verify whether forecast skills will 431 
be improved using strategy ii but based on a different calibration model.” 432 

 433 

Reference: 434 

Wilks, D.S., 2018. Chapter 3. Univariate Ensemble Forecasting, in: Vannitsem, S., Wilks, D.S., Messner, 435 
J.W. (Eds.), Statistical Postprocessing of Ensemble Forecasts. pp. 49–89. 436 
https://doi.org/https://doi.org/10.1016/C2016-0-03244-8 437 

 438 

Point #9 439 
Line 388, feasible or reliable ETo forecasting. 440 

Response: This paragraph has been rewritten. Please see the revised contents in our response 441 
to your comment #10. 442 

 443 

Point #10 444 
 Line 390, short-term ETo forecasting provides highly valuable information for real-time decision making 445 
on water resource management and planning farming practices. This study proved the bias-correction 446 
approach is a feasible method for a more robust calibration of the NWP-based ETo forecasting. 447 

Response: We appreciate the reviewer's valuable suggestions. We remove redundant 448 
sentences and combine the last two paragraphs in the Conclusion section: 449 

" This investigation clearly suggests the necessity of improving input variables as part of ETo forecast 450 
calibration. With this extra step, the bias, correlation coefficient, and skills of the calibrated ETo forecasts 451 
are all improved. Further investigation indicates that the improvements tend to be independent of the 452 
calibration method applied to ETo forecasts. Forecasting the highly variable ETo is often challenging. 453 
This investigation addresses a common challenge in NWP-based ETo forecasting and develops an 454 
effective calibration strategy for adding extra skills to ETo forecasts. We anticipate that future NWP-455 
based ETo forecasting could benefit from adopting this strategy to produce more skillful calibrated ETo 456 
forecasts. This strategy is also expected to be applicable to enhancing the forecasting of other integrated 457 
variables that are calculated using multiple NWP/GCM variables as inputs." 458 

 459 

 460 

 461 

 462 

 463 
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Responses to Reviewer #3 464 

Point #1 465 
Author(s): Qichun Yang et al. 466 

MS No.: hess-2021-69 467 

 This paper focuses on the comparison of two calibration strategies to provide short-term reference crop 468 
evapotranspiration (ETo). ETo forecasting is still a relatively new area of research, in Australia and 469 
elsewhere, and has received more attention in the past few years. Skilful ETo forecasts in Australia would 470 
help support efficient water use and water management. Two strategies to calibrate ETo forecasts have 471 
emerged: i) the calibration of raw ETo forecasts and ii) bias-correcting input variables first before 472 
calibrating ETo forecasts. Little work to date compares the two approaches, it is unclear which method 473 
might be more advantageous or skilful. This paper therefore addresses a topical subject with a large 474 
audience interest. 475 

I have some reservations regarding some methodological choices and justifications (purpose and 476 
inclusion of experiment 3 and 4), as well as a lack of interpretations of the results overall. I recommend 477 
revision to strengthen this paper. 478 

 Response: Thank you for the valuable suggestions and careful review. We revise this work 479 
carefully based on your constructive suggestions. 480 

 481 

Point #2 482 
The authors re-grid the weather forecast variables of ACCESS-G2 to match the timeframe and resolution 483 
of the gridded data AWAP. They perform four experiments: experiments 1) and 2) are based on the ETo 484 
anomaly and climatological mean, whereas experiment 3 and 4) use the ETo values directly. 485 
Furthermore, experiment 1) and 3) use raw inputs to calculate and calibrate ETo forecasts whereas 486 
experiments 2) and 4) first bias-correct inputs before ETo calibration. The SCC calibration method is used 487 
for ETo forecast while a quantile mapping method is used to bias-correct input forecasts. The authors 488 
evaluate the forecasts using three metrics for the theoretical assessment of bias, reliability and accuracy. 489 
Overall results suggest that the second strategy (bias-correction of inputs before ETo calibration) 490 
provides more skilful forecasts. 491 

Response: We appreciate the reviewer's thorough review. The work has been substantially 492 
improved through addressing the valuable comments.  493 

 494 

 495 

 496 
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Point #3 497 
Major comments: 498 

Methodology: 499 

P4 section 2.3: Why not compare the calibration method used SCC to other methods tested in the 500 
literature which would enable to place this work in context to other studies on ETo forecasting? 501 

Response: We appreciate the constructive comments. We understand that comparing the 502 
performance of SCC with existing methods will help readers better understand the strengths 503 
of our methodology in ETo forecasting. We did not compare the calibration based on SCC 504 
model directly with other models in the original submission for a couple of reasons: 505 

First, the primary objective of this investigation is to address a common challenge faced by 506 
NWP-based ETo forecasting, rather than to develop a new calibration model. As a result, we 507 
primarily focus on evaluating the necessity of correcting forecasts of input variables prior to 508 
calibrating ETo forecasts. As we introduced in the main text, the developed calibration 509 
strategy is expected to benefit ETo forecast calibrations broadly, rather than improving an 510 
individual calibration model. As suggested by the model experiments (Calibrations 1-4), the 511 
developed strategy could be applicable to other calibration models.  512 

Second, we feel it is not necessary to compare the performance of SCC against calibration 513 
models, which are widely used but less sophisticated models. Simple calibration models, such 514 
as quantile mapping (QM), have been widely used in calibrating hydroclimate forecasts. 515 
These models are often readily available, or could be easily coded and implemented. 516 
However, the limitations of these models in forecast calibration have been reported (Zhao et 517 
al., 2017). When we started this investigation, we used quantile mapping to calibrate ETo 518 
forecasts (raw ETo forecasts constructed with raw forecasts of input variables). As 519 
demonstrated in the following figure, the CRPS skill score of quantile mapped ETo forecasts is 520 
not only lower than the SCC-calibrated forecasts for each corresponding lead time (Figure 7), 521 
but also becomes negative (worse than climatological forecasts) in parts of Australia starting 522 
from lead time 4. As a result, calibration of ETo forecasts with quantile mapping further 523 
confirms the limitations of this model. Therefore, using such models as a reference to 524 
evaluate the performance of SCC is not necessary since their limitations have been reported. 525 
As a result, we decide not to include a comparison with quantile mapping in this manuscript. 526 

 527 
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 528 

CRPS skill score of calibrated ETo forecasts using Quantile Mapping  529 

 530 

Third, we have limited access to sophisticated calibration models. There is no global post-531 
processing software library archiving these models. We found it was hard to access the 532 
source code of these models and to directly compare SCC with them. In addition, previous 533 
comparisons suggest that the performance of these models varied with study areas, NWP 534 
models, and choice of evaluation metrics (Wilks, 2018), and there is no conclusion regarding 535 
which group of post-processing models has the best performance. Our indirect comparison 536 
with other models confirms this conclusion. Details will be presented in the following 537 
paragraphs.  538 
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Fourth, the short-achieved NWP forecasts (3-year) used in this study represent a challenge for 539 
conducting the calibration using other models. Many calibration models, particularly those 540 
based on models of the joint probability of forecasts and observations (Krzysztofowicz and 541 
Herr, 2001; Wang and Robertson, 2011), require long hindcasts (20-30 years) to establish a 542 
joint distribution to link observations and forecasts. Applying such models to short-archived 543 
forecasts such as those used in this study will substantially undermine the statistical 544 
assumption of these models. In contrast, the SCC model has been developed specifically to 545 
address the challenge associated with short-archived forecasts. The advantages of SCC in 546 
calibrating short-archived forecasts have been explained in our recent publications (Wang et 547 
al., 2019; Yang et al., 2021).   548 

As a result, we decide not to compare SCC directly with other models. However, we totally 549 
agree with the reviewer that comparison of model performance with other models will help 550 
readers better understand the performance of our calibration. As a result, we extract our 551 
results at three Australia sites where ETo forecasts were also calibrated based on the 552 
Bayesian Joint Probability (BJP) model (Zhao et al., 2019), and compare the results of the two 553 
investigations. In addition, we also compare our results with site-scale investigations in other 554 
regions of Australia. We also compare results of this study with investigations in the U.S. We 555 
add the following paragraph to discuss findings of our work relative to existing investigations 556 
to the Discussion section (4.1): 557 

“This investigation further highlights the importance of statistical calibration in NWP-based ETo 558 
forecasting (Medina and Tian, 2020). According to an investigation across 40 sites in Australia, 559 
raw ETo forecasts constructed with NWP outputs reasonably captured the magnitude and 560 
variability of ETo, but forecast skills better than climatology were only limited to the first 6 lead 561 
times (Perera et al., 2014). Our investigation suggests that statistical calibration could 562 
substantially improve forecast skills and successfully extend the skillful forecasts to lead time 9 563 
across Australia. Findings of this investigation agree well with the site-scale short-term ETo 564 
forecasting based on GCM outputs (Zhao et al., 2019a) in the improvements of forecast skills 565 
through statistical calibration. Calibrated forecasts from Calibration 2 demonstrate similar skills 566 
as Zhao et al. (2019a) across three Australian sites. Thanks to the capability of SCC in 567 
calibrating short-archived forecasts (Wang et al., 2019), we achieve the improvements based on 568 
much shorter archived raw forecasts (3-year vs. 23-year) than Zhao et al. (2019a). Calibrated 569 
forecasts from Calibration 2 also demonstrate low biases (0.32-0.95%) comparable with 570 
calibrated ETo forecasts (0.49-0.63%) based on the Bayesian Model Averaging (BMA) model 571 
and weather forecasts from three NWP models in the U.S. during 2014-2016 (Medina and Tian, 572 
2020)." 573 

