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Responses to Reviewer #3 

Point #1 
Author(s): Qichun Yang et al. 

MS No.: hess-2021-69 

 This paper focuses on the comparison of two calibration strategies to provide short-term reference crop 
evapotranspiration (ETo). ETo forecasting is still a relatively new area of research, in Australia and 
elsewhere, and has received more attention in the past few years. Skilful ETo forecasts in Australia would 
help support efficient water use and water management. Two strategies to calibrate ETo forecasts have 
emerged: i) the calibration of raw ETo forecasts and ii) bias-correcting input variables first before 
calibrating ETo forecasts. Little work to date compares the two approaches, it is unclear which method 
might be more advantageous or skilful. This paper therefore addresses a topical subject with a large 
audience interest. 

I have some reservations regarding some methodological choices and justifications (purpose and 
inclusion of experiment 3 and 4), as well as a lack of interpretations of the results overall. I recommend 
revision to strengthen this paper. 

 Response: Thank you for the valuable suggestions and careful review. We revise this work 
carefully based on your constructive suggestions. 

 

Point #2 
The authors re-grid the weather forecast variables of ACCESS-G2 to match the timeframe and resolution 
of the gridded data AWAP. They perform four experiments: experiments 1) and 2) are based on the ETo 
anomaly and climatological mean, whereas experiment 3 and 4) use the ETo values directly. 
Furthermore, experiment 1) and 3) use raw inputs to calculate and calibrate ETo forecasts whereas 
experiments 2) and 4) first bias-correct inputs before ETo calibration. The SCC calibration method is used 
for ETo forecast while a quantile mapping method is used to bias-correct input forecasts. The authors 
evaluate the forecasts using three metrics for the theoretical assessment of bias, reliability and accuracy. 
Overall results suggest that the second strategy (bias-correction of inputs before ETo calibration) 
provides more skilful forecasts. 

Response: We appreciate the reviewer's thorough review. The work has been substantially 
improved based on the valuable comments.  
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Point #3 
Major comments: 

Methodology: 

P4 section 2.3: Why not compare the calibration method used SCC to other methods tested in the 
literature which would enable to place this work in context to other studies on ETo forecasting? 

Response: We appreciate the constructive comments. We understand that comparing the 
performance of SCC with existing methods will help readers better understand the strengths 
of SCC. We did not compare the SCC model directly with other models in the original 
submission for a couple of reasons: 

First, this investigation addresses a common challenge faced by NWP-based ETo forecasting, 
rather than developing a new calibration model for ETo forecasting. The primary objective of 
this investigation is to evaluate the necessity of correcting forecasts of input variables prior to 
calibrating ETo forecasts. As we introduced in the main text, the calibration strategy 
developed in this study is expected to benefit ETo forecast calibrations broadly, rather than 
improving an individual model. As suggested by the model experiments in our investigation 
(Calibrations 1-4), the developed strategy could potentially be applied to other calibration 
models.  

Second, we feel it is not necessary to compare the performance of SCC against calibration 
models with widely used but less sophisticated algorithms. Simple calibration models, such as 
quantile mapping (QM), have been widely used in calibrating hydroclimate forecasts. These 
models are often readily available, or could be easily coded and implemented. However, the 
limitations of these models have been reported (Zhao et al., 2017). When we started this 
investigation, we used quantile mapping to calibrate ETo forecasts (raw ETo forecasts 
constructed with raw forecasts of input variables). As demonstrated in the following figure, 
the CRPS skill score of quantile mapped ETo forecasts is not only lower than the SCC-
calibrated forecasts for each corresponding lead time, but also becomes negative (worse than 
climatological forecasts) in parts of Australia starting from lead time 4. As a result, calibration 
of ETo forecasts with quantile mapping further confirms the limitations of this model. Using 
such models as a reference to evaluate the performance of SCC is not fair, since their 
limitations have been reported. As a result, we decide not to include a comparison with 
quantile mapping in this manuscript. 

 



3 
 

 

CRPS skill score of calibrated ETo forecasts using Quantile Mapping  

 

Third, we have limited access to sophisticated calibration models. There is no global post-
processing software library archiving these models. As a result, we found it was hard to 
access the source code of these models and to directly compare SCC with them. In addition, 
previous comparisons suggest that the performance of these models varied with study areas, 
NWP models, and choice of evaluation metrics (Wilks, 2018), and there is no conclusion 
regarding which group of post-processing models has the best performance. Our indirect 
comparison with other models confirms the above study. Details will be presented in the 
following paragraphs.  
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Fourth, the short-achieved NWP forecasts (3-year) used in this study represent a challenge for 
conducting the calibration using other models. Many calibration models, particularly those 
based on models of the joint probability of forecasts and observations (Krzysztofowicz and 
Herr, 2001; Wang and Robertson, 2011), require long hindcasts (20-30 years) to establish a 
joint distribution to link observations and forecasts. Applying such models to short-archived 
forecasts such as those used in this study will substantially undermine the statistical 
assumption of these models. The advantages of SCC in calibrating short-archived forecast has 
been explained in our recent publications (Wang et al., 2019; Yang et al., 2021).   

As a result, we did not compare SCC directly with other models. However, we totally agree 
with the reviewer that comparison of model performance with other models will help readers 
better understand the reliability of this work. For example, we extract our results at three 
sites in Australia where ETo forecasts were also calibrated based on the Bayesian joint 
probability (BJP) model (Zhao et al., 2019), and compare the results of the two investigations. 
In addition, we also compare our results with investigations in other regions of Australia and 
the U.S. We add the following paragraph to discuss findings of our work relative to existing 
investigations to the Discussion section (section 4.1): 

“This investigation further highlights the importance of statistical calibration in improving the 
quality of raw ETo forecasts (Medina and Tian, 2020). In the ETo forecasting across 40 sites in 
Australia, although raw ETo forecasts constructed with NWP outputs reasonably captured the 
magnitude and variability of ETo, forecast skills better than climatology were only found for the 
first 6 lead times (Perera et al., 2014). Our investigation suggests that statistical calibration could 
substantially improve forecast skills and outperform the climatology forecasts for all 9 lead times 
across Australia. The findings of this investigation agree well with the site scale short-term ETo 
forecasting based on GCM outputs (Zhao et al., 2019a) in terms of improvements in forecast 
skills. Calibrated forecasts from Calibration 2 demonstrate similar skills as those of Zhao et al. 
(2019a). However, our calibration achieves the improvements using much shorter archived raw 
forecasts (3-year vs. 23-year) than Zhao et al. (2019a), thanks to the capability of SCC in 
calibrating short-archived forecasts (Wang et al., 2019). Calibrated forecasts from Calibration 2 
also demonstrate comparable biases (0.32-0.95%) with calibrated ETo forecasts (0.49-0.63%) in 
the U.S. based on the Bayesian model averaging (BMA) model and weather forecasts from three 
NWP models during 2014-2016 (Medina and Tian, 2020)." 

In addition, we also highlight the importance of further testing the proposed calibration 
strategy (strategy ii) based other calibration models. We add the following content to section 
4.2: 

“Second, further investigations based on other calibration models are needed to validate the 
conclusions of this investigation. Our analyses based on two different methods (based on ETo 
anomalies vs. based on original ETo) find similar improvements in calibrated ETo forecasts with 
the adoption of bias-correction of input variables. Additional evaluations using other calibration 
models will be needed to ascertain whether the improvements will be achieved when the 
calibration is conducted with a different model.” 
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Reference: 

Medina, H. and Tian, D.: Comparison of probabilistic post-processing approaches for improving 
numerical weather prediction-based daily and weekly reference evapotranspiration forecasts, 
Hydrol. Earth Syst. Sci., 24, 1011–1030, 2020. 

