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Abstract. Feature importance has been a popular approach for machine learning models to 

investigate the relative significance of model predictors. In this study, we developed a Wilk’s 

feature importance (WFI) method for hydrological inference. Compared with conventional feature 

importance methods such as permutation feature importance (PFI) and mean decrease in impurity 10 

(MDI), the proposed WFI aims to provide more reliable importance scores that could partially 

address the equifinality problem in hydrology. To achieve this, the WFI measures the importance 

scores based on Wilk’s Ʌ (a test-statistic that can be used to distinguish the differences between 

two or more groups of variables) throughout a decision tree. The WFI has an advantage over PFI 

and MDI as it does not account for predictive accuracy so the risk of overfitting will be greatly 15 

reduced. The proposed WFI was applied to three interconnected irrigated watersheds located in 

the Yellow River Basin, China. By employing the recursive feature elimination approach, our 

results indicated that the WFI could generate more stable relative importance scores in response 

to the reduction of irrelevant predictors, as compared with PFI and MDI embedded in three 

different machine learning algorithms. In addition, the comparative study also shows that the 20 

predictors identified by WFI achieved the highest predictive accuracy on the testing dataset, which 

indicates the proposed WFI could identify more informative predictors among many irrelevant 

ones. We also extended the WFI to the local importance scores for reflecting the varying 

characteristics of a predictor in the hydrological processes. The related findings could help to gain 

insights into different hydrological behaviours.  25 

1 Introduction 

Machine learning (ML) has been used for hydrological forecasting and examining hydrological 

modeling processes underpinned by statistical and physical relationships. Due to the rapid progress 

in data science, increased computational power, and the recent advances in ML, the predictive 

accuracy of hydrological processes has been greatly improved (Reichstein et al., 2019;Shortridge 30 
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et al., 2016). Yet the descriptive power (also known as interpretability) of ML models for 

hydrological inference has not increased apace with their predictive power for hydrological 

forecasting (Konapala and Mishra, 2020). Previous studies have indicated that purely pursuing 

predictive accuracy may not be a sufficient reason for applying a certain hydrological model to a 

given problem (Beven, 2011). Recent studies have addressed the importance of extracting 35 

interpretable information and knowledge from big data, to evolve our understanding of nature’s 

laws behind the ML modeling processes (Murdoch et al., 2019;Reichstein et al., 2019). In 

hydrology, studies have indicated that the hydrological inference through ML has the potential to 

deal with the problem of equifinality that exists in most physically-based hydrological model 

descriptions (Schmidt et al., 2020;Shortridge et al., 2016). In hydrology, equifinality means 40 

different hydrological model structures and/or parameter sets describe similar observed behaviors 

with similar accuracy (Beven, 2011). As a result, the same hydrological behavior can thus be 

described by the non-unique parameter sets associated with different physical laws. This problem 

could severely hamper our understanding of the underlying functioning in the hydrologic system 

(Clark et al., 2011). One possible cause of this problem is that the physically-based hydrological 45 

models are constrained by additional physical information provided through a priori knowledge of 

hydrologic functioning encoded within both model structure and states and flux relationships 

(Clark et al., 2015;Schmidt et al., 2020). The ML models on another hand, are more flexible than 

physically-based hydrological models as they can approximate any complex relationships without 

relying on additional physical information, thus structural and parameterization errors can be 50 

greatly reduced (Nearing et al., 2016). The above motivations have led us to improve the 

interpretability of ML models to gain reliable information for hydrological inference. 