In addition, we also highlight the importance of further testing the proposed calibration 574 
strategy (strategy ii) based on other calibration models. We add the following contents to 575 
section 4.2: 576 
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“Third, further investigations based on other calibration models are needed to validate findings 577 
of this investigation. Our analyses based on two different methods (based on ETo anomalies vs. 578 
based on original ETo) demonstrate similar improvements in calibrated ETo forecasts with the 579 
adoption of bias-correction to input variables. Additional evaluations will be needed to verify 580 
whether forecast skills will be improved using strategy ii but based on a different calibration 581 
model.” 582 

Reference: 583 

Medina, H. and Tian, D.: Comparison of probabilistic post-processing approaches for improving 584 
numerical weather prediction-based daily and weekly reference evapotranspiration forecasts, 585 
Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020. 586 

Perera, K. C., Western, A. W., Nawarathna, B. and George, B.: Forecasting daily reference 587 
evapotranspiration for Australia using numerical weather prediction outputs, Agric. For. Meteorol., 588 
194, 50–63, doi:10.1016/j.agrformet.2014.03.014, 2014. 589 

Wilks, D.S., 2018. Chapter 3. Univariate Ensemble Forecasting, in: Vannitsem, S., Wilks, D.S., Messner, 590 
J.W. (Eds.), Statistical Postprocessing of Ensemble Forecasts. pp. 49–89. 591 
https://doi.org/https://doi.org/10.1016/C2016-0-03244-8 592 

Krzysztofowicz, R., Herr, H.D., 2001. Hydrologic uncertainty processor for probabilistic river stage 593 
forecasting: precipitation-dependent model. J. Hydrol. 249, 46–68. 594 

Wang, Q.J., Robertson, D.E., 2011. Multisite probabilistic forecasting of seasonal flows for streams with 595 
zero value occurrences. Water Resour. Res. 47, 1–19. https://doi.org/10.1029/2010WR009333 596 

Wang, Q.J., Zhao, T., Yang, Q., Robertson, D., 2019. A Seasonally Coherent Calibration ( SCC ) Model for 597 
Postprocessing Numerical Weather Predictions. Mon. Weather Rev. 147, 3633–3647. 598 
https://doi.org/10.1175/MWR-D-19-0108.1 599 

Yang, Q., Wang, Q.J., Hakala, K., 2021. Achieving effective calibration of precipitatioAn forecasts over a 600 
continental scale. J. Hydrol. Reg. Stud. 35, 100818. https://doi.org/10.1016/j.ejrh.2021.100818 601 

Zhao, T., Wang, Q.J., Schepen, A., 2019. A Bayesian modelling approach to forecasting short-term 602 
reference crop evapotranspiration from GCM outputs. Agric. For. Meteorol. 269–270, 88–101. 603 
https://doi.org/10.1016/j.agrformet.2019.02.003 604 

 605 

Point #4 606 
Presentation of summary statistics. Why not use boxplots to present overall statistics and across lead 607 
times (for example next to figure 4 and so on)? Reliability diagrams for particular ETo thresholds would 608 
be helpful to communicate when the forecasts are reliable. 609 

Response: Thank you for the constructive suggestions.  We created boxplots for results 610 
shown as maps (Figures 1 to 9 in the main text). For Figures 1 and 7, which already include 611 
many subplots, we present the corresponding boxplots in the Supplementary Material. For 612 
other map figures (Figures 2-6, and 8-9), which have extra zoom for adding new subplots, we 613 

https://doi.org/https:/doi.org/10.1016/C2016-0-03244-8
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combine boxplots with the maps. We also update the main text accordingly. Please find the 614 
boxplots as follows: 615 

 616 

Figure 2 Boxplot summarizing improvements in r in raw ETo forecasts following bias-correction to 617 
input variables 618 

 619 

Figure 3 Boxplot summarizing bias in calibrated ETo forecasts 620 

 621 

 622 
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 623 

Figure 4 Boxplot summarizing differences in absolute bias between calibrated ETo forecasts from 624 
Calibration 2 with Calibration 1 625 

 626 

 627 

Figure 5 Boxplot summarizing correlation coefficient between calibrated ETo forecasts from 628 
Calibration 2 and AWAP ETo data 629 

 630 

 631 
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 632 

Figure 6 Boxplot summarizing differences in the correlation coefficient (calibrated forecasts vs. 633 
AWAP ETo) between Calibrations 2 and 1 634 

 635 

 636 

Figure 8 Boxplot summarizing differences in CRPS skill scores between the calibrated forecast 637 
from Calibration 2 with those from Calibration 1 638 
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 639 

Figure 9 Boxplot summarizing the alpha index in the calibrated ETo forecasts 640 

 641 

Figure S12. Boxplot of biases in raw ETo forecasts constructed raw (blue) and bias-corrected 642 
inputs (pink) 643 

 644 
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 645 

Figure S13. Boxplot of CRPS skill score in raw (pink) and calibrated ETo forecast (blue) from 646 
Calibration 2 647 

 We also create reliability diagrams to summarize to evaluate the calibrated ensemble 648 
forecasts from Calibration 2. The three thresholds used to generate the reliability diagram are 649 
3 mm/day, 6mm/day, and 9 mm/day: 650 

 651 

Figure 10: Reliability diagrams of calibrated ETo forecasts during 4/2016-3/2019 with thresholds of  652 
3, 6, and 9 mm day-1. 653 
 654 
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We update the Method section to introduce how the reliability diagram is created and how to 655 
understand the diagram:  656 

“We further evaluate the reliability of calibrated ETo forecasts from calibration 2 using the 657 
reliability diagram (Hartmann et al., 2002), which assesses how well the predicted probabilities 658 
of forecasts match observed frequencies. We convert the calibrated ensemble ETo forecasts to 659 
forecast probabilities exceeding three thresholds, including 3, 6, and 9 mm day-1. We pool 660 
forecasts of different grid cells, days, and lead times together in the calculation of forecast 661 
probability. In the reliability diagram, perfectly reliable forecasts would demonstrate a curve 662 
along the diagonal. A plotted curve above the diagonal indicates underestimations and vice 663 
versa.” 664 

 665 

We add the following sentence to section 3.5 (Reliability of calibrated ETo forecasts) to 666 
introduce the reliability diagram.  667 

“The reliability diagram further confirms the consistency between forecast probabilities and 668 
observed frequencies (Figure 10). The plotted curves based on three thresholds (3, 6, and 9 mm 669 
day-1) are mainly distributed along the 1:1 line, further indicating the high reliability of 670 
calibrated ETo forecasts.” 671 

 672 

Point #5 673 
Authors present experiments 1-4 in the method but then only present some results one experiment 3) 674 
and 4) in the last section of results (CRPSS in 3.5). No explanation are provided of why calibration 3) and 675 
4) are only briefly introduced. Why is there a big gap with no results on calibration 3) and 4) on the bias 676 
and reliability results? Could the authors please expand on the purpose of including these at all in? At 677 
p17 l350-354, 'a further evaluation based on a different way of implementing the calibration 678 
demonstrate similar improvements in calibrated ETo forecasts with the adoption of bias-correction to 679 
input variables'. Is the purpose of including experiment 3) and 4) to test the generalisation of the 680 
method? If so, it needs to be clearly stated and justified earlier. 681 

Response: Thank you for the valuable comments. The reviewer is correct that adding 682 
calibrations 3 and 4 is to further evaluate whether the developed calibration strategy could 683 
be generally applied to future NWP-based ETo forecasting, and will the strategy be 684 
independent of calibration models. We further clarify why we include Calibrations 3 and 4 in 685 
Method (section 2.3): 686 

“The comparison between Calibrations 1 and 2 is to investigate whether the bias-correction of input 687 
variables would further improve ETo forecasts when the calibration is conducted based on ETo anomalies 688 
and climatological mean. We also conduct additional calibrations which post-process ETo forecasts 689 
directly (Calibrations 3 and 4), to test whether the contribution of improving input variables to ETo 690 
forecast calibration, if there is any, will depend on how ETo forecasts are calibrated (based on anomalies 691 
vs. based on ETo). Calibrations 3 and 4 will help evaluate the general applicability of strategy ii to 692 
enhance NWP/GCM-based ETo forecasting. Key steps of the four calibrations could be found in the 693 
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schematic diagram introducing how raw ETo forecasts are constructed and how calibrations are 694 
conducted (Figure S1). In the main text, we primarily analyze results from Calibrations 1 and 2. 695 
Improvements with the adoption of bias-correction to input variables in Calibrations 3 and 4 are very 696 
similar to Calibrations 1 and 2 (see the Supplementary Material). To avoid redundancy, we mainly 697 
present results from Calibrations 3 and 4 in the Supplementary Material.” 698 