Perera, K. C., Western, A. W., Nawarathna, B. and George, B.: Forecasting daily reference 
evapotranspiration for Australia using numerical weather prediction outputs, Agric. For. Meteorol., 
194, 50–63, doi:10.1016/j.agrformet.2014.03.014, 2014. 

Wilks, D.S., 2018. Chapter 3. Univariate Ensemble Forecasting, in: Vannitsem, S., Wilks, D.S., Messner, 
J.W. (Eds.), Statistical Postprocessing of Ensemble Forecasts. pp. 49–89. 
https://doi.org/https://doi.org/10.1016/C2016-0-03244-8 

Krzysztofowicz, R., Herr, H.D., 2001. Hydrologic uncertainty processor for probabilistic river stage 
forecasting: precipitation-dependent model. J. Hydrol. 249, 46–68. 

Wang, Q.J., Robertson, D.E., 2011. Multisite probabilistic forecasting of seasonal flows for streams with 
zero value occurrences. Water Resour. Res. 47, 1–19. https://doi.org/10.1029/2010WR009333 

Wang, Q.J., Zhao, T., Yang, Q., Robertson, D., 2019. A Seasonally Coherent Calibration ( SCC ) Model for 
Postprocessing Numerical Weather Predictions. Mon. Weather Rev. 147, 3633–3647. 
https://doi.org/10.1175/MWR-D-19-0108.1 

Yang, Q., Wang, Q.J., Hakala, K., 2021. Achieving effective calibration of precipitatioAn forecasts over a 
continental scale. J. Hydrol. Reg. Stud. 35, 100818. https://doi.org/10.1016/j.ejrh.2021.100818 

Zhao, T., Wang, Q.J., Schepen, A., 2019. A Bayesian modelling approach to forecasting short-term 
reference crop evapotranspiration from GCM outputs. Agric. For. Meteorol. 269–270, 88–101. 
https://doi.org/10.1016/j.agrformet.2019.02.003 

 

 

Point #4 
Presentation of summary statistics. Why not use boxplots to present overall statistics and across lead 
times (for example next to figure 4 and so on)? Reliability diagrams for particular ETo thresholds would 
be helpful to communicate when the forecasts are reliable. 

Response: Thank you for the constructive suggestions.  We created boxplots for results 
shown as maps (Figures 1 to 9 in the main text). For Figures 1 and 7, which already include 
many subplots, we present the corresponding boxplots in the Supplementary Material. For 
other map figures (Figures 2-6, and 8-9), which have extra zoom for adding new subplots, we 
combine these boxplots with maps. We also update the main text accordingly. Please find the 
boxplots as follows: 

 

 

https://doi.org/https:/doi.org/10.1016/C2016-0-03244-8
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Figure 2 The boxplot summarizing improvements in correlation coefficient between raw ETo 
forecasts and AWAP ETo with the adoption of bias-correction to input variables 

 

 

Figure 3 The boxplot summarizing bias in calibrated ETo forecasts from Calibration 2 
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Figure 4 The boxplot summarizing differences in absolute bias between calibrated ETo forecasts 

from Calibration 2 with Calibration 1 

 

Figure 5 The boxplot summarizing correlation coefficient between calibrated ETo forecasts from 
Calibration 2 and AWAP ETo data 
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Figure 6 The boxplot summarizing differences in the correlation coefficient (calibrated forecasts vs. 
AWAP ETo) between Calibrations 2 and 1 

 

 

Figure 8 The boxplot summarizing differences in CRPS skill scores between the calibrated forecast 
from Calibration 2 with those from Calibration 1 
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Figure 9 The boxplot summarizing the alpha index in the calibrated ETo forecasts 

 

 

 

 

Figure S12. The boxplot of biases in raw ETo forecasts constructed without bias-corrected input 
variables (pink) and correct inputs (blue) 
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Figure S14. The boxplot of CRPS skill score in raw (pink) and calibrated ETo forecasts (blue) 

 

 We also created reliability diagrams to summarize to evaluate the calibrated ensemble 
forecasts from Calibration 2. The three thresholds used to generate the reliability diagram are 
3 mm/day, 6mm/day, and 9 mm/day. This diagram (Figure 10) is added to the main text to 
further evaluate the reliability of calibrated ETo forecasts  

 

Figure 10: Reliability diagrams of calibrated ETo forecasts during 4/2016-3/2019 with thresholds of  
3, 6, and 9 mm day-1. 
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We updated the Method section to introduce how the reliability diagram is created and how 
to understand the diagram:  

“We evaluate the reliability of calibrated ETo forecasts from calibration 2 using the reliability 
diagram (Hartmann et al., 2002), which assesses how well the predicted probabilities of an event 
corresponding to their observed frequencies. We convert the calibrated ensemble ETo forecasts 
to forecast probabilities exceeding three thresholds, including 3, 6, and 9 mm day-1. We pool 
forecasts of different grid cells, days, and lead times together in the calculation of forecast 
probability. In the reliability diagram, perfectly reliable forecasts will demonstrate a curve along 
the diagonal. A plotted curve above the diagonal indicates underestimations and vice versa.” 

 

We add the following sentence to section 3.5 (Reliability of calibrated ETo forecasts) to 
introduce the reliability diagram.  

“The reliability diagram further confirms the consistency between forecast probabilities and 
observed frequencies (Figure 10). The plotted curves based on three thresholds (3, 6, and 9 mm 
day-1) are mainly distributed along the 1:1 line, indicating high reliability of calibrated ETo 
forecasts.” 

 

Point #5 
Authors present experiments 1-4 in the method but then only present some results one experiment 3) 
and 4) in the last section of results (CRPSS in 3.5). No explanation are provided of why calibration 3) and 
4) are only briefly introduced. Why is there a big gap with no results on calibration 3) and 4) on the bias 
and reliability results? Could the authors please expand on the purpose of including these at all in? At 
p17 l350-354, 'a further evaluation based on a different way of implementing the calibration 
demonstrate similar improvements in calibrated ETo forecasts with the adoption of bias-correction to 
input variables'. Is the purpose of including experiment 3) and 4) to test the generalisation of the 
method? If so, it needs to be clearly stated and justified earlier. 

Response: Thank you for the valuable comments. The reviewer is correct that adding 
calibrations 3 and 4 is to further evaluate that whether our strategy could be generally 
applied to future NWP-based ETo forecasting, and will the strategy be independent of 
calibration models. We further explain the reason by adding the following sentences to clarify 
why Calibrations 3 and 4 are included in this study in Method (section 2.3): 

 

“The comparison between Calibrations 1 and 2 is to investigate whether the bias-correction of input 
variables would further improve ETo forecasts when the calibration is conducted based on ETo anomalies 
and climatological mean. We also conduct additional calibrations which post-process ETo forecasts 
directly (Calibrations 3 and 4), to test whether the contribution of improving the input variables to ETo 
forecast calibration, if there is any, will depend on how ETo forecasts are calibrated (based on anomalies 
vs. based on original ETo forecasts). Calibrations 3 and 4 will help evaluate the feasibility of strategy ii 
for the general application in NWP/GCM-based ETo forecasting. Key steps of the four calibrations could 
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be found in the schematic diagram (Figure S1). In the main text, we primarily analyze results from 
Calibrations 1 and 2. Improvements with the adoption of bias-correction to input variables in Calibrations 
3 and 4 are very similar to those of Calibrations 1 and 2 (see the Supplementary Material). To avoid 
redundancy, we present results from Calibrations 3 and 4 in the Supplementary Material.” 

