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Abstract. Temporal (serial) clustering of extreme precipitation events on sub-seasonal time scales is a type of compound event.

It can cause large precipitation accumulations and lead to floods. We present a novel, count-based procedure to identify episodes

of sub-seasonal clustering of extreme precipitation. We introduce two metrics to characterise the frequency
:::::::::
prevalence of sub-

seasonal clustering episodes and their relevance for
:::::::::
contribution

:::
to large precipitation accumulations. The procedure does not

require the investigated variable (here precipitation) to satisfy any specific statistical properties. Applying this procedure to5

daily precipitation from the ERA5 reanalysis data set, we identify regions where sub-seasonal clustering occurs frequently and

contributes substantially to large precipitation accumulations. The regions are the east and northeast of the Asian continent

(north of Yellow Sea, in the Chinese provinces of Hebei, Jilin and Liaoning
:::::::
northeast

::
of

::::::
China; North and South Korea; Siberia

and east of Mongolia), central Canada and south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula,

and the north of Argentina and south of Bolivia. Our method is robust with respect to the parameters used to define the extreme10

events (the percentile threshold and the run length) and the length of the sub-seasonal time window (here 2 – 4 weeks). This

procedure could also be used to identify temporal clustering of other variables (e.g. heat waves) and can be applied on different

time scales (sub-seasonal to decadal). The code is available at the listed GitHub repository.

Copyright statement. TEXT

1 Introduction15

Regional-scale extreme precipitation events can affect the entire catchment area of a river or a lake and result in flooding. Floods

can have significant socio-economic impacts such as shortages of drinking water, water-borne diseases, and the displacement

of people (e.g., IPCC, 2014). The impact of catchment wide precipitation extremes is intensified when the events happen in

close temporal succession, i.e., when they are serially clustered. The sub-seasonal serial clustering of extreme precipitation is

a temporally compounding event (Zscheischler et al., 2020) and it is relevant for several reasons. First, it can lead to floods20

in rivers and catchment areas with a high retention capacity. Examples include several floods in Lake Maggiore in Southern

Switzerland (Barton et al., 2016), the floods in England in winter 2013/2014 (Priestley et al., 2017), the floods in Pakistan in
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2010 (e.g., Lau and Kim, 2012; Martius et al., 2013), and the floods in China in summer 2020 (Guo et al., 2020). Second,

the short recovery time between events can overburden rescue and response teams and prevent proper clean-up and efficient

repairs to damaged protective structures (Raymond et al., 2020). Third
::::::::
Therefore, temporal dependence of precipitation and25

other extremes is of interest for insurance companies (Priestley et al., 2018) as floods are a major cause of financial loss from

natural hazards (European Environment Agency, 2020).

A number of previous studies have analyzed the statistical properties of the serial clustering of extreme events. Mailier

et al. (2006); Vitolo et al. (2009), Pinto et al. (2013) and Bevacqua et al. (2020)
:
,
::::::::::::::::
Vitolo et al. (2009)

:::
and

::::::::::::::::
Pinto et al. (2013)

studied European winter storms (see Dacre and Pinto (2020) for a review), Villarini et al. (2011) quantified clustering of30

extreme precipitation in the North American Midwest, and Villarini et al. (2012) focused on extreme flooding in Austria.

In these studies, clustering in time was assessed using the index of dispersion (variance-to-mean ratio) of a one-dimensional

homogeneous Poisson process model i.e., a Poisson process with a constant rate of occurrence (Cox and Isham, 1980). Villarini

et al. (2013) analyzed flood occurrence in Iowa using a Cox regression model i.e., a Poisson process with a randomly varying

rate of occurrence (e.g., Cox and Isham, 1980; Smith and Karr, 1986). Yang and Villarini (2019) also used a Cox regression35

model to show that heavy precipitation events over Europe exhibit serial clustering. Their study also indicated that reanalysis

products are skillful in reproducing serial clustering identified in observations. Barton et al. (2016) studied serial clustering of

extreme precipitation events in southern Switzerland using Ripley’s K function (Ripley, 1981) applied to a one-dimensional

time axis (Dixon, 2002).

All studies discussed above used statistical models to identify significant serial clustering of extreme events. However,40

none of those methods are able to directly identify individual clustering episodes. To our knowledge, no procedure exists that

(1) automatically identifies individual serial clustering episodes of extreme (precipitation) events, and (2) subsequently uses

the identified episodes to evaluate the clustering properties of a region
::::::::
According

::
to
::::

the
::::::
review

::
of

::::::::::::::::::::
Dacre and Pinto (2020)

:
,
::::
there

::::
are

:::
no

::::::
widely

::::
used

:::::::
impact

::::::
metrics

:::::
used

::
as

::
a
::::::

proxy
:::
for

:::::::::::::::::
precipitation-related

:::::::
damage

::::
and

::::
only

::
a
::::::
recent

:::::
study

:::
by

:::::::::::::::::::
Bevacqua et al. (2020)

::::::::
introduced

::
a

::::::::::
count-based

:::::::::
procedure

::
to

:::::::
identify

::::::::
individual

:::::::
cyclone

:::::::
clusters,

:::::::::
combined

::::
with

:::
an

::::::
impact45

:::::
metric

:::::
based

:::
on

:::::::::::
precipitation

::::::::::::
accumulations. Here we propose a novel count-based procedure to study serial clustering of

catchment-aggregated heavy precipitation using daily precipitation data from ERA5 (Hersbach et al., 2020). We investigate

sub-seasonal serial clustering of extreme precipitation events in the mid-latitudes of the Northern and Southern hemisphere.

We also quantify the contribution of sub-seasonal serial clustering to large sub-seasonal precipitation accumulations at the

catchment level. More specifically, we address the following questions: (1) Globally, what are the regions (catchments) where50

sub-seasonal serial clustering of extreme precipitation occurs frequently? (2) What is the contribution of sub-seasonal clus-

tering to large sub-seasonal (14 to 28 days) precipitation accumulations? (3) Are the results affected by the choice of the

parameters used to identify the extreme events and the length of the period (sensitivity analysis)?

The paper is organised as follows: the data and methods are introduced in section 2. The results are presented and discussed

in section 3. Finally, general conclusions and future research avenues are presented in section 4.
:::
All

::::::::
important

:::::::::
quantities

::::
used55

::
in

:::
this

:::::
study

:::
are

:::::
listed

::
in

:::::
Table

::
1.
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Table 1.
:::::::
Symbols

::
for

::::::::
important

:::::::
quantities

::::
used

::
in

:::
this

:::::
study.

Symbol Definition

:
r
: :::

Run
:::::
length

::::::::
parameter

:::::::
(minimal

::::::
distance

:::::::
between

:::
two

:::::::::::
high-frequency

:::::::
clusters)

:
t

:::::::
Threshold

::::::
(above

:::::
which

::::
daily

:::::::::
precipitation

::
is

::::::::
considered

::
as

::
an

::::::
extreme

:::::
event)

:

::
w

::::
Time

::::::
window

:::::
length

:::::::
(duration

::
of

:
a
::::::::::
sub-seasonal

::::::::
clustering

::::::
episode)

:

:::
nw :::::

Count
::
of

::::::
extreme

:::::
events

:::::::
(resulting

::::
from

:::
the

:::
runs

::::::::::
declustering)

:::::
during

:
a
::::

time
::::::
window

::
of

::
w

::::
days

::::
accw :::::::::

Precipitation
:::::::::::
accumulation

:::::
during

:
a
::::
time

::::::
window

::
of

::
w

:::
days

:

:::
Nep: ::::::

Number
::
of

::::::::::
sub-seasonal

:::::::
clustering

:::::::
episodes

::::::::
considered

::
in

:::
the

::::::::::
classifications

:

:::
Cln: ::::::::::

Classification
::
of

::::::::::
sub-seasonal

:::::::
clustering

:::::::
episodes

:::
with

:::
the

::::::
highest

::::::
extreme

::::
event

::::::
counts,

:::
and

:::
the

:::::
largest

:::::::::
precipitation

:::::::::::
accumulations

:

::::
Clacc: ::::::::::

Classification
::
of

::::::::::
sub-seasonal

:::::::
clustering

:::::::
episodes

:::
with

:::
the

:::::
largest

::::::::::
precipitation

:::::::::::
accumulations

::
qi :::::

Weight
::
of
:::
the

:::
ith

::::::
episode

:
in
::
a
:::::::::
classification

:

:::
Scl ::::::::

Clustering
:::::
metric

::::
Sacc ::::::::::

Accumulation
:::::
metric

:

::::
Scont: :::::::::

Contribution
:::::
metric

:

:
φ̂
: :::::::

Estimator
::
of

:::
the

::::
index

::
of

::::::::
dispersion
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2 Data and Methods

2.1 Catchment selection and precipitation aggregation

This study uses precipitation from the ERA5 reanalysis data set (Hersbach et al., 2020) by the European Centre for Medium-

Range Weather Forecasts (ECMWF). The precipitation fields are interpolated to a 0.25°× 0.25°spatial grid and the hourly60

precipitation aggregated to daily precipitation for the period 2 January 1979 to 31 March 2019. Precipitation in
:
is

:::
not

:::::::
directly

:::::::::
constrained

:::
by

:::::::::::
observations

::
in

:::
the ERA5 is a prognostic variable.

::::::::
reanalysis

::::
data

:::
set

::
as

::
it

:::::
stems

::::
from

::::::::::
short-range

:::::::::
numerical

::::::
weather

::::::
model

::::::::
forecasts.

::::::::::::
Consequently,

:::
the

::::::
quality

::
of

:::
the

:::::::::::
precipitation

:::
data

:::::::
depends

:::
on

:::
the

:::::::
forecast

::::::
quality.

:

For catchment boundaries we use the HydroBASINS data set format 2 (with inserted lakes) (Lehner and Grill, 2013).

HydroBASINS contains a series of polygon layers that delineate catchment area boundaries at a global scale. This data set has65

a grid resolution of 15 arc-seconds, corresponding to approximately 500 m at the equator. The HydroBASINS product provides

12 levels of catchment area delineations. The first 3 levels are assigned manually, with level 1 distinguishing 9 continental

regions. From Level 4 onward, the breakdown follows a Pfafstetter coding, where a larger basin is sequentially subdivided into

9 smaller units: the 4 largest tributaries and the 5 inter-basins. A basin is divided into two sub-basins at every location where

two river branches meet and where they have an individual upstream area of at least 100 km2. We use level 6 of HydroBASINS70

for our study.
::::
This

:::::
choice

::
is
:::::::::
motivated

::::::
further

:::::
below.

:

Daily precipitation aggregated by catchment area was computed by taking the average of all ERA5 grid points values located

within the catchment area (see Fig. 1 for an illustration). Computations were performed using the GeoPandas (version 0.6.0

and onward) Python library (Jordahl et al., 2019). Some small or elongated catchments had few or no grid points inside

their boundaries. This is a consequence of the Pfafstatter coding used to construct the HydroBASINS division, where large75

differences can exist in the catchment areas for a given level. We retained only catchments containing at least five ERA5 grid

points for our analyses.
:::
The

::::::
choice

::
of

:::::::::::::
HydroBASINS

::::
level

::
6

:::
and

:::
the

:::::::
removal

::
of

:::
the

:::::::
smallest

::::::::::
catchments

::::
allow

:::
us

::
to

:::::
focus

:::
our

::::::
analysis

:::
on

::::::::
relatively

:::::
large

:::::::::
catchments

:::::
(90%

::
of

:::
the

::::::::::
catchments

:::
are

:::::
3000

::::
km2

::
or

::::::
larger).

:::::
Such

:::::
large

:::::::::
catchments

:::
are

::::::::
sensitive

::
to

:::::::
extended

:::::::
periods

::
of

::::::
heavy

::::::
rainfall

::::::
lasting

:::
for

::::::
several

:::::
days

::
or

::::::
longer

:::::::::::::::::
(Westra et al., 2014)

:::
and

:::::::::::
consequently

:::
the

::::::
impact

:::
of

::::::::::
subseasonal

::::::::
clustering

::
is

:::::
likely

::
to

::
be

:::::
more

::::::::
important

:::
for

:::::
those

::::::::::
catchments.80

Further, we kept only catchments located in two latitudinal bands between 20° and 70° with a catchment 99th annual

percentile (99p) of daily precipitation above 10 mm .
::::
(Fig.

:::
2). Those criteria remove catchments from the tropics and the poles,

as well as dry areas
:::
and

:::::
result

::
in

::::::::
selection

::
of

:::::
6466

::::::::::
catchments. The timing of precipitation extremes

::::::
extreme

:::::::::::
precipitation

::::
(time

:::
of

:::
the

::::
year)

:
is important for our analyses and

::
the

:::::::
present

:::::
study

:::::::
because

:::
our

:::::::
method

::
is

:::::
based

:::
on

::::::::
counting

::::
how

:::::
many

::::::
extreme

::::::
events

::::::
happen

::
in

::
a
::::::
certain

::::
time

:::::::
window

:::
(see

:::::::
section

::::
2.3). Rivoire et al. (2021) showed that the

:::
this timing of extreme85

precipitation is well captured by ERA5 in the extratropics but less so in the tropics. Figure 2 shows the 99
:::
Our

::::::
choice

::
of

::::::
ERA5

:::
was

::::
also

::::::::
motivated

:::
by

::
its

::::::
global

::::::::
coverage,

:::
its

::::::
regular

::::::
spatial

:::
and

::::::::
temporal

:::::::::
resolution

:::
and

::
its

::::::::::
consistency

::::
with

::::
the

:::::::::
large-scale

:::::::::
circulation

:::::::::::::::::
(Rivoire et al., 2021).

:

:::
Our

:::::::
method

:::
can

::
be

::::::
applied

::
to
::::
any

::::
kind

::
of

:::::::
datasets,

::::::::::::
independently

::
of

::::
their

::::::
spatial

:::::::::::
configuration

:::
and

::::::::
temporal

::::::::
resolution.

:::::
Still,

::
we

:::::
don’t

::::::
expect

:::
our

::::::
results

::
to

::::::
change

:::::::::::
significantly

:::::
using

::::
other

:::::::
gridded

:::::::
datasets,

:::::::
surface

::::::
station

::::
data

::
or

:::::::
satellite

:::::::::::
observations.90
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Figure 1. Example of a catchment area (Aare basin, Switzerland in green).The red lines show the HydroBASINS level 6 catchment area

division. The blue dots indicate the ERA5 grid points. Country borders are indicated by black lines.

