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Review of “A novel method to identify sub-seasonal clustering episodes of extreme precipitation
events and their contributions to large accumulation periods” by Jérôme Kopp1, Pauline
Rivoire1, S. Mubashshir Ali1, Yannick Barton1, and Olivia Martius1

Main comment

The authors study the clustering of precipitation extremes and their relevance for accumulated
precipitation extremes at the global scale. They use ERA5 data and aggregate precipitation over
river catchments, which is the basis for an interesting study. They introduce metrics for
investigating the above from a novel perspective.

I read the paper with high interest. I appreciate the effort done by the authors in providing
graphics for explaining the procedure. However, unfortunately, I found the methodology very
difficult to understand. In my view, the presentation of the methods, which is - together with the
results - the fundamental aspect of the paper, requires a thorough revision. In fact, it is unclear
to me from many points of views. In this context, I find it difficult to judge how well the metric
captures the investigated physical processes and whether a more straightforward (easy to
interpret) metric could have been designed.

After an improvement of the presentation, which should make everything clear to the reader
(see specific comments below), I think that the following crucial aspects should be discussed
thoroughly.

The authors propose a novel metric, hence high attention is required to the physical
interpretation of (1) the defined metric (i.e., explain the reasoning beyond the choice of the
metric based on simple physical arguments to the reader) and (2) the associated results. This is
fundamental to allow the reader to well understand metric and results (and ultimately to
maximise the impact of the work). On the same topic, as also states by the authors in the
discussion, “a shortcoming of the method is the lack of a simple assessment of the significance
of the clustering”. In fact, this shortcoming, combined with a non-clear (according to me)
presentation/explanation of the metric, makes it difficult to interpret physically the spatial
distribution of the clustering and its relevance for accumulated precipitation. I fully understand
that the results are novel and, for this reason, it can be sometimes difficult to compare with
previous literature, however, the authors should try to explain whether the results are consistent
with some physical understanding/expectation. (I do provide some possible ways to go in this
direction below.) This would help to make the work more robust. I hope that my comments can
help the authors to improve the manuscript.

We thank the reviewer for their detailed and thoughtful review. In particular, pointing out the
technical sections of the paper that were unclear, helped us greatly to improve the description of
the methodology. We have addressed all comments pertaining to the description and
interpretation of the methodology and propose a revised version of the corresponding sections



(2.3, 2.4, 2.5 and 3.1) at the end of our reply. Suggested changes related to comments of those
revised sections are not explicitly stated in each comment individually, but a reference is made
to the new version of the corresponding section. We hope that this can improve the readability
of our general answer. For comments related to the introduction and the discussion, changes
are mentioned directly after the comment and highlighted in bold font.

Please note that the metrics S_f and S_f’ are renamed S_cl (the clustering metric) and S_acc
respectively, in the revised section and in our answers. The ratio S_cont is also renamed S_cont
to highlight its measure of the contribution of clustering to accumulations:

Clustering Metric: Scl =
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Contribution Metric Scont = Scl / Sacc

Specific comments:

L25, I agree, but isn’t the third point a consequence of the two above, so should not this
presented in a non-parallel fashion?

Response: We agree that this third point could be a consequence of the first two.
Change: L25 Therefore, temporal dependence of precipitation…

- L31-40
“In these studies, clustering in time was assessed using the index of dispersion (variance-to
mean ratio) of a one-dimensional homogeneous Poisson process model i.e., a Poisson process
with a constant rate of occurrence (Cox and Isham, 1980).”
“All studies discussed above used statistical models to identify significant serial clustering of
extreme events. However, none of those methods are able to directly identify individual
clustering episodes.”
“To our knowledge, no procedure exists that (1) automatically identifies individual serial
clustering episodes of extreme (precipitation) events, and (2) subsequently uses the identified
episodes to evaluate the clustering properties of a region.”
Aren’t Bevacqua et al. doing so (for precipitation from storms), i.e. introducing a counting-based
procedure to identify individual clusters and avoid issues with the Poisson-process methods?
Their approach does not rely on parametric distributions (related to your L275). If so, this should
be acknowledged and the text fixed accordingly where necessary. Similarly, are Dacre and Pinto
presenting counting based procedures as well?
(The two references are those in the original manuscript.)



Response: we thank the referee for pointing out the details of these references, which have now
been acknowledged more specifically.

Changes:
L28 A number of previous studies have analyzed the statistical properties of the serial clustering
of extreme events. Mailier et al. (2006); Vitolo et al. (2009) and Pinto et al. (2013) and
Bevacqua et al. (2020) studied European winter storms…

L39 All studies discussed above used statistical models to identify significant serial clustering of
extreme events. However, none of those methods are able to directly identify individual
clustering episodes. According to the review of Dacre and Pinto (2020), there are no widely
used impact metrics used as a proxy for precipitation-related damage and only a recent
study by Bevacqua et al. (2020) introduced a count-based procedure to identify individual
cyclone clusters, combined with an impact metric based on precipitation accumulations.
To our knowledge, no procedure exists that (1) automatically identifies individual serial
clustering episodes of extreme (precipitation) events, and (2) subsequently uses the identified
episodes to evaluate the clustering properties of a region. Here we propose a novel
count-based procedure to….

L56 “Precipitation in ERA5 is a prognostic variable.”
I understand the sentence, however, I suggest to expand the text by mentioning the implication
and what does that mean for a non-specialist (in a few words).

Response: we agree that this statement should be replaced by more precise explanations.

Change:
L56 Precipitation in ERA5 is a prognostic variable. Precipitation is not directly constrained
by observations in the ERA5 reanalysis data set as it stems from short-range numerical
weather model forecasts. Consequently the quality of the precipitation data depends on
the forecast quality. For our analysis primarily the timing of extreme precipitation events
needs to be well represented. Rivoire et al. (2021) show that in the extratropics ERA5
captures the timing of extremes very well.

L64. Can you explain better to the reader why you do this choice, i.e. using level 6? Thanks

Response: we agree that this should be better explained.

Changes: L64 We use level 6 of HydroBASINS for our study. This choice is motivated further
below.

L70 We retained only catchments containing at least five ERA5 grid points for our analyses. The
choice of HydroBASINS level 6 and the removal of the smallest catchments allow us to
focus our analysis on relatively large catchments (90% of the catchments are 3000 km2 or
larger).



L70, “We retained only catchments containing at least five ERA5 grid points for our analyses.”
Does this mean that you consider only catchments with a catchment's area above about
5*25*25km? (I am assuming a resolution of 25km for the grid points.) If so, this means that you
are considering relatively large catchments, where the clustering may be more important as they
are responding slower to rainfall. If you agree (supported by a reference), this could be
mentioned to reinforce your approach.

Response: we indeed want to focus our analysis on relatively large catchments because they
are more sensitive to rainfall lasting for several days but cannot state an exact lower bound for
their area. The East-West resolution of an ERA5 grid point (0.25°) is approximately 111km at the
equator, 79km at 45°N/S or 44km at 67°N/S (Wikipedia). The catchment’s area then depends on
its latitude and on how the grid points are placed inside it.

Changes:

L70: We retained only catchments containing at least five ERA5 grid points for our analyses.
The choice of HydroBASINS level 6 and the removal of the smallest catchments allow us to
focus our analysis on relatively large catchments. Such large catchments are sensitive to
extended periods of heavy rainfall lasting for several days or longer (Westra et al. 2014)
and consequently the impact of subseasonal clustering is likely to be more important for
those catchments.

New reference: Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson,
F., … Roberts, N. M. (2014). Future changes to the intensity and frequency of
short-duration extreme rainfall. Reviews of Geophysics, 52(3), 522–555.
https://doi.org/10.1002/2014RG000464

L86, "After applying the declustering approach, a series of independent extreme daily
precipitation events was defined”. I understand that you end up with a time series of binary
events (fig 3b). Specifying that would help the reader.

Response: we agree that it could help the reader to specify this point.

Change: L86 After applying the declustering approach, a series of binary events of extreme
precipitation was defined (Fig. 3b).

Depending on the local autocorrelation of the precipitation time series, after applying the high
frequency declustering, you will end up having a different number of extreme events at different
locations. Does this affect your final results, which may differ at different locations simply
because of that? Please clarify/discuss.



As the second referee also raised a question regarding the runs declustering, we copied its
question and our answer below in italic for completeness.

Response: we agree with the referee that the declustering reduces the number of extreme
events differently at different locations. In a catchment where extreme precipitation is on
average more persistent, the number of independent events retained after the declustering is
smaller than in a catchment where extreme events have a short duration. The goal is to identify
independent extreme events (ideally these are related to independent triggering weather
systems). Note however that these differences in number are not relevant for our analysis as we
focus on the clustering of independent events. We further limit our analysis to the top 50
clustering episodes for each catchment so the same number of episodes is used for all
catchments (we checked that all catchments had 50 episodes with at least one (declustered)
extreme event).

The sensitivity analysis presented in Fig. 9b also reveals that a change in the run length
parameter r from 2 to 1 days resulted in the smallest differences in Sr. Not applying the
declustering is equivalent to setting r = 0 days, and consequently this should have a very limited
impact on our results and wouldn’t affect our conclusions.

We also emphasize that the precipitation accumulations are not affected by the declustering,
only the event counts.