 

The main idea of model interpretation is to understand the model decisions, includeing the main 

aspects of (i) identifying the most relevant predictors (i.e., independent variables) leading to model 55 

predictions and (ii) reasoning why certain predictors are responsible for a particular model 

response. The model interpretation for ML is mainly achieved through feature importance, which 

relies on techniques that quantify and rank the statistical significance of input predictors and their 

effect on the model response. The obtained importance scores (i.e., statistical significance of input 

predictors) can be used to explain certain predictions through relevant knowledge (Scornet, 2020). 60 

Feature importance methods can be categorized as model-agnostic and model-specific (Molnar, 
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2020). The model-agnostic methods refer to extracting post-hoc explanations by treating the 

original model as a black box (Ribeiro et al., 2016b). This can be achieved by learning an 

interpretable model based on the outputs of the black box model (Craven and Shavlik, 1996) and 

perturbing inputs, and seeing the response of the black-box model (Ribeiro et al., 2016a). Such 65 

methods mainly include permutation feature importance (PFI) (Breiman, 2001), partial 

dependence (PD) plots (Friedman, 2001), individual conditional expectation (ICE) plots 

(Goldstein et al., 2015), accumulated local effects (ALE) plots (Apley and Zhu, 2016), local 

interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016a) and Shapley values 

(Lundberg and Lee, 2017;Shapley, 1953). In hydrology, Yang and Chui (2020) used Shapley 70 

values to explain individual predictions of hydrological response in sustainable drainage systems 

at fine temporal scales. Worland et al. (2019) used the LIME to infer the relation between basin 

characteristics and the predicted flow duration curves. Konapala and Mishra (2020) used partial 

dependence plots to understand the role of climate and terrestrial components in the development 

of hydrological drought. Compared with the above model-agnostic methods, PFI is more widely 75 

used in hydrological inference owing to its high efficiency and its ability to take global insights 

into model behaviors (Molnar, 2020). Recent applications of PFI include inferring the relationship 

between basin characteristics and predicted low flow quantiles (Ahn, 2020) and comparing the 

interpretability among multiple machine learning models in the context of flood events (Schmidt 

et al., 2020). The above model-agnostic methods are particularly useful for comparative studies of 80 

ML models where the underlying algorithmic structure is exceedingly complex for direct 

extraction of interpretable information from big data.  

 

When compared to the model-agnostic methods, the model-specific methods (also known as 

interpretable models) such as decision trees and sparse regression models, can inspect model 85 

components directly (e.g., through the paths in a decision tree or the weight of a specific predictor 

in a linear model) (Ribeiro et al., 2016b). In fact, regression tree ensembles (RTEs) as one of the 

important branches in ML, are composed of hundreds of interpretable models (i.e., decision trees). 

As long as the predictive performance is satisfied, a reasonable inference can be achieved through 

statistical summaries (e.g., mean decrease in node impurity (Breiman, 2001) or how often a 90 

predictor has been used for node splitting (Chen et al., 2015)) of the decision trees. In hydrology, 

RTEs have been receiving increasing attention for hydrological forecasting owing to their superior 
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predictive accuracy, yet their usefulness for hydrological inference in terms of using such a 

transparent inference process is still limited. Such studies can be found from Worland (2018) and 

Lawson et al. (2017). A possible reason causing the interpretable models to be less preferrable than 95 

model-agnostic interpretation methods is that people believe higher predictive accuracy can 

potentially lead to more faithful inference (Murdoch et al., 2019). Nevertheless, interpretable 

models such as decision trees are still considered understandable tools for inferring a particular 

model behavior because the transparent decision-making process functions similarly to how the 

human brain makes decisions for a series of questions. 100 

 

Even though both types of interpretation methods have been applied for hydrological inference, 

they possess several drawbacks. The model-agnostic interpretation methods assume that the same 

predictive accuracy will lead to the same, or at least similar inferences (i.e., importance scores). 