 699 

In the original submission, we did not present all results from Calibrations 3 and 4 because 700 
these two calibrations were complementary for supporting findings from Calibrations 1 and 701 
2. In addition, differences in bias, reliability, and correlation coefficient between Calibrations 702 
3 and 4  are very similar to those between Calibrations 1 and 2. We thought it might be a bit 703 
redundant and may confuse readers if we present all results from Calibrations 3 and 4 in the 704 
main text. However, we agree with the reviewer that it is necessary to present results from 705 
Calibrations 3 and 4 in case readers are interested in them. In the revised manuscript, we 706 
present them in the supplementary material (See the figures below), in order not to distract 707 
readers from understanding key objectives (e.g., the necessity of bias-correcting input 708 
variables prior to ETo calibration) of this investigation. Specifically, in addition to the figure 709 
showing improvements in CRPS skill score, we also add figures demonstrating differences in 710 
absolute bias (Figure S15), correlation coefficients (Figure S16), and alpha index (Figure S18) 711 
between Calibrations 3 and 4 in the Supplementary Material: 712 

 713 
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 714 

Figure S15.  Differences in absolute bias between Calibrations 3 and 4  715 

 716 

 717 
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 718 

Figure S16.  Differences in correlation coefficient between Calibrations 3 and 4 719 
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 720 

Figure S18.  Differences in alpha index between Calibrations 3 and 4 721 

 722 

 723 

We add one new subsection in Results to introduce results from Calibrations 3 and 4  724 

3.7 Results from Calibrations 3 and 4 725 

“We also compare the bias, correlation coefficient, CRPS skill score, and reliability of calibrated forecasts 726 
from Calibrations 3 and 4, to evaluate whether we can obtain similar improvements through the bias-727 
correction of input variables if we conduct the ETo forecast calibration in a different way (without using 728 
ETo climatological mean and anomalies). Results show that the adoption of bias-correction also leads to 729 
lower bias, higher correlation coefficient, and higher CRPS skill score in terms of magnitude, spatial 730 
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patterns, and trend along the lead times, when ETo forecasts are calibrated directly (Figure S15-S17). In 731 
addition, the alpha index was only slightly different between Calibrations 3 and 4 (Figure S18). This 732 
additional comparison further confirms the general applicability of strategy ii for enhancing NWP-based 733 
ETo forecasting.” 734 

 735 

Point #6 736 
Methodological choices for evaluation: 737 

P7 l 180-185 : why choosing the absolute bias and over a relative measure e.g. percentage bias? This 738 
choice makes it difficult to compare the magnitude of the errors in the results across different variables 739 
and studies. For example, figure 1 shows a bias between -2 to 2mm/day which does not seem like much 740 
compared to other input variables such as precipitation. Figure 3 with a range of -0.1 to 0.1 seems very 741 
small. Conversely, percentages are used for the correlation coefficient in Figure 6 so why not use it for 742 
the bias? 743 

Response: We appreciate the reviewer's valuable comments. Bias shows differences of the 744 
mean between forecasts and observations, and could be either positive (overestimation) or 745 
negative (underestimation). Larger departures from the observed mean, no matter the bias is 746 
positive or negative, suggest more significant inconsistencies with observations. Absolute 747 
bias is a good indicator measuring the departure from the observed mean. As a result, using 748 
absolute bias, we can compare results from two different calibrations, with smaller absolute 749 
bias indicating closer to the observed mean, and thus suggesting better performance.  750 

We agree with the reviewer that using percentages will make the results more comparable 751 
with other variables, or with other studies. As a result, we change the unit of bias in figures 1, 752 
S12, 3, 4 to percentage: 753 

 754 
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              755 

 756 

Figure 1: Bias in (three panels on the left) raw ETo forecasts constructed with raw forecasts of input variables and (three panels on the right) 757 
raw ETo forecasts constructed with bias-corrected input variables. 758 

 759 

 760 

 761 
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 762 

Figure S12. Boxplot of biases in raw ETo forecasts constructed raw (blue) and bias-corrected inputs (pink) 763 

 764 

 765 
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 766 

Figure 3: Bias in calibrated ETo forecasts of 9 lead times from Calibration 2, in which raw ETo forecasts 767 
are constructed with bias-corrected input variables. Maps on the left show the spatial patterns of 768 
bias, and the boxplot on the right summarizes results for all grid cells.  769 

 770 

 771 

Figure 4: Differences in absolute bias between calibrated ETo forecasts from Calibration 2 with 772 
Calibration 1. Maps on the left show the spatial patterns of difference in absolute bias, and the 773 
boxplot on the right summarizes results for all grid cells. 774 

 775 
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Point #7 776 
P8 l205-2015: why is climatology used as reference forecast for the skill score? In hydrological 777 
forecasting persistence is typically used for short lead times, whereas climatology would be used for 778 
longer lead times, see fore example (Pappenberger, Ramos et al. 2015). Could you please expand and 779 
justify the choice of reference forecast used and implication of interpretation of results? 780 

Response: We really appreciate the reviewer’s valuable suggestion and the introduction of 781 
this classic paper. We choose the climatology forecasts as the reference rather than using 782 
persistence for several reasons: 783 

1, Climatology forecasts have been widely used as the reference in the calculation of CRPS 784 
skill score for short-term hydroclimate forecasts. Since climatology forecasts have similar 785 
errors across all lead times (Bennett et al., 2014), they have been used as the reference to 786 
compare forecast skills among different lead times (Academies, 2014; Zhao et al., 2019).  787 

2, Persistence is also a good reference, but it's been mainly used for the first two lead times. 788 
As demonstrated in figure 5 of Bennett et al. (2014), errors in persistence could increase 789 
quickly with lead time. As a result, multiple studies suggested that persistence is good for skill 790 
discrimination for short lead times (Pappenberger et al., 2015; Thiemig et al., 2015).  791 

Since we investigate 9 lead times in this study, errors in persistency are expected to be 792 
significant at long lead times. Using persistence as the reference may artificially exemplify 793 
forecast skills at long lead times. As a result, we think the use of climatology forecasts as the 794 
reference for the calculation of the CRPS skill score is acceptable.  795 

We add the following sentences to section 2.4.3 (Skills of the raw and calibrated forecasts) to 796 
explain the use of climatology forecasts as the reference for the calculation of CRPS skill score  797 

“In the calculation of CRPS skill score, both climatology forecasts or the last observations 798 
(persistence) have been used as reference forecasts (Pappenberger et al., 2015; Thiemig et al., 799 
2015). However, reference forecasts based on persistence are more suitable for evaluating the 800 
performance of forecasts shorter than two days. As a result, we choose climatology forecasts as 801 
the reference, since errors in climate forecasts are similar among all lead times and thus could be 802 
used to demonstrate the increasing errors in raw and calibrated forecasts as lead time advances.” 803 

 804 

Reference:  805 

Academies, N.: The science of NOAA’S Operational Hydrologic Ensemble Forecast Service, Bull. 806 
Am. Meteorol. Soc., (January), 79–98, doi:10.1175/BAMS-D-12-00081.1, 2014. 807 

Bennett, J. C., Robertson, D. E., Lal, D., Wang, Q. J., Enever, D., Hapuarachchi, P. and Tuteja, N. 808 
K.: A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days, 809 
J. Hydrol., 519, 2832–2846, doi:10.1016/j.jhydrol.2014.08.010, 2014. 810 
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Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F., Alfieri, L., Bogner, K., Mueller, A. 811 
and Salamon, P.: How do I know if my forecasts are better? Using benchmarks in hydrological 812 
ensemble prediction, J. Hydrol., 522, 697–713, doi:10.1016/j.jhydrol.2015.01.024, 2015. 813 

Thiemig, V., Bisselink, B., Pappenberger, F. and Thielen, J.: A pan-African medium-range 814 
ensemble flood forecast system, Hydrol. Earth Syst. Sci., 19, 3365–3385, doi:10.5194/hess-19-815 
3365-2015, 2015. 816 

Zhao, T., Wang, Q. J. and Schepen, A.: A Bayesian modelling approach to forecasting short-term 817 
reference crop evapotranspiration from GCM outputs, Agric. For. Meteorol., 269–270(January), 818 
88–101, doi:10.1016/j.agrformet.2019.02.003, 2019. 819 