2nd referee question: The runs declustering step needs more justification. I can understand its
purpose for the case of slow-moving synoptic cyclones. But for the case of a multi-day
sequence of afternoon severe convective storms, these are multiple events that are clustered
rather than a single event.

We agree with the referee that by applying a runs declustering, our methodology will not pick up
this specific scenario of a multi-day sequence of afternoon severe convective storms at the
same grid-point. The spatial (0.25° lat/lon) and temporal (daily) resolutions of ERA-5 is too
coarse to properly target convective scale precipitation, and we would miss many convective
extremes. The present research is more targeted at the larger scale structures, such as
mid-latitudes cyclones and cut-off lows. The runs declustering removes the short-term temporal
dependence of extremes so as to focus exclusively on clustering at longer timescales (weekly
and above).

That being said, it would be interesting to apply our approach to shorter time scales by using
input data with a higher temporal and spatial resolution.

Change: L87 The runs declustering successively removes the short-term temporal
dependence of extremes so as to focus exclusively on clustering at longer timescales
(weekly and above). In this framework, a multi-day sequence of afternoon severe
convective storms at the same grid-point would be reduced to a single event, while being
composed of multiple independent events. This is not an issue because the present



research is more targeted at the larger scale structures, such as mid-latitudes cyclones
and cut-off lows. More importantly, the spatial (0.25° lat/lon) and temporal (daily)
resolutions of ERA-5 are too coarse to properly target convective scale precipitation, and
many convective extremes would be missed. Input data with a higher temporal and
spatial resolution should be used to apply our approach to shorter time scales.

Could not Figure 3 and 4 be merged, i.e. keep only 4? The first two panels are *about* identical
to Fig. 3. (They are not exactly identical as stated in the caption of Fig 4 given that there are no
lines in panel 4b).

Response: we agree that merging the two figures could improve readability and remove
redundant information.

Change: we have merged Fig. 3 and 4 into a new version of Fig. 3 (see new Fig. 3 in attached
document).

Figure 4, Can be adding 14 days after the last day in the panel help to read the panels? (Such
to be able to well understand why n14 is 0 in the last days in panel c.)

Response: we agree that this would improve the understanding.

Change: new Fig. 3 is modified accordingly. (see new section 2.3 in attached document)

L100, when you talk of extreme events in this section, I assume you refer to extreme events
identified though the high frequency decluttering defined in the section above. Please make this
clear/explicit.

Response: This is correct. Starting in section 2.3, extreme events are those identified after
applying the runs declustering method. We made this point more explicit.

Change: in Table 3: Definition of n_w: Count of extreme events (resulting from the runs
declustering) during a time window of w days. See also new section 2.3 in attached document)

L104, at the end, are windows centred or not? In Fig 4d, there is a centred window.

L105-106. You refer to Figure 4d. n14 is computed over the next 14 days, while acc14 is
computed over a centred window. You explain why later, but it is confusing for the reader to find
this in the Figure at this stage (as you refer to Figure 4d).

Response: we thank the referee for pointing out this possible point of confusion. The
accumulations (acc_w) and the counts of extreme events (n_w) are both computed over the
next w-1 days, that is: using a leading time window. In Fig. 4d (now 3d), the centred window
corresponds to the days which are removed after the selection of an episode: we remove the



days composing the episodes and also the previous w-1 days to strictly have independent
episodes.

Change: see new section 2.3 in attached document.

L107-118, In my view, the explanation of the procedure needs major improvement. The
statements below can help the reader to understand points where the text needs improvements.

Response: we thank the referee for their numerous suggestions and section 2.3 was reviewed
by keeping those suggestions in mind. Please see the revised section and the new figures in the
attached document.

L107 Add a sentence at the beginning of the paragraph explaining that through your procedure
you aim at reducing the number of clustering episodes up to a number N_ep, to avoid having
overlapped clusters. The reader is then able to read the step with this in mind and things will be
easier to understand.

Response: We thank the referee for pointing out this possible point of confusion. Step (ii) of the
algorithm is designed to avoid any overlapping between episodes, by removing w-1 days before
and after the day selected at step (i). However, the reasons for limiting the number of selected
clustering episodes to Nep are discussed at L177 and are not related to overlapping.

Change: see new section 2.3 in attached document.

L107 “highest count of extreme events”. What does “highest” mean? “Largest precipitation” The
same with “largest”. It seems that there are two different thresholds involved in the selection, in
addition to the constrain on N_ep and other thresholds. Please clarify.
Does changing these thresholds affect the results (in terms of matching between Cl_n and
Cl_acc? (This is related to line 116)

Response: The highest count of extreme events means the largest value of n_w and the largest
precipitation accumulations means the largest value of acc_w, with n_w and acc_w defined in
the paragraph starting at L100. Hence, those values are not chosen and used as thresholds but
are computed based on the underlying precipitation time series. The sole threshold is the yearly
percentile used to define the extreme events (t, see section 2.2). A change in the parameters
used to define the extreme events (e.g. the threshold t and the run length r) and in the time
window length (w) will change n_w and acc_w and change Cl_n and Cl_acc. This sensitivity to
the parameters is analysed in section 3.2 for Sr and is now further discussed in section 2.4.

Change: see new section 2.3 in attached document.

L113, do you mean you sort by the number of counts in extreme events, and if that is equal
among clusters you then sort by precipitation?



Response: yes, this is how we proceed.

Change: see new section 2.3 in attached document.

L115. To me, it is unclear how Cl_acc is obtained. You state: “This is done by applying steps (ii)
to (iv) of our automated identification algorithm to the original precipitation time series.”
Hence, I would assume that you only apply steps ii to iv. Is this correct?
If so, this would imply that there is no association between Cl_n and Cl_acc, in the sense that
Cl_n and Cl_acc can be associated with different dates as the two procedure are carried out
independently (this seems in line with L164). In this context, I think that the sentence at line
L122-124 is not necessarily obvious, and should be explained better to the reader.

Response: we thank the referee for pointing out this possible source of confusion. Cl_acc is
indeed obtained by applying steps ii to iv. The degree of similarity between Cl_n and Cl_acc is
the key point in our method to evaluate the contribution of clustering to large accumulations.
This degree of similarity is evaluated by doing a rank-by-rank comparison of the number of
extreme events n_w in the episodes of Cl_n with the episodes of Cl_acc. If the episodes
composing Cl_acc and Cl_n have the same n_w at each rank, then it means that the episodes
with the largest number of extreme events are also leading to the largest accumulations. In this
particular case, the contribution of clustering to accumulations is maximised. On the other hand,
if any episode of Cl_acc has less extreme events than the episode with the same rank in Cl_n,
then the contribution of clustering to accumulations is below the maximised contribution. The
episodes selected in Cl_n and Cl_acc can be the same and ordered differently, but they can
also differ. For example, this latter case could happen for catchments having episodes of large
accumulations without extreme events. Assuming that the catchment has more than Nep
episodes with at least an extreme event, those episodes would likely be selected in Cl_acc but
not in Cl_n.

Change: see new section 2.3 in attached document.

L114, “The episodes picked out by the clustering episode identification and the extreme
precipitation accumulation identification can be partly or completely identical. Examples of Cln
and Clacc for the time series of Fig. 4 are shown in Table 1.”
- Is the example in the table one where they are identical or not? It seems they are in terms of
dates (which I assume is not always the case - please clarify), but not in terms of rank. Please
Clarify.
- If selecting episodes associated with different dates is possible (as I understand), I strongly
suggest creating an example where this also occurs. This would help to avoid any confusion in
this regard.

Response: in the example presented, the selected episodes are identical (they have the same
starting date) but ordered differently in Cl_n and Cl_acc (their rank are not the same). We agree



with the referee that an example where the two classifications are not composed of the exact
same episodes would better illustrate the method and we modified it accordingly.

Change: see new Figures 3 and Table 1 in attached document.

L117. You refer to the table where Sr Sf S’ is discussed but it has not been presented to the
reader yet. This can be confusing.

Response: we agree with the referee that this can be confusing and made a reference to the
section where the metrics are defined.

Change: see new section 2.3 in attached document.

L120, this sentence is not precise. I guess you mean that the clustering is present if the
variance of the number of extreme events across Cl_n is above a certain threshold.

Response: we thank the referee for pointing out this point of confusion. In contrast to the
dispersion index, the Cl_n classification does not contain explicit information on the variance.
We moved the interpretation of the classifications from the beginning of section 2.4 to section
2.3. We explained in more details what the classifications represent and how they can be used
to construct the metrics.

Change: see new section 2.3 in attached document.

L125 start a new paragraph before “We would like”. (“We would like” is too colloquial in my
personal view.)

Response: we agree with the referee’s proposition. Section 2.4 now starts at L125.

L125 (now the first line of section 2.4): Next we define metrics that synthesize the properties of
the two classifications discussed in the previous section and that will allow us to compare
catchments.

After clarified things about the weights (see below), consider whether having their description in
an appendix would help the reader. This could allow focusing directly on the metrics S. You
should provide at around L 125 a general explanation on the way you are going to build the
metrics S and why you need weights there. This should be before going into the details of the
weights, which is a more technical aspect.

Response: we agree with the referee that the description of the weights should be moved in an
appendix.