 

In the original submission, we did not present all results from Calibrations 3 and 4 because 
these two calibrations were complementary for supporting findings from Calibrations 1 and 
2. This is an extra step to further evaluate the robustness of the calibration strategy 
developed in this study. In addition, differences in bias, reliability, and correlation coefficient 
between Calibrations 3 and 4  are very similar to those between Calibrations 1 and 2. We 
thought it might be a bit redundant and may confuse readers if we present all results from 
Calibrations 3 and 4 in the main text. However, we also agree with the reviewer that it is 
necessary to present results from Calibrations 3 and 4 if readers may be interested in them. In 
the revised manuscript, we present them in the supplementary material (See the figures 
below), in order not to distract readers from understanding key objectives (e.g., the necessity 
of bias-correcting input variables prior to ETo calibration) of this investigation. Specifically, in 
addition to the figure showing improvements in CRPS skill score, we also add figures 
demonstrating differences in absolute bias (Figure S15), correlation coefficients (Figure S16), 
and alpha index (Figure S18) between Calibrations 3 and 4 in the Supplementary Material: 
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Figure S15.  Differences in absolute bias between Calibrations 3 and 4  
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Figure S16.  Differences in correlation coefficient between Calibrations 3 and 4 
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Figure S18.  Differences in alpha index between Calibrations 3 and 4 

 

 

We add one new section in Results to introduce results from Calibrations 3 and 4  

3.6 Results from Calibrations 3 and 4 

“We also compare the bias, reliability, correlation coefficient, and CRPS skill score of calibrated forecasts 
from Calibrations 3 and 4, to evaluate whether we can obtain similar improvements through the bias-
correction of input variables if we conduct the ETo forecast calibration in a different way (without using 
climatological mean and anomalies). Results show that the adoption of bias-correction also leads to lower 
bias, higher correlation coefficient, and higher CRPS skill score in terms of magnitude, spatial patterns, 
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and trend along the lead times, when ETo forecasts are calibrated directly (Figure S10, and S12-S13). In 
addition, the alpha index was only slightly different between Calibrations 3 and 4 (Figure S11). This 
additional comparison further confirms the general applicability of strategy ii for enhancing NWP-based 
ETo forecasting.” 

 

 

Point #6 
Methodological choices for evaluation: 

P7 l 180-185 : why choosing the absolute bias and over a relative measure e.g. percentage bias? This 
choice makes it difficult to compare the magnitude of the errors in the results across different variables 
and studies. For example, figure 1 shows a bias between -2 to 2mm/day which does not seem like much 
compared to other input variables such as precipitation. Figure 3 with a range of -0.1 to 0.1 seems very 
small. Conversely, percentages are used for the correlation coefficient in Figure 6 so why not use it for 
the bias? 

Response: We appreciate the reviewer's valuable comments. Bias shows differences with the 
observed mean, and could be either positive or negative. Larger departures from mean, no 
matter the bias is positive or negative, suggest larger inconsistencies with observations. Using 
absolute bias will help measure the departure, rather than indicating overestimations or 
underestimations. As a result, using absolute bias, we can compare results from two different 
calibrations, with smaller absolute bias indicating closer to the mean, and thus suggesting 
better performance.  

We agree with the reviewer that using percentages will make the results more comparable 
with other variables, or with other studies. As a result, we change the unit of bias in figures 1, 
S12, 3, 4 to percentage: 
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Figure 1: Bias in (three panels on the left) raw ETo forecasts constructed with raw forecasts of input variables and (three panels on the right) 
raw ETo forecasts constructed with bias-corrected input variables. 
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Figure S12. Boxplot of biases in raw ETo forecasts constructed without bias-corrected input variables (pink) and correct inputs (blue) 
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Figure 3: Bias in calibrated ETo forecasts of 9 lead times from Calibration 2, in which raw ETo forecasts 
are constructed with bias-corrected input variables. Maps on the left show the spatial patterns of 
bias, and the boxplot on the right summarizes results for all grid cells.  

 

 

Figure 4: Differences in absolute bias between calibrated ETo forecasts from Calibration 2 with 
Calibration 1. Maps on the left show the spatial patterns of difference in absolute bias, and the 
boxplot on the right summarizes results for all grid cells. 
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Point #7 
P8 l205-2015: why is climatology used as reference forecast for the skill score? In hydrological 
forecasting persistence is typically used for short lead times, whereas climatology would be used for 
longer lead times, see fore example (Pappenberger, Ramos et al. 2015). Could you please expand and 
justify the choice of reference forecast used and implication of interpretation of results? 

Response: We really appreciate the reviewer’s valuable suggestion and the introduction of 
this classic paper. We choose the climatology forecasts as the reference rather than using 
persistency for several reasons: 

1, Climatology forecasts have been widely used as the reference in the calculation of CRPS 
skill score for short-term hydroclimate forecasts. One advantage of climatology forecasts is 
that it often has similar error across all lead times (Bennett et al., 2014), and will be useful to 
evaluate forecasts skills among different lead times. Therefore, climatology forecasts could 
be used to show to decreasing skills of the calibrated forecasts as lead time advances 
(Academies, 2014; Zhao et al., 2019).  

2, Persistence is also a good reference, but it's been mainly used for the first two lead times. 
As demonstrated in figure 5 of Bennett et al. (2014), errors in persistency could increase 
quickly with lead time. As a result, multiple studies suggested that persistence could be good 
for skill discrimination for the short lead times (Pappenberger et al., 2015; Thiemig et al., 
2015).  

Since we investigate 9 lead times in this study, errors in persistency are expected to be large 
at long lead times. As a result, we think the use of climatology forecasts as the reference for 
the calculation of the CRPS skill score is acceptable.  

We add the following sentence to section 2.4.4 (Skills of the raw and calibrated forecasts) to 
explain the use of climatology forecasts as the reference for the calculation of CRPS skill score  

“In the calculation of CRPS skill score, both climatology forecasts or the last observations 
(persistence) have been used as reference forecasts (Pappenberger et al., 2015; Thiemig et al., 
2015). However, reference forecasts based on persistence are more suitable for evaluating the 
performance of forecasts shorter than two days. As a result, we choose climatology forecasts as 
the reference since errors in climate forecasts are similar among all lead times and thus could be 
used to evaluate the increasing errors in raw and calibrated forecasts as lead time advances.” 

 

Reference:  

Academies, N.: The science of NOAA’S Operational Hydrologic Ensemble Forecast Service, Bull. 
Am. Meteorol. Soc., (January), 79–98, doi:10.1175/BAMS-D-12-00081.1, 2014. 
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Bennett, J. C., Robertson, D. E., Lal, D., Wang, Q. J., Enever, D., Hapuarachchi, P. and Tuteja, N. 
K.: A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days, 
J. Hydrol., 519, 2832–2846, doi:10.1016/j.jhydrol.2014.08.010, 2014. 

Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F., Alfieri, L., Bogner, K., Mueller, A. 
and Salamon, P.: How do I know if my forecasts are better? Using benchmarks in hydrological 
ensemble prediction, J. Hydrol., 522, 697–713, doi:10.1016/j.jhydrol.2015.01.024, 2015. 

Thiemig, V., Bisselink, B., Pappenberger, F. and Thielen, J.: A pan-African medium-range 
ensemble flood forecast system, Hydrol. Earth Syst. Sci., 19, 3365–3385, doi:10.5194/hess-19-
3365-2015, 2015. 

Zhao, T., Wang, Q. J. and Schepen, A.: A Bayesian modelling approach to forecasting short-term 
reference crop evapotranspiration from GCM outputs, Agric. For. Meteorol., 269–270(January), 
88–101, doi:10.1016/j.agrformet.2019.02.003, 2019. 