::::::
Indeed,

:::::::
previous

:::::::
studies

::::
have

::::::
shown

::::
that

::::::::::
precipitation

::::::::
extremes

:::
in

::::::
gridded

::::::::::::
observational

:::
and

:::::::::
reanalysis

:::::::
datasets

:::::::::
correlated

::::::::::
significantly

::::::::::::::::
(Donat et al., 2014)

:
,
:::
and

::::
that

::::::::
reanalysis

::::::::
products

::::::
tended

::
to

:::::
agree

::
in
:::::::::

capturing
:::
the

:::::::
temporal

:::::::::
clustering

::
of

::::::
heavy

::::::::::
precipitation

:::::::::::::::::::::
(Yang and Villarini, 2019)

:
.
:::::
These

::::::
studies

::::
used

::::::::::::
ERA-Interim,

::
the

::::::::::
predecessor

::
of

::::::
ERA5.

:::::
More

:::::::
recently,

:::::::::::::::::
Rivoire et al. (2021)

::::::::
compared

::::::::
moderate

::
to

::::::
extreme

:::::
daily

::::::::::
precipitation

:::::
from

:::::
ERA5

::::::
against

:::
two

:::::::::::
observational

:::::::
gridded

::::
data

::::
sets,

:::::
EOBS

:::::::::::::
(stations-based)

:::
and

:::::::::
CMORPH

::::::::::::::
(satellite-based).

:::::
Using

:::
the

::
hit

::::
rate

::
as

::
a

:::::::
measure

::
of

::::::::::::
co-occurrence,

::::
they

:::::
found

::::
that

:::
for

::::
days

::::::::
exceeding

:::
the

:::::
local95

::
90th annual percentile of daily precipitation for the 6466 selected catchments.

:::::::::
percentile,

:::
the

:::::
mean

:::
hit

:::
rate

::
is

::::
65%

::::::::
between

:::::
ERA5

::::
and

::::::
EOBS

::::
(over

::::::::
Europe)

:::
and

:::::
60%

:::::::
between

::::::
ERA5

::::
and

:::::::::
CMORPH

:::::::::
(globally).

:::::
They

::::
also

:::::
found

::::
that

:::
the

::::::::::
differences

:::::::
between

:::::
ERA5

::::
and

:::::::::
CMORPH

::::
are

::::::
largest

::::
over

::::
NW

::::::::
America,

:::::::
Central

:::::
Asia,

::::
and

::::
land

:::::
areas

:::::::
between

:::::
15°S

::::
and

:::::
15°N

::::
(the

:::::::
Tropics).

:::::::
Another

::::::
recent

:::::
study

::
by

:::::::::::::::::::::::::::::
Tuel and Martius (2021, in review)

::
on

:::::::::::
sub-seasonal

:::::::::
clustering

::::::::
compared

::::::
ERA5

::::
with

:::::
three

:::::::::::
satellite-based

:::::::
datasets

::::::::
(TRMM,

:::::::::
CMORPH

::::
and

:::::::
GPCP),

::
as

::::
well

::
as

::::::
output

::::
from

:::
25

::::::
CMIP6

::::::
Global

:::::::
Climate

:::::::
Models

::::::::
(GCMs).100

::::
They

:::::
found

::
a

::::
good

:::::::::
agreement

::
on

:::
the

:::::::::::::
spatio-temporal

:::::::::
clustering

:::::::
patterns

:::::
across

::::::::
datasets.

2.2 Identification of extreme precipitation events

We used a Peak-Over-Threshold approach to identify extreme precipitation events from the time series of daily precipitation per

catchment (Coles, 2001). We consider only the precipitation values exceeding the local annual 99th percentile. We use annual

percentiles rather than seasonal percentiles because they are more impact relevant. To analyse sub-seasonal serial clustering,105

high frequency clustering had to be removed from the daily precipitation time series. High frequency clustering, i.e. successive

days of extreme precipitation, can be caused by a stationary synoptic system (e.g., an extratropical cut-off cyclone). We em-

ployed the "runs declustering" method to account for the high frequency clustering (Ferro and Segers, 2003). Thereby, given

a run length r and a threshold t, days with precipitation exceeding t that are separated by less than r days with precipitation

below t were grouped into one high-frequency cluster (see Fig. ??
:
3a for an illustration).

:::
The

::::
runs

::::::::::
declustering

:::::::::::
successively110

:::::::
removes

:::
the

::::::::
short-term

::::::::
temporal

::::::::::
dependence

::
of

::::::::
extremes

::
so

::
as

::
to

:::::
focus

::::::::::
exclusively

::
on

::::::::
clustering

::
at
::::::
longer

:::::::::
timescales

:::::::
(weekly

:::
and

::::::
above).

:::
In

:::
this

::::::::::
framework,

::
a

::::::::
multi-day

::::::::
sequence

::
of

::::::::
afternoon

::::::
severe

:::::::::
convective

::::::
storms

::
at

:::
the

:::::
same

:::::::::
grid-point

:::::
would

:::
be
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Figure 2. The 99th annual percentile of daily precipitation per catchment (mm day−1). White areas correspond to the catchments that have

been excluded from the analysis.

::::::
reduced

:::
to

:
a
::::::
single

:::::
event,

:::::
while

::::::
being

::::::::
composed

:::
of

:::::::
multiple

:::::::::::
independent

::::::
events.

::::
This

::
is
::::

not
::
an

:::::
issue

:::::::
because

:::
the

:::::::
present

:::::::
research

::
is

::::
more

:::::::
targeted

::
at

:::
the

:::::
larger

:::::
scale

:::::::::
structures,

::::
such

::
as

:::::::::::
mid-latitudes

::::::::
cyclones

:::
and

::::::
cut-off

:::::
lows.

:::::
More

::::::::::
importantly,

:::
the

:::::
spatial

::::::
(0.25°

::::::
lat/lon)

:::
and

::::::::
temporal

:::::
(daily)

::::::::::
resolutions

::
of

::::::
ERA-5

:::
are

:::
too

:::::
coarse

::
to

:::::::
properly

:::::
target

:::::::::
convective

:::::
scale

:::::::::::
precipitation,115

:::
and

:::::
many

:::::::::
convective

::::::::
extremes

:::::
would

:::
be

:::::::
missed.

:::::
Input

::::
data

::::
with

:
a
::::::
higher

::::::::
temporal

:::
and

::::::
spatial

:::::::::
resolution

::::::
should

::
be

:::::
used

::
to

::::
apply

::::
our

::::::::
approach

::
to

::::::
shorter

::::
time

::::::
scales. After applying the declustering approach, a series of independent

:::::
binary

:::::
events

:::
of

extreme daily precipitation events was defined .
:::
was

::::::
defined

:::::
(Fig.

::
3a

::::
and

:::
3b).

:
In the case of a high frequency cluster, the first

day of the cluster was retained as the representative day for the event.

(a) Schematic illustration of high-frequency clustering in a time series of daily precipitation with extreme precipitation120

events marked by blue bars. The horizontal blue line represents a user-defined high precipitation threshold t. The resulting

high-frequency clusters for r = 2 days are highlighted by the light blue shading. (b) Schematic illustration of sub-seasonal

clustering: The blue bars indicate the representative days of the extreme precipitation events after the removal of the high-frequency

clustering. The number of extreme events contained in time windows starting on day 1 and of various lengths are shown.

The choice of the two parameters (t and r) affects the distribution of independent extreme events (Coles, 2001). We followed125

the empirical approach of Barton et al. (2016) to determine reasonable values for the parameters. First, we selected two different

thresholds: the 98th and 99th annual percentiles (further denoted as 98p and 99p) of the catchment area daily precipitation

distribution. These thresholds have been used in previous studies (e.g. Fukutome et al., 2015).

The run length can either be determined with an objective method (Barton et al., 2016; Fukutome et al., 2015) or chosen

based on meteorological process arguments (Lenggenhager and Martius, 2019). Following the approach of Lenggenhager and130

Martius (2019), we tested run lengths of both one and two days, corresponding to the influence time of a cyclone at one location

(Lackmann, 2011).

6



The R package evd (Stephenson, 2002) was used for the computation of the yearly percentiles and the identification of

independent peaks over the threshold, i.e. for the removal of the high-frequency clusters with the runs declustering described

above.135

2.3 Identification of sub-seasonal clustering episodes

The following procedure is used to automatically identify
:::
The

:::::::::::
identification

::
of

:
sub-seasonal clustering episodes . We start

by counting
::
is

::::::::
equivalent

:::
to

::::::::
searching

:::
for

::::
time

::::::
periods

:::::
(here

::
2

::
to

:
4
:::::::
weeks)

:::
that

:::::::
contain

::::::
several

:::::::
extreme

:::::::::::
precipitation

::::::
events.

:::
The

::::
first

::::
step

::
is

::
to

:::::
count

:
the number of

::::::::::
independent

:
extreme precipitation events (nw) contained in a moving

:
in

::
a
:::::::
running

:::::::
(leading)

:
time window of w daysafter applying a runs declustering (as illustrated in Fig. ??b). In parallel, we calculate the140

precipitation accumulation (accw) for the moving time window. nw and accw are
:
,
::::
after

:::
the

::::
runs

::::::::::
declustering

:::
has

::::
been

:::::::
applied

::
to

::
the

:::::
time

:::::
series.

::::
This

:::::
count

::
is computed for each day of the time series over the next w− 1

:::::
w− 1 days (not w, as the starting

day is included in the time window length). Our results are robust to the choice of a centred or lagged time window, except at

the boundaries of the series
::
In

:::::::
parallel,

:::
we

:::::::
calculate

:::
the

:::::::
running

::::
sum

::
of

:::::
daily

::::::::::
precipitation

::::::
(accw)

:::::
over

:::
the

::::
same

:::::::
leading

::::
time

::::::
window

::
w. Time windows of

::::
w = 14, 21 and 28 days are

::::
were investigated. Figures 3a and 3b reproduce the example of Fig.145

??, along with the corresponding
:
c
:::
and

:::
3d

:::::
show

:::
the values of nw (

:::
n21 :::

and
:::::
acc21,

::::::::::::
corresponding

:::
to

:::
the

::::
time

:::::
series

::
of Fig. 3c)

and accw (Fig. 3d) for w = 14 days.
::
a.

We then run our
::
an

:
automated clustering episode identification algorithm that consists of the following steps: (i) isolate time

windows with the highest count of extreme events
::
the

::::
days

::::
with

:::
the

::::::
largest

:::::
value

::
of nw ; (ii) from these , select the time window

::::::::::
(highlighted

::
in

:::
red

::
in

::::
Fig.

:::
3c).

:::
(ii)

:::::::
Among

:::::
these

::::
days,

:::::
retain

:::
the

::::
one with the largest precipitation accumulation accw , this is150

the first clustering episode ; (iii) remove
:::
(the

::::::
purple

:::
bar

::
in

:::
Fig.

::::
3d).

::::
This

::::::
selects

:
a
:::::::::
clustering

::::::
episode

:::::
which

:::::
starts

::
at

:::
the

:::::::
retained

:::
day

:::
and

::::
ends

::::::
w− 1

::::
days

::::
later

::::::
(shown

::
by

:::
the

:::
red

::::::::
rectangle

::
in

::::
Fig.

:::
3a).

::::
The

::::::::
clustering

:::::::
episode

::::::::
identified

::
in

:::
Fig.

:::
3a

:::::::
contains

::::
four

::::::
extreme

::::::
events

::::::::
(n21 = 4)

::::
and

:::
the

::::::
related

:::::::::::
accumulation

::::::
acc21 ::

is
:::
275

:
[
:::
mm]

:
.
:::
(iii)

::::::
reduce

:::
the

:::::
time

:::::
series

:::
by

::::::::
removing all days

within w− 1
:::::
w− 1 days before and after the starting day of the first episode from the initial time series

::::::
selected

:::::::
episode

::::
(the

:::::
purple

:::::::
window

::
in

::::
Fig.

:::
3d), to avoid any overlap between the selected episodes ;

:::::
further

:::::::
selected

::::::::
episodes

::::
from

:::::::::::
overlapping.155

(iv) repeat steps (ii) and (iii) on the reduced time series , until a pre-determined number Nep of clustering episodes is identified

(the
:
to

:::::::::::
successively

:::::
select

:::
the

::::
next

:::::::
episodes

::::
with

:::
the

::::::
largest

::::::
values

::
of

:::
nw :::

and
:::::
accw ::::

until
:
a
::::::::::::
predetermined

:::::::
number

::
of

::::::::
episodes

::::::::
Nep = 50

::
is

:::::::
reached.

::::
The choice of Nep is discussed further below )

:::::
below

::
in

::::::
greater

::::::
detail,

:::
and

::
at
::::

this
:::::
stage

:::
we

:::::::::
emphasize

:::
that

:::::::
limiting

:::
the

:::::::
selection

:::
to

::
50

::::::::
episodes

:
is
::::::::
sufficient

:::
for

:::
our

:::::::
method. This iterative selection results in the identification of

::
50

non-overlapping clustering episodes sorted in a decreasing order by extreme event counts,
::
by

:::
the

:::::::
number

::
of

:::::::
extreme

::::::
events160

::::
(nw) and then by precipitation accumulations

::::::::::::
accumulations

:::::
(accw). We denote this classification as Cln.

::::
Cln.

::::
The

:::
left

:::::
panel

::
of

:::::
Table

:
2
:::::
shows

:::
the

::::
Cln:::::::::::

classification
:::::::
obtained

:::
for

:
a
::::::::::::
subcatchment

::
of

:::
the

:::::
Tagus

::::
river

::
in

:::
the

::::::
Iberian

::::::::
Peninsula

::::::::::::::
(HydroBASINS

:::
ID:

:::::::::::
2060654920).

::::
The

::::
Cln:::::::::::

classification
:::::::
contains

::::::::::
information

:::::
about

:::
the

::::::::
frequency

:::
of

::::::::::
sub-seasonal

:::::::::
clustering.

:::
In

:
a
:::::::::
catchment

:::::
where

:::::::::::
sub-seasonal

::::::::
clustering

:::::::
scarcely

::::::::
happens,

::::
Cln:::::

would
::::::::

typically
:::
be

::::::::
composed

:::
of

:
a
:::::::
majority

:::
of

:::::::
episodes

::::::
having

::
a
:::::
small

::::::
number

::
of

::::::::
extremes

::::
(e.g.

::::::::
nw ≤ 2).

:::::::
Whereas

:::
for

:
a
:::::::::
catchment

::::::
where

::::::::::
sub-seasonal

:::::::
happens

:::::::::
frequently,

::::
Cln::::::

would
::
be

:::::::::
composed165
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::
of

::::::
several

:::::::
episodes

::::
with

:::::
more

:::::::
extreme

:::::
events

::::
(e.g.

:::::::::::
2≤ nw ≤ 6).

:::::::::
Additional

::::::::
examples

::
of

::::::::::
catchments

:::
can

::
be

:::::
found

::
in
:::::::::
Appendix

::
A.