 820 

Point #8 821 
P8 l214. Why is the definition of CRPSS using percentage? As far as I am aware, most studies do not 822 
present the CRPSS in terms of percentage, could you please comment on the reason of this choice with 823 
references that also use percentages and if there is any advantages? 824 

 Response: Thank you for the comments. We agree with the reviewer that many studies use 825 
ratios when presenting the CRPS skill score. Meanwhile, we also notice that some studies (see 826 
the reference list at the bottom of our response to this comment) use percentage as the unit 827 
of CRPS skill score.  828 

As shown in Figure 7, skills of calibrated forecasts decreased quickly with lead time. As a 829 
result, the CRPS skill score approaches zero at lead time 9. One advantage of using the 830 
percentage as the unit of CRPS skill score is that small decimals of low skills will be converted 831 
to more readable percent.  832 

We add the following sentence to explain why the percentage is used as the unit of CRPS skill 833 
score:  834 

“We use percentage as the unit of CRPS skill score so low skill scores at long lead times will be 835 
converted from small decimals to more readable percent.” 836 

We believe the choice of percentage as the unit of CRPS skill score will not affect the 837 
conclusions of this study. Here are some investigations using % as the unit of CRPS skill score:  838 

Brown, J. D. and Seo, D. J.: A nonparametric postprocessor for bias correction of hydrometeorological 839 
and hydrologic ensemble forecasts, J. Hydrometeorol., 11(3), 642–665, doi:10.1175/2009JHM1188.1, 840 
2010. 841 

Kumar, L. G. A., Smith, A. S. D., Gonzalez, G. B. P., Merryfield, V. K. W. and Newman, A. S. Á. M.: A 842 
verification framework for interannual-to-decadal predictions experiments, Clim. Dyn., 40, 245–272, 843 
doi:10.1007/s00382-012-1481-2, 2013. 844 
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Munkhammar, J., van der Meer, D. and Widén, J.: Probabilistic forecasting of high-resolution clear-sky 845 
index time-series using a Markov-chain mixture distribution model, Sol. Energy, 184(January), 688–695, 846 
doi:10.1016/j.solener.2019.04.014, 2019. 847 

Robertson, D. E. and Wang, Q. J.: Seasonal Forecasts of Unregulated Inflows into the Murray River , 848 
Australia, Water Resour. Manag., 27, 2747–2769, doi:10.1007/s11269-013-0313-4, 2013. 849 

Schepen, A., Wang, Q. J. and Robertson, D. E.: Seasonal Forecasts of Australian Rainfall through 850 
Calibration and Bridging of Coupled GCM Outputs, Mon. Weather Rev., 142, 1758–1770, 851 
doi:10.1175/MWR-D-13-00248.1, 2014. 852 

 853 

Point #9 854 
Analysis and interpretation of results: 855 

P11 l259-261: why the higher difference in bias in approaches for the Nothern Territory? How does this 856 
relate to the biases, errors and assumptions of the NWP? Is it correlated to the biases of specific input 857 
variables? How is it correlated to the nonlinear relationship in calculatint ETo? Why are the biases most 858 
pronounced for shorter lead times? Please comment. 859 

Response: Thank you for the valuable comments. To answer these questions, we present 860 
more results to explain how quantile mapping to input variables contributes to improving 861 
calibrated ETo forecasts. Specifically, we (1) calculate the correlation coefficients (r) between 862 
raw/bias-corrected forecasts of the five input variables and AWAP data to further analyze 863 
how quantile mapping has improved input variables, in addition to correcting bias (shown in 864 
figure 1); (2) investigate the improvements in correlation coefficients between raw ETo 865 
forecasts following the bias-correction to input variables and AWAP ETo, to examine how 866 
improvements in each variable are translated into the resultant raw ETo forecasts; (3) explain 867 
how improvements in raw ETo forecasts through bias-correcting input variables lead to 868 
improvements in calibrated ETo forecasts. Please find more details as follows: 869 

1, In addition to correcting bias (Figures S2 to S6), quantile mapping also generally improves 870 
the temporal patterns of raw forecasts of the input variables. Following figures shows r 871 
between raw forecasts of the input variables and their corresponding AWAP data (three 872 
columns on the left), and improvements in r by quantile mapping (three columns on the 873 
right): 874 
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 875 

            876 

Figure S7. Correlation coefficients (r) between raw Tmax forecasts and AWAP data (three panels on the left), and improvements in r 877 
(three panels on the right) through quantile mapping 878 

 879 
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         880 

Figure S8. Correlation coefficients (r) between raw Tmin forecasts and AWAP data (three panels on the left), and improvements in r 881 
(three panels on the right) through quantile mapping 882 

 883 
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           884 

Figure S9. Correlation coefficients (r) between raw vapor pressure forecasts and AWAP data (three panels on the left), and 885 
improvements in r (three panels on the right) through quantile mapping 886 

 887 
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             888 

Figure S10. Correlation coefficients (r) between raw solar radiation forecasts and AWAP data (three panels on the left), and 889 
improvements in r (three panels on the right) through quantile mapping 890 
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              891 

Figure S11. Correlation coefficients (r) between raw wind speed forecasts and AWAP data (three panels on the left), and 892 
improvements in r (three panels on the right) through quantile mapping 893 

 894 

 895 

 896 
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As shown in the above figures, r between raw forecasts of the input variables and AWAP data 897 
varies with the input variables. The two temperature variables have higher r values than the 898 
other three variables, and wind speed forecasts demonstrate the lowest correlation with 899 
AWAP data. For all variables, the r decreases with lead time, indicating higher uncertainties in 900 
raw forecasts at longer lead times.  901 

Quantile mapping generally improves the correlation between forecasts of the input 902 
variables and AWAP data. The above figures show that bias-corrected forecasts demonstrate 903 
higher r for Tmax, solar radiation, and wind speed across most parts of Australia; for Tmin 904 
and vapor pressure, changes in r are less significant, and both increases and slight decreases 905 
in r are observed.  906 

We add the above figures to the supplementary. We also add following descriptions to 907 
section 3.1:  908 

“Raw forecasts of the input variables generally agree with the AWAP data in temporal patterns during the 909 
study period, but the r varies with variables (Figures S7-S11). The two temperature variables (Tmax and 910 
Tmin) have higher r (>0.9) than the other three variables, and wind speed forecasts demonstrate the 911 
lowest correlations with AWAP data. For all variables, the r decreases with lead time, indicating higher 912 
uncertainties at long lead times in raw forecasts.” 913 

“In addition, quantile mapping also improves the correlation between forecasts of input variables and 914 
AWAP data (Figures S7-S11). The most significant improvements are found in wind speed forecasts, in 915 
which the r is improved by up to 0.2 in central and southern parts of Australia. Forecasts of Tmax and 916 
solar radiation also demonstrate higher r with the adoption of quantile mapping. Both increases and slight 917 
decreases were found for vapor pressure and Tmin, indicating less significant improvements in temporal 918 
patterns than other variables. ” 919 

2, With the adoption of quantile mapping to raw forecasts of individual variables, raw ETo 920 
forecasts (Calibrations 2 or 4) also show higher r with observations, than the raw ETo 921 
forecasts constructed with the raw forecasts of input variables (Calibrations 1 or 3)： 922 

 923 

 924 

  925 
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        926 

Figure 2: The comparison between the correlation coefficient of AWAP ETo and raw ETo forecasts 927 
constructed with the bias-corrected inputs vs. the correlation coefficient of AWAP ETo and raw ETo 928 
forecasts constructed with the uncorrected inputs. The boxplot on the right summarizes results for all 929 
grid cells.  930 

As is shown in the above figure, the quantile mapping also improves the temporal patterns of raw ETo 931 
forecasts, for the lead times. More significant improvements are found in northern Australia. Due to 932 
the nonlinearity in the calculation of ETo using the input variables, spatial patterns of improvements 933 
in r (Figure 2) do not resemble improvements of any individual input variables. Although both Tmax 934 
and wind speed show more significant improvements in northern Australia, where the r 935 
improvements are greater than other regions (Figure 2), improvements in the two variables do not 936 
lead to higher r in other parts of Australia. As a result, we believe that improvements in r of raw ETo 937 
forecasts are contributed jointly by these input variables and their interactions.  938 

We add the above figure (Figure 2) and the following contents to the manuscript:   939 

“The adoption of quantile mapping to input variables also improves the temporal patterns of raw ETo 940 
forecasts (Figure 2). Compared with the raw ETo forecasts constructed with raw input variables, the raw 941 
ETo forecasts based on bias-corrected inputs generally shows higher correlations with AWAP ETo, 942 
particularly in northern Australia, where r is improved by more than 10%. However, due to the 943 
nonlinearity in the calculation of ETo using the input variables, spatial patterns of improvements in r 944 
(Figure 2) does not resemble improvements in any individual input variables (Figures S7 to S11). The 945 
improvements in r of raw ETo forecasts seem to be contributed jointly by these input variables and their 946 
interactions.” 947 