 

 

Point #8 
P8 l214. Why is the definition of CRPSS using percentage? As far as I am aware, most studies do not 
present the CRPSS in terms of percentage, could you please comment on the reason of this choice with 
references that also use percentages and if there is any advantages? 

 Response: Thank you for the comments. We agree with the reviewer that many studies use 
ratios when presenting the CRPS skill score. Meanwhile, we also notice that some studies (see 
the reference list at the bottom of our response to this comment) use percentage as the unit 
of CRPS skill score. No matter which unit is used,  CRPS skill score could effectively 
demonstrate higher skills in calibrated forecasts relative to the raw forecasts (Figure 7),  and 
quantify improvements in forecast skill (Figures 8, S9, S12) with the adoption of the 
calibration strategy. 

As shown in Figure 7, skills of calibrated forecasts decreased quickly with lead time. As a 
result, the CRPS skill score decreases to small numbers and approaches zero at lead time 9. 
One advantage of using percentages as the unit for CRPS skill score is that these small 
numbers will be expressed as integers rather than small decimals.  

We add the following sentence to explain why the percentage is used for CRPS skill score:  

“We use percentage as the unit of CRPS skill score so low skill scores at long lead times will be 
expressed as integers. ” 

 

Here are some investigations using % as the unit of CRPS skill score  
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Brown, J. D. and Seo, D. J.: A nonparametric postprocessor for bias correction of hydrometeorological 
and hydrologic ensemble forecasts, J. Hydrometeorol., 11(3), 642–665, doi:10.1175/2009JHM1188.1, 
2010. 

Kumar, L. G. A., Smith, A. S. D., Gonzalez, G. B. P., Merryfield, V. K. W. and Newman, A. S. Á. M.: A 
verification framework for interannual-to-decadal predictions experiments, Clim. Dyn., 40, 245–272, 
doi:10.1007/s00382-012-1481-2, 2013. 

Munkhammar, J., van der Meer, D. and Widén, J.: Probabilistic forecasting of high-resolution clear-sky 
index time-series using a Markov-chain mixture distribution model, Sol. Energy, 184(January), 688–695, 
doi:10.1016/j.solener.2019.04.014, 2019. 

Robertson, D. E. and Wang, Q. J.: Seasonal Forecasts of Unregulated Inflows into the Murray River , 
Australia, Water Resour. Manag., 27, 2747–2769, doi:10.1007/s11269-013-0313-4, 2013. 

Schepen, A., Wang, Q. J. and Robertson, D. E.: Seasonal Forecasts of Australian Rainfall through 
Calibration and Bridging of Coupled GCM Outputs, Mon. Weather Rev., 142, 1758–1770, 
doi:10.1175/MWR-D-13-00248.1, 2014. 

 

Point #9 
Analysis and interpretation of results: 

P11 l259-261: why the higher difference in bias in approaches for the Nothern Territory? How does this 
relate to the biases, errors and assumptions of the NWP? Is it correlated to the biases of specific input 
variables? How is it correlated to the nonlinear relationship in calculatint ETo? Why are the biases most 
pronounced for shorter lead times? Please comment. 

Response: Thank you for the valuable comments. To answer these questions, we present 
more results to explain how quantile mapping to input variables contributes to improving 
calibrated ETo forecasts. Specifically, we (1) calculate the correlation coefficients (r) between 
raw/bias-corrected forecasts of the five input variables and AWAP data to further analyze 
how quantile mapping has improved input variables, in addition to correcting bias (shown in 
figure 1); (2) investigate the improvements in correlation coefficients between raw ETo 
forecasts following the bias-correction to input variables and AWAP ETo, to examine how 
improvements in each variable are translated into the resultant raw ETo forecasts; (3) explain 
how improvements in raw ETo forecasts through bias-correcting input variables lead to 
improvements in calibrated ETo forecasts. Please find more details as follows: 

1, In addition to correcting bias (Figures S2 to S6), quantile mapping also generally improves 
the temporal patterns of raw forecasts of the input variables. Following figures shows r 
between raw forecasts of the input variables and their corresponding AWAP data (three 
columns on the left), and improvements in r by quantile mapping (three columns on the 
right): 
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Figure S7. Correlation coefficients (r) between raw Tmax forecasts and AWAP data (three panels on the left), and improvements in r 
(three panels on the right) through quantile mapping 
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Figure S8. Correlation coefficients (r) between raw Tmin forecasts and AWAP data (three panels on the left), and improvements in r 
(three panels on the right) through quantile mapping 
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Figure S9. Correlation coefficients (r) between raw vapor pressure forecasts and AWAP data (three panels on the left), and 
improvements in r (three panels on the right) through quantile mapping 
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Figure S10. Correlation coefficients (r) between raw solar radiation forecasts and AWAP data (three panels on the left), and 
improvements in r (three panels on the right) through quantile mapping 
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Figure S11. Correlation coefficients (r) between raw wind speed forecasts and AWAP data (three panels on the left), and 
improvements in r (three panels on the right) through quantile mapping 
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As shown in the above figures, r between raw forecasts of the input variables and AWAP data 
varies with the input variables. The two temperature variables have higher r values than the 
other three variables, and wind speed forecasts demonstrate the lowest correlation with 
AWAP data. For all variables, the r values decrease with lead time, indicating higher 
uncertainties in raw forecasts at longer lead times.  

Quantile mapping generally improves the correlation between forecasts and AWAP data. The 
above figures show that bias-corrected forecasts demonstrate higher r for Tmax, solar 
radiation, and wind speed across most parts of Australia; for Tmin and vapor pressure, 
changes in r are less significant and both improvements and slight decreases in r are 
observed.  

We add the above figures to the supplementary. We also add following descriptions to 
section 3.1:  

“Raw forecasts of the input variables generally agree with the AWAP data in temporal patterns during the 
study period, but the r varies with variables (Fig. S7-S11). The two temperature variables (Tmax and 
Tmin) have higher r values (>0.9) than the other three variables, and wind speed forecasts demonstrate 
the lowest correlations with AWAP data. For all variables, the r decreases with lead time, indicating 
higher uncertainties in raw forecasts at longer lead times.” 

“In addition, quantile mapping also improves the correlation between forecasts and AWAP data (Fig. S7-
S11). The most significant improvements are found in wind speed forecasts, showing increases in r by up 
to 0.2 in central and southern parts of Australia. Forecasts of Tmax and solar radiation also demonstrate 
higher r with the adoption of quantile mapping. Both increases and slight decreases were found for vapor 
pressure and Tmin, showing that temporal patterns of forecasts of these two variables are not changed 
much through the bias-correction. ” 

2, With the adoption of quantile mapping to raw forecasts of individual variables, raw ETo 
forecasts (Calibrations 2 or 4) also show higher r with observations, than the raw ETo 
forecasts constructed with the original raw forecasts of input variables (Calibrations 1 or 3)： 
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Figure 2: The comparison between the correlation coefficient of AWAP ETo and raw ETo forecasts 
constructed with the bias-corrected inputs vs. the correlation coefficient of AWAP ETo and raw ETo 
forecasts constructed with the uncorrected inputs. The boxplot on the right summarizes results for all 
grid cells.  

As is shown in the above figure, the quantile mapping also improves the temporal patterns of raw ETo 
forecasts, for all the lead times. More significant improvements are found in northern Australia. 
However, due to the nonlinearity in the calculation of ETo using the input variables, spatial patterns of 
improvements in r (Figure 2) does not resemble that of any individual input variables. Although both 
Tmax and wind speed show more significant improvements in northern Australia, where the r 
improvements are greater than other regions (Figure 2), the spatial patterns of r improvements in ETo 
forecasts are different from these two variables in other parts of the country. As a result, we believe 
that improvements in r of raw ETo forecasts are contributed jointly by these input variables and their 
interactions.  