In addition, we identify and classify episodes with high to extreme precipitation accumulation, denoted asClacc. This is done

by applying
::
the

::::::::
episodes

::::
with

::
the

::::::
largest

:::::::::::
precipitation

::::::::::::
accumulations

::
as

:::::::
follows:

::
we

:::::
apply

:
steps (ii) to (iv) of our

::
the automated

identification algorithm to the original precipitation
:::::::::::
accumulation time series. The episodes picked out by the clustering episode170

identification
::::
This

::
is

::::::::
equivalent

::
to
::::::::

selecting
::::::::
episodes

::::
using

:::
the

::::
sole

:::::::
criteria

::
of

::::::::::
maximising

::::
accw::::

(the
:::::::
21-days

:::::::::::::
accumulations)

:
at
:::::

each
::::::::
iteration.

::::
This

::::::
second

::::::::
selection

::::::
results

::
in

:::
the

:::::::::::
identification

::
of

:::
50

::::::::::::::
non-overlapping

:::::::
episodes

::::::
sorted

:::
by

::::::::::::
accumulations

::::::
(accw).

:::
We

::::::
denote

:::
this

:::::::::::
classification

::
as

::::::
Clacc.::::

The
::::
right

:::::
panel

::
of

:::::
Table

::
2

:::::
shows

:::
the

:::::
Clacc:::::::::::

classification
:::::::
obtained

:::
for

:::
the

:::::
same

::::::::
catchment

::
as

:::
the

::::
left

:::::
panel.

:::
All

::::::::
episodes

:::::
listed

::
in

:::::
Table

:
2
:::
are

::::::::::
represented

:::
on

:::
the

:::::
yearly

:::::::
timeline

::
of

::::
Fig.

::
4

:::
(in

::::::
orange

::
for

:::::
Cln,

::
in

::::
blue

:::
for

:::::
Clacc :::

and
::
in
:::::

grey
:::::
when

::::
they

:::::::
overlap),

:::::
along

:::::
with

:::
the

:::::
timing

:::
of

::
all

:::::::
extreme

::::::
events

::::::
(black

:::::
dots).

:::
We

::::
note

::::
that

:::
the175

:::::
choice

::
of

::
a
::::::
centred

::
or

::::::
lagged

:::::::
window,

:::::::
instead

::
of

:
a
:::::::
leading

:::::::
window,

::::
does

:::
not

::::::
change

:::
the

::::::
values

::
of

:::
nw :::

and
:::::
accw,

::::::
except

:::
for

:::
the

:::
first

:::
and

::::
last

::
w

::::
days

::
of

:::
the

::::
time

::::::
series.

::::
This

:::
has

::
no

:::::::::
significant

::::::
impact

:::
on

:::
the

::::::
results.

:::
The

::::::
degree

::
of

:::::::::
similarity

:::::::
between

::::
Cln:

and
:::::
Clacc ::

is
:::
the

:::
key

:::::
point

::
in

:::
our

:::::::
method

::
to

:::::::
evaluate

::::
the

::::::::::
contribution

::
of

:::::::::
clustering

::
to

::::
large

:::::::::::::
accumulations.

::::
This

::::::
degree

:::
of

::::::::
similarity

::::
can

::
be

:::::::::
evaluated

:::
by

:::::
doing

::
a

:::::::::::
rank-by-rank

::::::::::
comparison

::
of

:::
the

:::::::
number

:::
of

::::::
extreme

::::::
events

:::::
(nw)

::
in

:::
the

:::::::
episodes

:::
of

::::
Cln ::::

with
:::
the

::::::::
episodes

::
of

::::::
Clacc.

::
If

:::
the

:::::::
episodes

::::::::::
composing

:::::
Clacc:::

and
::::
Cln:::::

have
:::
the180

::::
same

:::
nw::

at
::::
each

:::::
rank,

::::
then

:
it
::::::
means

:::
that

:::
the

::::::::
episodes

::::
with

:::
the

::::::
largest

::::::
number

::
of

:::::::
extreme

::::::
events

:::
are

::::
also

::::::
leading

::
to

:::
the

::::::
largest

::::::::::::
accumulations.

::
In

::::
this

::::::::
particular

:::::
case,

:::
the

::::::::::
contribution

:::
of

::::::::
clustering

:::
to

::::::::::::
accumulations

::
is

::::::::::
maximised.

::
If

::
an

:::::::
episode

::
of
::::::
Clacc

:::
has

:::::
fewer

:::::::
extreme

::::::
events

::::
than

:::
the

:::::::
episode

::::
with

:::
the

:::::
same

::::
rank

::
in

:::::
Cln,

::::
then

:::
the

::::::::::
contribution

:::
of

::::::::
clustering

::
to
:::::::::::::

accumulations

:
is
::::::
below

:::
the

:::::::::
maximum

::::::::::
contribution.

::::
The

::::::::
episodes

:::::::
selected

::
in

::::
Cln:::

and
::::::
Clacc :::

can
::
be

:
the extreme precipitation accumulation

identification can be partly or completely identical. Examples of Cln and Clacc for the time series of Fig. 3 are shown in185

Table 2. Sub-seasonal clustering frequency and contribution to large accumulations can now be assessed based on the two

classifications
::::
same

:::
and

:::::::
ordered

::::::::
similarly

::
or

:::::::::
differently

:::::
(they

::::::
appear

::
in

::::
grey

::
in

::::
Fig.

:::
4),

:::
but

::::
they

:::
can

::::
also

:::::
differ

:::::
(they

::::::
appear

::
in

::::::
orange

::
or

::::
blue

::
in

::::
Fig.

:::
4).

::::
The

:::
fifth

::::::::
columns

::
of

:::
the

::::
left

:::
and

::::
right

:::::
panel

:::
in

:::::
Table

:
2
::::::::
illustrate

::::
such

::
a

::::::::::
comparison,

::::::
where

:::
the

:::::::::::
corresponding

:::::
rank

::
of

::::
each

:::::::
episode

::
in

:::
the

:::::
other

:::::::::::
classification

::
is

::::::::
displayed.

::
If
:::

the
:::::::

column
::
is

::::::
empty,

::
it

:::::
means

::::
that

:::
the

:::::::
episode

:
is
:::
not

:::::::
present

::
in

:::
the

:::::
other

:::::::::::
classification.

:::
In

:::
this

::::::::
example,

::::
both

::::::::::::
classifications

:::::
share

:::
the

:::::
same

:::
first

:::::::
episode

::::
(nw ::

=
::
5),

:::
but

:::::
their190

::::::
second

:::
and

:::::
third

:::::::
episodes

:::::
have

::::::::
different

:::
nw.

::::
We

::::
also

::::
note

::::
one

::::::
episode

:::::::
without

::::::::
extreme

:::::
events

:::
in

:::::
Clacc::

at
:::::

rank
:::
11.

::::
The

::::::::
additional

::::::::
examples

::
in

::::::::
Appendix

::
A
::::::::
illustrate

:::::
cases

::::
with

:::::::
different

:::::::
degrees

::
of

::::::::
similarity

:::::::
between

::::
Cln:::

and
:::::
Clacc.
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Figure 3.
:::::::
Schematic

:::::::::
illustration

::
of

:::
the

::::::::::
identification

:::
of

:
a
::::::::::

sub-seasonal
::::::::

clustering
::::::
episode

::::
with

:::::::
w = 21

::::
days.

:::
(a)

::::
Time

:::::
series

::
of
:::::

daily

:::::::::
precipitation

::::
with

::::::
extreme

:::::::::
precipitation

::::
days

::::::
marked

::
by

:::
blue

::::
bars;

:::
the

::::::::
horizontal

:::
blue

:::
line

::::::::
represents

:::
the

:::::::
threshold

:
t
:::
(e.g.

:::
the

::::
99th

::::::::
percentile)

::::::
defining

:::
the

::::::
extreme

::::::
events;

:::
the

::::
light

::::
blue

::::::
shading

::::::::
highlights

::
a
:::::::::::
high-frequency

::::::
cluster

:::::
(r = 2

:::::
days)

:::
and

:::
the

:::
red

::::::::
rectangle

::::::
denotes

:::
the

:::::::
clustering

::::::
episode

::::::::
identified

:::::
using

:::
the

:::::::::
information

::
of

:::::
panel

::
(c)

::::
and

:::
(d).

:::
(b)

:::::
Series

::
of
::::::

binary
:::::
events

::
of
:::::::

extreme
::::::::::
precipitation

:::::::
obtained

:::
after

:::::::
applying

:::
the

:::::::::
declustering

:::::::
approach

::
to
:::

the
::::
daily

::::::::::
precipitation.

:::
(c)

::::::
Number

::
of
:::::::

extreme
:::::::::
precipitation

:::::
events

::
in
::

a
::::::
running

:::::::
(leading)

::::
time

::::::
window

::
of

::
21

::::
days

::::
(n21)

:::::
based

::
on

:::
the

:::
time

:::::
series

::
in

::::
panel

:::
(b);

:::
the

::::
light

:::
red

::::::
shading

::::::
indicates

:::
the

:::
day

::::
with

:::
the

:::::
largest

:::
n21.

:::
(d)

::::::::::
Precipitation

::::::::::
accumulation

::
in

:
a
::::::
running

:::::::
(leading)

:::
time

:::::::
window

:
of
:::
21

:::
days

::::::
(acc21)

::::::
derived

::::
from

::
the

::::
time

:::::
series

::
of

::::
panel

:::
(a);

::
the

:::::
purple

:::
bar

::::::
denotes

:::
the

:::
day

:::
with

:::
the

:::::
largest

:::::
acc21:::::

among
:::

the
::::
days

::::
with

::::::
highest

:::
n21;

:::
this

::::
day

:
is
:::

the
::::::
starting

:::
day

::
of

:::
the

::::::
selected

::::::::
clustering

:::::::
episode;

::
all

::::
days

:::::
within

:::
the

:::
light

:::::
purple

::::::
shading

:::
are

:::::::
removed

::::
from

::
the

:::::
initial

::::
time

::::
series

::
in

:::
the

:::
next

::::
step

::
of

::
the

:::::::
selection

::::::::
algorithm.
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Figure 4. Schematic illustration of
:::
For the identification of sub-seasonal clustering

::::::::
catchment

::::::::::
2060654920,

::
all

:::::::
extreme

:::::
events

::
are

::::::
shown

:
as
:::::

black
::::
dots

:::
and

::::::
21-day

:
episodes with w = 14 days

::
are

:::::::::
highlighted

:::
by

:::
the

::::::
colored

::::::::
rectangles. Panels (a)

:::::::
Episodes

::::::::
appearing

::
in

::::
both

::::::::::
classifications

:::
are

:::::
shown

:
in
::::
grey and (b)

::::
those

:::::::
appearing

::::
only

::
in

::
the

:::
Cln::::::::::

classification
:
are identical to Fig

:::::
shown

:
in
::::::
orange

::::::
whereas

::::
those

::::
only

:
in
:::
the

:::::
Clacc ::::::::::

classification
::
are

:::::
shown

::
in

::::
blue. ??. (c) Number of

::::::
Episodes

::::::::
containing

::::
two

::
or

::::
more extreme precipitation events in the moving

time window of 14 days (n14::::::
nw ≥ 2) corresponding to the time series in (

::
are

:::::::::
highlighted

:::
with

:
a ); the light red rectangles indicate the days

with the highest n14:::
edge.

::
The

::::::::
clustering

:::
and

::::::::::
contribution

:::::
metrics

:
(d

::
see

::::::
section

::
2.4) Precipitation accumulation in

::
for

:::
this

::::::::
catchment

:::
are

:::::::::
respectively

:::::::::
Scl = 43.63

:::
and

:::::::::::
Scont = 0.89,

:::::::
indicating

:::::::
prevalent

::::::::::
sub-seasonal

::::::::
clustering

:::
with

:
a moving time window of 14 days

::::::::
substantial

:::::::::
contribution

::
to

::::
large

::::::::::
accumulations

:
(acc14) corresponding

:::::
similar

:
to the time series in (a

:::::::
catchment

::
of

::::::::
Appendix

::
A1); the purple bar denotes

the day with the largest acc14 among the days with highest n14. This day is therefore defined as the starting day of the first selected episode

in both classifications Cln and Clacc, and all days within the light purple rectangle are removed from the initial time series.
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Table 2. Sub-seasonal clustering
:::
First

:::
15 episodes corresponding to Fig. 3 and their respective rank in

:
of
:

the Cln :::
Cln :::

(left
:::::

panel)
:

and

Clacc ::::
(right

:::::
panel)

:
classifications . The columns Cln and

::
for

::::::::
catchment

::::
with

::::::::::::
HydroBASINS

:::
ID:

::::::::::
2060654920.

:::::::
Episodes

::
of

::::
Cln :

(Clacc:)

are empty for episodes excluded from the classifications. For this example, Sf =
∑

i∈Cln
nw(i) · qi = 3 · 1+1 · 0.38+0 · 0.16 = 3.38,

S′ =
∑

i∈Clacc
nw(i) · qi = 3 · 1+0 · 0.38+1 · 0.16 = 3.16 and Sr =

S′f
Sf

= 3.16
3.38

= 0.93
::::
ranked

::::::::
according

:::
to

::::
their

::::::
number

::
of

:::::::
extreme

:::::
events

:::
n21:

(see section 2.4 for
:::
their

::::::::::
accumulation

::::::
acc21).

::::
The

:::::::
rightmost

:::::::
column

::
of

::::
each

::::
panel

::::::::
indicates the definitions

:::::::::::
corresponding

:::
rank

:
of Sf and Sr)

::
the

::::::
episode

::
in

::
the

:::::
other

::::::::::
classification;

:
if
::
it
::
is

:::::
empty,

::
the

::::::
episode

::
is
:::
not

:::::
present

::
in
:::
the

::::
other

::::::::::
classification.