Change: L129 to L150 were moved in Appendix B.



L130, clarify the difference between “points” and “weights”.

Response: The weights q_i are defined as explained in L140 (q_i = x_i/x_1) . However, there
was an error in L142 to L148 where x_n was used instead of x_1 as the denominator. The
definition could also be simplified by directly mentioning x_i instead of the definition of each x_i:

Change: L142 q_i = x_i/x_1 for all i.

The following questions all concern section 2.4 (L125 to L168). We also revised this section
almost entirely and included it on pages 17-19 of our answer. For the sake of clarity we
responded individually to each point but pointed to this revised section for the corresponding
changes.

L132. Aren’t the results therefore strongly sensitive to your choice of the weights? I mean, the
condition “the difference between the ith place and the (i+1)th place should be larger than the
difference between the (i+1)th place and the (i+2)th place”? This seems to be a very relevant
point to discuss. For example, why isn’t the difference between adjacent points always the
same?

Response: We agree with the referee that this should be better explained. Regarding the choice
of the weights: We have tried two other weighting schemes, also satisfying the two required
properties: the inverse of the rank (1/1, ½, ⅓, etc…) and the inverse of the square root of the
rank (1/1, 1/sqrt(2), 1/sqrt(3), etc.). The former gave slightly too much importance to the very
first episodes of the classification and the latter gave almost identical results to the incenter
method. In conclusion, our results are only slightly sensitive to the choice of the weighting
scheme, as long as it satisfies the two desired properties.

The second property means that someone gaining a place (or a rank) should be rewarded more
if the initial rank is higher, as improving at upper ranks is more challenging than improving at
lower ranks.

Change: see new section 2.4 in attached document.

L140, what is lambda?

Response: lambda appears as a parameter in Sitarz (2013), which doesn’t play a role in the
definition of the scoring system and is set to 1.

Change: This parameter is no longer introduced.

About L150, You do not state explicitly whether qi is different in the two classifications.



Response: The weights q_i are the same in the two classifications. It is now stated explicitly in
new section 2.4 in the attached document.

L150-155. Explain better to the reader why: “it measures how often sub-seasonal clustering
episodes happen and how many extreme events these episodes contain”. (I appreciate the link
to the metric phi in the next section, and I can somehow see why this happen. However, the
reasoning beyond the choice of the metric should be provided clearly to the reader).

Response: We agree with the referee that this point deserves a more detailed explanation to
avoid any confusion. The first metric S_cl is the weighted sum of the number of extreme events
over all Nep episodes in the Cl_n classification. S_cl increases when the number of extreme
events in any clustering episode increases. The increase in S_cl is more pronounced when the
increase in the number of extreme events concerns the first episodes of the Cl_n classification
(due to the weights). S_cl is then positively correlated to the number of extreme events in the
considered clustering episodes.

Change: see new section 2.4 in attached document.

Does Sf depend on the high-frequency decluttering procedure, which - depending on the serial
correlation of the precipitation - can lead to a different number of extremes at different
catchments? If so, is it possible then to compare different catchments via Sf? In figure 8 you
implicitly do such a comparison via selecting locations based on a global unique threshold for
Sf.

Response: S_cl and S_acc both increase with the number of extreme events per episode so
any parameter change which increases this number will also lead to an increase in S_cl and
S_acc, generally speaking. An analysis of the sensitivity of S_cl showed that a lower threshold t,
a shorter run length r and a larger window w led to a general increase in the values of S_cl.
However, the sensitivity of S_cl and S_acc to the parameters does not affect our general
conclusions. First, a change of parameters impacts all catchments, so while the scale of S_cl (or
S_acc) is changed, the comparison of two catchments will result in the same conclusion in
almost all cases. That is, a catchment with a relatively low (high) value of S_cl compared to
other catchments for one parameter combination, will also have a relatively low (high) value for
other combinations. This is supported by the fact that the correlation coefficient between S_cl
and the index of dispersion remains high for all parameters combinations. Second, the
sensitivity of S_cont (which depends on both S_cl and S_acc) to the parameters is explicitly
assessed in section 3.2 and accounted for in our results.

Change: new Appendix C and new section 2.4 in attached document.

L160 Would the mean number of extreme events in the windows selected in CIacc divided by
the total number of events provide information on the role of clustering for precipitation in a
simpler fashion?



Response: By taking the mean number of extreme events, we lose all information on the rank of
the episodes, and two catchments with an equal mean number of events could have different
Cl_acc, and consequently different contributions of clustering to accumulation.

More specifically, an intuitive choice would be to use the sum or average of the number of
extreme events over all (or a subset of) the episodes of Cl_n and Cl_acc as a basis for the
metrics. However, such a choice would make us lose relevant information on how the episodes
are ranked, and preclude a rank-by-rank comparison between classifications. This can be
illustrated with the following theoretical example: let us consider a catchment where Cl_n is
composed of 5 episodes, each with 3 extreme events, and 5 other episodes, each with 1
extreme event (i.e N_ep = 10). The average number of extreme events is 2. If Cl_acc is
composed of the same episodes, then the average remains identical whatever the order of the
episodes in Cl_acc and we cannot say anything about the contribution of clustering to
accumulations by comparing the averages. For example, all episodes with 1 extreme event
could have larger accumulations than those with 3 extreme events. There is a low contribution
of clustering to accumulations in this case, and metrics based on averages would not be able to
capture this feature. A metric based on average would also fail to capture some differences in
the same classification between two catchments. This again can be illustrated with a theoretical
example: let us consider catchment A where Cl_n is composed of 5 episodes: 1 with 5 extreme
events, the 4 others without extreme event; and catchment B where Cl_n is composed of 5
episodes, each with 1 extreme event. In both cases the average number of extreme events is 1
but the clustering behaviour is different. Consequently, we need a way to properly account for
the respective rank of each episode in both classifications.

Change: see new section 2.4 in attached document.

- Please present Sf, and explain it physically. Then S’f and explain what information it conveys
from a physical point of view. Then present the ratio Sr.
- Especially, explain Sr in the context of the fact that Sf and Sf’ may represent events associated
with different dates (see comment above).

Response: We agree that S_cl, S_acc and S_cont should be better explained as they are the
key metrics of our study.

The first metric S_cl is the weighted sum of the number of extreme events over all Nep episodes
in the Cl_n classification. S_cl increases when the number of extreme events in any clustering
episode increases. The increase in S_cl is more pronounced when the increase in the number
of extreme events concerns the first episodes of the Cl_n classification (due to the weights).
S_cl is then positively correlated to the number of extreme events in the considered clustering
episodes. The second metric S_acc is computed the same way as S_cl, but using the episodes
of the Cl_acc classification, where episodes are ranked according to their accumulations.

As S_cl and S_acc are computed using the same weights, their ratio S_cont can be used to
make a rank-by-rank comparison and properly assess the contribution of clustering to large



accumulations. S_cont is equal to 1 when S_acc = S_cl, i.e. when the two classifications have
episodes with the same number of extreme events at identical ranks. In this case, the
contribution of sub-seasonal clustering to large accumulations is maximised for the
corresponding catchment. S_cont is equal to 0 when S_acc = 0, i.e. when all episodes in the
S_acc classification contain no extreme events (n_w(i) = for all i in [1,Nep]). In this case, there is
no contribution of sub-seasonal clustering to large accumulations (there is even no contribution
of single extremes to large accumulations).

The episodes selected in Cl_n and Cl_acc can be the same and ordered differently, but they can
also differ. For example, this latter case could happen for catchments having episodes of large
accumulations without extreme events. Assuming that those catchments have more than N_ep
episodes with at least one extreme event, those episodes would likely be selected in Cl_acc but
not in Cl_n. In conclusion, S_cl and S_acc may indeed be calculated using different episodes
composed of extreme events associated with different dates. However, this is not an issue here
as having different episodes in Cl_acc and Cl_n just results in lower values of S_cont which is
what we want to capture.

Change: see new section 2.4 in attached document.

- A suggestion is to use subscripts or superscripts “acc” and “n” for S such to clarify
instantaneously when this is related to Cl_n and Cl_acc. This could help the reader.

Response: we thank the referee for this useful suggestion. S_cl and S_acc are renamed S_cl
(the clustering metric) and S_acc respectively, throughout the new version of section 2.4. We
also renamed the ratio S_cont as “S_cont” to highlight its measure of the contribution of
clustering to accumulations.

Change: see new section 2.4 in attached document.

L205, Section 3.1. At the moment this section provides a description of the spatial pattern of the
maps. Is it possible to provide some physical insights into the interpretation of the maps?

Response: we agree with the referee that this is a particularly interesting and relevant aspect. A
detailed analysis of the drivers of subseasonal clustering is beyond the scope of this paper,
whose focus is on introducing a new methodology. However, we now discuss the underlying
structure of the precipitation time series for representative catchments (new Appendix A with
examples) and we added references to existing literature.

Change: see new section 3.1 and Appendix A in attached documents.