We add the above figure (Figure 2) to the manuscript and add the following contents to the 
manuscript:   

“The adoption of quantile mapping to improve input variables also improves the temporal patterns of raw 
ETo forecasts (Figure 2). Compared with the raw ETo forecasts constructed with uncorrected input 
variables, the raw ETo forecasts based on bias-corrected inputs generally shows higher correlation 
coefficients with AWAP ETo, particularly in northern Australia. However, due to the nonlinearity in the 
calculation of ETo using the input variables, spatial patterns of improvements in r (Figure 2) does not 
resemble improvements in any individual input variables (Figures S7 to S11). The improvements in r of 
raw ETo forecasts seem to be contributed jointly by these input variables and their interactions.” 

3, We add the following contents to section 3.2 to explain the spatial patterns of changes in r 
and absolute bias: 
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“Larger reductions in absolute bias in northern Australia coincide with the improvements in the 
correlation between raw ETo forecasts and AWAP ETo (Figure 2). However, unlike the improvements in 
r for all lead times in raw ETo forecasts, the improvements in absolute bias are more pronounced for short 
lead times (Days 1-3) than long lead times (Days 7-9). The uneven improvements may reflect that 
intrinsic uncertainties at long lead times have hindered the manifestation of improvements to the raw ETo 
forecasts in calibrated ETo forecasts.” 

Based on the above analyses, we can then answer the questions the reviewer raised 
regarding the figure of absolute bias in this comment.  

More significant reductions in absolute bias in northern Australia show similar spatial 
patterns with that of the improvements in correlation coefficient between raw ETo forecasts 
and AWAP ETo. As we further explained in our response to your next comment (#10), 
deficiencies in NWP models in simulating weather dynamics in tropical regions have been 
reported. However, improvements to raw ETo forecasts in r with the application of quantile 
mapping could not be explained by any individual variable. The nonlinearity in calculating ETo 
based on the individual variables may have combined improvements in each variable and 
lead to more significant improvements in northern Australia. Less significant improvements in 
ETo forecasts at longer lead times may be caused by the more significant intrinsic 
uncertainties than short lead times. These uncertainties have inhibited the translation of 
improvements in raw ETo forecasts to calibrated forecasts.  

 

Point #10 
P13 l282-285: Why lowest score of correlation coefficient in northern Territory? Is it linked to the NWP 
(and if so how?) or is it linked to observations? E.g. differneces in observations compared to rest of 
country? 

Response:  Thank you for the comments. We believe the correlation results from the NWP 
forecasts rather than from observations for several reasons:  

1, Evaluation of the observations (AWAP data) did not show larger errors in this region, than 
other areas of Australia (Jones et al., 2009). As a result, we do not have evidence that the 
quality of observations in this region is lower than in other regions  

2, Deficiencies of NWP forecasts in tropical regions in Australia have been well documented. 
Due to its highly dynamic nature, tropical regions often demonstrate larger errors than other 
climate zones. In the evaluation of NWP forecasts in Australia, tropical zones often show 
lower skills than other regions (Ebert and Mcbride, 2000; Mcbride and Ebert, 2000; Roux et 
al., 2010). According to Huang et a. (2018), ACCESS models have been suffering from low skills 
in simulating the convective processes in tropical zones of Australia. 
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3, Raw ETo constructed with the ACCESS outputs showed higher RMSE in Northern Territory 
than other regions (Perera et al., 2014), further confirms that lower correlation coefficient is 
mainly caused by the NWP forecasts.  

We add the following sentences to the section 3.3:  

“Deficiencies in ACCESS models in simulating dynamics of tropical climate systems may have 
resulted in low correlation coefficients in Northern Territory.” 

  

Reference: 

Ebert, E. E. and Mcbride, J. L.: Verification of precipitation in weather systems : determination 
of systematic errors, J. Hydrol., 239, 179–202, 2000. 

Huang, J., Rikus, L. J., Qin, Y. and Katzfey, J.: Assessing model performance of daily solar 
irradiance forecasts over Australia, Sol. Energy, 176(November), 615–626, 
doi:10.1016/j.solener.2018.10.080, 2018. 

Jones, D. A., Wang, W. and Fawcett, R.: High-quality spatial climate data-sets for Australia, Aust. 
Meteorol. Oceanogr. J., 58, 233–248, 2009. 

Mcbride, J. L. and Ebert, E. E.: Verification of quantitative precipitation forecasts from 
operational numerical weather prediction models over Australia, Weather Forecast., 15(1), 
103–121, doi:10.1175/1520-0434(2000)015<0103:VOQPFF>2.0.CO;2, 2000. 

Perera, K. C., Western, A. W., Nawarathna, B. and George, B.: Forecasting daily reference 
evapotranspiration for Australia using numerical weather prediction outputs, Agric. For. 
Meteorol., 194, 50–63, doi:10.1016/j.agrformet.2014.03.014, 2014. 

Roux, B., Seed, A., Pagano, T. and Roux, B.: Improved use of precipitation forecasts in short-
term water forecasting – progress report, The Centre for Australian Weather and Climate 
Research A partnership between CSIRO and the Bureau of Meteorology Improved., 2010. 

 

       

Point #11 
P14 l294-297: The geographical patterns of the correlation performance is very similar to the patterns of 
the bias performance. Could you please comment why and if the reasons are the same? Are these related 
to either the NWP or observations? 

Response: Thank you for the valuable comments. We add the following figure to the 
manuscript to demonstrate how bias-correction of input variables improves correlations 
between raw ETo forecasts and AWAP ETo:  
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Figure 2: The comparison between the correlation coefficient of AWAP ETo and raw ETo forecasts 
constructed with the bias-corrected inputs vs. the correlation coefficient of AWAP ETo and raw ETo 
forecasts constructed with the uncorrected inputs. The boxplot on the right summarizes results for all 
grid cells.  

The above figure shows that when input variables are bias-corrected, the resultant raw ETo 
forecasts show higher correlation coefficients, than raw ETo forecasts constructed with 
uncorrected inputs. Spatial patterns of the improvements in r in raw forecasts for short lead 
times are consistent with the improvements in r in calibrated forecasts (Figure 6). As a result, 
we believe this is how the new calibration strategy improves the calibration of ETo forecasts. 
Less significant improvements in ETo forecasts at longer lead times may be caused by the 
more significant intrinsic uncertainties in raw forecasts than short lead times. These 
uncertainties have inhibited the translation of improvements in raw ETo forecasts to 
calibrated forecasts. We have explained the connections between improvements in raw 
forecasts and calibrated forecasts in response to your comment #9. 