Cln Clacc

::::
Rank

:::
Cln: Starting day n14 acc14 ::::

acc21:[mm] Rank Cln :::
n21 ::::

Rank
:::::
Clacc Rank Clacc ::::::

Starting
:::
day

::::
acc21:[

:::
mm]

:::
n21 ::::

Rank
:::
Cln:

16 1
:

3
::::::::
05.12.1989 482.44

:::
281

:
1

:
5 1

:
1

:
1

::::::::
05.12.1989

:::
281

:
5

:
1
:

8
:
2

::::::::
25.12.1995

::
275

: :
4

:
2

::::::::
19.12.1995

:::
279 3 411.04

:
3
: ::::::::

23.12.2009
::
213

: :
4

:
3

::::::::
16.10.2006

:::
275

:
2

::
11

17 4
: ::::::::

25.01.1979
::
247

: :
3

:
5

:
4

::::::::
27.02.2018

:::
255 2 433.90

:
12

:

:
5
: ::::::::

11.11.1989
::
242

: :
3

:
6

:
5

::::::::
25.01.1979

:::
247

:
3

:
4
:

10 6
:

2
::::::::
04.12.1996 389.96

:::
229

: :
3

:
7

:
6

::::::::
11.11.1989

:::
242

:
3

:
5
:

7
::::::::
03.10.1979

::
188

: :
3

:
16

: :
7

::::::::
04.12.1996

:::
229

:
3

:
6
:

:
8
: ::::::::

19.10.1997
::
188

: :
3

:
8

::::::::
16.12.2009

:::
220

:
3

:
9
: ::::::::

18.10.2012
::
161

: :
3

:
9

::::::::
21.12.2000

:::
214 2 384.41

:
13

:

::
10

::::::::
25.10.2011

::
141

: :
3

::
10

: ::::::::
02.11.1983

:::
212

:
2

::
14

22
::
11

::::::::
16.10.2006

::
275

: :
2

:
3

::
11

: ::::::::
15.02.2010

:::
202

:
0

::
12

::::::::
27.02.2018

::
255

: :
2

:
4

::
12

: ::::::::
14.12.1981

:::
196 1 309.08

:
28

:

::
13

::::::::
21.12.2000

::
214

: :
2

:
9

::
13

: ::::::::
01.11.1997

:::
191

:
2

2
:
14

:
1

::::::::
02.11.1983 243.92

:::
212

:
2

:
2 3

::
10

::
14

: ::::::::
20.11.2000

:::
191

:
2

::
15

33
::
15 0

::::::::
20.11.2000 339.28

:::
191

:
3

:
2 2

::
14

::
15

: ::::::::
13.01.1996

:::
190

:
2

11



2.4 Metrics for sub-seasonal clustering

As a preliminary remark, we note that if the Cln classification of a given catchment has many clustering episodes that195

contain several extreme events, then sub-seasonal clustering is occurring frequently in that catchment. Similarly, if
::::
Next

:::
we

:::::
define

::::::
metrics

::::
that

:::::::::
synthesize

:::
the

::::::::
properties

:::
of the two classifications Cln and Clacc have episodes with the same number of

extreme events at identical ranks, this implies that the episodes with the largest
::
to

:::::::
compare

:::::::::::
catchments.

:::
An

:::::::
intuitive

::::::
choice

::
for

:::
the

:::::::
metrics

::::::
would

::
be

:::
to

::::::
average

::::
the number of extreme eventscorrespond to the episodes with the largest precipitation

accumulations. In this case, the contribution of sub-seasonal clustering to large precipitation accumulations is maximised. We200

would like to build metrics that synthesize the properties of the two classifications and allow us to directly compare catchments.

This problem is ,
:::::::
however

:::::
such

:
a
::::::
choice

:::::
would

:::::
result

::
in

:
a
::::
loss

::
of

::::::::::
information

:::
(see

::::::::
Appendix

::
C
:::
for

:
a
:::::
more

:::::::
detailed

::::::::
discussion

:::
on

::::
this).

:::
We

::::
take

:
a
::::::::
different

::::::::
approach, equivalent to defining a scoring system, where each episode is given a weight qi depending

on its position
::::
rank in the classification, and by taking into account

:::
this

::::::
weight

::
is

::::
used

::
as

::
a
:::::::::
proportion

:::::
factor

:::
for

:
the number

of extreme events in each
::
the

:
episode. We will use the method of the incenter of a convex cone following (Sitarz, 2013) to205

construct our weighting scheme. Sitarz (2013) assume two intuitive conditions for
::::
have

::::
many

:::::::
options

:::
for

:::::::
defining

:::
the

:::::::
weights.

:::
For

::::::::
example,

:::::
taking

:::
the

:::::::
average

::::
over

:::
the

::::
Nep:::::::

episodes
:::
(as

::::::::
discussed

:::
in

::::::::
Appendix

:::
C)

::
is

:::
the

::::
same

:::
as

:::::
setting

:::
all

:::::::
weights

:::::
equal

::
to

::::

1
Nep

.
:::::::::::
Sitarz (2013)

::::::::
discusses

:
a
:::::::::::
mathematical

::::::::
approach

:::
for

:::::::
defining a scoring system

::
in

:::::
sports,

::::
with

::::
two

::::::::
intuitively

:::::::::
appealing

::::::::
properties. First, they assign more points for the first place than for the secondplace, and more for the second than for

::::::
should

::
be

::::::::
rewarded

::::
more

::::::
points

::::
than the

::::::
second,

::::
and

:::
the

::::::
second

::::
more

::::
than

:::
the

:
third, and so on.

::
In

:::
our

::::
case,

:::::::::
rewarding

::::
more

::::::
points

::
is210

::::::::
equivalent

::
to
::::::
giving

:
a
::::::

larger
::::::
weight.

:
Second, the difference between the ith place and the (i+1)th place should be larger than

the difference between the (i+1)ith place and the (i+2)thplace. This is equivalent to considering the following set of points:

K =
{

(x1,x2, · · · ,xN ) ∈ RN : x1 ≥ x2 ≥ . . .≥ xn ≥ 0 and x1−x2 ≥ x2−x3 ≥ ·· · ≥ xN−1−xN
}

where x1 denotes the points for the first place, x2 the points for the second place,. . . , and xN the points for the N th place.

Any choice of points in K would satisfy the two conditions for a scoring system, however we would like to have a unique215

and representative value. The option chosen by Sitarz (2013) is to look for the equivalent of a mean value: the incenter of K.

Formally,
:
.
:::
The

:::::::
second

:::::::
property

::::::
means

:::
that

::::::::
someone

:::::::
gaining

:
a
:::::
place

:::
(or

:
a
:::::

rank)
::::::
should

:::
be

::::::::
rewarded

::::
more

::
if
:::
the

::::::
initial

::::
rank

:
is
::::::
higher,

:::
as

:::::::::
improving

::
at

:::::
upper

:::::
ranks

::
is

::::
more

::::::::::
challenging

::::
than

:::::::::
improving

::
at
:::::
lower

::::::
ranks.

:::
We

::::
then

::::::
follow

:::
the

::::::
method

:::
of the

incenter is defined as an optimal solution of the following optimization problem by Henrion and Seeger (2010):

max
x∈K∩Sx

dist(x,∂K)220

where Sx denotes the unit sphere, ∂K denotes the boundary of set K and dist denotes the distance in the Euclidean space. By

using the calculation presented in the Appendix of Sitarz (2013), and dividing by the parameter λ and the points of the first

12



place (x̄1)to get the weights (qi), we obtain:

qN = 1
x̄N

qN−1 =
√

2+1
x̄N

225

qN−2 =
(
√

2+1)(
√

3+2)−(
√

3+1)
x̄N

. . .

qi = 3x̄i−1−3x̄i−2+x̄i−3

x̄N
, for i=N − 3, . . . ,2

. . .

q1 = 1230

The weight q1 is always 1 but the values of weights q2 to qN depend on N and in our case N is the number of clustering episodes

Nep. The first metric Sf that describes the propensity of a catchment for sub-seasonal clustering is defined as
:::::::
incenter

::
of

::
a

::::::
convex

::::
cone

::::::::::::
(Sitarz, 2013)

::
to

::::::::
construct

:::
our

::::::::
weighting

:::::::
scheme

::::
(see

::::::::
Appendix

::
B
:::
for

::
a
:::::::
detailed

::::::::::
description).

::::
The

:::::
same

::::::
weight

::
qi ::

is
:::::::
assigned

::
to
:

the product of the
::
ith

:::::::
episode

::
of

:::::
each

:::::::::::
classification

::::
(Cln::::

and
::::::
Clacc).

::::
We

::::
have

::::
tried

::::
two

:::::
other

:::::::::
weighting

:::::::
schemes,

::::
also

::::::::
satisfying

:::
the

::::
two

:::::::
required

:::::::::
properties:

:::
the

:::::::
inverse

::
of

:::
the

::::
rank

:::::::
(qi = 1

i )
:::
and

:::
the

:::::::
inverse

::
of

:::
the

::::::
square

:::
root

:::
of

:::
the235

::::
rank

::::::::
(qi = 1√

i
).
::::

The
::::::
former

:::::
gave

::::::
slightly

:::
too

::::::
much

::::::
weight

::
to

:::
the

::::
very

::::
first

:::::::
episodes

:::
of

:::
the

:::::::::::
classification

::::
and

:::
the

::::
latter

:::::
gave

:::::
almost

::::::::
identical

::::::
results

::
to

:::
the

:::::::
incenter

::::::::
method.

:::
Our

::::::
results

:::
are

::::::
hence

::::
only

:::::::
slightly

:::::::
sensitive

:::
to

:::
the

::::::
choice

::
of

:::
the

:::::::::
weighting

::::::
scheme,

:::
as

::::
long

::
as

:
it
:::::::
satisfies

:::
the

::::
two

::::::
desired

:::::::::
properties.

:

:::
We

:::
can

::::
now

:::
use

::::
each

:
weight qi by

::
as

:
a
:::::::::
proportion

:::::
factor

:::
for

:
the corresponding number of extreme events in the ith episode

::
for

::::
both

::::::::::::
classifications

:::
and

::::::
derive

:::
the

::::
three

:::::::::
following

:::::::
metrics:240

Scl
::

=
∑

i∈Cln

nw(i) · qi
::::::::::::::

(1)

Sacc
:::

=
∑

i∈Clacc

nw(i) · qi
:::::::::::::::

(2)

Scont
::::

=
Scl

Sacc
::::::

(3)

(4)

:::
The

::::
first

:::::
metric

::::
Scl,:::::

called
:::
the

:::::::::
clustering

::::::
metric,

::
is

:::
the

::::::::
weighted

:::
(qi)::::

sum
::
of
:::

the
:::::::

number
::
of

:::::::
extreme

::::::
events

:
(nw(i)summed245

over all Nep episodes )
::::
over

:::
all

:::::::
episodes

::
(i

::
=

:
1
::
to

:::
50)

:
in the Cln classification(Eq. (1)):

Sf =
∑

i∈Cln

nw(i) · qi

13



We refer to Sf as the frequency metric, since it measures how often sub-seasonal clustering episodes happen and how many

extreme events these episodescontain. High values of Sf imply that the first Nep sub-seasonal clustering episodescontain a

large number of extreme events. .
::::
Scl ::

is
::::::::::
proportional

::
to
::::

the
::::::
number

:::
of

:::::::
extreme

:::::
events

:::
in

:::
the

::::::::
clustering

::::::::
episodes.

::
It
::
is
:::::
most250

:::::::
sensitive

::
to

:::
the

:::::::
number

::
of

:::::::
extreme

::::::
events

::
in

:::
the

::::
first

::::::::
clustering

::::::::
episodes,

::::::
which

:::
are

:::::
given

:::
the

::::::
largest

:::::::
weight.

::
In

::::::
section

::::
2.5,

::
we

:::::
show

::::
that

:::
Scl::::::::

correlates
:::::

well
::::
with

:::
the

:::::
index

::
of

:::::::::
dispersion

::
–
:
a
:::::::

widely
::::
used

:::::::
measure

::
of
::::::::::

clustering.
::::::::
Appendix

::
A

::::::::
provides

::::::::
examples

::
of

:::::::::
catchments

::::
with

::::
high

::::
and

:::
low

::::::
values

::
of

:::
Scl:::

for
:::::::::
illustration.

:

The second metric Sr describes how sub-seasonal clustering episodes contribute to large sub-seasonal precipitation accumulations.

It is defined as the ratio of S′f to Sf , where S′f is computed the same way as Sf , but this time using the
::::
Sacc,

::::::
called

:::
the255

:::::::::::
accumulation

::::::
metric,

::
is

::::::::
computed

::::::
similar

::
to

::::
Scl,:::

but
:::::
using

:::
the

:::::::
episodes

::
of

:::
the

:
Clacc classification(Eq. (??)):

Sr =
S′f
Sf

with S′f =
∑

i∈Clacc

nw(i) · qi

We refer to Sr as the relevance metric. Sr :
,
:::::
where

::::::::
episodes

::::
were

::::::
ranked

:::::::::
according

::
to

::::
their

:::::::::::::
accumulations.

:::
As

:::
Scl:::

and
:::::
Sacc

::
are

:::::::::
computed

:::::
using

:::
the

:::::
same

:::::::
weights,

:::::
their

::::
ratio

:::::
Scont:::

can
:::

be
::::
used

:::
to

:::::
make

:
a
:::::::::::
rank-by-rank

:::::::::::
comparison.

:::::
Scont is unit-less.

It ranges between 0 and 1 and measures the degree of similarity between the two classifications. Sr is equal to 1 when260

S′f = Sf:::::::::
Sacc = Scl, i.e. when the two classifications have episodes with the same number of extreme events at identical

ranks. The episodes may not be classified in the exact same order, however, they are ranked by their respective nw in a strict

descending order in both classifications. Sr ::::
Scont::

is
:
equal to 0 implies that the Nep ::::

when
:::::::::
Sacc = 0,

:::
i.e.

:::::
when

::
all

:
episodes in

the S′f :::
Sacc:

classification contain no extreme events (nw(i) = 0 ∀i ∈ [1,Nep]). Thus, the episodes with the largest precipitation

accumulations contain no extreme events. In the example of Tab. 2, Sr is close to 1, hence
::
In

:::
this

::::::::
particular

:::::
case,

::::::::::
subseasonal265

::::::::
clustering

::::
does

:::
not

::::::::
contribute

::
to
:::::
large

:::::::::::
accumulation

:::
and

:::::
there

:
is
::::
even

:::
no

::::::::::
contribution

::
of

:::::
single

::::::::
extremes

::
to

::::
large

:::::::::::::
accumulations.

::
In

::::
other

::::::
cases,

:
a
::::::
proper

::::::::::
assessment

::
of

:::
the

::::::::::
contribution

:::
of

::::::::
clustering

::
to
:::::

large
::::::::::::
accumulations

::
is
:::::
done

::
by

::::::::::
considering

:::::
both

:::
Scl

:::
and

:::::
Scont.:::::

Scont:::::
alone

::::::::
evaluates

:::
the

:::::::::
similarity

::
of

:::
the

::::
two

:::::::::::
classifications

::::
and

:::::::::
catchments

::::
can

::::
have

::::
low

:::::
values

:::
of

:::
Scl :::::::

(limited

sub-seasonal clusteringepisodes contribute substantially to the three top 14-day precipitation accumulations.

:
)
:::
and

::::
high

::::::
values

::
of

::::::
Scont ::

at
:::
the

::::
same

:::::
time.