L243: The physical drivers of the sub-seasonal clustering of extreme precipitation are numerous
and a detailed analysis of the identified clustering patterns is beyond the scope of the present
research. Generally speaking, sub-seasonal clustering of extremes requires either very



stationary or recurrent conditions that locally provide the ingredients for heavy precipitation
(lifting and moisture) (Doswell et al. 1996). In some areas, large-scale patterns of variability
have found to be relevant, such as the North Atlantic Oscillation (e.g., Villarini et al., 2011; Yang
and Villarini, 2019; Barton et al., in preparation), the El Niño Southern Oscillation (Tuel and
Martius, 2021) or the variability of the extratropical storm-tracks (Bevacqua et al., 2020).
However, in other areas the circulation patterns associated with clustering differ from the
patterns of variability (Tuel and Martius, in preparation). We direct the interested readers to the
above-mentioned publications.

L205, Section 3.1, feel free to consider whether the following can be interesting
questions/aspects
to investigate or not. It is up to the authors.
- are results dependent on the catchment size?

Response: we analysed this question by computing the correlation between the catchment size
and Sr and found no significant correlations. We agree with the referee that this could be briefly
mentioned.

Change:
L242: We investigated a potential link between the catchment size (in km2) and (1) the
frequency of clustering episodes (Sn), and (2) their contribution to large accumulations
(Sr), by computing the Spearman rank correlation coefficient, but found no significant
correlations (not shown).

- are results dependent on the (i) mean precipitation spatial variability or (ii) precipitation
temporal
Variability?



Response: we agree with the referee that those could be interesting points to investigate and
could mention them as potential future research questions in the discussion.

- Focussing on some catchments (through showing precipitation time series) where you do find
opposite behaviours based on the S metrics could help the reader to better visualise the
differences and see what the metric captures. This would also allow for describing some
physical aspects leading/not leading to clustering (precipitation relevance) in the direction of
Figure 11.

Response: we agree that showing examples would help the reader and thank the referee for
this suggestion. The following 3 examples were added in a new Appendix A, see attached
PDF):

- A catchment with a high value of S_n and a high value of S_cont (equivalent to a
catchment where Cl_n is similar to Cl_acc, high clustering, high contribution)

- A catchment with a low value of S_n and a high value of S_cont (low clustering, high
contribution of this low clustering)

- A catchment with a high value of S_n and a low value of S_cont (equivalent to a
catchment where Cl_n is not similar to Cl_acc, high clustering, low contribution)

Change: new Appendix A containing 3 examples (see attached document).

L 220, (I see that you discuss this also in the final discussion). Can using an arbitrary percentile
provide a good understanding of the spatial patterns?
For example, in the context of the metric phi, studies have looked at values significantly higher
than zero, given that this implies clustering.
If based on theory it is not possible to define reference thresholds, is it possible based bootstrap
procedures to define some thresholds for a “null case” to be used as a benchmark?

Response: We agree with the referee that using a bootstrap procedure could give precious
insights on the significance of our results. We therefore tested the following hypothesis for each
catchment (see new figure 6b below):

H0: The clustering episodes contain a number of extreme precipitation events (n_w) which is
not higher than for a distribution of those extremes without temporal structure (random).

H1: The clustering episodes contain a number of extreme precipitation events (n_w) which is
significantly higher than for a distribution of those extremes without temporal structure (random).

and we reject H0 if the observed value of S_cl is significantly greater than a given threshold. A
rejection of H0 at a certain level of significance will be further noted as “significant sub-seasonal
clustering” for simplicity. To this end, 1000 random samples were generated by doing
permutations of the precipitation time series (i.e. each daily value is drawn only one time in each
sample, without repetition, this way the distribution quantiles remain identical.). S_cl was



calculated for each sample, using the initial parameters combination, and leading to an
empirical distribution of S_cl values. An empirical cumulative distribution function (ECDF) was
calculated from the S_cl empirical distribution, and an empirical p-value was obtained by
evaluating the ECDF at the observed S_cl value: 1-ECDF(S_cl(obs)). At a 1% level, approx.
42% of the catchments (2729 out of 6466) show significant sub-seasonal clustering (Fig. 6b,
catchments in red).

Interestingly, the whole S_cl empirical distribution is almost identical for each catchment, with a
mean value around 31.42 (note: this value cannot be used as a reference value as it depends
on the choice of parameters (t, r and w). This means that a selection of catchments based on a
given level of significance can be well approximated by a selection based on relatively high
observed S_cl values. In section 3, we select catchments pertaining either to the 1st (below the
25th percentile) or 4th quartile (above the 75th percentile) of the observed S_cl distributions for
several parameter combinations. It allows for a rapid selection of catchments with rare or
prevalent sub-seasonal clustering, whereas the permutation/resampling approach would have
required more computational time. We compared the two selection methods and found only
limited differences.

Many catchments have a very low p-value because we take an annual percentile for defining
the extreme precipitation events. With this definition, catchments with strong seasonality in the
precipitation (e.g. with extremes occurring during a "wet" season) will have their extreme events
occurring only during a few months. A random permutation of the daily precipitation will
redistribute the extremes equally during the year in most cases, corresponding to much lower
values of S_cl. Taking seasonal percentiles would most likely result in fewer catchments having
very low p-values. The implications of seasonality and the choice of an annual percentile are
further discussed in section 4.



Fig. 6. Metric S_cl (a) and sub-seasonal clustering significance (b) by catchment, for r = 2 days,
t = 99p, w = 21 days. In (a), high values of S_cl denote catchments where sub-seasonal
clustering is prevalent. In (b), catchments where S_cl is significantly higher than for a distribution
of extremes events without temporal structure are shown in red at the 1% level.

Change: revised section 2.5 in attached document, new figure 6b (previous figure 6b has been
moved to Appendix E.

L289 One shortcoming of our method is the lack of a simple assessment of the significance of
the clustering. Our procedure introduces valuable practical refinements to the established
methods.



RC2_reply

General comments

This paper presents a new count-based method to identify episodes of clustered extreme
precipitation events and quantify their contribution to large precipitation accumulations.
There are a number of potential benefits of this approach relative to existing approaches
including i) the lack of a need to make assumptions about the underlying statistical
distribution, ii) an ability to identify individual clustered episodes, iii) a framework that
allows for quantifying contribution of clustering to total precipitation, iv) its global
applicability, and v) ready extension to other extreme phenomena. The work is therefore
scientifically significant and should be well read by the community.

The methods are valid, though I do have requests to elaborate further on the data and
methods (see specific comments below).

The presentation quality is good. The manuscript is well written and the figures are clear.
The abstract can be understood without reading the main paper. The work is well
motivated with strong reference to prior studies concerning the clustering of climate
extremes. I particularly appreciate the section comparing this new method to the more
traditional dispersion metric. I also appreciate that the code is publicly available and easily
accessible.

The subject matter is appropriate for HESS and is worth being published after my
comments below have been addressed.

Specific comments

How adequate are the daily ERA5 precipitation data in capturing the extremes for this
study? This is mentioned in passing in the main text, but I think the use of ERA5 needs
further justification, citing of the literature, and a statement about whether the authors
expect results to change using gridded observations or surface station data.

Response: We agree with the referee that this is a relevant point which deserves further
justification. A study by Donat et al. (2014) assessed the consistency of precipitation extremes
in various gridded observational and reanalysis datasets. They found a reasonable agreement
between the observational precipitation datasets in extreme precipitation patterns and time
series, while the reanalysis datasets showed lower agreement but generally still correlated
significantly. However, this study predates the release of ERA-5 and used its predecessor
ERA-Interim.

Yang and Villarini (2019) examined the capability of four reanalysis products (MERRA,
MERRA2, ERA-Interim, JRA- 55) in capturing the temporal clustering of heavy precipitation in



the observations. The results from all the four reanalysis products tend to agree in terms of
spatial extent, even though there are small-scale differences.

More recently, Rivoire et al. (2021) compared moderate to extreme daily precipitation from
ERA-5 against two observational gridded data sets, EOBS (stations-based) and CMORPH
(satellite-based). Using the hit rate as a measure of co-occurrence, they found that for days
exceeding the local 90th percentile, the mean hit rate is 65% between ERA-5 and EOBS (over
Europe) and 60% between ERA-5 and CMORPH (globally). They also found that the differences
between ERA-5 and CMORPH are largest over NW America, Central Asia, and land areas
between 15°S and 15°N (the Tropics). They also compared the full precipitation distributions
between ERA-5 and CMORPH and found that precipitation intensity agrees well over the
midlatitudes and disagrees over the tropics.

Another recent study by Tuel and Martius (2021, preprint) on sub-seasonal clustering compared
ERA5 with three satellite-based datasets (TRMM, CMORPH and GPCP), as well as output from
25 CMIP6 Global Climate Models (GCMs). They found a good agreement on the
spatio-temporal clustering patterns across datasets. We are happy to share the preprint with the
reviewer.

Based on those studies, we don’t expect our results to significantly change using a different
observational or reanalysis dataset. The use of ERA5 was motivated by its global coverage, its
regular spatial and temporal resolution and its consistency with the large-scale circulation (see
e.g., Rivoire et al., 2021). We also emphasize that our method can be applied to any kind of
datasets, independently of their spatial configuration and temporal resolution.