3, We add the following contents to section 3.3 to explain the spatial patterns of changes in r 948 
and absolute bias: 949 

“Larger reductions in absolute bias in northern Australia coincide with the improvements in the 950 
correlation between raw ETo forecasts and AWAP ETo (Figure 2). However, unlike the improvements in 951 
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r for all lead times in raw ETo forecasts, the improvements in absolute bias are more pronounced at short 952 
lead times (Days 1-3) than long lead times (Days 7-9). The uneven improvements across different lead 953 
times may be caused by the significant intrinsic uncertainties in forecasts, which have hindered the 954 
manifestation of improvements to raw ETo forecasts at long lead times in calibrated forecasts.” 955 

Based on the above analyses, we can then answer the questions the reviewer raised in this 956 
comment.  957 

More significant reductions in absolute bias in northern Australia show similar spatial 958 
patterns with that of the improvements in r between raw ETo forecasts and AWAP ETo. As we 959 
further explained in our response to your next comment (#10), deficiencies in NWP models in 960 
simulating weather dynamics in tropical regions have been reported. Bias-correction 961 
effectively corrects errors in these areas. However, improvements to raw ETo forecasts in r 962 
with the application of quantile mapping could not be explained by any individual variable. 963 
The nonlinearity in calculating ETo based on the individual variables may have combined 964 
improvements in each variable and lead to more significant improvements in northern 965 
Australia. Less significant improvements in calibrated ETo forecasts at longer lead times may 966 
be caused by the more significant intrinsic uncertainties in forecasts than short lead times. 967 
These uncertainties have inhibited the translation of improvements in raw ETo forecasts to 968 
calibrated forecasts.  969 

 970 

Point #10 971 
P13 l282-285: Why lowest score of correlation coefficient in northern Territory? Is it linked to the NWP 972 
(and if so how?) or is it linked to observations? E.g. differneces in observations compared to rest of 973 
country? 974 

Response:  Thank you for the comments. We believe the low correlation results from the 975 
NWP forecasts rather than from observations for several reasons:  976 

1, Evaluation of the observations (AWAP data) did not show larger errors in northern 977 
Australia than other areas of Australia (Jones et al., 2009). As a result, we do not have 978 
evidence that the quality of observations in this region is lower than in other regions  979 

2, Deficiencies of NWP forecasts in tropical regions in Australia have been well documented. 980 
Due to its highly dynamic nature, forecasts for tropical regions often demonstrate larger 981 
uncertainties than other climate zones. In the evaluation of NWP forecasts in Australia, 982 
tropical zones show lower skills than other regions (Ebert and Mcbride, 2000; Mcbride and 983 
Ebert, 2000; Roux et al., 2010). According to Huang et a. (2018), ACCESS models have been 984 
suffering from low skills in simulating the convective processes in tropical zones of Australia. 985 

3, Raw ETo forecasts constructed with outputs of an early version of the ACCESS model in 986 
another study showed higher RMSE in Northern Territory than other regions (Perera et al., 987 
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2014), further confirms that lower correlation coefficient is mainly caused by the NWP 988 
forecasts.  989 

We add the following sentences to section 3.3:  990 

“Deficiencies in ACCESS models in simulating dynamics of tropical climate systems may have 991 
resulted in the low r in northern Australia.” 992 

  993 

Reference: 994 

Ebert, E. E. and Mcbride, J. L.: Verification of precipitation in weather systems : determination 995 
of systematic errors, J. Hydrol., 239, 179–202, 2000. 996 

Huang, J., Rikus, L. J., Qin, Y. and Katzfey, J.: Assessing model performance of daily solar 997 
irradiance forecasts over Australia, Sol. Energy, 176(November), 615–626, 998 
doi:10.1016/j.solener.2018.10.080, 2018. 999 

Jones, D. A., Wang, W. and Fawcett, R.: High-quality spatial climate data-sets for Australia, Aust. 1000 
Meteorol. Oceanogr. J., 58, 233–248, 2009. 1001 

Mcbride, J. L. and Ebert, E. E.: Verification of quantitative precipitation forecasts from 1002 
operational numerical weather prediction models over Australia, Weather Forecast., 15(1), 1003 
103–121, doi:10.1175/1520-0434(2000)015<0103:VOQPFF>2.0.CO;2, 2000. 1004 

Perera, K. C., Western, A. W., Nawarathna, B. and George, B.: Forecasting daily reference 1005 
evapotranspiration for Australia using numerical weather prediction outputs, Agric. For. 1006 
Meteorol., 194, 50–63, doi:10.1016/j.agrformet.2014.03.014, 2014. 1007 

Roux, B., Seed, A., Pagano, T. and Roux, B.: Improved use of precipitation forecasts in short-1008 
term water forecasting – progress report, The Centre for Australian Weather and Climate 1009 
Research A partnership between CSIRO and the Bureau of Meteorology Improved., 2010. 1010 

 1011 

       1012 

Point #11 1013 
P14 l294-297: The geographical patterns of the correlation performance is very similar to the patterns of 1014 
the bias performance. Could you please comment why and if the reasons are the same? Are these related 1015 
to either the NWP or observations? 1016 

Response: Thank you for the valuable comments. We add the following figure to the 1017 
manuscript to demonstrate how bias-correction of input variables improves correlations 1018 
between raw ETo forecasts and AWAP ETo:  1019 
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        1020 

Figure 2: The comparison between the correlation coefficient of AWAP ETo and raw ETo forecasts 1021 
constructed with the bias-corrected inputs vs. the correlation coefficient of AWAP ETo and raw ETo 1022 
forecasts constructed with the uncorrected inputs. The boxplot on the right summarizes results for all 1023 
grid cells.  1024 

The above figure shows that when input variables are bias-corrected, the resultant raw ETo 1025 
forecasts show higher correlation coefficients, than raw ETo forecasts constructed with raw 1026 
inputs. Spatial patterns of the improvements in r in raw forecasts for short lead times are 1027 
consistent with the improvements in r in calibrated forecasts (Figure 6). As a result, we 1028 
believe this is how the new calibration strategy improves the calibration of ETo forecasts. 1029 
Less significant improvements in ETo forecasts at longer lead times may be caused by the 1030 
more significant intrinsic uncertainties in raw forecasts than short lead times. These 1031 
uncertainties have inhibited the translation of improvements to raw ETo forecasts in 1032 
calibrated forecasts. We have explained the connections between improvements in raw ETo 1033 
forecasts and calibrated ETo forecasts in response to your comment #9. 1034 

As we introduced in the manuscript, when we calibrate the raw ETo forecasts (f(t)), we built a 1035 
conditional distribution (𝑜𝑜�(m(𝑡𝑡))) for observations (o(t)), and 100 values will be drawn from 1036 
this conditional distribution to generate the calibrated ensemble forecasts:  1037 

 1038 

𝑜𝑜�(m(𝑡𝑡))~𝑁𝑁�𝜇𝜇𝑜𝑜(m(𝑡𝑡)) + 𝑟𝑟
𝜎𝜎𝑜𝑜(m(𝑡𝑡))
𝜎𝜎𝑓𝑓(m(𝑡𝑡))

(𝑓𝑓(𝑡𝑡) − 𝜇𝜇𝑓𝑓(m(𝑡𝑡))), (1 − 𝑟𝑟2)𝜎𝜎𝑜𝑜2� 
 

in which where 𝐦𝐦(𝒕𝒕) returns the month k (k=1 to 12)  of daily forecasts or observations of day 𝒕𝒕; 1039 
 𝝁𝝁𝒇𝒇(𝐦𝐦(𝒕𝒕)) 𝐚𝐚𝐚𝐚𝐚𝐚 𝝈𝝈𝒇𝒇(𝒎𝒎(𝒕𝒕)) refer to the marginal distribution’s mean and standard deviation of 𝒇𝒇(𝒕𝒕) in 1040 
month 𝐦𝐦(𝒕𝒕), respectively; 𝝁𝝁𝒐𝒐(𝐦𝐦(𝒕𝒕)) 𝐚𝐚𝐚𝐚𝐚𝐚 𝝈𝝈𝒐𝒐(𝒎𝒎(𝒕𝒕)) are the mean and standard deviation of the 1041 
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marginal distribution of 𝒐𝒐(𝒕𝒕) in month 𝐦𝐦(𝒕𝒕); 𝒓𝒓 is the correlation between 𝒇𝒇(𝒕𝒕) and 𝒐𝒐(𝒕𝒕) in the 1042 
transformed space. 1043 

As a result, when the correlation is improved, it will help improve the estimation of the mean 1044 
and standard deviation of the above conditional distributions. As a result, bias in calibrated 1045 
forecasts will be further reduced. That is why improvements in bias demonstrate a similar 1046 
spatial pattern as those of the correlation coefficient. 1047 

To explain improvements in r in calibrated forecasts, we add the following sentence to 1048 
section 3.4:   1049 