However, Schmidt et al. (2020) disclosed that such an assumption may not be valid since the 105 

problem of equifinality (which exists in conventional hydrological model descriptions) also exists 

for ML model inferences (i.e., different importance scores can be observed from different ML 

models). Such inconsistency in the inference may hamper effective reasoning for hydrological 

processes. The interpretable models, on the other hand, suffer less from the equifinality problem 

since the importance scores can be inspected internally (e.g., through paths of a decision tree). 110 

However, Scornet (2020) revealed that the interpretability of the mean decrease in impurity (MDI) 

(for measuring the importance scores of the classification and regression trees (CART) (Breiman 

et al., 1984)) is strongly affected by the multicollinearity of input predictors: estimated important 

scores are biased towards positively correlated predictors. Similar discoveries also can be found 

in Strobl et al. (2007). This has been a challenge for hydrological inference since the input 115 

predictors are most likely to be correlated to each other (Robertson et al., 2013). Therefore, such 

bias may affect the model inference. Moreover, existing interpretable models can only provide a 

global importance score for each predictor, without the capacity of reflecting the effects from 

varied predictor characteristics (i.e., local importance scores), an issue of increasing concern for 

the earth sciences communities (Reichstein et al., 2019).  120 

 

Therefore, as the extension of the previous efforts, the objective of this study is to develop a Wilks 

feature importance (WFI) method for providing reliable and robust hydrological inference from 
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decision trees and RTE. Compared with model-agnostic interpretation methods, the WFI is 

expected to have reduced effects of equifinality for hydrological inference since it is not related to 125 

the model predictive accuracy. When compared with the MDI as embedded in CART, WFI is 

expected to provide an unbiased estimation of importance scores owing to the advantage of the 

Wilks’ Ʌ test statistics, which thereby, could lead to improved inference robustness.  

This research also entails (i) evaluation of WFI performance under the RTE framework; (ii) 

comparative assessment of inference robustness, through the recursive feature elimination 130 

approach; (iii) development of stratified Bayesian inference approach for extending the WFI to 

characterize the varying roles of a predictor in the hydrological process; (iv) application of the 

developed WFI to three interconnected watersheds in the Yellow River Basin. 

2 Problem Statement  

To explain the reason why the importance scores from MDI method can be a potential problem for 135 

hydrological inference, a brief illustration of classification and regression trees (CART) (Breiman 

et al., 1984) is given as follows:  

 

The principle of CART is to successively split the training data space (i.e., predictors and response) 

into many irrelevant subspaces. These subspaces along with the splitting rules will form a decision 140 

tree, which asks each of the new observations a series of “Yes/No” questions and guides it to the 

corresponding subspaces. The model prediction for a new observation shares the same value as the 

average value for the training responses in that particular subspace. 

 

The tree deduction process is illustrated using a hydrological dataset (Figure 1) including three 145 

predictors as X1 (i.e., precipitation), X2 (i.e., 3-day cumulative precipitation) and X3 (i.e., 

temperature), and a response Y (i.e., streamflow). It starts by sorting the value of Xj in ascending 

order (j indicates the column index of the predictors so that 1, 2,3j∈ ), and the Y will be reordered 

accordingly. Then we go through each instance of Xj from the top to examine each candidate split 

point. It should be noted that if there are K instances (K=20 in this case), the total number of split 150 

points for Xj will be K-1. Any instance z ( 1, 2,...,z K∈ ) in Xj can split the predictor space into two 

subspaces as ( ) { }1 ,1 ,2 ,, , ,...,j j j zX j z X X X= ; 1, 2,3j∈ and ( )2 ,X j z = { }, 1 , 2 ,, ,...,j z j z j KX X X+ + ;
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1,2,3j∈ . The response space Y will be correspondingly divided into two subspaces as ( )1Y z =

{ }1 2, ,..., zY Y Y and ( ) { }2 1 2, ,...,z z KY z Y Y Y+ += . We also define 1 1 1R X Y= ∪ and 2 2 2R X Y= ∪ as 

illustrated in Figure 1. To maximize the predictive accuracy, the objective is to find the split point 155 

(i.e., j and z) that minimize the square error of instances in Y1 and Y2:  

( )
( )

( )
( )

1 2

1 2

2 2

1,2,..., ; 1,2,3 1, 2,...,20; 1,2,3
, ,i i

i iY Y
i z j i z z j
x X j z x X j z

y y y y
∈ ∈ ∈ + + ∈
∈ ∈

− + −∑ ∑        (1) 

where i indicates a particular instance either for R1 or R2; xi indicates a particular instance in 

subspace X1(j, z) or X2(j, z), yi indicates a particular instance y in subspace Y1 or Y2,
1Yy and

2Yy

indicate the mean value of yi in subspaces Y1 and Y2, respectively. Therefore, the split point of the 160 

predictor space (i.e., j and z) can be obtained by minimizing the equation (1). To remove ties in 

the argmax, the best split value for Xj is obtained as the average of Xj,z and Xj,z+1 (Scornet, 2020). 