:
The exact interpretation of intermediary values of Sr requires to look

:::::
Scont270

::::::
requires

:::::::
looking at both classifications (Cln::::

Cln and Clacc) in detail to see where they differ from each other. For example, Sr

= 0.8 means that
:
if
:::::::::::
Scont = 0.8, both classifications have a high degree of similarityand that sub-seasonal clustering episodes

contribute to large precipitation accumulations. However,
:
,
:::
but

:
it does not

:::::::::
necessarily

:
imply that 80% of the episodes have

ranked equallyin both classifications. The fact that Sr is normalised allows to compare different catchments and assess their

sensitivity to the choice of the parameters. Note
:::
are

::::::
ranked

:::::::
equally.

::::::::
Appendix

::
A

:::::::
provides

::::::::
examples

::
of

::::::::::
catchments

::::::
having

::::
high275

:::
and

:::
low

::::::
values

::
of

:::::
Scont::

as
:::
an

:::::::::
illustration.

:

:::
We

::::
now

::::::
briefly

:::::::
address

:::::
some

::::::::
technical

:::::
points

::::::
related

:::
to

:::
the

::::::::
definition

:::
of

:::
the

:::::::
metrics.

:::::
First,

:::
we

:::::
note that performing a

regression between Cln :::
Cln:and Clacc would require to give

::
be

:
a
:::::

more
:::::::::::
conservative

::::::::
approach

::
in

::::::::
assessing

::::
their

::::::
degree

:::
of

::::::::
similarity

:::::::
because

:
it
::::::

would
::::::
require

::::::
giving

:
a unique identifier to each episode according to its starting day. In that case, the

strength of the regression would be lowered when two episodes containing the same number of extreme events just swap their280
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ranks in the two classifications. Such a change does not affect Sr. Hence a regression would be a more conservative approach

in assessing the contribution of clustering episodes to accumulations.
:::::
Scont.

Both
::::::
Second,

::::
both

:
scores depend on the number of clustering episodes considered (Nep). The choice of Nep is arbitrary

but should be guided by some principles. The same value of Nep should be chosen for both Sf and S′f :::
Scl :::

and
::::
Sacc:

and for

all catchments to allow for comparisons. This implies that one cannot simply iterate over the precipitation time series until all285

non-overlapping episodes have been selected and classified. By doing so, one could end up with different values of Nep for

each catchment. Moreover, the contribution of the ith term to the sums in Sf and Sr :::
Scl:::

and
:::::
Scont:

becomes smaller as Nep

increases. We have tested several values of Nep ranging from 10 to 50 and found that the results with Nep ranging from 30 to

50 are comparable. Hence, we selected Nep = 50
:::::::
Nep = 50

:
for our analysis.

:::::
Third,

:::
Scl:::

and
:::::
Sacc ::::

both
:::::::
increase

::::
with

:::
the

:::::::
number

::
of

:::::::
extreme

:::::
events

:::
per

:::::::
episode

::
so

::::
any

::::::::
parameter

::::::
change

::::::
which

::::::::
increases290

:::
this

::::::
number

::::
will

::::
also

::::
lead

::
to

::
an

:::::::
increase

::
in

:::
Scl:::

and
:::::
Sacc.

::::
The

::::::::
variations

::
of

:::::
Scont::::

with
:::
the

:::::::::
parameters

:::::::
depends

:::
on

::
the

:::::::::
variations

::
of

::::
both

:::
Scl :::

and
:::::
Sacc.

::::
This

:::::::::
sensitivity

::
to

:::
the

:::::::::
parameters

::
is

:::::::
assessed

::
in

::::::
section

::::
3.2.

2.5 Correlations with index of dispersion and significance test

We computed the index of dispersion φ for each catchment (Cox and Isham, 1980; Mailier et al., 2006) to compare our results

to a more traditional method. For an homogeneous Poisson process, φ= 1. When φ > 1, the process is more clustered than295

random. When φ < 1, the process is more regular than random (Mailier et al., 2006). To estimate φ for a given catchment,

we separated the precipitation time series in successive intervals of w days and counted the number of extreme events in each

interval. An estimator of φ is then given by (Mailier et al., 2006):

φ̂=
s2
n

n̄
(5)

where n̄ is the sample mean and s2
n the sample variance of the number of extreme events in the 14199

w intervals, where 14199300

is the number of days in our time series.

We computed Sf ::
Scl:and φ̂, and calculated their Spearman rank correlation coefficient (Wilks, 2011) for all catchments

and for each parameter combination (Table 3). All correlation coefficients are positive with values between 0.738 and 0.885,

and significant with p-values < 10−5. Figure 5 displays a scatter plot of Sf :::
Scl:

versus φ̂ for all catchments for the initial

parameter combination (r = 2 days, t= 99p, w = 21 days) and illustrates this correlation. This significant positive correlation305

means that the use of Sf :::
Scl and φ̂ lead to similar conclusions about the clustering of extreme precipitation events. This is

:::::
further

:
illustrated in Fig. 6, which shows Sf and

:
a

:::
and

::::
Fig.

:::
E1,

:::::
which

:::::::::::
respectively

::::
show

::
a

::::
map

::
of

:::
Scl:::

and
::
a
::::
map

::
of

:
φ̂ for the

initial parameter combinationand where it can be seen
:::::::::
parameters

:::::::::::
combination.

::
A
::::::
visual

::::::::::
comparison

::
of

:::
the

::::
two

::::
maps

::::::
reveal

that regions of high (low) Sf ::
Scl:

correspond to regions of high (low) φ̂. Figure 6a is further discussed in the results section .

::
An

:::::::
evident

::::::::
drawback

::
of

:::
Scl:::::::::

compared
::
to

:
φ̂
::
is

:::
the

::::
lack

::
of

:
a
::::::::
reference

:::::
value

:::::
above

:::::::
(below)

:::::
which

:::::
there

::
is

:::
(no)

:::::::::
clustering

::::
(e.g.310

::::::
φ̂= 1).

:::::
While

:::
we

::::::
cannot

::::::
derive

::::
such

:
a
::::::::
reference

::::::
value,

:::
we

:::
can

:::
still

::::
use

:
a
::::::::
bootstrap

:::::
based

::::::::
approach

::
to
::::::
assess

::::
how

:::::::::
significant

::
the

:::::
value

::
of

:::
Scl::

is
:::
for

::::
each

:::::::::
catchment.

:::::
More

::::::::
precisely,

:::
we

:::::
tested

:::
the

:::::::::
following

:::::::::
hypothesis:

:
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:::
H0:

::::
The

::::::::
clustering

:::::::
episodes

::::::
contain

::
a
::::::
number

::
of

:::::::
extreme

:::::::::::
precipitation

:::::
events

:::::
(nw)

:::::
which

::
is

:::
not

:::::
higher

::::
than

:::
for

:
a
::::::::::
distribution

::
of

::::
those

::::::::
extremes

:::::::
without

:::::::
temporal

::::::::
structure

::::::::
(random).

:

:::
H1:

::::
The

::::::::
clustering

::::::::
episodes

::::::
contain

:
a
:::::::

number
::
of

:::::::
extreme

:::::::::::
precipitation

::::::
events

::::
(nw)

:::::
which

::
is
:::::::::::
significantly

:::::
higher

::::
than

:::
for

::
a315

:::::::::
distribution

::
of

:::::
those

::::::::
extremes

::::::
without

::::::::
temporal

:::::::
structure

:::::::::
(random).

:::
and

:::
we

:::::
reject

:::
H0

::
if

:::
the

:::::::
observed

:::::
value

:::
of

:::
Scl ::

is
::::::::::
significantly

::::::
greater

::::
than

::
a
:::::
given

::::::::
threshold.

::
A
::::::::
rejection

::
of

:::
H0

::
at

::
a
::::::
certain

::::
level

::
of

::::::::::
significance

::::
will

:::
be

::::::
further

:::::
noted

::
as

::::::::::
“significant

:::::::::::
sub-seasonal

::::::::::
clustering”

:::
for

:::::::::
simplicity.

:::
To

:::
this

::::
end,

:::::
1000

:::::::
random

::::::
samples

:::::
were

::::::::
generated

:::
by

:::::
doing

:::::::::::
permutations

::
of

:::
the

::::::::::
precipitation

:::::
time

:::::
series

:::
(i.e.

::::
each

:::::
daily

:::::
value

::
is

:::::
drawn

::::
only

::::
one

::::
time

::
in

::::
each

::::::
sample,

:::::::
without

::::::::
repetition,

::::
this

:::
way

:::
the

::::::::::
distribution

::::::::
quantiles

::::::
remain

:::::::::
identical.).

::
Scl::::

was
:::::::::
calculated

::
for

::::
each

:::::::
sample,

:::::
using320

::
the

::::::
initial

:::::::::
parameters

:::::::::::
combination,

:::
and

:::::::
leading

::
to

::
an

::::::::
empirical

::::::::::
distribution

::
of

:::
Scl ::::::

values.
:::
An

::::::::
empirical

:::::::::
cumulative

::::::::::
distribution

:::::::
function

:::::::
(ECDF)

:::
was

:::::::::
calculated

::::
from

:::
the

:::
Scl:::::::::

empirical
::::::::::
distribution,

:::
and

:::
an

::::::::
empirical

::::::
p-value

::::
was

:::::::
obtained

:::
by

:::::::::
evaluating

:::
the

:::::
ECDF

::
at

:::
the

::::::::
observed

:::
Scl::::::

value:
:::::::::::::::::::
1−ECDF (Scl(obs)).

:::
At

:
a
::::
1%

:::::
level,

::::::
approx.

:::::
42%

::
of

:::
the

::::::::::
catchments

:::::
(2729

:::
out

::
of

::::::
6466)

::::
show

:::::::::
significant

:::::::::::
sub-seasonal

::::::::
clustering

::::
(Fig.

:::
6b,

::::::::::
catchments

::
in

::::
red).

:

::::::::::
Interestingly,

:::
the

::::::
whole

:::
Scl::::::::

empirical
::::::::::
distribution

:::::
based

::
on

:::
the

:::::::
random

:::::::
samples

::
is

::::::
almost

:::::::
identical

:::
for

:::
all

::::::::::
catchments,

::::
with325

:
a
:::::
mean

:::::
value

::::::
around

::::::
31.42.

::::
This

::::::
means

::::
that

:
a
::::::::

selection
:::

of
:::::::::
catchments

::::::
based

::
on

::
a
:::::
given

:::::
level

::
of

::::::::::
significance

::::
can

:::
be

::::
well

:::::::::::
approximated

:::
by

:
a
::::::::
selection

:::::
based

::
on

::::::::
relatively

::::
high

::::::::
observed

:::
Scl::::::

values.
::
In
:::::::

section
::
3,

:::
we

:::::
select

:::::::::
catchments

::::::
which

:::
are

:::::
either

:::::
below

:::
the

::::
25th

:::::::::
percentile

::
or
::::::

above
:::
the

:::::
75th

::::::::
percentile

:::
of

:::
the

::::::::
observed

:::
Scl::::::::::

distribution
:::
for

:::
all

::::::::::
catchments.

::
It
::::::
allows

:::
for

::
a

::::
quick

::::::::
selection

:::
of

:::::::::
catchments

:::::
with

:::
rare

:::
or

::::::::
prevalent

:::::::::::
sub-seasonal

::::::::
clustering

:::
for

:::::
each

:::::::::
parameters

:::::::::::
combination,

::::::::
whereas

:::
the

:::::::::::::::::::
permutation/resampling

::::::::
approach

:::::
would

:::::
have

:::::::
required

::::
more

::::::::::::
computational

:::::
time.

:::
We

:::::::::
compared

::
the

::::
two

::::::::
selection

:::::::
methods

:::
for330

::
the

::::::
initial

:::::::::
parameters

::::::::::
combination

::::
and

:::::
found

::::
only

::::::
limited

::::::::::
differences.

:::::
Many

:::::::::
catchments

:::::
have

::
a

::::
very

::::
low

::::::
p-value

:::::::
because

:::
we

:::::
take

::
an

::::::
annual

:::::::::
percentile

:::
for

:::::::
defining

::::
the

:::::::
extreme

:::::::::::
precipitation

::::::
events.

::::
With

:::
this

:::::::::
definition,

:::::::::
catchments

::::
with

::::::
strong

:::::::::
seasonality

::
in

:::
the

::::::::::
precipitation

::::
(e.g.

::::
with

::::::::
extremes

::::::::
occurring

:::::
during

::
a
:::::
"wet"

::::::
season)

::::
will

::::
have

::::
their

::::::
extreme

::::::
events

::::::::
occurring

::::
only

::::::
during

:
a
:::
few

:::::::
months.

::
A

::::::
random

::::::::::
permutation

::
of

:::
the

:::::
daily

::::::::::
precipitation

::::
will

:::::::::
redistribute

:::
the

::::::::
extremes

::::::
equally

::::::
during

:::
the

::::
year

::
in
:::::

most
:::::
cases,

::::::::::::
corresponding

::
to
::::::

much
:::::
lower

:::::
values

:::
of

:::
Scl.::::::

Taking
::::::::
seasonal335

:::::::::
percentiles

:::::
would

:::::
most

:::::
likely

:::::
result

::
in

::::::
fewer

:::::::::
catchments

::::::
having

::::
very

::::
low

::::::::
p-values.

::::
The

::::::::::
implications

:::
of

:::::::::
seasonality

::::
and

:::
the

:::::
choice

::
of

:::
an

::::::
annual

::::::::
percentile

:::
are

::::::
further

::::::::
discussed

::
in

::::::
section

::
4.

:

Symbols for important quantities used in this study. r Run length parameter (minimal distance between two high-frequency

clusters) t Threshold (above which daily precipitation is considered as an extreme event) w Time window length (duration

of a sub-seasonal clustering episode) nw Count of extreme events during a time window of w days accw Precipitation340

accumulation during a time window ofw daysNep Number of sub-seasonal clustering episodes considered in the classifications

Cln Classification of sub-seasonal clustering episodes with the highest extreme event counts, and the largest precipitation

accumulations Clacc Classification of sub-seasonal clustering episodes with the largest precipitation accumulations qi Weight

of the ith episode in a classification Sf Frequency metric Sr Relevance metric φ̂ Estimator of the index of dispersion
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Table 3. Spearman rank correlation coefficients between Sf ::
Scl:

and φ̂ for all parameter combinations.

r [days] t [p] w [days] Cor. coeff.