New references:

Donat, M. G., Sillmann, J., Wild, S., Alexander, L. V., Lippmann, T., & Zwiers, F. W. (2014).
Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ
and Reanalysis Datasets, Journal of Climate, 27(13), 5019-5035. Retrieved May 26, 2021, from
https://journals.ametsoc.org/view/journals/clim/27/13/jcli-d-13-00405.1.xml

Rivoire, P., Martius, O., & Naveau, P. (2021). A comparison of moderate and extreme ERA-5
daily precipitation with two observational data sets. Earth and Space Science, 8,
e2020EA001633. https://doi.org/10.1029/2020EA001633

Reference: Tuel A. and Martius O. (2021), A global perspective on the sub-seasonal clustering
of precipitation extremes, submitted to Weather and Climate Extremes, in review. This
manuscript is confidential but if reviewers want, we are happy to share it.

Change: L77 The choice of ERA5 was motivated by its global coverage, its regular spatial and
temporal resolution and its consistency with the large-scale circulation (Rivoire et al., 2021).
While our method can be applied to any kind of datasets, independently of their spatial
configuration and temporal resolution, we don’t expect our results to change significantly using

https://journals.ametsoc.org/view/journals/clim/27/13/jcli-d-13-00405.1.xml
https://journals.ametsoc.org/view/journals/clim/27/13/jcli-d-13-00405.1.xml
https://doi.org/10.1029/2020EA001633


other gridded datasets, surface station data or satellite observations. Indeed, previous studies
have shown that precipitation extremes in gridded observational and reanalysis datasets
correlated significantly (Donat et al, 2014), and that reanalysis products tended to agree in
capturing the temporal clustering of heavy precipitation (Yang and Villarini, 2019). These studies
used ERA-Interim, the predecessor of ERA-5. More recently, Rivoire et al. (2021) compared
moderate to extreme daily precipitation from ERA-5 against two observational gridded data sets,
EOBS (stations-based) and CMORPH (satellite-based). Using the hit rate as a measure of
co-occurrence, they found that for days exceeding the local 90th percentile, the mean hit rate is
65% between ERA-5 and EOBS (over Europe) and 60% between ERA-5 and CMORPH
(globally). They also found that the differences between ERA-5 and CMORPH are largest over
NW America, Central Asia, and land areas between 15°S and 15°N (the Tropics). Another
recent study by Tuel and Martius (2021, preprint) on sub-seasonal clustering compared ERA5
with three satellite-based datasets (TRMM, CMORPH and GPCP), as well as output from 25
CMIP6 Global Climate Models (GCMs). They found a good agreement on the spatio-temporal
clustering patterns across datasets.

Line 74: Please explain what you mean by ‘timing’. Are you referring to the time of day,
or time of the year? I think we need more explanation about why timing errors are so
critical for this study to justify excluding the tropics.

When referring to the timing of precipitation, we refer to the days when extreme precipitation
occurs (time of the year). As our method is based on counting how many extreme events
happen in a certain time window, differences in the timing of the extreme events could result in
different counts. We now discuss this point in more detail in section 2.1 (see previous answer,
particularly the paragraph on the study by Rivoire et al. (2021)).

Changes: L74 The timing of extreme precipitation (time of the year) is important for the present
study because our method is based on counting how many extreme events happen in a
certain time window (see section 2.3). Rivoire et al. (2021) showed that this timing of extreme
precipitation is well captured by ERA5 in the extratropics but less so in the tropics.

The runs declustering step needs more justification. I can understand its purpose for
the case of slow-moving synoptic cyclones. But for the case of a multi-day sequence of
afternoon severe convective storms, these are multiple events that are clustered rather
than a single event.

As the first referee also raised a question regarding the runs declustering, we copied its
question and our answer below in italic for completeness.

We agree with the referee that by applying a runs declustering, our methodology will not pick up
this specific scenario of a multi-day sequence of afternoon severe convective storms at the
same grid-point. The spatial (0.25° lat/lon) and temporal (daily) resolutions of ERA-5 is too
coarse to properly target convective scale precipitation, and we would miss many convective
extremes. The present research is more targeted at the larger scale structures, such as



mid-latitudes cyclones and cut-off lows. The runs declustering removes the short-term temporal
dependence of extremes so as to focus exclusively on clustering at longer timescales (weekly
and above).

That being said, it would be interesting to apply our approach to shorter time scales by using
input data with a higher temporal and spatial resolution.

Change: L87 The runs declustering successively removes the short-term temporal dependence
of extremes so as to focus exclusively on clustering at longer timescales (weekly and above). In
this framework, a multi-day sequence of afternoon severe convective storms at the same
grid-point would be reduced to a single event, while being composed of multiple independent
events. This is not an issue because the present research is more targeted at the larger scale
structures, such as mid-latitudes cyclones and cut-off lows. More importantly, the spatial (0.25°
lat/lon) and temporal (daily) resolutions of ERA-5 are too coarse to properly target convective
scale precipitation, and many convective extremes would be missed. Input data with a higher
temporal and spatial resolution should be used to apply our approach to shorter time scales.

1st referee question: Depending on the local autocorrelation of the precipitation time series,
after applying the high frequency declustering, you will end up having a different number of
extreme events at different locations. Does this affect your final results, which may differ at
different locations simply because of that? Please clarify/discuss.

Response: we agree with the referee that the declustering reduces the number of extreme
events differently at different locations. In a catchment where extreme precipitation is on
average more persistent, the number of independent events retained after the declustering is
smaller than in a catchment where extreme events have a short duration. The goal is to identify
independent extreme events (ideally these are related to independent triggering weather
systems). Note however that these differences in number are not relevant for our analysis as we
focus on the clustering of independent events. We further limit our analysis to the top 50
clustering episodes for each catchment so the same number of episodes is used for all
catchments (we checked that all catchments had 50 episodes with at least one (declustered)
extreme event).

The sensitivity analysis presented in Fig. 9b also reveals that a change in the run length
parameter r from 2 to 1 days resulted in the smallest differences in Sr. Not applying the
declustering is equivalent to setting r = 0 days, and consequently this should have a very limited
impact on our results and wouldn’t affect our conclusions.

We also emphasize that the precipitation accumulations are not affected by the declustering,
only the event counts.

I appreciate the discussion on lines 277 to 287 of whether seasonality affects your Sf
metric. But I still don’t understand how seasonality is not a problem with your method.



Using an annual percentile means that in cases with strong seasonality your episodes
will mostly occur in the wet season. Does this mean that the method can’t say anything
about the role of clustering in drier seasons? Why can’t a seasonally varying percentile
be used?

Response: We thank the referee for this question. Here we chose to work with annual
percentiles as those percentiles are most impact relevant when considering flooding. However,
our method can be applied using seasonally varying percentiles, taking certain precautions in
the identification of episodes to avoid edge effects at each season transition (consider each year
separately to avoid artificial clustering across years; add days at the beginning and end of each
season to account for episodes starting in one season and ending in another (Barton et al.,
2016)). Such an analysis could be conducted in a further study.

Change: L287 Finally, we note that our method can be applied using seasonally varying
percentiles, by taking certain precautions in the identification of episodes to avoid edge
effects at each season transition (Barton et al., 2016).

Figure 8, showing the intersections between clustering and large precipitation
accumulations, is perhaps the key results figure of the paper. The regional differences
are intriguing and the reasons for this regional variability likely depends on the regional
climate processes. Can you suggest a few?

We agree with the referee that this is a particularly interesting and relevant aspect. A detailed
analysis of the drivers of subseasonal clustering is beyond the scope of this paper, whose focus
is on introducing a new methodology. However, we now discuss the underlying structure of the
precipitation time series for representative catchments (new Appendix A with examples) and
added references to existing literature.

Change: new section 3.1 and Appendix A.

L243: The physical drivers of the sub-seasonal clustering of extreme precipitation are numerous
and a detailed analysis of the identified clustering patterns is beyond the scope of the present
research. Generally speaking, sub-seasonal clustering of extremes requires either very
stationary or recurrent conditions that locally provide the ingredients for heavy precipitation
(lifting and moisture) (Doswell et al. 1996). In some areas, large-scale patterns of variability
have found to be relevant, such as the North Atlantic Oscillation (e.g., Villarini et al., 2011; Yang
and Villarini, 2019; Barton et al., in preparation), the El Niño Southern Oscillation (Tuel and
Martius, 2021) or the variability of the extratropical storm-tracks (Bevacqua et al., 2020).
However, in other areas the circulation patterns associated with clustering differ from the
patterns of variability (Tuel and Martius, in preparation). We direct the interested readers to the
above-mentioned publications.

Did you see any 40-year trends in extreme event counts or large precipitation
accumulations? Do the dates of the episodes mostly fall in the latter half of the 40-year



period? It could be interesting to map the ratio of the numbers of episodes in the first
20 years vs. the final 20 years, and whether the contribution of clustering changes
across the two periods. This is a suggestion for additional analysis and is not required
in the revision.

Response: We thank the referee for this suggestion and agree that analysing the presence of
trends is a relevant point. We didn’t perform any trend analysis neither in the extreme event
counts nor in the accumulations for the present research but that would be an interesting aspect
to study.

Change: see below.