As we introduced in the manuscript, when we calibrate the raw ETo forecasts (f(t)), we built a 
conditional distribution (𝑜𝑜�(m(𝑡𝑡))) for observations (o(t)), and 100 values will be drawn from 
this conditional distribution to generate the calibrated ensemble forecasts:  

 

𝑜𝑜�(m(𝑡𝑡))~𝑁𝑁�𝜇𝜇𝑜𝑜(m(𝑡𝑡)) + 𝑟𝑟
𝜎𝜎𝑜𝑜(m(𝑡𝑡))
𝜎𝜎𝑓𝑓(m(𝑡𝑡))

(𝑓𝑓(𝑡𝑡) − 𝜇𝜇𝑓𝑓(m(𝑡𝑡))), (1 − 𝑟𝑟2)𝜎𝜎𝑜𝑜2� 
 

in which where 𝐦𝐦(𝒕𝒕) returns the month k (k=1 to 12)  of daily forecasts or observations of day 𝒕𝒕; 
 𝝁𝝁𝒇𝒇(𝐦𝐦(𝒕𝒕)) 𝐚𝐚𝐚𝐚𝐚𝐚 𝝈𝝈𝒇𝒇(𝒎𝒎(𝒕𝒕)) refer to the marginal distribution’s mean and standard deviation of 𝒇𝒇(𝒕𝒕) in 
month 𝐦𝐦(𝒕𝒕), respectively; 𝝁𝝁𝒐𝒐(𝐦𝐦(𝒕𝒕)) 𝐚𝐚𝐚𝐚𝐚𝐚 𝝈𝝈𝒐𝒐(𝒎𝒎(𝒕𝒕)) are the mean and standard deviation of the 
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marginal distribution of 𝒐𝒐(𝒕𝒕) in month 𝐦𝐦(𝒕𝒕); 𝒓𝒓 is the correlation between 𝒇𝒇(𝒕𝒕) and 𝒐𝒐(𝒕𝒕) in the 
transformed space. 

As a result, when the correlation is improved, it will help improve the estimation of the mean 
and standard deviation of the above conditional distributions. As a result, bias in calibrated 
forecasts will be further reduced. That is why improvements in bias demonstrate a similar 
spatial pattern as those of the correlation coefficient. 

To explain improvements in r in calibrated forecasts, we add the following sentence to the 
section 3.3:   

“Spatial patterns of improvements in r of calibrated ETo forecasts (Figure 6) are similar to the 
improvements in r of raw ETo forecasts (Figure 2), particularly for the short lead times. The 
improvements in r of calibrated ETo forecasts (Figure 6) may also lead to more reliable 
conditional distributions for a given raw forecast (equation 4). As a result, regions showing 
improvements in r in calibrated ETo forecasts (Figure 6) often demonstrate reductions in 
absolute bias (Figure 3).” 

 

Point #12 
P16 l320-328. Please comment on why the accuracy has larger differences in terms of geographical 
patterns than for the bias and PIT performance which had very strong localised performance. 

Response: Thank you for the comments. We believe there are four reasons for the differences 
in spatial patterns of CRPS skill score (Figure 8) with changes in bias (Figure 4), correlation 
coefficient (Figure 6), and alpha index (Figure S13): 

1, The metrics measure different features of the quality of forecasts, and may have different 
sensitivities to changes in calibrated forecasts. As a result, it is not unexpected that their 
spatial patterns show differences. The CRPS skill score measures the performance of 
calibrated forecasts relative to the climatology forecast; correlation coefficient shows 
consistency between observations and forecasts; bias measures average differences; the 
alpha index is an indicator showing whether the distribution of calibrated forecasts is 
overconfident or underconfident. As a result, improvements indicated by these metrics do 
not necessarily show exactly the same spatial patterns.  

2, The alpha index is less sensitive to changes in forecasts than other metrics. It is well known 
that the quality of forecasts often declines with lead time, even for calibrated forecasts. This 
tendency can be seen from the correlation coefficient (Figure 5) and CRPS skill score (Figure 
7). However, the same trend is not shown by the alpha index. As demonstrated by figure 9, 
the alpha index demonstrates similar magnitudes and spatial patterns among the 9 lead 
times. As was introduced in equations 13 and 14, PIT value and alpha index are mainly used 
to measure the consistency between distributions of forecasts and observations. 
Cmprovements achieved through the adoption of calibration strategy ii (e.g., Calibrations 2 
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and 4) may not significantly change the statistical distributions of the calibrated forecasts. As 
a result, differences in alpha index (Figure 13) between Calibrations 2 and 1 do not show 
spatial patterns resembling absolute bias (Figure 4), correlation coefficient (Figure 6), and 
CRPS skill score (Figure 8). In addition, the t-test suggested that differences in alpha index 
between Calibrations 2 and 1 are not statistically significant for most lead times (Table S2).  

3, Although Improvements in absolute bias, correlation coefficient, and CRPS skill score 
measures different features of the improvements (explain in our point 1 of the our response 
to this current comment), their spatial patterns are generally consistent. We calculate the 
spatial correlation for changes in CRPS skill score vs. changes in absolute bias (figure 8 vs. 
figure 4), and the spatial correlation for changes in CRPS skill score vs. changes in correlation 
coefficients (figure 8 vs. figure 6). As is shown in the following figure, the spatial patterns of 
CRPS skill score improvements are generally consistent with the reduction in absolute bias 
(negative r values), and increases in r (positive r values).  

 

4, The upper and lower limits used for the maps may have affected our understanding of the 
spatial patterns of the evaluation metrics. Following comparison shows that when using 
narrower limits (-3% to 3%, rather than -5% to 5%) for the color bar of the maps showing 
improvements in correlation coefficients (figure on the right), the spatial pattern is more 
consistent with the maps showing increases in CRPS skill score (Figure 8).  In the revised 
manuscript, we use the plot with narrower color bar limits in the revised manuscript.  
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To explain spatial patterns of the evaluation metrics, we add a new subsection to the Results section 
(3.7 Summary of results): 

“Although the selected metrics measure different aspects of forecast quality, they generally agree with 
each other in demonstrating improvements in calibrated ETo forecasts with the adoption of the Strategy ii. 
As introduced in the Method section, the CRPS skill score measures the performance of the calibrated 
forecasts relative to climatology forecast; correlation coefficient shows consistency between observations 
and forecasts in temporal variability; bias measures average differences; the α-index is an indicator 
showing whether the distribution of calibrated forecasts is overconfident or underconfident. As a result, 
these metrics differ from each other when used to measure differences between different calibrations 
(Figures 4, 6, and 8). However, these three metrics are generally consistent in the spatial patterns of 
improvements. As demonstrated in Figure 4, the alpha index showed fewer decreases at longer lead times 
than other metrics, indicating that α-index is less sensitive to changes in the quality of calibrated 
forecasts. That is why the adoption of calibration Strategy ii did not lead to significant changes in the α-
index.” 

 

Point #13 
P16 l329: Results on calibration 2 and 4: what is the comparison between 2 and 4? Why are these only 
addressed in the evaluation of forecast accuracy section? Why is there no mention of these for the bias 
and reliability evaluation? I suggest changing the section order and moving this section first. Then, add a 
sentence in the bias and reliability section to explicitly communicate what results of experiment 3) and 4) 
are not presented and why. 
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 Response: Thank you for the valuable suggestions. We check the original submission and 
believe your comments refer to Calibrations 3 and 4 here.  

As we explain in our response to your comment #5, calibrations 3 and 4 are to further confirm 
that whether our strategy is suitable for general application. We further explain the reason of 
by adding the following sentences to clarify why Calibrations 3 and 4 are included in this 
study in Method: 

“The comparison between Calibrations 1 and 2 is to investigate whether the bias-correction of input 
variables would further improve ETo forecasts when the calibration is conducted based on ETo anomalies 
and climatological mean. We also conduct additional calibrations which post-process ETo forecasts 
directly (Calibrations 3 and 4), to test whether the contribution of improving the input variables to ETo 
forecast calibration, if there is any, will depend on how ETo forecasts are calibrated (based on anomalies 
vs. based on original ETo forecasts). Calibrations 3 and 4 will help evaluate the feasibility of strategy ii 
for the general application in NWP/GCM-based ETo forecasting. Key steps of the four calibrations could 
be found in the schematic diagram (Figure S1). In the main text, we primarily analyze results from 
Calibrations 1 and 2. Improvements with the adoption of bias-correction to input variables in Calibrations 
3 and 4 are very similar to those of Calibrations 1 and 2 (see the Supplementary Material). To avoid 
redundancy, we present results from Calibrations 3 and 4 in the Supplementary Material.” 