“Spatial patterns of improvements in r in calibrated ETo forecasts (Figure 6) are consistent with 1050 
the improvements in r of raw ETo forecasts with the adoption of bias-correction (Figure 2), 1051 
particularly for the short lead times. The improvements in r of calibrated ETo forecasts (Figure 1052 
6) may also lead to more reasonable conditional distributions for a given raw forecast (equation 1053 
4). As a result, regions showing improvements in r in calibrated ETo forecasts (Figure 6) often 1054 
demonstrate reductions in absolute bias (Figure 4).” 1055 

 1056 

Point #12 1057 
P16 l320-328. Please comment on why the accuracy has larger differences in terms of geographical 1058 
patterns than for the bias and PIT performance which had very strong localised performance. 1059 

Response: Thank you for the comments. We believe there are four reasons for the differences 1060 
in spatial patterns of CRPS skill score (Figure 8) with changes in bias (Figure 4), correlation 1061 
coefficient (Figure 6), and alpha index (Figure S13): 1062 

1, The metrics measure different features of the quality of forecasts, and may have different 1063 
sensitivities to changes in calibrated forecasts. As a result, it is not unexpected that their 1064 
spatial patterns show differences. Bias measures average differences; correlation coefficient 1065 
shows consistency between observations and forecasts; the CRPS skill score measures the 1066 
performance of calibrated forecasts relative to the climatology forecast; the alpha index is an 1067 
indicator showing whether the distribution of calibrated forecasts is overconfident or 1068 
underconfident. As a result, improvements indicated by these metrics do not necessarily 1069 
show exactly the same spatial patterns.  1070 

2, The alpha index is less sensitive to changes in forecasts than other metrics. It is well known 1071 
that the quality of forecasts often declines with lead time, even for calibrated forecasts. This 1072 
tendency can be seen from the correlation coefficient (Figure 5) and CRPS skill score (Figure 1073 
7). However, the same trend is not shown in the alpha index (Figure 9). As demonstrated by 1074 
figure 9, the alpha index demonstrates similar magnitudes and spatial patterns among the 9 1075 
lead times. As was introduced in equations 13 and 14, PIT value and alpha index are mainly 1076 
used to measure the consistency between distributions of forecasts and observations. 1077 
Improvements achieved through the adoption of calibration strategy ii (e.g., Calibrations 2 1078 
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and 4) may not significantly change the statistical distributions of the calibrated forecasts, as 1079 
evidenced by the t-test (Table S2). As a result, differences in the alpha index (Figure S13) 1080 
between Calibrations 2 and 1 do not show spatial patterns resembling absolute bias (Figure 1081 
4), correlation coefficient (Figure 6), and CRPS skill score (Figure 8). 1082 

3, The spatial patterns of improvements in absolute bias, correlation coefficient, and CRPS 1083 
skill score are generally consistent. We calculate the spatial correlation for changes in CRPS 1084 
skill score vs. changes in absolute bias (Figure 8 vs. Figure 4), and the spatial correlation for 1085 
changes in CRPS skill score vs. changes in correlation coefficients (Figure 8 vs. Figure 6). As is 1086 
shown in the following figure, the metrics show high spatial correlation. 1087 

 1088 

4, The upper and lower limits used for the maps may have affected our understanding of the 1089 
spatial patterns of the evaluation metrics. Following comparison shows that when using 1090 
narrower limits (-3% to 3%, rather than -5% to 5%) for the color bar of the maps showing 1091 
improvements in correlation coefficients (the subplot on the right), the spatial pattern looks 1092 
more consistent with the maps showing increases in CRPS skill score (Figure 8).  In the revised 1093 
manuscript, we use the plot with narrower color bar limits.  1094 

 1095 

 1096 
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 1097 

 1098 

 1099 

To explain spatial patterns of the evaluation metrics, we add a new subsection to the Results section 1100 
(3.8 Summary of results): 1101 

“Although the selected metrics measure different aspects of forecast quality, they generally agree with 1102 
each other in demonstrating improvements in calibrated ETo forecasts with the adoption of the Strategy ii. 1103 
As introduced in the Method section, bias measures average differences; correlation coefficient shows 1104 
consistency between observations and forecasts in temporal variability; the CRPS skill score measures the 1105 
performance of the calibrated forecasts relative to climatology forecast; the α index is an indicator 1106 
showing whether the distribution of calibrated forecasts is overconfident or underconfident. As a result, 1107 
these metrics may differ from each other in magnitude when used to evaluate different calibrations 1108 
(Figures 4, 6, 8, and S14). However, improvements in bias, correlation, and skills with the adoption of 1109 
bias-correction to input variables are generally consistent in spatial patterns. Compared with the other 1110 
three metrics, the α index demonstrates less significant changes when input variables are bias-corrected 1111 
first (Table S2 and Figure S14), mainly because this index is less sensitive to changes in calibrated 1112 
forecasts than other metrics.” 1113 

 1114 

Point #13 1115 
P16 l329: Results on calibration 2 and 4: what is the comparison between 2 and 4? Why are these only 1116 
addressed in the evaluation of forecast accuracy section? Why is there no mention of these for the bias 1117 
and reliability evaluation? I suggest changing the section order and moving this section first. Then, add a 1118 
sentence in the bias and reliability section to explicitly communicate what results of experiment 3) and 4) 1119 
are not presented and why. 1120 
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 Response: Thank you for the valuable suggestions. We check the original submission and 1121 
believe your comments refer to Calibrations 3 and 4 here.  1122 

As we explain in our response to your comment #5, calibrations 3 and 4 are to further confirm 1123 
that whether our strategy is suitable for general application. We further explain the reason of 1124 
by adding the following sentences to clarify why Calibrations 3 and 4 are included in this 1125 
study in Method: 1126 

“The comparison between Calibrations 1 and 2 is to investigate whether the bias-correction of input 1127 
variables would further improve ETo forecasts when the calibration is conducted based on ETo anomalies 1128 
and climatological mean. We also conduct additional calibrations which post-process ETo forecasts 1129 
directly (Calibrations 3 and 4), to test whether the contribution of improving input variables to ETo 1130 
forecast calibration, if there is any, will depend on how ETo forecasts are calibrated (based on anomalies 1131 
vs. based on ETo). Calibrations 3 and 4 will help evaluate the general applicability of strategy ii to 1132 
enhance NWP/GCM-based ETo forecasting. Key steps of the four calibrations could be found in the 1133 
schematic diagram introducing how raw ETo forecasts are constructed and how calibrations are 1134 
conducted (Figure S1). In the main text, we primarily analyze results from Calibrations 1 and 2. 1135 
Improvements with the adoption of bias-correction to input variables in Calibrations 3 and 4 are very 1136 
similar to Calibrations 1 and 2 (see the Supplementary Material). To avoid redundancy, we mainly 1137 
present results from Calibrations 3 and 4 in the Supplementary Material.” 1138 

As we introduced in our response to your comment point #5, we add more results (bias, 1139 
correlation, and alpha-index) from Calibrations 3 and 4 to the Supplementary Material. We 1140 
also add one new subsection (3.7) to briefly introduce the results shown in these figures 1141 
(Figures S15-S18). 1142 

 1143 

Point #14 1144 
Discussion: 1145 

There are little to no direct comparison of results and calibration work presented here to any previous 1146 
methods or studies (which were mentioned in the introduction). To address a research closure, please put 1147 
the work presented in this paper in context with other studies applying strategy 1 and strategy 2. 1148 

Response: We appreciate the reviewer’s valuable suggestion. We explain in detail why we do 1149 
not compare our calibration directly with calibrations using other models in our response to 1150 
your comment #3. However, we totally agree with the reviewer that it is necessary to 1151 
compare our results with previous investigations in ETo forecasting to help the audience 1152 
better understand the performance of our calibration. Therefore, we add the following 1153 
contents to the Discussion:  1154 

“This investigation further highlights the importance of statistical calibration in NWP-based ETo 1155 
forecasting (Medina and Tian, 2020). According to an investigation across 40 sites in Australia, 1156 
raw ETo forecasts constructed with NWP outputs reasonably captured the magnitude and 1157 
variability of ETo, but forecast skills better than climatology were only limited to the first 6 lead 1158 
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times (Perera et al., 2014). Our investigation suggests that statistical calibration could 1159 
substantially improve forecast skills and successfully extend the skillful forecasts to lead time 9 1160 
across Australia. Findings of this investigation agree well with the site-scale short-term ETo 1161 
forecasting based on GCM outputs (Zhao et al., 2019a) in the improvements of forecast skills 1162 
through statistical calibration. Calibrated forecasts from Calibration 2 demonstrate similar skills 1163 
as Zhao et al. (2019a) across three Australian sites. Thanks to the capability of SCC in 1164 
calibrating short-archived forecasts (Wang et al., 2019), we achieve the improvements based on 1165 
much shorter archived raw forecasts (3-year vs. 23-year) than Zhao et al. (2019a). Calibrated 1166 
forecasts from Calibration 2 also demonstrate low biases (0.32-0.95%) comparable with 1167 
calibrated ETo forecasts (0.49-0.63%) based on the Bayesian Model Averaging (BMA) model 1168 
and weather forecasts from three NWP models in the U.S. during 2014-2016 (Medina and Tian, 1169 
2020)." 1170 