My understanding is that the method converts the precipitation data to binary, and
therefore loses information on the magnitude of the individual extreme precipitation
events. If this is correct, then I don’t think it would be too much additional data
processing to additionally retain magnitude information. In doing so, many other
scientific questions could be pursued. For example, you could look at sequencing and
explore statistically significant differences in the magnitudes of the 1st, 2nd , 3rd events
within an episode, and how this varies regionally. I’m not suggesting you add this to
the paper, but maybe note this as a potential extension in the Discussion.

Response: we agree with the referee that this is a potentially interesting question to explore. We
indeed convert the precipitation data to binary events/non-events in our study, and don’t retain
the magnitude of each event. However, information on the magnitude of each extreme event
within each episode could easily be added using the daily precipitation data.

Change: see below.

I think the paper would be stronger with a more in-depth discussion of how this method
can aid physical process understanding of the clustering mechanisms. You go some way
down this route in Fig. 11 but there is a lot more that could be done. For example, you
could look at scalings between clustering and temperature or other environment
variables. Or you could map out the time window length of the strongest clustering to
get clues about contributing processes. Again, I’m not suggesting you do these
analyses for this paper, but some further discussion about the ways the method aids
process understanding is needed.

Response: We thank the referee for these very interesting suggestions. We will expand the
discussion on how the method can be applied to get further insights on process understanding.

Change:

L306 The objective of the present paper was to introduce a new methodology and to
demonstrate its application to the study of sub-seasonal clustering of extreme precipitation. It



paves the way for further research on several aspects. First, potential extensions of the method
itself could be explored, such as integrating the magnitude of each extreme event within an
episode and sequencing its variability. Second, possible trends in the contribution of clustering
to accumulations could be studied by comparing values of Scl and Scont in the first half and the
second half of the investigated period. Third, the method could provide insights into the physical
drivers of clustering by looking at scalings between the two metrics and other environmental
variables (such as temperature or pressure) during selected clustering episodes or globally.

Technical Corrections

Fig3 and Fig4 could be merged into a single figure.

I didn’t see Table 3 referenced anywhere in the main text.

We thank the referee for identifying those two points. Fig.3 will be merged with Fig.4 and a
reference to Table 3 is now made at line 52, in the end of the introduction:

Change: L50: The paper is organised as follows: the data and methods are introduced in
section 2. The results are presented and discussed in section 3. Finally, general conclusions
and future research avenues are presented in section 4. All important quantities used in this
study are listed in Table 1.

Table 3 is now Table 1.



Revised section 2.3 (Identification of sub-seasonal clustering episodes):

L100-118 The identification of sub-seasonal clustering episodes is equivalent to
searching for time periods (here 2 to 4 weeks) that contain several extreme precipitation
events. The first step is to count the number of independent extreme precipitation events (n_w)
in a running (leading) time window of w days, after the runs declustering has been applied to
the time series. This count is computed for each day of the time series over the next w − 1 days
(not w, as the starting day is included in the time window length). In parallel, we calculate the
running sum of daily precipitation (acc_w) over the same leading time window w. Time
windows of w = 14, 21 and 28 days were investigated. Fig. 3c and 3d show the values of
n_21 and acc_21, corresponding to the time series of Fig. 3a.

We then run an automated clustering episode identification algorithm that consists of the
following steps: (i) isolate the days with the largest value of n_w (highlighted in red in Fig.
3c). (ii) Among these days, retain the one with the largest accumulation acc_w (the purple
bar in Fig. 3d). This selects a clustering episode which starts at the retained day and
ends w-1 days later (shown by the red rectangle in Fig. 3a). The clustering episode
identified in Fig. 3 contains four extreme events (n_21 = 4) and the related accumulation
acc_21 is 275 [mm]. (iii) reduce the time series by removing all days within w − 1 days
before and after the starting day of the selected episode (the purple window in Fig. 3d), to
avoid further selected episodes from overlapping. (iv) repeat steps (ii) and (iii) on the reduced
time series to successively select the next episodes with the largest values of n_w and
acc_w until a predetermined number of episodes N_ep = 50 is reached. The choice of N_ep is
discussed below in greater detail, and at this stage we emphasize that limiting the selection
to 50 episodes is sufficient for our method. This iterative selection results in the identification
of 50 non-overlapping clustering episodes sorted by the number of extreme events (n_w)
and then by accumulations (acc_w). We denote this classification as Cl_n. The left panel of
Table 1 shows the Cl_n classification obtained for a subcatchment of the Tagus river in
the Iberian Peninsula (HydroBASINS ID: 2060654920). The Cl_n classification contains
information about the frequency of sub-seasonal clustering. In a catchment where
sub-seasonal clustering scarcely happens, Cl_n would typically be composed of a
majority of episodes having a small number of extremes (e.g. n_w <=2). Whereas for a
catchment where sub-seasonal happens frequently, Cl_n would be composed of several
episodes with more extreme events (e.g. 2 <= n_w <= 6). Additional examples of
catchments can be found in appendix A.

In addition, we identify and classify the episodes with the largest precipitation accumulations as
follows: we apply steps (ii) to (iv) of the automated identification algorithm to the accumulation
time series. This is equivalent to selecting episodes using the sole criteria of maximising
acc_w (the 21-days accumulations) at each iteration. This second selection results in the
identification of 50 non-overlapping episodes sorted by accumulations (acc_w). We
denote this classification as Cl_acc. The right panel of Table 1 shows the Cl_acc
classification obtained for the same catchment as the left panel. All episodes listed in
Table 1 are represented on the yearly timeline of Fig. 4 (in orange for Cl_n, in blue for



Cl_acc and in grey when they overlap), along with the timing of all extreme events (black
dots). We note that the choice of a centred or lagged window, instead of a leading
window, does not change the values of n_w and acc_w, except for the first and last w days
of the time series. This has no significant impact on the results.

The degree of similarity between Cl_n and Cl_acc is the key point in our method to
evaluate the contribution of clustering to large accumulations. This degree of similarity
can be evaluated by doing a rank-by-rank comparison of the number of extreme events
(n_w) in the episodes of Cl_n with the episodes of Cl_acc. If the episodes composing
Cl_acc and Cl_n have the same n_w at each rank, then it means that the episodes with
the largest number of extreme events are also leading to the largest accumulations. In
this particular case, the contribution of clustering to accumulations is maximised. If an
episode of Cl_acc has fewer extreme events than the episode with the same rank in Cl_n,
then the contribution of clustering to accumulations is below the maximum contribution.
The episodes selected in Cl_n and Cl_acc can be the same and ordered similarly or
differently (they appear in grey in Fig. 4), but they can also differ (they appear in orange
or blue in Fig. 4). The fifth columns of the left and right panel in Table 1 illustrate such a
comparison, where the corresponding rank of each episode in the other classification is
displayed. If the column is empty, it means that the episode is not present in the other
classification. In this example, both classifications share the same first episode (n_w =
5), but their second and third episodes have different n_w. We also note the episodes
without extreme events in Cl_acc (at ranks 11, 24, 30,...). The additional examples in
appendix A illustrate cases with different degrees of similarity between Cl_n and Cl_acc.

L121: As a preliminary remark, we note that if the Cln classification of a given catchment has
many clustering episodes that contain several extreme events, then sub-seasonal clustering is
occurring frequently in that catchment. Similarly, if the two classifications Cln and Clacc have
episodes with the same number of extreme events at identical ranks, this implies that the
episodes with the largest number of extreme events correspond to the episodes with the largest
precipitation accumulations. In this case, the contribution of sub-seasonal clustering to large
precipitation accumulations is maximised.



Fig. 3. Schematic illustration of the identification of a sub-seasonal clustering episode with w =
21 days. (a) Time series of daily precipitation with extreme precipitation days marked by blue
bars; the horizontal blue line represents the threshold t (e.g. the 99th percentile) defining the
extreme events; the light blue shading highlights a high-frequency cluster (r = 2 days) and the
red rectangle denotes the clustering episode identified using the information of panel c and (d).



(b) Series of binary events of extreme precipitation obtained after applying the declustering
approach to the daily precipitation. (c) Number of extreme precipitation events in a running
(leading) time window of 21 days (n_21) based on the time series in panel (b); the light red
shading indicates the day with the largest n21. (d) Precipitation accumulation in a running
(leading) time window of 21 days (acc_21) derived from the time series of panel (a); the purple
bar denotes the day with the largest acc21 among the days with highest n21; this day is the
starting day of the selected clustering episode; all days within the light purple shading are
removed from the initial time series in the next step of the selection algorithm.

Fig. 4. For the catchment 2060654920, all extreme events are shown as black dots and 21-day
episodes are highlighted by the colored rectangles. Episodes appearing in both classifications
are shown in grey and those appearing only in the Cl_n classification are shown in orange
whereas those only in the Cl_acc classification are shown in blue Episodes containing two or
more extreme events (n_w >= 2) are highlighted with a red edge.



Table 1. Left panel: Episodes with the largest number of extreme events (n_21) retained in the
Cl_n classification for catchment with HydroBASINS ID: 2060654920 (corresponding to a
subcatchment of the Tagus river in the Iberian Peninsula). Columns are (from left to right):



starting day of the episode, accumulation during the episode (acc_21), number of extreme
events during the episode (n_21), rank of the episode (Rank Cl_n), rank of the episode in the
Clacc (Rank Cl_acc), an empty Rank Cl_acc column means that the episode is not present in
this classification. Right panel: Same as left panel but for episodes with the largest
accumulations (acc_21) retained in the Cl_acc classification.