Insert Figure 1 here 

 

After each split, each of the newly generated subspaces can be further splitted using the same 165 

process as long as the number of instances in a subspace is greater than a threshold. This process 

will be repeated until reaching a stopping criterion, such as a threshold value by which the square 

errors must be reduced after each split.  

 

The importance score of a particular predictor is measured based on how effective this predictor 170 

can reduce the square error in Eq. (1) for the entire tree deduction process (i.e., MDI). In the case 

of regression, “impurity” reflects the square error of the sample in a subspace (e.g., the larger the 

square error, the more “impure” the subspace is). The decrease in impurity (DI) for splitting a 

particular space s is calculated as: 

( ) ( ) ( )
( )

( )
( )

1 2

1 2

2 2 2

1,2,..., 1,2,..., 1, 2,...,
, ,

, ,

i i

i i iY Y Y
i k i z i z z k

x X j z x X j z

z k zDI j z s y y y y y y
k k∈ ∈ ∈ + +

∈ ∈

−
= − − ⋅ − − ⋅ −∑ ∑ ∑   (2) 175 

where j and z are the coordinates for the optimum splitting point of space s, k is the number of 

instances in space s and Yy  is the mean value of yi in space s. Therefore, the Mean Decrease in 

Impurity (MDI) for the variable Xj computed via a decision tree is defined as: 
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( ) ( , , )j s
s T
j j

MDA X P DI j z s
∈
=

= ⋅∑          (3) 

where T is the total spaces in a tree, Ps is the fraction of instances falling into s. In other words, the 180 

MDI of Xj computes the weighted DI related to the splits using the jth predictor.  

 

In Eq. (2), DI is reduced as long as the tree level goes down (i.e., from the top to the bottom level 

of the decision tree (shown in Figure 1)). Such treatment naturally assumes that the predictors 

considered (for splitting spaces) in lower levels of the tree are less significant than those in upper 185 

levels. This effect is even aggravated by the existence of predictor dependence as which will also 

depress the importance scores of independent predictors and increase the positively dependent 

ones (Scornet, 2020). As a consequence, predictors considered in lower levels of the tree will only 

receive small importance scores and may be neglected by decision-makers. Therefore, the 

importance scores obtained from CART is biased towards the predictors considered in early-cut 190 

spaces for obtaining a highest square error reduction. This will mislead the hydrological inference 

since some predictors that are considered as less significant in CART (with a limited contribution 

in reducing the square error) could be vital for explaining some concerned hydrological behaviors 

such as streamflow peaks.  

3 Methodology 195 

3.1. Wilks Feature Importance 

For an unbiased estimation of the importance scores for decision trees, the WFI is developed and 

illustrated using the same dataset as CART in Figure 1. The fundamental difference between WFI 

and MDI comes from the split criterion and procedures used for the tree deduction process. We 

will talk about the split criterion first: Recalling the procedure of CART, any possible splits of Xj 200 

are examined to find the optimum split point that can minimize the square errors of Y1 and Y2 as 

shown in Eq (1). In WFI, the function for finding the optimum split point is achieved by comparing 

the two subspaces’ likelihood ratio, which is measured through the Wilks’ Ʌ statistics. The 

optimum value of Ʌ can be used to measure how effective the Xj can differentiate Y1 and Y2.  