1 98 14 0.832

1 98 21 0.871

1 98 28 0.885

1 99 14 0.814

1 99 21 0.844

1 99 28 0.860

2 98 14 0.738

2 98 21 0.816

2 98 28 0.840

2 99 14 0.765

2 99 21 0.816

2 99 28 0.836

Figure 5. Scatterplot of the index of dispersion φ̂ versus the Sf:::
Scl metric for all selected catchments for the initial parameter combination

(r = 2 days, t= 99p, w = 21 days).
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Figure 6. Metric Sf :::
Scl (a) and index of dispersion φ̂

:::::::::
sub-seasonal

::::::::
clustering

:::::::::
significance (b) by catchment, for r = 2 days, t= 99p, w =

21 days. In (a), high values of Sf ::
Scl:

denote catchments where sub-seasonal clustering occurs frequently
:
is

:::::::
prevalent. In (b), φ̂ > 1 denote

catchments where extreme precipitation
:::
Scl :

is
::::::::::

significantly
:::::
higher

::::
than

::
for

::
a

::::::::
distribution

::
of

:::::::
extremes

:
events

:::::
without

:::::::
temporal

:::::::
structure

:
are

more clustered than random
:::::
shown

::
in

::
red

::
at
:::
the

:::
1%

::::
level.
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3 Results345

First, world maps of the frequency and relevance metrics for all selected catchments are shown using the initial combination

of parameters (r = 2 days, t= 99p, w = 21 days). These maps indicate regions where sub-seasonal

3.1
:::::::::::

Sub-seasonal
:::::::::
clustering

:::
and

:::
its

:::::::::::
contribution

::
to

:::::::::::::
accumulations

:::::::::::
Sub-seasonal clustering is prevalent . Then, the sensitivity of the sub-seasonal clustering to the parameter choice is assessed by

testing 12 different parameter combinations: w = 14,21,28 days; u= 98p,99p; r = 1,2 days
::
in

:::::::::
catchments

::::::
having

::::
high

::::::
values350

::
of

:::
Scl :::

(see
:::::::
section

:::
2.5).

3.2 Frequency and precipitation accumulation contributions of sub-seasonal clustering episodes

Metric Sr by catchment, for r = 2 days, t= 99p, w = 21 days. Values of Sr close to 1 denote catchments where sub-seasonal

clustering contributes substantially to large precipitation accumulations.

Catchments with a high frequency metric (Sf )(Fig. 6a)
::::
Such

::::::::::
catchments are located in the east and northeast of the Asian355

continent (northeast of Siberia, northeast of China, Korean Peninsula, south of Tibet); between the northwest of Argentina

and the southwest of Bolivia; in the northeast and northwest of Canada as well as in Alaska; and in the southwestern part of

the Iberian Peninsula .
::::
(Fig.

:::
6a).

:
Regions with low values of the frequency metric

:::
Scl are located on the east coast of North

America, on the east coast of Brazil, in central Europe, in South Africa, in central Australia, in New Zealand and in the north

of Myanmar .
::::
(Fig.

::::
6a). Catchments with strongly contrasting values of Sf ::

Scl:
are rarely found in close proximity, except for a360

group of catchments located northeast of the Himalayas (south of Tibet), and another group located southeast of the Himalayas

(Bangladesh and Myanmar). The catchments to the north have high values of Sf ::
Scl, whereas the neighbouring catchments to

the south exhibit low values of Sf:::
Scl.

Regions with large values of the relevance metric (Sr, see Fig. ??) are in the east and northeast of the Asian continent, west

of India, central Australia and central North America. Areas with low values of Sr are located in central China, on the east365

coast of North America, in the south of Brazil and in France.

Catchments where both Sf :::
The

:::::::::::
contribution

::
of

:::::::::::
sub-seasonal

:::::::::
clustering

::
to

:::::::::::
precipitation

:::::::::::::
accumulations

::
is

:::::::
analysed

:::::
with

::::
both

:::
Scl:::

and
::::::
Scont.::::::::::

Catchments
:::::

with
::::
high

::::::
values

::
of

:::
Scl:

and Sr have high values
::::
Scont:

are of special interest, because in

these catchments,
:
sub-seasonal clustering episodes frequently contain multiple extreme events and contribute

:
is
::::::::
prevalent

::::
and

:::::::::
contributes substantially to large 21-days precipitation accumulations. We highlight catchments where both Sf and Sr are high370

by marking all catchments where Sf and Sr are above their respective
::::::
identify

::::
such

::::::::::
catchments

::
by

::::::::::
considering

:::::
those

::::::
whose

:::::
values

::
of

::::
Scl :::

and
:::::
Scont:::

are
::::::
greater

::::
than

:::
the

:
75th percentile

:
of

:::::
their

::::::::
respective

::::::::::
distribution

:::
for

:::
all

:::::::::
catchments. The choice of

the 75th percentile is somewhat arbitrary. The results are shown in Fig. 7a. The east and northeast of the Asian continent

exhibit the largest concentration of catchments where clustering episodes are both frequent and contribute
:::::
makes

::
it

:::::::
possible

::
to

:::::
focus

::
on

::::
the

::::::
highest

::::::
values,

:::::::
without

:::::
being

::::
too

:::::::::
restrictive,

:::
and

:::::::
follows

:::
the

:::::
quick

::::::::
selection

:::::::
method

:::::::::
mentioned

::
in

:::::::
section375

:::
2.5.

::::::::::
Catchments

::::::
where

::::::::::
sub-seasonal

:::::::::
clustering

::
is

::::::::
prevalent

:::
and

:::::::::
contribute

:::::::::::
substantially

:
to large accumulations . The largest
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continuous area of such catchments is located north of the Yellow Sea, in the Chinese provinces of Hebei, Jilin and Liaoning,

in
:::
are

::::::
mainly

:::::::::::
concentrated

::::
over

::::::
eastern

::::
and

::::::::::
northeastern

:::::
Asia

::::
(Fig.

::::
7a),

::
in

:::
an

::::
area

:::::::
covering

:::::::::::
northeastern

::::::
China,

:
North and

South Korea, Siberia and east of Mongolia. Other areas with several catchments of interest are central Canadaand
:
, south

California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, the north of Argentina and the south of Bolivia.380

Small
:::::
Every

::::::::
continent

:::::::
includes

:
groups of two to three or isolated catchmentscan be found on every continent. .

:::::::::
Appendix

:::
A1

:::::::
contains

:::::::
detailed

::::::::::
information

::
for

:::
an

:::::::
example

:::::::::
catchment

::::
with

:
a
::::::
strong

:::::::::
seasonality

:::::::
located

::
in

::::::::::
northeastern

:::::
China

::::::::::::
(Scl = 41.14,

::::::::::::
Scont = 0.93).

::::::
Almost

:::
all

:::::::
extreme

:::::
events

:::::::
happen

:::::::
between

::::
June

::::
and

:::::::
August,

:::::
which

:::::
make

:::::::::
clustering

:::::::
episodes

::::
and

::::::
periods

:::
of

::::
large

::::::::::::
accumulations

:::::
more

:::::
likely

::
to

:::::::
overlap.

We also identify regions
:::::::::
catchments

:
with values of Sf :::

Scl below the 25th percentile and values of Sr ::::
Scont:above the 75th385

percentile (Fig. 7b). The low values of Sf ::::
Low

::::::
values

::
of

:::
Scl:

mean that the clustering episodes identified by our algorithm

contain a small number or even no extreme events, and high values of Sr :::::
Scont mean that those episodes lead to the largest

accumulations. Such regions that exhibit rare clustering , and where this rare clustering contributes substantially to large

accumulations are the following: Taiwan, most of Australia, central Argentina, South Africa, south of Botswana and south of

Greenland. Again, small
::::
every

::::::::
continent

:::::::
includes

:
groups of two to three or isolated catchmentscan be found on every continent.390

Interestingly, the identified catchments are almost all located in the Southern hemisphere.
::
An

:::::::
example

:::::::
located

::
in

::::::::
Australia

::
is

::::::::
presented

::
in

:::::
detail

::
in

::::::::
Appendix

:::
A1

:::::::::::
(Scl = 26.79,

::::::::::::
Scont = 0.90).

::::
The

:::::::
extreme

:::::
events

:::
are

:::::::::
distributed

:::::::::
throughout

:::
the

::::::
whole

::::
year

:::
and

::::
only

:
a
::::::
limited

:::::::
number

::
of

::::::::
episodes

::::::
contain

::::
two

::
or

::::
more

:::::::
extreme

::::::
events.

:

Finally, we identify regions with values of Sf ::
Scl:

above the 75th percentile and values of Sr ::::
Scont:

below the 25th percentile

(Fig. 7c). The high values of Sf :::
Scl mean that the clustering episodes identified by our algorithm contain a relatively large395

number of extreme events, whereas the low values of Sr :::::
Scont mean that episodes leading to the largest accumulations contain

a low number or even no extreme events. Such regions that exhibit frequent clustering , but where this frequent clustering

has
::::::::
prevalent

::::::::
clustering

::::
with

:
a limited contribution to large accumulations are the following: the south of Tibet, the south of

the Qinghai and west of the Sichuan Chinese provinces and
:::::
located

:::
in

::::::
central

:::::
China,

:::::::::
southwest

::
of

:::::
Japan

::::
and central Bolivia.

Again, small
::::
every

:::::::::
continent

:::::::
includes

:
groups of two to three or isolated catchmentscan be found on every continent. Only400

a few catchments exhibit this combination of high Sf and low Sr :::
Scl:::

and
::::

low
:::::
Scont:

values, highlighting the importance of

the clustering of extreme events for generating the largest accumulations for the majority of the catchments.
::
An

::::::::
example

::::::
located

::
in

::::::
central

:::::
China

::
is

::::::::
presented

::
in

:::::
detail

::
in

:::::::::
Appendix

:::
A3

:::::::::::
(Scl = 43.23,

::::::::::::
Scont = 0.59).

::::
The

:::::::::
seasonality

::
is

::::::
present

:::
but

::::
less

:::::::::
pronounced

::::
than

:::
in

:::::::
example

::::
A1:

:::::
almost

:::
all

:::::::
extreme

::::::
events

::::::
happen

:::::::
between

::::::::
mid-May

::::
and

:::::::::
September.

:::::::::
However,

::
in

:::
this

:::::
case,

::::::::
clustering

:::::::
episodes

::::
and

::::::
periods

:::
of

::::
large

::::::::::::
accumulations

:::::
tend

:::
not

::
to

::::::
overlap

:::
as

:::::
much

::
as

::
in

::::::::
example

:::
A1.

::::
This

::
is
::
a
::::::::::
particularly405

::::::::
interesting

:::::::
feature,

:::::::::
especially

::::::
because

:::
the

::::
two

:::::::
different

:::::::
patterns

::::::::::
exemplified

::
by

:::::::::
Appendix

:::
A1

:::
and

:::
A3

::::::
happen

:::
in

:::::::::::
neighbouring

::::::
regions.

:

:::
We

::::::::::
investigated

:
a
::::::::
potential

:::
link

::::::::
between

:::
the

:::::::::
catchment

:::
size

:::
(in

:::::
km2)

:::
and

::::
both

:::
the

:::::::::
clustering

::::
(Scl)::::

and
::::::::::
contribution

::::::
metric

::::::
(Scont),:::

by
:::::::::
computing

::::
their

::::::::
Spearman

:::::
rank

:::::::::
correlation

:::::::::
coefficient,

:::
but

:::::
found

:::
no

:::::::::
significant

::::::::::
correlations

:::
(not

:::::::
shown).

:

:::
The

:::::::
physical

:::::::
drivers

::
of

:::
the

:::::::::::
sub-seasonal

:::::::::
clustering

::
of

:::::::
extreme

:::::::::::
precipitation

:::
are

:::::::::
numerous

:::
and

::
a
:::::::
detailed

:::::::
analysis

:::
of

:::
the410

::::::::
identified

::::::::
clustering

:::::::
patterns

:::
is

::::::
beyond

::::
the

:::::
scope

::
of

::::
the

::::::
present

::::::::
research.

:::::::::
Generally

::::::::
speaking,

::::::::::::
sub-seasonal

::::::::
clustering

:::
of
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:::::::
extremes

:::::::
requires

::::::
either

::::
very

::::::::
stationary

:::
or

::::::::
recurrent

:::::::::
conditions

::::
that

::::::
locally

:::::::
provide

:::
the

:::::::::
ingredients

:::
for

::::::
heavy

:::::::::::
precipitation

::::::
(lifting

:::
and

::::::::
moisture)

:::::::::::::::::::::
(Doswell III et al., 1996)

:
.
::
In

:::::
some

:::::
areas,

:::::::::
large-scale

:::::::
patterns

:::
of

:::::::::
variability

::::
were

:::::
found

:::
to

::
be

::::::::
relevant,

::::
such

::
as

:::
the

:::::
North

:::::::
Atlantic

::::::::::
Oscillation

::::::::::::::::::::::::::::::::::::::::::
(e.g., Villarini et al., 2011; Yang and Villarini, 2019)

:
,
:::
the

::
El

:::::
Niño

:::::::
Southern

::::::::::
Oscillation

:::::::::::::::::::::
(Tuel and Martius, 2021)

:
or

:::
the

:::::::::
variability

::
of
::::

the
::::::::::
extratropical

:::::::::::
storm-tracks

:::::::::::::::::::
(Bevacqua et al., 2020)

:
.
::::::::
However,

::
in

:::::
other

:::::
areas415

::
the

::::::::::
circulation

::::::
patterns

:::::::::
associated

::::
with

:::::::::
clustering

::::
differ

:::::
from

:::
the

:::::::
patterns

::
of

::::::::
variability

:::::
(Tuel

::::
and

:::::::
Martius,

::
in

:::::::::::
preparation).

:::
We

:::::
direct

::
the

:::::::::
interested

::::::
readers

::
to

:::
the

::::::::::::::
above-mentioned

:::::::::::
publications.

:
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Figure 7. (a) Catchments where Sf ::
Scl:

and Sr:::::
Scont are both above their respective 75th percentile (pink areas); (b) Catchments where

Sf < 25p
:::::::
Scl < 25p

:
and Sr > 75p

::::::::::
Scont > 75p (pink areas) and (c) Catchments where Sf < 75p

:::::::
Scl > 75p

:
and Sr > 25p

:::::::::
Scont < 25p

(pink areas). In all panels, catchments in grey do not satisfy the respective conditions, whereas catchments in white were excluded from the

analysis according to the criteria defined in section 2.1.
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3.2
::::::::

Sensitivity
::::::::
analysis

3.3 Sensitivity analysis of Sr

The choice of the parameters will affect Sf for a given catchment. A decrease in the
:::
the

:::::
values

:::
of

:::
Scl::::

and
::::
Sacc.

:::
A

:::::
lower420

::::::
(higher)

:
threshold t and a decrease in the

:::::
shorter

:::::::
(longer)

:
run length r both increase

::::::::
(decrease)

:
the number of extreme events

per episode. An increase in the
::
and

::::
lead

::
to

::
an

:::::::
increase

:::::::::
(decrease)

::
of

:::
Scl::::

(Fig.
:::
D1

:::
and

:::::
Table

::::
D1).