Revised section 2.4 (Metrics for sub-seasonal clustering):

Next we define metrics that synthesize the properties of the two classifications to compare
catchments. An intuitive choice for the metrics would be to average the number of extreme
events, however such a would result in a loss of information (see Appendix D for a more
detailed discussion on this). We take a different approach, equivalent to defining a scoring
system, where each episode is given a weight q_i depending on its rank in the classification,
and this weight is used as a proportion factor for the number of extreme events in the episode.
We have many options for defining the weights. For example, taking the average over the
N_ep episodes (as discussed in Appendix D) is the same as setting all weights equal to
1/N_ep. Sitarz (2013) discusses a mathematical approach for defining a scoring system in
sports, with two intuitively appealing properties. First, the first place should be rewarded more
points than the second, and the second more than the third, and so on. In our case, rewarding
more points is equivalent to giving a larger weight. Second, the difference between the ith place
and the (i+1)th place should be larger than the difference between the (i+1)th place and the
(i+2)th place. The second property means that someone gaining a place (or a rank) should
be rewarded more if the initial rank is higher, as improving at upper ranks is more
challenging than improving at lower ranks. We then follow the method of the incenter of a
convex cone (Sitarz, 2013) to construct our weighting scheme (see Appendix B for a detailed
description). The same weight q_i is assigned to the ith episode of each classification
(Cl_n and Cl_acc). We have tried two other weighting schemes, also satisfying the two
required properties: the inverse of the rank (q_i = 1/i) and the inverse of the square root
of the rank (q_i = 1/sqrt(i)). The former gave slightly too much weight to the very first
episodes of the classification and the latter gave almost identical results to the incenter
method. Our results are hence only slightly sensitive to the choice of the weighting
scheme, as long as it satisfies the two desired properties.

We can now use each weight q_i as a proportion factor for the corresponding number of
extreme events in the ith episode for both classifications and derive the three following
metrics:

Clustering Metric: Scl =
𝑖∈𝐶𝑙

𝑛

∑ 𝑛
𝑤

(𝑖) · 𝑞
𝑖



Accumulation Metric: Sacc =
𝑖∈𝐶𝑙

𝑎𝑐𝑐

∑ 𝑛
𝑤

(𝑖) · 𝑞
𝑖

Contribution Metric Scont = Scl / Sacc

The first metric Scl, called the clustering metric, is the weighted ( ) sum of the number of𝑞
𝑖

extreme events ( ) over all episodes (i = 1 to 50) in the Cln classification. Scl is𝑛
𝑤

(𝑖)
proportional to the number of extreme events in the clustering episodes. It is most
sensitive to the number of extreme events in the first clustering episodes, which are
given the largest weight. In section 2.5, we show that Scl correlates well with the index of
dispersion -- a widely used measure of clustering. Appendix A provides examples of
catchments with  high and low values of Scl for illustration.

The second metric Sacc, called the accumulation metric, is computed similar to Scl, but
using the episodes of the Clacc classification, where episodes were ranked according to
their accumulations. As Scl and Sacc are computed using the same weights, their ratio Scont can
be used to make a rank-by-rank comparison. Scont is equal to 1 when Sacc = Scl, i.e. when the two
classifications have episodes with the same number of extreme events at identical ranks. Scont is
equal to 0 when Sacc = 0, i.e. when all episodes in the Sacc classification contain no extreme
events (n_w(i) = for all i in [1,N_ep]). In this particular case, subseasonal clustering does not
contribute to large accumulation and there is even no contribution of single extremes to
large accumulations. In other cases, a proper assessment of the contribution of clustering
to large accumulations is done by considering both Scl and Scont. Scont alone evaluates the
similarity of the two classifications and catchments can have low values of Scl (limited
sub-seasonal clustering) and high values of Scont at the same time. The exact interpretation
of intermediary values of Scont requires looking at both classifications (Cln and Clacc) in detail to
see where they differ from each other. For example, if Scont= 0.8, both classifications have a
high degree of similarity, but it does not necessarily imply that 80% of the episodes are
ranked equally. Appendix A provides examples of catchments having high and low
values of Scont as an illustration. We normalize Scont to compare different catchments and
to assess their sensitivity to the choice of the parameters.

We now briefly address some technical points related to the definition of the metrics. We
note that performing a regression between Cl_n and Cl_acc would be a more conservative
approach in assessing their degree of similarity because it would require giving a unique
identifier to each episode according to its starting day. In that case, the strength of the
regression would be lowered when two episodes containing the same number of extreme
events just swap their ranks in the two classifications. Such a change does not affect S_cont.

S_cl and S_acc both increase with the number of extreme events per episode so any
parameter change which increases this number will also lead to an increase in Scl and



Sacc. Appendix C shows boxplots of S_cl for all parameter combinations. We see that a
lower threshold t, a shorter run length r, and a larger window w lead to an increase in the
values of S_cl. However, the sensitivity of S_cl and S_acc to the parameters does not
affect our general conclusions. First, a change of parameters impacts all catchments, so
while the scale of S_cl (or S_acc) is changed, the comparison of two catchments will
result in the same conclusion in almost all cases. That is, a catchment with a relatively
low value of S_cl compared to other catchments for one parameter combination will also
have a relatively low value for other combinations and similarly for high values. Second,
the sensitivity of S_cont to the parameters (which depends on both S_cl and S_acc) is
explicitly assessed in section 3.2 and accounted for in our results.

[Continue at L177]

Appendix B: Calculation of the weights (new) - composed of L129 to L150.

Revised section 2.5: (Correlations with index of dispersion and significance test):

L185-197: unchanged

L197: This is illustrated in Fig. 6, which shows Sf and phi for the initial parameter combination
and where it can be seen that regions of high (low) Sf correspond to regions of high (low) phi.
Figure 6a is further discussed in the results section.

L197: This is further illustrated in Fig. 6a ad Fig. D1 in Appendix D, which respectively show a
map of S_cl and a map of phi_hat for the initial parameters combination. A visual comparison of
the two maps reveal that regions of high (low) S_cl correspond to regions of high (low) phi_hat.

An evident drawback of S_cl compared to phi_hat is the lack of a reference value above
(below) which there is (no) clustering (phi_hat = 1). While we cannot derive such a
reference value, we can still use a bootstrap based approach to assess how significant
the value of Sn is for each catchment. More precisely, we tested the following
hypothesis:

H0: The clustering episodes contain a number of extreme precipitation events (n_w)
which is not higher than for a distribution of those extremes without temporal structure
(random).

H1: The clustering episodes contain a number of extreme precipitation events (n_w)
which is significantly higher than for a distribution of those extremes without temporal
structure (random).

and we reject H0 if the observed value of S_cl is significantly greater than a given
threshold. A rejection of H0 at a certain level of significance will be further noted as
“significant sub-seasonal clustering” for simplicity. To this end, 1000 random samples



were generated by doing permutations of the precipitation time series (i.e. each daily
value is drawn only one time in each sample, without repetition, this way the distribution
quantiles remain identical.). S_cl was calculated for each sample, using the initial
parameters combination, and leading to an empirical distribution of S_cl values. An
empirical cumulative distribution function (ECDF) was calculated from the S_cl empirical
distribution, and an empirical p-value was obtained by evaluating the ECDF at the
observed S_cl value: 1-ECDF(S_cl(obs)). At a 1% level, approx. 42% of the catchments
(2729 out of 6466) show significant sub-seasonal clustering (Fig. 6b, catchments in red).

Interestingly, the whole S_cl empirical distribution based on the random samples is
almost identical for all catchments, with a mean value around 31.42. This means that a
selection of catchments based on a given level of significance can be well approximated
by a selection based on relatively high observed S_cl values. In section 3, we select
catchments which are either below the 25th percentile or above the 75th percentile of the
observed S_cl distribution for all catchments. It allows for a quick selection of
catchments with rare or prevalent sub-seasonal clustering for each parameters
combination, whereas the permutation/resampling approach would have required more
computational time. We compared the two selection methods for the initial parameters
combination and found only limited differences.

Many catchments have a very low p-value because we take an annual percentile for
defining the extreme precipitation events. With this definition, catchments with strong
seasonality in the precipitation (e.g. with extremes occurring during a "wet" season) will
have their extreme events occurring only during a few months. A random permutation of
the daily precipitation will redistribute the extremes equally during the year in most
cases, corresponding to much lower values of S_cl. Taking seasonal percentiles would
most likely result in fewer catchments having very low p-values. The implications of
seasonality and the choice of an annual percentile are further discussed in section 4.



Fig. 6. Metric S_cl (a) and sub-seasonal clustering significance (b) by catchment, for r = 2
days, t = 99p, w = 21 days. In (a), high values of S_cl denote catchments where
sub-seasonal clustering is prevalent. In (b), catchments where S_cl is significantly higher
than for a distribution of extremes events without temporal structure are shown in red at
the 1% level.

Revised section 3 (Results):

First, world maps of the clustering (Scl) and contribution (Scont) metrics for all selected
catchments are shown using the initial combination of parameters (r = 2 days, t = 99p, w = 21
days). These maps indicate regions where sub-seasonal clustering is prevalent. Then, the
sensitivity of the sub-seasonal clustering to the parameter choice is assessed by testing 12
different parameter combinations: w = 14,21,28 days; u = 98p,99p; r = 1,2 days.