 205 

The calculation process of WFI employs the tree deduction processes of stepwise cluster analysis 

(SCA) (Huang, 1992). In SCA, the Wilks’ Ʌ statistics (Wilks, 1967;Nath and Pavur, 1985) is used 
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as the criterion for node splitting, and it is defined as ( )
( )

=
Det W

Det B W
Λ

+
, where ( )Det W is the 

determinant of a matrix, W and B are the within- and between-group sums of squares and cross 

product matrices in a standard one-way analysis of variance, respectively. To define W and B, let 210 

Y1 and Y2 contain z and (k-z) instances, respectively. We have the following vectors: 

( ) { }
1 1, 2, ,, ,...,Y i i d iy i y y y= , i = 1, 2, …, z, and ( ) { }

2 1, 2, ,, ,...,Y i i d iy i y y y= , i = z+1, z+2, …, k, where d 

is the number of columns of Y1 and Y2 (d=1 in this case). Then the W and B can be given by: 

1 1 1 1 2 2 2 2
1 1

( ) ' ( ) ( ) ' ( )
z k z

Y Y Y Y Y Y Y Y
i i

B y i y y i y y i y y i y
−

= =

       = − ⋅ − + − ⋅ −       ∑ ∑  (4) 

1 2 1 2

( ) ( ) ' ( )Y Y Y Y
z k zW y y y y

k
⋅ −

= − ⋅ −   (5) 215 

The test statistics Ʌ represent the likelihood ratio of two subspaces, the smaller Ʌ value 

representing a larger difference between the sample means of Y1 and Y2. The distribution of Ʌ is 

approximated by Rao’s F-approximation (R-statistic), which is defined as: 
1/

1/

1 ( 1) / 2 1
( 1)

S

S

Z S d mR
d m

−Λ ⋅ − ⋅ − +
= ⋅

Λ ⋅ −
  (6) 

1 ( ) / 2Z k d m= − − +  (7) 220 

2 2

2 2

( 1) 4
( 1) 5

d mS
d m

⋅ − −
=

+ − −
  (8) 

where statistic R is distributed approximately as an F-variate with 1 ( 1)n d m= ⋅ − and 

2 ( 1) / 2 1n d m= ⋅ − + degrees of freedom; m is the number of groups. Since the number of groups 

is two in this study, an exact F-test is possibly performed based on the following Wilks’ Ʌ criterion 

be: 225 

1 1( , 1) k dF d k d
d

−Λ − −
− − = ⋅

Λ
 (9) 

 

Therefore, the sample means of the two subspaces can be compared for examining significant 

differences through the F-test. The null hypothesis would be H0: μ(Y1) = μ(Y2) versus the 

alternative hypothesis H1: μ(Y1) ≠ μ(Y2), where μ(Y1) and μ(Y2) are population means of Y1 and 230 

Y2, respectively. Let the significance level be α (which is set as 0.05 in this study), the split criterion 

https://doi.org/10.5194/hess-2021-65
Preprint. Discussion started: 1 March 2021
c© Author(s) 2021. CC BY 4.0 License.



9 
 

would be: Fcal ≥ Fα and H0 are false, which implies that the difference between two subspaces is 

significant thus they should be splitted.  

 

By far, the splitting criteria of CART and SCA is compared, the second difference of these two 235 

algorithom is the tree deduction procedure. In CART, the splitting process will be repeated until 

any of the newly generated subspace can no longer be splitted. While in SCA, once all the nodes 

in the current stage have been examined for the splitting process, merging process will be followed 

in next stage as illustrated in Figure 1. The merging process will compare any pairs of nodes based 

on Wilks’ Ʌ value to test if they can be merged (i.e., for Fcal < Fα and H0 are true, which indicates 240 

that these two subspaces have no significant difference thus should be merged). Such splitting and 

merging processes are iteratively performed until no node can be further split or merged. Once an 

SCA tree is built, the WFI for the variable Xj computed via an SCA tree is defined as: 

( ) ( )1- ( , , )j s
s T
j j

WFI X P j z s
∈
=

= ⋅ Λ∑          (10) 

where Ʌ(j, z, s) denotes the value of Ʌ obtained at the optimum splitting point of space s with 245 

column and row coordinates j and z, respectively. Similar to the calculation of MDI in Eq. (3), the 

WFI for Xj computes the weighted (1-Ʌ) value related to the splits using the jth predictor.  