In addition, we also highlight the importance of testing the proposed calibration strategy 1171 
(strategy ii) in the future in section 4.2:  1172 

“Third, further investigations based on other calibration models are needed to validate findings 1173 
of this investigation. Our analyses based on two different methods (based on ETo anomalies vs. 1174 
based on original ETo) demonstrate similar improvements in calibrated ETo forecasts with the 1175 
adoption of bias-correction to input variables. Additional evaluations will be needed to verify 1176 
whether forecast skills will be improved using strategy ii but based on a different calibration 1177 
model.” 1178 

 1179 

Point #15 1180 
It is unclear whether authors recommend the use of experiment 2) or 4), when and why. In that sense, I 1181 
question again the inclusion of these experiments without further elaborating and discussing these 1182 
results. 1183 

Response: Thank you for the valuable suggestion. As we explain in our response to your 1184 
comments #5 and #13, the objective of this study is to evaluate the necessity of correcting the 1185 
input variables prior to ETo forecast calibration. We also further explain that including 1186 
Calibrations 3 and 4 was to further evaluate whether the strategy could be generally applied 1187 
to other calibration models. In addition, we add results from Calibrations 3 and 4 and 1188 
discussed implications from these two calibrations (section 3.7): 1189 

“We also compare the bias, correlation coefficient, CRPS skill score, and reliability of calibrated forecasts 1190 
from Calibrations 3 and 4, to evaluate whether we can obtain similar improvements through the bias-1191 
correction of input variables if we conduct the ETo forecast calibration in a different way (without using 1192 
ETo climatological mean and anomalies). Results show that the adoption of bias-correction also leads to 1193 
lower bias, higher correlation coefficient, and higher CRPS skill score in terms of magnitude, spatial 1194 
patterns, and trend along the lead times, when ETo forecasts are calibrated directly (Figure S15-S17). In 1195 
addition, the alpha index was only slightly different between Calibrations 3 and 4 (Figure S18). This 1196 
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additional comparison further confirms the general applicability of strategy ii for enhancing NWP-based 1197 
ETo forecasting.” 1198 

Point #16 1199 
Structure: 1200 

The introduction is well structured and appropriately present previous work studies and existing 1201 
strategies. 1202 

Response:  We appreciate your constructive comments.  1203 

 1204 

Point #17 1205 
The title is a bit lengthy, authors could consider shortening it. 1206 

Response: We change the title from:  1207 

“Bias-correcting input variables prior to combined calibration leads to more skillful forecasts of 1208 
reference crop evapotranspiration” 1209 

to: 1210 

"Bias-correcting input variables enhances forecasting of reference crop evapotranspiration." 1211 
 1212 

Point #18 1213 
As noted above, I suggest authors consider the order of results presented in the context of results from 1214 
experiment 3) and 4). 1215 

 Response: As we explained in our response to your comments #5, #13, and #15, we add a 1216 
new subsection (3.7) to present results from calibrations 3 and 4 and discuss the implications 1217 
of these two Calibrations.  1218 

 1219 

Point #19 1220 
Minor comments: 1221 

 P4 l106: I suggest adding a diagram clearly explaining steps and differences of procedure between the 1222 
calibration experiments. 1223 

Response: We appreciate the valuable suggestions and create a diagram to show the key 1224 
steps of the four calibrations 1225 



 

62 
 

 1226 

Figure S1. Schematic of the four calibrations  1227 

 1228 

Point #20 1229 
P3 l68: '…pressing need to investigate.' Please expand why it is pressing? 1230 

Response: Thank you for the comments. ETo forecasts have been increasingly used in the 1231 
planning of farming activities (e.g., amount and timing of irrigation) in Australia. We improve 1232 
this sentence as follows: 1233 

“Since NWP/GCM-based ETo forecasting is increasingly conducted to support water resource 1234 
management, there is a need to investigate the necessity of correcting raw forecasts of the input variables 1235 
in ETo forecast calibration.” 1236 

 1237 

Point #21 1238 
P3 l74: Calibrate should be calibrate with small cap letter. 1239 

Response: Thank you for the careful review. We correct this typo.  1240 

 1241 
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Point #22 1242 
P3 l80-84: There are many efforts to develop downscaling methods, please comment on what was been 1243 
done here to downscale ACCESS-G2 to the AWAP grid. Why not scaling AWAP to the match the forecast 1244 
grid? 1245 

Response: Thank you for the valuable suggestions. In the revised manuscript, we further 1246 
introduce that we used bilinear interpolation to remap ACCESS-G2 forecasts. Meanwhile, we 1247 
agree with the reviewer that sophisticated methods have been developed to downscale 1248 
coarse resolution forecasts to match observations.  1249 

In this study, the purpose of the regridding is to connect forecasts with the corresponding 1250 
observations so we can calibrate the forecasts, rather than trying to reconstruct the spatial 1251 
patterns of forecasts at a finer scale.  1252 

We conducted a literature review on the remapping methods used in forecasts post-1253 
processing. It is common that raw forecasts and references data have different spatial 1254 
resolutions. We found that bilinear interpolation of forecasts from a coarser resolution to a 1255 
finer resolution has been widely used in forecast post-processing and verification. For 1256 
example, Hamill et al. (2015) used bilinear interpolation to downscale the resolution of 1257 
Global Ensemble Forecast System (GEFS) forecasts from 1° to 1/8° to match observations 1258 
before post-processing with an analogy-based model. Yuan et al. (2014) used bilinear 1259 
interpolation to remap the Global Ensemble Forecast System (GEFS, with resolutions of 1260 
~0.469° and ~0.625°) to match the North-American Land Data Assimilation System (NLDAS, 1261 
with the resolution of 1/8°), before the forecasts were post-processed with a quantile 1262 
mapping method. Zeng and Yuan (2018) used bilinear interpolation to remap sub-seasonal to 1263 
seasonal forecasts from ECMWF (0.25°X0.25°to 0.5°X0.5° for different lead times), NCEP 1264 
(1°X1°), China Meteorological Administration (CMA, 1°X1°), Hydrometeorological Centre of 1265 
Russia (HMCR, 1.1°X1.4°), and Australian Bureau of Meteorology (BoM, 2°X2°) to a common 1266 
resolution of 0.7°, in order to match the reanalysis data. James et al. (2017) regridded the 1267 
wind forecasts with bilinear interpolation from the 3-km High-Resolution Rapid Refresh 1268 
(HRRR) NWP model to an observation tower in Colorado to evaluate forecast quality. Bowler 1269 
et al. (2008) interpolated the ECMWF forecasts with a grid spacing of 1.5° bilinearly to the site 1270 
scale for forecast verification. Yuan and Wood (2012) used bilinear interpolation to match 1271 
forecasts from the Euro- Mediterranean Centre for Climate Change (CMCC-INGV), the 1272 
European Centre for Medium-Range Weather Forecasts (ECMWF), the Leibniz Institute of 1273 
Marine Sciences at Kiel University (IFM-GEOMAR), Météo France, and UK Met Office (UKMO), 1274 
which have a spatial resolution of 2.5° to match the observation of 1°.  1275 

As a result, previous investigations suggested that downscaling with a sophisticated method 1276 
could potentially be useful, but that is not necessarily essential in forecast post-processing, 1277 
and bilinear interpolation is acceptable. 1278 
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However, we agree with the reviewer that whether a better remapping method will further 1279 
improve the forecast calibration should be investigated in the future. Therefore, we add the 1280 
following sentence to section  4.2 (Implications for forecasting of integrated variables and 1281 
future work): 1282 

“More sophisticated remapping methods should be evaluated to understand the impacts of forecast 1283 
regridding on statistical calibration.” 1284 

 1285 

Reference:  1286 

Bowler, N.E., Arribas, A., Mylne, K.R., Robertson, K.B., Beare, S.E., 2008. The 1287 
MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 722, 1288 
703–722. https://doi.org/10.1002/qj 1289 

Hamill, T., Scheuerer, M., Bates, G., 2015. Analog Probabilistic Precipitation 1290 
Forecasts Using GEFS Reforecasts and Climatology-Calibrated Precipitation 1291 
Analyses. Mon. Weather Rev. 143, 3300–3309. https://doi.org/10.1175/MWR-1292 
D-15-0004.1 1293 

James, E.P., Benjamin, S.G., Marquis, M., 2017. A unfied high-resolution wind and 1294 
solar dataset from a rapidly updating numerical weather prediction model. 1295 
Renew. Energy 102, 390–405. https://doi.org/10.1016/j.renene.2016.10.059 1296 