3.1 Sub-seasonal clustering and its contribution to accumulations:

Sub-seasonal clustering is prevalent in catchments having high values of S_cl (see
section 2.5). Such catchments are located in the east and northeast of the Asian continent
(northeast of Siberia, northeast of China, Korean Peninsula, south of Tibet); between the
northwest of Argentina and the southwest of Bolivia; in the northeast and northwest of Canada
as well as in Alaska; and in the southwestern part of the Iberian Peninsula (Fig. 6a and 6b).
Regions with low values of S_cl are located on the east coast of North America, on the east
coast of Brazil, in central Europe, in South Africa, in central Australia, in New Zealand and in the
north of Myanmar (Fig. 6a and 6b). Catchments with strongly contrasting values of S_cl are
rarely found in close proximity, except for a group of catchments located northeast of the
Himalayas (south of Tibet), and another group located southeast of the Himalayas (Bangladesh
and Myanmar). The catchments to the north have high values of S_cl, whereas the
neighbouring catchments to the south exhibit low values of S_cl.

Regions with large values of the relevance metric (Scont, see Fig. 7) are in the east and
northeast of the Asian continent, west of India, central Australia and central North America.
Areas with low values of Scont are located in central China, on the east coast
of North America, in the south of Brazil and in France.

The contribution of sub-seasonal clustering to precipitation accumulations is analysed
with both Scl and Scont. Catchments with high values of Scl and Scont are of special interest,
because in these catchments, sub-seasonal clustering is prevalent and contributes
substantially to large 21-days precipitation accumulations. We identify such catchments
by considering those whose values of Scl and Scont are greater than the 75th percentile of
their respective distribution for all catchments. The choice of the 75th percentile makes it
possible to focus on the highest values, without being too restrictive, and follows the
quick selection method mentioned in section 2.5. Catchments where sub-seasonal
clustering is prevalent and contribute substantially to large accumulations are mainly
concentrated over eastern and northeastern Asia (Fig. 7a). The largest continuous area of
such catchments is located in northeastern China, in North and South Korea, Siberia and east
of Mongolia. Other areas with several catchments of interest are central Canada, south
California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, the north of Argentina
and the south of Bolivia. Every continent includes groups of two to three or isolated
catchements. Appendix A1 contains detailed information for an example catchment with a
strong seasonality located in northeastern China (Scl = 41.14, Scont = 0.93). Almost all
extreme events happen between June and August, which make clustering episodes and
periods of large accumulations more likely to overlap.

We also identify catchments with values of S_cl below the 25th percentile and values of S_cont
above the 75th percentile (Fig. 7b). Low values of S_cl mean that the clustering episodes
identified by our algorithm contain a small number or even no extreme events, and high values
of S_cont mean that those episodes lead to the largest accumulations. Such regions that exhibit
rare clustering and where this rare clustering contributes substantially to large accumulations



are the following: Taiwan, most of Australia, central Argentina, South Africa, south of Botswana
and south of Greenland. Again, every continent includes groups of two to three or isolated
catchements. Interestingly, the identified catchments are almost all located in the Southern
hemisphere. An example located in Australia is presented in detail in Appendix A2 (S_cl =
26.79, S_cont = 0.90). The extreme events are distributed throughout the whole year and
only a limited number of episodes contain two or more extreme events.

Finally, we identify regions with values of S_cl above the 75th percentile and values of S_cont
below the 25th percentile (Fig. 7c). The high values of S_cl mean that the clustering episodes
identified by our algorithm contain a relatively large number of extreme events, whereas the low
values of S_cont mean that episodes leading to the largest accumulations contain a low number
or even no extreme events. Such regions that exhibit prevalent clustering with a limited
contribution to large accumulations are the following: the south of Tibet, the south of the Qinghai
and west of the Sichuan Chinese provinces and central Bolivia. Again, every continent
includes groups of two to three or isolated catchements. Only a few catchments exhibit this
combination of high S_cl and low S_cont values, highlighting the importance of the clustering of
extreme events for generating the largest accumulations for the majority of the catchments. An
example located in central China is presented in detail in Appendix A3 (Scl = 43.23, Scont
= 0.59). The seasonality is present but less pronounced than in example A1: almost all
extreme events happen between mid-May and September. However, in this case,
clustering episodes and periods of large accumulations tend not to overlap as much as
in Example A1. This is a particularly interesting feature, especially because the two
different patterns exemplified by Appendix A1 and A3 happen in neighbouring regions.



Fig. 7. (a) Catchments where Scl and Scont are both above the 75th percentile of their respective
distribution (pink areas); (b) Catchments where Scl < 25p and Scont > 75p (pink areas); (c)
Catchments where Scl > 75p and Scont < 25p (pink areas). In all panels, catchments in grey do



not satisfy the respective conditions, whereas catchments in white were excluded from the
analysis according to the criteria defined in section 2.1.

We investigated a potential link between the catchment size (in km2) and both the
clustering (S_cl) and the contribution metric (S_cont), by computing their Spearman rank
correlation coefficient, but found no significant correlations (not shown).

The physical drivers of the sub-seasonal clustering of extreme precipitation are
numerous and a detailed analysis of the identified clustering patterns is beyond the
scope of the present research. Generally speaking, sub-seasonal clustering of extremes
requires either very stationary or recurrent conditions that locally provide the ingredients
for heavy precipitation (lifting and moisture) (Doswell et al. 1996). In some areas,
large-scale patterns of variability have found to be relevant, such as the North Atlantic
Oscillation (e.g., Villarini et al., 2011; Yang and Villarini, 2019; Barton et al., in
preparation), the El Niño Southern Oscillation (Tuel and Martius, 2021) or the variability of
the extratropical storm-tracks (Bevacqua et al., 2020). However, in other areas the
circulation patterns associated with clustering differ from the patterns of variability (Tuel
and Martius, in preparation). We direct the interested readers to the above-mentioned
publications.



Appendix A: Examples of catchments







Appendix B: Calculation of the weights q_i

Sitarz (2013) assumes two intuitive conditions for a scoring system. First, he assigned more
points for the first place than for the second place, and more for the second than for the third,
and so on. Second, the difference between the ith place and the (i+1)th place should be larger
than the difference between the (i+1)th place and the (i+2)th place. This is equivalent to
considering the following set of points:

where x_1 denotes the points for first place, x_2 the points for second place,. . . , and x_N the
points for Nth place. Any choice of points in K would satisfy the two conditions for a scoring
system, however we would like to have a unique and representative value. The option chosen
by Sitarz (2013) is to look for the equivalent of a mean value: the incenter of K. Formally, the
incenter is defined as an optimal solution of the following optimization problem by Henrion and
Seeger (2010):

where S_x denotes the unit sphere, dK denotes the boundary of set K and dist denotes the
distance in the Euclidean space. By using the calculation presented in the Appendix of Sitarz
(2013), and dividing by the parameter lambda and the points of the first place (x_1) to get the
weights (q_i), we obtain:

q_i = x_i/x_1 for all i in [1,N]

The weight q_1 is always 1 but the values of weights q_2 to q_N depend on N and in our case
N is the number of clustering episodes N_ep.

Appendix C:



Fig. C1. Boxplots of S_cl for all catchments and parameters combinations. Boxes extend from
the first (Q1) to the third (Q3) quartile values of the data, with a blue line at the median. The
position of the whiskers is 1.5 * (Q3 - Q1) from the edges of the box. Outlier points past the end
of the whiskers are shown with black circles.

Appendix D: Rationale behind the construction of the metrics

An intuitive choice to define the metrics (see section 2.4) is to use the sum or average of
the number of extreme events over all (or a subset of) the episodes of Cl_n and Cl_acc.
However, such a choice would result in a loss of relevant information on how the
episodes are ranked, and preclude a rank-by-rank comparison between classifications.
This can be illustrated with the following theoretical example: let us consider a
catchment where Cl_n is composed of 5 episodes, each with 3 extreme events, and 5
other episodes, each with 1 extreme event (i.e., N_ep = 10). The average number of
extreme events is 2. If Cl_acc is composed of the same episodes, then the average
remains identical whatever the order of the episodes in Cl_acc and we cannot say
anything about the contribution of clustering to accumulations by comparing the
averages. For example, all episodes with 1 extreme event could have larger
accumulations than those with 3 extreme events. There is a low contribution of clustering
to accumulations in this case, and metrics based on averages would not be able to
capture this feature. A metric based on average would also fail to capture some
differences in the same classification between two catchments. This again can be
illustrated with a theoretical example: let us consider catchment A where Cl_n is
composed of 5 episodes: 1 with 5 extreme events, the 4 others without extreme event;
and catchment B where Cl_n is composed of 5 episodes, each with 1 extreme event. In
both cases the average number of extreme events is 1 but the clustering behaviour is
different. Consequently, we need a way to properly account for the respective rank of
each episode in both classifications.

Appendix E:



Fig. E1. Index of dispersion phi by catchment, for r = 2 days, t = 99p, w = 21 days. phi > 1
denotes catchments where extreme precipitation events are more clustered than random.
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