As we introduced in our response to your comment point #5, we add more results (bias, 
correlation, and alpha-index) from Calibrations 3 and 4 to the Supplementary material and 
one new subsection (3.6) to briefly introduce these figures (Figures S15-S18). 

 

Point #14 
Discussion: 

There are little to no direct comparison of results and calibration work presented here to any previous 
methods or studies (which were mentioned in the introduction). To address a research closure, please put 
the work presented in this paper in context with other studies applying strategy 1 and strategy 2. 

Response: We appreciate the reviewer’s valuable suggestion. We explain in detail why we do 
not compare our calibration directly with calibrations using other models in our response to 
your comment #3. However, we totally agree with the reviewer that it is necessary to 
compare our results with previous investigations in ETo forecasting to help the audience 
better understand the performance of our model. Therefore, we add the following contents 
to the Discussion:  

“This investigation further highlights the importance of statistical calibration in improving the 
quality of raw ETo forecasts (Medina and Tian, 2020). In the ETo forecasting across 40 sites in 
Australia, although raw ETo forecasts constructed with NWP outputs reasonably captured the 
magnitude and variability of ETo, forecast skills better than climatology were only found for the 
first 6 lead times (Perera et al., 2014). Our investigation suggests that statistical calibration could 
substantially improve forecast skills and outperform the climatology forecasts for all 9 lead times 
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across Australia. The findings of this investigation agree well with the site scale short-term ETo 
forecasting based on GCM outputs (Zhao et al., 2019a) in terms of improvements in forecast 
skills. Calibrated forecasts from Calibration 2 demonstrate similar skills as those of Zhao et al. 
(2019a). However, our calibration achieves the improvements using much shorter archived raw 
forecasts (3-year vs. 23-year) than Zhao et al. (2019a), thanks to the capability of SCC in 
calibrating short-archived forecasts (Wang et al., 2019). Calibrated forecasts from Calibration 2 
also demonstrate comparable biases (0.32-0.95%) with calibrated ETo forecasts (0.49-0.63%) in 
the U.S. based on the Bayesian model averaging (BMA) model and weather forecasts from three 
NWP models during 2014-2016 (Medina and Tian, 2020)." 

In addition, we also highlight the importance of testing the proposed calibration strategy 
(strategy ii) in the future in section 4.2, in the hope that this strategy will be tested b based 
on other calibration models:  

“Second, further investigations based on other calibration models are needed to validate the 
conclusions of this investigation. Our analyses based on two different methods (based on ETo 
anomalies vs. based on original ETo) find similar improvements in calibrated ETo forecasts with 
the adoption of bias-correction of input variables. Additional evaluations using other calibration 
models will be needed to ascertain whether the improvements will be achieved when the 
calibration is conducted with a different model.” 

 

 

Point #15 
It is unclear whether authors recommend the use of experiment 2) or 4), when and why. In that sense, I 
question again the inclusion of these experiments without further elaborating and discussing these 
results. 

Response: Thank you for the valuable suggestion. As we explain in our response to your 
comments #5 and #13, the objective of this study is to evaluate the necessity of correcting the 
input variables prior to ETo calibration. We also further explain that including Calibrations 3 
and 4 was to further evaluate whether the strategy could be generally applied to other 
calibration models in the revised manuscript. In addition, we add results from Calibrations 3 
and 4 and discussed implications from these two calibrations: 

“We also compare the bias, correlation coefficient, CRPS skill score, and reliability of calibrated forecasts 
from Calibrations 3 and 4, to evaluate whether we can obtain similar improvements through the bias-
correction of input variables if we conduct the ETo forecast calibration in a different way (without using 
climatological mean and anomalies). Results show that the adoption of bias-correction also leads to lower 
bias, higher correlation coefficient, and higher CRPS skill score in terms of magnitude, spatial patterns, 
and trend along the lead times, when ETo forecasts are calibrated directly (Figure S15-S17). In addition, 
the alpha index was only slightly different between Calibrations 3 and 4 (Figure S18). This additional 
comparison further confirms the general applicability of strategy ii for enhancing NWP-based ETo 
forecasting.” 
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Point #16 
Structure: 

The introduction is well structured and appropriately present previous work studies and existing 
strategies. 

Response:  We appreciate your constructive comments.  

 

Point #17 
The title is a bit lengthy, authors could consider shortening it. 

Response: We change the title from:  

“Bias-correcting individual inputs prior to combined calibration leads to more skillful forecasts 
of reference crop evapotranspiration” 

to: 

"Bias-correcting individual inputs enhances forecasting of reference crop evapotranspiration." 
 

Point #18 
As noted above, I suggest authors consider the order of results presented in the context of results from 
experiment 3) and 4). 

 Response: As we explained in our response to your comments #5 and #13, we add a new 
subsection (3.6) to present results from calibrations 3 and 4 and discuss implications of these 
two Calibrations.  

 

Point #19 
Minor comments: 

 P4 l106: I suggest adding a diagram clearly explaining steps and differences of procedure between the 
calibration experiments. 

Response: We appreciate the valuable suggestions and create a diagram to show the key 
steps of the four calibrations 
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Figure S1. Schematic of the four calibrations  

 

Point #20 
P3 l68: '…pressing need to investigate.' Please expand why it is pressing? 

Response: Thank you for the comments. ETo forecasts have been increasingly used in 
planning of farming activities (e.g., amount and timing of irrigation) in Australia. We improve 
this sentence as follows: 

“Since NWP/GCM-based ETo forecasting is increasingly conducted to support water resource 
management, there is a need to investigate the necessity of correcting raw forecasts of the input variables 
as part of ETo forecast calibration, to provide high-quality ETo forecasts.” 

Point #21 
P3 l74: Calibrate should be calibrate with small cap letter. 

Response: Thank you for the careful review. We correct this typo.  
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Point #22 
P3 l80-84: There are many efforts to develop downscaling methods, please comment on what was been 
done here to downscale ACCESS-G2 to the AWAP grid. Why not scaling AWAP to the match the forecast 
grid? 

Response: Thank you for the valuable suggestions. In the revised manuscript, we further 
introduce that we used bilinear interpolation to remap ACCESS-G2 forecasts. Meanwhile, we 
agree with the reviewer that sophisticated methods have been developed to downscale 
coarse resolution forecasts to match observations.  

In this study, the purpose of the regridding is to connect forecasts with the corresponding 
observations so we can calibrate the forecasts, rather than trying to reconstruct the spatial 
patterns of forecasts at a finer scale.  