Monteiro, J.A.F., Strauch, M., Srinivasan, R., Abbaspour, K., Gucker, B., 2016. 1297 
Accuracy of grid precipitation data for Brazil : application in river discharge 1298 
modelling of the Tocantins catchment. Hydrol. Process. 30, 1419–1430. 1299 
https://doi.org/10.1002/hyp.10708 1300 

Yuan, X., Wood, E.F., 2012. On the clustering of climate models in ensemble 1301 
seasonal forecasting. Geophys. Res. Lett. 39, 1–7. 1302 
https://doi.org/10.1029/2012GL052735 1303 

Yuan, X., Wood, E.F., Liang, M., 2014. Integrating weather and climate prediction: 1304 
Toward seamless hydrologic forecasting. Geophys. Res. Lett. 5891–5896. 1305 
https://doi.org/10.1002/2014GL061076.Received 1306 

Zeng, D., Yuan, X., 2018. Multiscale Land – Atmosphere Coupling and Its 1307 
Application in Assessing Subseasonal Forecasts over East Asia. J. 1308 
Hydrometeology 19, 745–760. https://doi.org/10.1175/JHM-D-17-0215.1 1309 
 1310 
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Point #23 1311 
P4 l100: please add a comment that SCC model will be described in section 2.3.2 1312 

Response: We added the following sentence to this section:  1313 

“The calibration model used in this study is the Seasonally Coherent Calibration (SCC) model, which is 1314 
introduced in detail in section 2.3.2.” 1315 

 1316 

Point #24 1317 
P5 l134 climatological means or mean? Please rephrase and clarify this sentence. 1318 

Response: Thank you, and we change it to ‘climatological mean’. 1319 

 1320 

Point #25 1321 
P6 l165: Why are only 100 members drawn, is there any difference with a varying number of ensemble 1322 
members for forecast reliability?  1323 

Response: Thank you for the comments. We use 100 members because the computation cost 1324 
is more affordable than using a larger ensemble size.  1325 

In order to evaluate how different ensemble sizes would affect the reliability and skills of 1326 
forecasts, we choose 22 sites randomly across Australia and compare the alpha index and 1327 
CRPS skill score across these sites using 100, 500, and 1000 ensemble members.  The 1328 
following map shows the locations of the 22 sites.  1329 

 1330 

 1331 

 1332 
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 1333 

The following figure shows the alpha index is almost identical across the selected sites for the 1334 
three ensemble sizes:  1335 

 1336 

 1337 

 1338 

 1339 

 1340 

Lead time 1                                Lead time 5                                 Lead time 9 1341 

     1342 

  1343 

Comparison of CRPS skill score shows that different ensemble sizes have negligible impacts 1344 
on the score:  1345 

Lead time 1                                Lead time 5                                 Lead time 9 1346 

 1347 

 1348 

As a result, we conclude that the ensemble size used in this study is reasonable.  1349 
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 1350 

Point #26 1351 
Is there a need or a reason to verify accumulated Eto forecast values across lead times (as is often the 1352 
case for streamflow forecasting)? Please comment. 1353 

Response: Thank you for the comments. For short-term weather forecasts, which are issued 1354 
on a daily basis, users are often interested in the short-lead-time forecasts (e.g., lead times 1 1355 
to 3). Accumulated forecasts across all lead times will not provide the information that users 1356 
are particularly interested.  1357 

In addition, the evaluation by lead time shows that improvements with the adoption of the 1358 
new calibration strategy (Calibrations 2 and 4) decrease with lead time, but still show better 1359 
performance than the calibrations (Calibrations 1 and 3) based on raw forecasts of input 1360 
variables, event at lead time 9. As a result, we are confident that evaluation based on 1361 
accumulated ETo will not change the conclusion of this study.   1362 

Point #27 1363 
P8 l225: 'wind speed is higher than 1m/s than the reference in Australia'. Could you please translate that 1364 
in terms of percentage so that this statement can be more easily compared to other locations. 1365 

Response: We add more quantitative information in the evaluation of raw forecasts of input 1366 
variables and use percentage to measure the changes: 1367 

“The daily minimum temperature (Tmin) is underpredicted by more than 1.5 °C in western and 1368 
central parts of Australia by the raw forecasts, but is overpredicted by ca. 1 °C in eastern and 1369 
southern Australia. Vapor pressure is underpredicted in western and central regions by ca.14%, 1370 
but is overpredicted by ca. 6% in coastal areas of southeastern Australia by the raw forecasts. 1371 
Raw solar radiation forecasts are about 5% higher than AWAP data across Australia. Forecasted 1372 
wind speed is higher than the reference data by more than 1 m s-1 (or by ca. 63%) in most parts 1373 
of Australia. For each input variable, spatial patterns of biases in raw forecasts are consistent 1374 
across the 9 lead times, demonstrating systematic errors in the raw NWP forecasts.” 1375 

 1376 

Point #28 1377 
P18 l380' NWP outputs have been increasingly used for ETo forecasting.' For which applications? Please 1378 
finish the sentence. 1379 

Response: We modify this sentence as follows: 1380 

" NWP outputs have been increasingly used for ETo forecasting to support water resource management." 1381 

 1382 
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Point #29 1383 
P18 l385 Addition 'of' in … skill 'of' the calibrated ETo forecasts. 1384 

 Response: We add the missing ‘of’ to this sentence:  1385 

“With this extra step, the bias, correlation coefficient, and skills of the calibrated ETo forecasts 1386 
are all improved.” 1387 

 1388 

Point #30 1389 
References: 1390 

Pappenberger, F., M. H. Ramos, H. L. Cloke, F. Wetterhall, L. Alfieri, K. Bogner, A. Mueller and P. Salamon 1391 
(2015). "How do I know if my forecasts are better? Using benchmarks in hydrological ensemble 1392 
prediction." Journal of Hydrology 522: 697-713. 1393 

Response:  We cite this paper in the revised manuscript in introducing the CRPS skill score.   1394 

 1395 

 1396 

 1397 


	Responses to Reviewer #1
	Point #1
	Point #2
	Point #3
	Point #4
	Point #5
	Point #6
	Point #7
	Point #8
	Point #9
	Point #10
	Point #11
	Point #12
	Point #13
	Point #14
	Point #15
	Point #16

	Responses to Reviewer #2
	Point #1
	Point #2
	Point #3
	Point #4
	Point #5
	Point #6
	Point #7
	Point #8
	Point #9
	Point #10

	Responses to Reviewer #3
	Point #1
	Point #2
	Point #3
	Point #4
	Point #5
	Point #6
	Point #7
	Point #8
	Point #9
	Point #10
	Point #11
	Point #12
	Point #13
	Point #14
	Point #15
	Point #16
	Point #17
	Point #18
	Point #19
	Point #20
	Point #21
	Point #22
	“More sophisticated remapping methods should be evaluated to understand the impacts of forecast regridding on statistical calibration.”
	“More sophisticated remapping methods should be evaluated to understand the impacts of forecast regridding on statistical calibration.”
	Reference:
	Bowler, N.E., Arribas, A., Mylne, K.R., Robertson, K.B., Beare, S.E., 2008. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 722, 703–722. https://doi.org/10.1002/qj
	Hamill, T., Scheuerer, M., Bates, G., 2015. Analog Probabilistic Precipitation Forecasts Using GEFS Reforecasts and Climatology-Calibrated Precipitation Analyses. Mon. Weather Rev. 143, 3300–3309. https://doi.org/10.1175/MWR-D-15-0004.1
	James, E.P., Benjamin, S.G., Marquis, M., 2017. A unfied high-resolution wind and solar dataset from a rapidly updating numerical weather prediction model. Renew. Energy 102, 390–405. https://doi.org/10.1016/j.renene.2016.10.059
	Monteiro, J.A.F., Strauch, M., Srinivasan, R., Abbaspour, K., Gucker, B., 2016. Accuracy of grid precipitation data for Brazil : application in river discharge modelling of the Tocantins catchment. Hydrol. Process. 30, 1419–1430. https://doi.org/10.10...
	Yuan, X., Wood, E.F., 2012. On the clustering of climate models in ensemble seasonal forecasting. Geophys. Res. Lett. 39, 1–7. https://doi.org/10.1029/2012GL052735
	Yuan, X., Wood, E.F., Liang, M., 2014. Integrating weather and climate prediction: Toward seamless hydrologic forecasting. Geophys. Res. Lett. 5891–5896. https://doi.org/10.1002/2014GL061076.Received
	Zeng, D., Yuan, X., 2018. Multiscale Land – Atmosphere Coupling and Its Application in Assessing Subseasonal Forecasts over East Asia. J. Hydrometeology 19, 745–760. https://doi.org/10.1175/JHM-D-17-0215.1
	Point #23
	Point #24
	Point #25
	Point #26
	Point #27
	Point #28
	Point #29
	Point #30