::
A

::::::
longer

:::::::
(shorter) time window

w increases
:::::::::
(decreases) the likelihood of capturing more extreme events in a single episode

::
and

::::
also

::::
lead

::
to

::
an

:::::::
increase

:::
of

:::
Scl

::::
(Fig.

:::
D1

:::
and

:::::
Table

::::
D1).

::::
Sacc::::

will
::
be

::::::::
impacted

::::::
similar

::
to
::::
Scl.::::

The
::::::::
sensitivity

::
of
::::
Scl :::

and
::::
Sacc::

to
:::
the

:::::::::
parameters

:::::
does

:::
not

:::::
affect

:::
our

::::::
general

::::::::::
conclusions.

:::::::
Indeed,

:
a
::::::
change

:::
of

:::::::::
parameters

::::::
impacts

:::
all

::::::::::
catchments,

::
so

:::::
while

:::
the

:::::
scale

::
of

:::
Scl :::

(or
::::
Sacc)

::
is

::::::::
changed,425

::
the

::::::::::
comparison

::
of

::::
two

:::::::::
catchments

::::
will

:::::
result

::
in

:::
the

::::
same

::::::::::
conclusion

::
in

:::::
almost

:::
all

:::::
cases

:::
(not

:::::::
shown).

::::
That

:::
is,

:
a
:::::::::
catchment

::::
with

:
a
::::::::
relatively

:::
low

:::::
value

::
of

:::
Scl:::::::::

compared
::
to

::::
other

::::::::::
catchments

::
for

::::
one

::::::::
parameter

:::::::::::
combination

:::
will

::::
also

::::
have

::
a

::::::::
relatively

:::
low

:::::
value

::
for

:::::
other

:::::::::::
combinations

::::
and

:::::::
similarly

:::
for

::::
high

::::::
values. Together, those changes are expected to increase Sf for most catchments

. However, the variations of Sr :::::
Scont with the parameters depends on the variations of both Sf and S′f ::

Scl::::
and

::::
Sacc. If the

variations of Sf and S′f :::
Scl :::

and
::::
Sacc:

are of the same order of magnitude, then Sr ::::
Scont:

will change only slightly. It is therefore430

of interest to perform a sensitivity analysis on Sr ::::
Scont:

by modifying the parameters used to define the clustering episodes to

see if the distribution of Sr :::::
Scont remains similar.

Figure 8a shows the distributions of Sr ::::
Scont:

for all parameters combinations, while Figure 8b displays the distributions of

the difference between the initial parameter combination (r = 2 days, t= 99p, w = 21 days) and the other combinations. The

data used to draw the boxplots can be found in tables F1 and F2 in the appendix. The median value of Sr:::::
Scont, indicated by435

the green lines in the boxplots, exhibits very low sensitivity to changes in the parameters with a minimum value of 0.79 (for

r = 2 days, t= 98p, w = 14 days, see Fig. 8a) and a maximum value of 0.84 (r = 1 days, t= 98p, w = 28 days). The same

conclusion holds for the mean. In addition, the interquartile range and the position of the outliers are similar for all parameters

combinations.

Examination of Fig. 8b reveals that the differences in Sf and Sr :::::
Scont between the initial combination of parameters and the440

other combinations are relatively small for most catchments. For example, a change in r from 2 days to 1 day, while keeping t

and w constant (r = 1 days, t= 99p, w = 21 days), results in an absolute difference in Sr ::::
Scont:

smaller than 0.05 for almost

all catchments. However, the variation can be more substantial for other parameter combinations. For example, a change in t

from 99p to 98p and in w from 21 to 14 days, while keeping r constant (e.g. r = 2 days, t= 98p, w = 14 days), leads to much

larger absolute differences in Sr ::::
Scont:

that can reach up to 0.35. Moreover, Sr ::::
Scont:

at a given catchment can exhibit a wide445

range of variations when looking at all parameters combinations (not shown).

Taking into account the potential for high sensitivity to the parameters, we counted the number of parameter combinations

where catchments are above the 75th percentile of both the Sf and Sr ::
Scl::::

and
:::::
Scont distributions to reach more robust con-

clusions. Areas with high counts, i.e. where catchments have been selected in several parameter combinations, are almost

identical to the ones identified with the initial parameter combination (Fig. 9a). This means that the parameters selection does450

not have a substantial impact on the identified regions where sub-seasonal clustering occurs frequently and contributes substan-
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tially to large accumulations. This robustness with respect to variations in the parameters is also found for the catchments with

Sf < 25p and Sr > 75p
::::::::
Scl < 25p

::::
and

::::::::::
Scont > 75p

:
(rare clustering with substantial contribution), and Sf < 75p and Sr > 25p

::::::::
Scl > 75p

:::
and

:::::::::::
Scont < 25p (frequent clustering with limited contribution),

Figure 8. Boxplots of (a) Sr ::::
Scont for all catchments and parameters combinations and (b) of the differences in Sr ::::

Scont between the initial

parameter combination (the second boxplot from the left, i.e. r = 2 days, t= 99p, w = 21 days) and the other combinations. Boxes extend

from the first (Q1) to the third (Q3) quartile values of the data, with a blue line at the median. The position of the whiskers is 1.5 * (Q3 - Q1)

from the edges of the box. Outlier points past the end of the whiskers are shown with black circles.
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Figure 9. (a) Count of parameters combinations where Sf > 75p
:::::::
Scl > 75p

:
and Sr > 75p

:::::::::
Scont > 75p (pink areas); (b) Count of parameters

combinations where Sf < 25p
::::::::
Scl < 25p and Sr > 75p

::::::::::
Scont > 75p (pink areas) and (c) Count of parameters combinations where Sf < 75p

:::::::
Scl > 75p

:
and Sr > 25p

:::::::::
Scont < 25p

:
(pink areas). In all panels, catchments in grey do not satisfy the respective conditions for any parameter

combination, whereas catchments in white were excluded from the analysis according to the criteria defined in section 2.1.
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4 Discussion and conclusions455

We present a novel count-based procedure to analyse sub-seasonal clustering of extreme precipitation events. The procedure

identifies individual clustering episodes and introduces two metrics to characterise the frequency of sub-seasonal cluster-

ing episodes (Sf ::
Scl) and their relevance for large precipitation accumulations (Sr). The procedure is an avowedly simple

count-based approach that has its advantages and drawbacks.
:::::
Scont).:::::::::

Applying
:::
this

:::::::::
procedure

::
to

:::
the

::::::
recent

:::::
ERA5

::::
data

::::
set,

::
we

:::::::
identify

:::::::
regions

:::::
where

:::::::::::
sub-seasonal

:::::::::
clustering

::
of

::::::
annual

::::
high

:::::::::::
precipitation

:::::::::
percentiles

::::::
occurs

:::::::::
frequently

:::
and

::::::::::
contributes460

::::::::::
substantially

::
to

:::::
large

::::::::::
precipitation

:::::::::::::
accumulations.

:::::
Those

:::::::
regions

:::
are

:::
the

:::
east

::::
and

::::::::
northeast

::
of

:::
the

:::::
Asian

:::::::::
continent,

:::
the

::::::
central

::::::
Canada

::::
and

:::::
south

::
of

:::::::::
California,

:::::::::::
Afghanistan,

::::::::
Pakistan,

:::
the

:::::::::
southwest

::
of
::::

the
::::::
Iberian

:::::::::
Peninsula,

::::
and

:::
the

:::::
north

::
of

:::::::::
Argentina

:::
and

:::::
south

::
of

:::::::
Bolivia.

::::
The

::::::
method

::
is
::::::

robust
::::
with

::::::
respect

:::
to

:::::::
changes

::
in

:::
the

:::::::::
parameters

:::::
used

::
to

:::::
define

:::
the

:::::::
extreme

::::::
events

::::
(the

:::::::
threshold

::
t
:::
and

:::
the

:::
run

::::::
length

::
r)

:::
and

:::
the

::::::
length

::
of

:::
the

::::::
episode

::::
(the

::::
time

:::::::
window

:::
w).

:

Conceptually, our approach differs from previously proposed methods to quantify sub-seasonal clustering that are based on465

parametric distributions with associated assumptions on the underlying distributions of the data. A major advantage of our

method is that it does not require the investigated variable (here precipitation) to satisfy any specific statistical properties. This

allowed us to study annual percentiles, which in most catchments exhibit a strong seasonal cycle. The seasonal cycle violates

the independence assumptions underlying the parametric approaches. The seasonality issue is countered in the parametric

approaches by either focusing on a single season (e.g., Mailier et al., 2006) or by including a seasonally varying occurrence470

rate in the models (Villarini et al., 2013). Working with annual percentiles allows us to focus on high-impact events. This comes

at the cost of not being able to distinguish seasonal drivers from other drivers of sub-seasonal clustering. If precipitation in

some regions occurs more often or with more intensity during a specific period of the year, then the use of an annual thresholds

will result in a more frequent detection of extremes during this specific period. Consequently, extremes will also be more

likely to happen successively in a sub-seasonal time window. Hence, a catchment exhibiting a strong seasonality of extreme475

precipitation would likely show higher values of Sf ::
Scl:

than a catchment where precipitation shows no or weak seasonality.

One shortcoming of our method is the lack of a simple assessment of the significance of the clustering. In mitigation
:::::
Finally,

we note that this can be done using the established methods and that our
:::
our

::::::
method

:::
can

:::
be

::::::
applied

:::::
using

:::::::::
seasonally

:::::::
varying

:::::::::
percentiles,

:::
by

::::::
taking

::::::
certain

::::::::::
precautions

::
in
::::

the
:::::::::::
identification

:::
of

:::::::
episodes

:::
to

:::::
avoid

::::
edge

::::::
effects

:::
at

::::
each

::::::
season

:::::::::
transition

::::::::::::::::
(Barton et al., 2016)

:
.480

:::
Our

:
procedure introduces valuable practical refinements to the established methods. First, the identification of individual

clustering episodes allows researchers to study the atmospheric conditions that prevailed before and during an episode and

hence the processes leading to clustering. An illustration is given in Figure 10a, which shows a 21-days clustering episode

identified with our procedure for a catchment of the Iberian Peninsula (HydroBASINS ID n° 2060654920), with the corre-

sponding Potential Vorticity and Integrated Vapor Transport composites (Fig. 10b and Fig. 10c, respectively). Second, knowing485

when clustering episodes happen enables researchers to study their medium-range to seasonal predictability (see Webster et al.

(2011) for an example). Third, the episode identification makes possible to link the precipitation clustering to hydrological

impacts (e.g., using disasters data bases or hydrological models). And finally, the Sr ::::
Scont:

metric allows to globally assess the
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contribution of sub-seasonal clustering to high precipitation accumulations, which to our knowledge cannot be done with any

existing method.490

Applying this methodology to the recent ERA5 data set, we identify regions where
:::
The

:::::::
objective

:::
of

:::
the

::::::
present

:::::
paper

::::
was

::
to

::::::::
introduce

:
a
::::

new
::::::::::::

methodology
:::
and

:::
to

::::::::::
demonstrate

:::
its

:::::::::
application

:::
to

:::
the

:::::
study

::
of

:
sub-seasonal clustering of annual high

precipitationpercentiles occurs frequently and contributes substantially to large precipitation accumulations. Those regions are

the east and northeast of the Asian continent (north of Yellow Sea, in the Chinese provinces of Hebei, Jilin and Liaoning,

in North and South Korea, Siberia and east of Mongolia),the central Canada and south of California, Afghanistan, Pakistan,495

the southwest of the Iberian Peninsula, and the north of Argentina and south of Bolivia. The method is robust with respect to

changes in the parameters used to define the extreme events (the threshold t and the run length r) and the length of the episode

(the time window w)
:::::::
extreme

::::::::::
precipitation.

:
It
:::::
paves

:::
the

::::
way

:::
for

::::::
further

::::::::
research

::
on

::::::
several

:::::::
aspects.

:::::
First,

::::::::
potential

:::::::::
extensions

::
of

:::
the

:::::::
method

::::
itself

:::::
could

:::
be

::::::::
explored,

::::
such

::
as

:::::::::
integrating

:::
the

::::::::::
magnitude

::
of

::::
each

:::::::
extreme

:::::
event

::::::
within

:::
an

::::::
episode

::::
and

::::::::::
sequencing

::
its

:::::::::
variability.

:::::::
Second,

::::::::
possible500

:::::
trends

::
in

:::
the

::::::::::
contribution

::
of

:::::::::
clustering

::
to

::::::::::::
accumulations

:::::
could

::
be

::::::
studied

:::
by

:::::::::
comparing

:::::
values

::
of

:::
Scl::::

and
:::::
Scont ::

in
:::
the

:::
first

::::
half

:::
and

:::
the

::::::
second

::::
half

::
of

:::
the

::::::::::
investigated

::::::
period.

:::::
Third,

:::
the

:::::::
method

:::::
could

:::::::
provide

::::::
insights

::::
into

:::
the

:::::::
physical

::::::
drivers

::
of

:::::::::
clustering

::
by

:::::::
looking

::
at

::::::
scaling

::::::::
between

:::
the

::::
two

::::::
metrics

::::
and

:::::
other

::::::::::::
environmental

::::::::
variables

:::::
(such

::
as

::::::::::
temperature

:::
or

::::::::
pressure)

::::::
during

::::::
selected

:::::::::
clustering

:::::::
episodes

:::
or

:::::::
globally.

:
Regions that exhibit frequent clustering according to our approach could be studied

with other methods to see if the sub-seasonal clustering is due to seasonal effects such as monsoon circulations, changes in505

sea surface temperatures or seasonal variability of the extratropical stormtracks
::::
storm

::::::
tracks. We also think that our approach

is very flexible and that it could also be used to identify serial clustering of other variables (e.g. heat waves) and can be applied

on different time scales (e.g. for drought years). An example would be the classification of hurricane seasons using frequency

and categories of hurricanes. For this reason, we have made our code available on the listed GitHub repository.
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Figure 10. Example of a sub-seasonal clustering episode identified with our procedure for catchment 2060654920 of HydroBASINS. (a)

Daily precipitation with extreme precipitation events marked by blue bars. The horizontal blue line represents the 99p of the catchment

area daily precipitation distribution. (b) Potential Vorticity composite in PVU on the 320-K isentropic level (color shading) and dynam-

ical tropopause identified by the 2 PVU contour (black line). (c) Integrated Vapor Transport composite magnitude (shading) and field in

Kgm−1 s−1 (arrows), and SLP composite in hPa (black contours). The black and red markers indicate the catchment location in panel (b),

and (c) respectively. Both composites were calculated as the mean of the ERA5 6-hourly fields during the episode.
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Code and data availability. ERA5 data are available on the Copernicus Climate Change Service (C3S) Climate Data Store: https://cds.510

climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form.