 

The major advantage of WFI over MDI is that every spliting and merging action by WFI is 

evaluated based on Wilk’s test-statistics with the significance level α set equals 0.05, which greatly 250 

reduced probabilities that the two child-nodes are splitted due to chance. However, the node 

splitting actions in MDI approach is purely based on square error, which can potentially lead to 

overfitting. Moreover, the WFI can provide an unbiased estimation of important scores compared 

with MDI, since the values of (1-Ʌ) do not necessarily decline as long as the tree level goes down 

(as shown in Figure 1). Therefore, the Xj that is mostly considered in latter splits is still possible 255 

to have a higher importance score than it in early splits as long as the Ʌ values for those splits are 

small enough. As the consequence, predictors that contribute to specific model predictions can be 

identified by WFI but may be overlooked by MDI.  
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3.2 Stepwise Clustered Ensemble and Posterior-Informed WFI 

Similar to MDI, the WFI performs better under the regression tree ensemble (RTE) framework 260 

since the randomized predictors ensure enough tree diversity, which in turn, leads to more balanced 

importance scores (Scornet, 2020). The concept of RTE is to grow trees following a random subset 

of input predictors sampled without replacement and a slightly different set of instances drawn 

randomly from the training data with replacement. As the ensemble members (trees) increase, the 

non-linear relationships between predictors and responses become increasingly stable and the 265 

prediction can thus be more robust and accurate (Breiman, 2001;Zhang et al., 2018). Therefore, in 

this study, the WFI will be evaluated under the RTE framework. The SCA ensemble (SCE) will 

contain N (which is the number of trees) different sets of important scores, the ensemble (i.e., 

average) of these sets of important scores is assumed to be more robust than the individual one. 

 270 

By far, the importance scores from WFI can provide a global perspective of how significant a 

particular predictor is related to model predictions. A more intriguing question could be how does 

the significance of a predictor vary in response to the variations of streamflow? To this end, the 

proposed WFI is extended under the SCE framework through the Bayesian model averaging (BMA) 

approach. The BMA (Raftery et al., 2005) aims to provide the likelihoods (i.e., BMA weights) of 275 

each ensemble member that can best match the observations. In this study, each SCA tree is 

considered as an ensemble member of BMA. The BMA algorithum is then applied to a spectrum 

of streamflow quantile ranges, which will lead to sets of BMA weights. Each set of BMA weights 

reflects the likelihoods of each SCA tree being the best prediction over a particular streamflow 

quantile ranges. By combining the sets of BMA weights and the sets of importance scores, the 280 

posterior-informed Wilks feature importance (PWFI) will be able to emphaze the importance 

scores at a particular quantile range. The procedure of PWFI is given as follows: 

 

Consider a set of SCA trees T, where { }1 2, ,..., nT T T T= , and n is the total number of trees; f is the 

number of predictors used to build each SCA tree; F is the total number of predictors used in the 285 

model, where f ∈ F; M is the number of interested streamflow quantile ranges, and m is a particular 

quantile range (m ∈ 1, …, M); I(i, j) is the importance score for the ith SCA tree and its jth predictor; 

E(⸱) denotes the function for an SCA tree to make a prediction. 

https://doi.org/10.5194/hess-2021-65
Preprint. Discussion started: 1 March 2021
c© Author(s) 2021. CC BY 4.0 License.



11 
 

(1) Calculate sets of BMA weights of E(Ti) under the quantile range m, denoted as B(i, m), 

where i ∈ 1, …, n and m ∈ 1, …, M.  290 

(2) Calculate sets of Wilks importance scores WI(i,  j, m) for the ith SCA tree under the quantile 

range m, to obtain WI(i,  j, m) = B(i, m) × I(i, j), where i ∈ 1, …, n, j ∈ 1, …, f and m ∈ 1, …, M.  