We conducted a literature review on the remapping methods used in forecasts post-
processing. It is common that raw forecasts and references data have different spatial 
resolutions. We found that bilinear interpolation of forecasts from a coarser resolution to a 
finer resolution has been widely used in forecast post-processing and verification. For 
example, Hamill et al. (2015) used bilinear interpolation to downscale the resolution of 
Global Ensemble Forecast System (GEFS) forecasts from 1° to 1/8° to match observations 
before post-processing with an analogy-based model. Yuan et al. (2014) used bilinear 
interpolation to remap the Global Ensemble Forecast System (GEFS, with resolutions of 
~0.469° and ~0.625°) to match the North-American Land Data Assimilation System (NLDAS, 
with the resolution of 1/8°), before the forecasts were post-processed with a quantile 
mapping method. Zeng and Yuan (2018) used bilinear interpolation to remap sub-seasonal to 
seasonal forecasts from ECMWF (0.25°X0.25°to 0.5°X0.5° for different lead times), NCEP 
(1°X1°), China Meteorological Administration (CMA, 1°X1°), Hydrometeorological Centre of 
Russia (HMCR, 1.1°X1.4°), and Australian Bureau of Meteorology (BoM, 2°X2°) to a common 
resolution of 0.7°, in order to match the reanalysis data. James et al. (2017) regridded the 
wind forecasts with bilinear interpolation from the 3-km High-Resolution Rapid Refresh 
(HRRR) NWP model to an observation tower in Colorado to evaluate forecast quality. Bowler 
et al. (2008) interpolated the ECMWF forecasts with a grid spacing of 1.5° bilinearly to the site 
scale for forecast verification. Yuan and Wood (2012) used bilinear interpolation to match 
forecasts from the Euro- Mediterranean Centre for Climate Change (CMCC-INGV), the 
European Centre for Medium-Range Weather Forecasts (ECMWF), the Leibniz Institute of 
Marine Sciences at Kiel University (IFM-GEOMAR), Météo France, and UK Met Office (UKMO), 
which have a spatial resolution of 2.5° to match the observation of 1°.  

As a result, previous investigations suggested that downscaling with a sophisticated method 
could potentially be useful, but that is not necessarily essential in forecast post-processing, 
and bilinear interpolation is acceptable. 
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However, we agree with the reviewer that it is necessary To acknowledge this need, we add 
the following sentence to section  4.2 Implications for forecasting of integrated variables and 
future work: 

“In the future, more sophisticated remapping method should be adopted to investigate the impacts of grid 
cell regridding on forecast calibration.” 

 

Reference:  

Bowler, N.E., Arribas, A., Mylne, K.R., Robertson, K.B., Beare, S.E., 2008. The MOGREPS short-range 
ensemble prediction system. Q. J. R. Meteorol. Soc. 722, 703–722. https://doi.org/10.1002/qj 

Hamill, T., Scheuerer, M., Bates, G., 2015. Analog Probabilistic Precipitation Forecasts Using GEFS 
Reforecasts and Climatology-Calibrated Precipitation Analyses. Mon. Weather Rev. 143, 3300–3309. 
https://doi.org/10.1175/MWR-D-15-0004.1 

James, E.P., Benjamin, S.G., Marquis, M., 2017. A unfied high-resolution wind and solar dataset from a 
rapidly updating numerical weather prediction model. Renew. Energy 102, 390–405. 
https://doi.org/10.1016/j.renene.2016.10.059 

Monteiro, J.A.F., Strauch, M., Srinivasan, R., Abbaspour, K., Gucker, B., 2016. Accuracy of grid precipitation 
data for Brazil : application in river discharge modelling of the Tocantins catchment. Hydrol. Process. 30, 
1419–1430. https://doi.org/10.1002/hyp.10708 

Yuan, X., Wood, E.F., 2012. On the clustering of climate models in ensemble seasonal forecasting. Geophys. 
Res. Lett. 39, 1–7. https://doi.org/10.1029/2012GL052735 

Yuan, X., Wood, E.F., Liang, M., 2014. Integrating weather and climate prediction: Toward seamless 
hydrologic forecasting. Geophys. Res. Lett. 5891–5896. https://doi.org/10.1002/2014GL061076.Received 

Zeng, D., Yuan, X., 2018. Multiscale Land – Atmosphere Coupling and Its Application in Assessing 
Subseasonal Forecasts over East Asia. J. Hydrometeology 19, 745–760. https://doi.org/10.1175/JHM-D-
17-0215.1 
 

Point #23 
P4 l100: please add a comment that SCC model will be described in section 2.3.2 

Response: We added the following sentence to this section:  

“Details of the SCC model are presented in section 2.3.2” 

 

Point #24 
P5 l134 climatological means or mean? Please rephrase and clarify this sentence. 

https://doi.org/10.1175/JHM-D-17-0215.1
https://doi.org/10.1175/JHM-D-17-0215.1
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Response: Thank you, and we change it to ‘climatological mean’ 

 

Point #25 
P6 l165: Why are only 100 members drawn, is there any difference with a varying number of ensemble 
members for forecast reliability?  

Response: Thank you for the comments. We use 100 members because the computation cost 
is more affordable than using a larger ensemble size.  

In order to evaluate how different ensemble sizes would affect the reliability and skills of 
forecasts, we choose 22 sites randomly across Australia and compare the alpha index and 
CRPS skill score across these sites using 100, 500, and 1000 ensemble sizes.  The following 
map shows the locations of the 22 sites.  

 

 

 

 

The following figure shows the alpha index is almost identical across the selected sizes for the 
three ensemble sizes:  
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Lead time 1                                Lead time 5                                 Lead time 9 

     

  

Comparison of CRPS skill score shows that different ensemble sizes have negligible impacts 
on the score:  

Lead time 1                                Lead time 5                                 Lead time 9 

 

 

As a result, we conclude that the ensemble size used in this study is reasonable.  

 

Point #26 
Is there a need or a reason to verify accumulated Eto forecast values across lead times (as is often the 
case for streamflow forecasting)? Please comment. 

Response: Thank you for the comments. For short-term weather forecasts, which are issued 
on a daily basis, users are often interested in the short-lead-time forecasts (e.g., lead times 1 
to 3). Accumulated forecasts across all lead times will not provide the information that users 
are particularly interested.  

In addition, the evaluation by lead time shows that improvements with the adoption of the 
new calibration strategy (Calibrations 2 and 4) decrease with lead time, but still show better 
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performance than the calibrations (Calibrations 1 and 3) without correcting input variables, 
event at lead time 9. As a result, we are confident that evaluation based on accumulated ETo 
will not change the conclusion of this study.   

Point #27 
P8 l225: 'wind speed is higher than 1m/s than the reference in Australia'. Could you please translate that 
in terms of percentage so that this statement can be more easily compared to other locations. 

Response: We add more quantitative information in the evaluation of raw forecasts of input 
variables: 

“The daily minimum temperature (Tmin) is underpredicted by more than 15 °C in western and central 
parts of Australia by the raw forecasts, but is overpredicted by ca. 1 °C in eastern and southern Australia. 
Forecasted wind speed is higher than the reference data by more than 1m/s (or by ca. 63%) in most parts 
of Australia. Similarly, raw solar radiation forecasts are about 5% higher than AWAP data across 
Australia. Vapor pressure is underpredicted in western and central regions by ca.14%, but is 
overpredicted by ca. 6% in coastal areas of south-eastern Australia by the raw forecasts.” 

 

Point #28 
P18 l380' NWP outputs have been increasingly used for ETo forecasting.' For which applications? Please 
finish the sentence. 

Response: We modify this sentence as follows: 

" NWP outputs have been increasingly used for ETo forecasting to support water resource management." 

 

Point #29 
P18 l385 Addition 'of' in … skill 'of' the calibrated ETo forecasts. 

 Response: We add the missing ‘of’ to this sentence:  

“With this extra step, the bias, correlation coefficient, and skills of the calibrated ETo forecasts 
are all improved, particularly for the short-lead-time forecasts.” 

 

Point #30 
References: 

Pappenberger, F., M. H. Ramos, H. L. Cloke, F. Wetterhall, L. Alfieri, K. Bogner, A. Mueller and P. Salamon 
(2015). "How do I know if my forecasts are better? Using benchmarks in hydrological ensemble 
prediction." Journal of Hydrology 522: 697-713. 

Response:  We cited this paper in the revised manuscript in introducing the CRPS skill score.   
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