HydroBASINS data are available on the HydroSHEDS website: https://www.hydrosheds.org/downloads.

The complete code used to identify the clustering episodes, compute the metrics and generate all the figures is available on the following

github page: https://github.com/jekopp-git/subseasonal_clustering Datasets created in this study are available from FAIR-aligned repository

in the in-text data citation Kopp (2021)515

Appendix A:
::::::::
Examples

::
of

::::::::
episodes

:::
by

:::::::::
catchment

A1
::::::::::
Catchment

::::
with

::::::::
frequent

:::::::::::
sub-seasonal

:::::::::
clustering

:::::::::::
contributing

::::::::::::
substantially

::
to

:::::
large

:::::::::::::
accumulations

Figure A1.
::::::::
Catchment

:::::::::
4060460860

::::::
located

::
in

:::::::::
northeastern

::::::
China,

:::
with

:::::::
prevalent

::::::::
clustering

:::::::::::
(Scl = 41.14)

:::
and

:
a
::::
high

:::::
degree

::
of

::::::::
similarity

::::::
between

:::
the

::::::::::
classifications

::::
Cln:::

and
:::::
Clacc:

:::::::::::
Scont = 0.93.

:::
All

::::::
extreme

:::::
events

:::
are

:::::
shown

::
as

::::
black

::::
dots

:::
and

::::::
21-day

::::::
episodes

:::
are

:::::::::
highlighted

::
by

::
the

::::::
colored

::::::::
rectangles.

:::::::
Episodes

::::::::
appearing

::
in

:::
both

:::::::::::
classifications

::
are

::::::
shown

:
in
::::
grey

:::
and

::::
those

::::::::
appearing

:::
only

::
in

:::
the

:::
Cln::::::::::

classification
:::
are

:::::
shown

:
in
::::::
orange

::::::
whereas

::::
those

::::
only

:
in
:::
the

:::::
Clacc :::::::::

classification
:::
are

:::::
shown

::
in

::::
blue.

::
34

::::::
episodes

::::::
contain

:::
two

::
or

::::
more

::::::
extreme

:::::
events

:::::::::
(nw >= 2)

:::
and

::
are

:::::::::
highlighted

::::
with

:
a
:::
red

::::
edge.
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A2
::::::::::
Catchment

::::
with

::::
rare

::::::::::::
sub-seasonal

:::::::::
clustering

:::::::::::
contributing

:::::::::::
substantially

::
to

:::::
large

:::::::::::::
accumulations

Figure A2.
::::::::
Catchment

:::::::::
5060089390

::::::
located

::
in
::::::::

Australia,
::::
with

:::
rare

::::::::
clustering

:::::::::::
(Scl = 26.79)

:::
and

:
a
::::

high
::::::
degree

::
of

:::::::
similarity

:::::::
between

:::
the

::::::::::
classifications

::::
Cln :::

and
:::::
Clacc:

::::::::::
Scont = 0.9.

::
In

:::
that

::::
case,

::::
most

::
of

:::
the

:::::::::
contribution

::
to

::::::::::
precipitation

:::::::::::
accumulations

:
is
:::
due

::
to
::::::
isolated

:::::::
extreme

:::::
events.

::
11

:::::::
episodes

::::::
contain

:::
two

::
or

::::
more

::::::
extreme

:::::
events

:::::::::
(nw >= 2).

:::::::
Extreme

:::::
events

:::
and

::::::
episodes

:::
are

:::::
shown

::
as

::
in

:::
Fig.

:::
A1.
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A3
::::::::::
Catchment

::::
with

::::::::
frequent

:::::::::::
sub-seasonal

:::::::::
clustering

::::
and

::::::
limited

::::::::::::
contribution

::
to

:::::
large

::::::::::::
accumulations

Figure A3.
::::::::
Catchment

:::::::::
4060660750

::::::
located

::
in

:::::
central

:::::
China,

:::::::
prevalent

::::::::
clustering

:::::::::::
(Scl = 43.23)

:::
and

:
a
::::::
limited

:::::
degree

::
of

:::::::
similarity

:::::::
between

::
the

:::::::::::
classifications

:::
Cln:::

and
::::::
Clacc:

::::::::::
Scont = 0.59.

::
35

:::::::
episodes

::::::
contain

:::
two

::
or

::::
more

::::::
extreme

:::::
events

:::::::::
(nw >= 2).

:::::::
Extreme

:::::
events

:::
and

:::::::
episodes

::
are

:::::
shown

::
as

::
in

:::
Fig.

::::
A1.
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Appendix B:
::::::::::
Calculation

::
of

:::
the

:::::::
weights520

:::::::::::
Sitarz (2013)

::::::
assume

:::
two

:::::::
intuitive

:::::::::
conditions

:::
for

::
a

::::::
scoring

::::::
system.

:::::
First,

:::::
more

:::::
points

:::
are

:::::::
assigned

:::
to

::
the

::::
first

:::::
place

::::
than

::
to

:::
the

::::::
second

:::::
place,

:::
and

:::::
more

::
to

:::
the

::::::
second

::::
than

::
to

:::
the

:::::
third,

:::
and

::
so

:::
on.

:::::::
Second,

:::
the

:::::::::
difference

:::::::
between

:::
the

::
ith

:::::
place

::::
and

:::
the

::::::
(i+1)th

::::
place

::::::
should

::
be

::::::
larger

:::
than

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::
(i+1)th

:::::
place

:::
and

:::
the

::::::
(i+2)th

:::::
place.

::::
This

::
is
:::::::::
equivalent

::
to

::::::::::
considering

:::
the

::::::::
following

::
set

:::
of

::::::
points:

K =
{

(x1,x2, · · · ,xN ) ∈ RN : x1 ≥ x2 ≥ . . .≥ xn ≥ 0 and x1−x2 ≥ x2−x3 ≥ ·· · ≥ xN−1−xN
}

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(B1)525

:::::
where

:::
x1 ::::::

denotes
:::
the

::::::
points

:::
for

:::
the

::::
first

:::::
place,

:::
x2 :::

the
:::::
points

:::
for

:::
the

:::::::
second

::::::::
place,. . . ,

:::
and

::::
xN :::

the
:::::
points

:::
for

:::
the

::::
N th

::::::
place.

:::
Any

::::::
choice

:::
of

:::::
points

::
in
:::
K

:::::
would

::::::
satisfy

:::
the

::::
two

:::::::::
conditions

:::
for

::
a

::::::
scoring

:::::::
system,

:::::::
however

:::
we

::::::
would

::::
like

::
to

::::
have

::
a

::::::
unique

:::
and

::::::::::::
representative

:::::
value.

::::
The

:::::
option

::::::
chosen

:::
by

:::::::::::
Sitarz (2013)

::
is

::
to

::::
look

:::
for

:::
the

:::::::::
equivalent

::
of

:
a
:::::
mean

::::::
value:

:::
the

:::::::
incenter

::
of

:::
K.

::::::::
Formally,

:::
the

:::::::
incenter

:
is
:::::::
defined

::
as

::
an

:::::::
optimal

:::::::
solution

::
of

:::
the

::::::::
following

:::::::::::
optimization

:::::::
problem

::
by

:::::::::::::::::::::::
Henrion and Seeger (2010):

:

max
x∈K∩Sx

dist(x,∂K)
::::::::::::::::

(B2)530

:::::
where

:::
Sx ::::::

denotes
::::

the
:::
unit

:::::::
sphere,

:::
∂K

:::::::
denotes

:::
the

::::::::
boundary

:::
of

::
set

:::
K

:::
and

::::
dist

:::::::
denotes

:::
the

:::::::
distance

::
in
::::

the
::::::::
Euclidean

::::::
space.

::
By

:::::
using

:::
the

::::::::::
calculation

::::::::
presented

::
in

:::
the

:::::::::
Appendix

::
of

:::::::::::
Sitarz (2013),

::::
and

:::::::
dividing

:::
the

::::::
points

::
of

:::
the

::::
first

:::::
place

:::
(x̄1)

:::
to

:::
get

:::
the

::::::
weights

::::
(qi),:::

we
::::::
obtain:

:

qi =
xi
x1
, ∀i ∈

:::::::::::

[1,N
:::

] (B3)

:::
The

::::::
weight

::
q1::

is
::::::
always

:
1
:::
but

:::
the

::::::
values

::
of

::::::
weights

:::
q2 :

to
:::
qN:::::::

depend
::
on

::
N

:::
and

::
in

:::
our

::::
case

::
N

::
is

::
the

:::::::
number

::
of

::::::::
clustering

::::::::
episodes535

::::
Nep.

Appendix C:
::::::::
Rationale

:::::::
behind

:::
the

:::::::::::
construction

::
of

:::
the

:::::::
metrics

::
An

::::::::
intuitive

:::::
choice

:::
to

:::::
define

:::
the

:::::::
metrics

:::
(see

:::::::
section

:::
2.4)

::
is
:::
to

:::
use

:::
the

::::
sum

::
or

:::::::
average

::
of

:::
the

:::::::
number

::
of

:::::::
extreme

::::::
events

::::
over

::
all

:::
(or

:
a
::::::

subset
:::
of)

:::
the

::::::::
episodes

::
of

::::
Cln :::

and
::::::
Clacc.

::::::::
However,

::::
such

::
a
::::::
choice

:::::
would

:::::
result

:::
in

:
a
::::
loss

::
of

:::::::
relevant

::::::::::
information

:::
on

:::
how

::::
the

:::::::
episodes

:::
are

:::::::
ranked,

:::
and

::::::::
preclude

::
a

:::::::::::
rank-by-rank

::::::::::
comparison

:::::::
between

::::::::::::
classifications.

:::::
This

:::
can

:::
be

::::::::
illustrated

:::::
with540

::
the

:::::::::
following

:::::::::
theoretical

::::::::
example:

:::
let

::
us

::::::::
consider

:
a
:::::::::
catchment

::::::
where

:::
Cln:::

is
::::::::
composed

:::
of

:
5
::::::::
episodes,

:::::
each

::::
with

::
3

:::::::
extreme

::::::
events,

:::
and

:
5
:::::
other

::::::::
episodes,

::::
each

::::
with

:
1
:::::::
extreme

:::::
event

::::
(i.e.,

:::::::::
Nep = 10).

::::
The

::::::
average

:::::::
number

::
of

:::::::
extreme

:::::
events

::
is
::
2.

::
If

:::::
Clacc::

is

::::::::
composed

::
of

:::
the

:::::
same

::::::::
episodes,

::::
then

:::
the

::::::
average

:::::::
remains

::::::::
identical

:::::::
whatever

:::
the

:::::
order

::
of

:::
the

::::::::
episodes

::
in

:::::
Clacc :::

and
:::
we

::::::
cannot

:::
say

:::::::
anything

:::::
about

:::
the

::::::::::
contribution

:::
of

::::::::
clustering

::
to

::::::::::::
accumulations

:::
by

:::::::::
comparing

:::
the

::::::::
averages.

:::
For

::::::::
example,

::
all

::::::::
episodes

::::
with

:
1
:::::::
extreme

:::::
event

:::::
could

::::
have

:::::
larger

::::::::::::
accumulations

::::
than

:::::
those

::::
with

:
3
:::::::
extreme

::::::
events.

:::::
There

::
is

:
a
::::
low

::::::::::
contribution

::
of

:::::::::
clustering

::
to545

::::::::::::
accumulations

::
in

:::
this

::::
case,

::::
and

::::::
metrics

:::::
based

:::
on

:::::::
averages

::::::
would

:::
not

::
be

::::
able

::
to

::::::
capture

::::
this

::::::
feature.

::
A

::::::
metric

:::::
based

::
on

:::::::
average

:::::
would

::::
also

:::
fail

::
to

:::::::
capture

:::::
some

:::::::::
differences

::
in

:::
the

:::::
same

:::::::::::
classification

:::::::
between

::::
two

::::::::::
catchments.

::::
This

:::::
again

::::
can

::
be

:::::::::
illustrated

::::
with

:
a
:::::::::
theoretical

::::::::
example:

::
let

:::
us

:::::::
consider

:::::::::
catchment,

::
A

:::::
where

::::
Cln::

is
:::::::::
composed

::
of

:
5
::::::::
episodes:

::
1

::::
with

:
5
:::::::
extreme

::::::
events,

:::
the

::
4
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:::::
others

::::::
without

:::::::
extreme

::::::
event;

:::
and

::::::::
catchment

:::
B,

:::::
where

::::
Cln ::

is
::::::::
composed

::
of

::
5

:::::::
episodes,

:::::
each

::::
with

:
1
:::::::
extreme

:::::
event.

::
In

::::
both

:::::
cases

::
the

:::::::
average

:::::::
number

::
of

:::::::
extreme

::::::
events

:
is
::

1
:::
but

:::
the

:::::::::
clustering

::::::::
behaviour

::
is

::::::::
different.

::::::::::::
Consequently,

:::
we

::::
need

:
a
::::
way

::
to
::::::::
properly550

::::::
account

:::
for

:::
the

:::::::::
respective

::::
rank

::
of

::::
each

:::::::
episode

::
in

::::
both

::::::::::::
classifications.

33



Appendix D:
:::::::::::
Distributions

::
of

::::
Scl :::

and
:::::::
related

::::
data

Figure D1.
::::::
Boxplots

:::
of

:::
Scl ::

for
:::
all

::::::::
catchments

::::
and

::::::::
parameters

:::::::::::
combinations.

:::::
Boxes

:::::
extend

::::
from

:::
the

::::
first

::::
(Q1)

::
to

:::
the

::::
third

::::
(Q3)

::::::
quartile

:::::
values

::
of

::
the

::::
data,

::::
with

:
a
::::
blue

:::
line

::
at

:::
the

::::::
median.

:::
The

::::::
position

::
of
:::
the

:::::::
whiskers

::
is

::
1.5

::
*
:::
(Q3

:
-
::::
Q1)

::::
from

::
the

:::::
edges

::
of

:::
the

:::
box.

::::::
Outlier

:::::
points

:::
past

:::
the

:::
end

::
of

::
the

:::::::
whiskers

:::
are

:::::
shown

:::
with

:::::
black

:::::
circles.
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Appendix E:
::::
Map

::
of

::
φ̂

::::::
(index

::
of

::::::::::
dispersion)

Figure E1.
::::
Index

::
of
::::::::
dispersion

::
φ̂

::
by

::::::::
catchment,

:::
for

:::::::::::::::::::::::::
r = 2 days, t= 99p, w = 21 days.

:::::
φ̂ > 1

:::::
denote

::::::::
catchments

:::::
where

::::::
extreme

::::::::::
precipitation

:::::
events

::
are

::::
more

:::::::
clustered

::::
than

::::::
random.
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Appendix F: Data of Fig. 8a and 8b
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