(3) Aggregate (i.e., average) the WI(i,  j, m) along the coordinate i (across all the SCA trees), 

to obtain AWI(j, m) =
1 1

( , , ) ( , )
n n

i
i i

WI i j m Count T j
= =
∑ ∑ , where j ∈ 1, …, F, m ∈ 1, …, M and Count(⸱) 

is a function for testing whether the ith SCA tree uses the jth predictor (1 means yes and 0 means 295 

no). 

(4) Normalize the AWI(j, m) to the [0,1] range along the coordinate m, so that the PWFI(j, m) 

= ( ) ( )
1

, , ; 1,..., ; 1,...,
M

m
AWI j m AWI j m j F m M

=

∈ ∈∑ . 

Therefore, the above procedures “downscale” the Wilks importance scores into streamflow 

quantile ranges of interest, which facilitate the investigation of the effects from varied predictor 300 

characteristics. The detailed training process of BMA follows the procedure of Duan et al. (2007).  

4. Application of WFI 

4.1. Study Area and Data 

Three irrigated watersheds located in the alluvial plain of the Yellow River in China were selected 

to test the capability of the proposed WFI method (Figure 2). These watersheds share a total area 305 

of 4,905 km2, consisting of 52% irrigated land, 17% residential area, 15% desert, 12% forested 

land, and 4% water surface. The landscape of the study area is characterized by an extremely flat 

surface with an average slope ranging from 1:4000 to 1:8000, with mostly highly permeable soil 

(sandy loam). The climatic condition of the study area is characterized by extreme arid 

environments with annual precipitation ranging from 180 to 200 mm, and annual potential 310 

evaporation ranging from 1,100 to 1,600 mm (Yang et al., 2015).  

Insert Figure 2 here 

 

Initial catchment conditions were considered to improve the model performance. Specifically, 

moving sums of daily precipitation, temperature and evaporation timeseries over multiple time 315 

periods 𝛿𝛿P,T,E = [1, 3, 5] prior to the date of predictions were set as predictors to reflect the 
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antecedent watershed conditions. Similary, the moving window for daily irrigation timeseries 𝛿𝛿I = 

[1, 3, 5, 7, 15, 30]. In addition, daily groundwater level data are used as additional predictors to 

reflect the baseflow conditions of the catchments. The daily timeseries data were divided into two 

subsets, including one from 2001/01/01 to 2011/12/31 and the other from 2012/01/01 to 320 

2015/12/31 for model training and prediction, respectively. Table 1 list the weather, rain and 

groundwater stations used for each basin. Owing to the different irrigation schedules in spring and 

winter, the streamflow processes show distinct behaviors in terms of flow magnitude and duration. 

To analyze such temporal variations, the hydrological processes for Spring-Summer (April to 

September) and Autumn-Winter (October to March) were examined separately. 325 

Insert Table 1 here 

 

Five hyperparameters need to be determined to train the SCE, including the significance level (α) 

used for the F-test during the node splitting process, the number of trees (Ntree), the minimum 

number of samples in a node (Nmin) for a splitting action, and the number/ratio of predictors in a 330 

subspace (Mtry). In this study, we set the α value for 0.05 as suggested by Huang (1992). The 

Ntree was set as 200, after which no further improvement in model validation accuracy can be 

achieved. The Nmin was set as 5 to ensure the rare events can be identified. The Mtry was set as 

50% as suggested by Barandiaran (1998), indicating half of the predictors are selected in each SCA 

tree. Similar to the RF, cross-validation is not required for the SCE since one third of the training 335 

data will not be used for training each SCA tree and these out-of-bag (OOB) data will be used as 

the validation dataset. We use the R package “randomForest” (Liaw and Wiener, 2002) for training 

the RF model with the default settings. The XGB training is based on 10-fold cross-validation 

scheme using the R package “XGBoost” (Chen et al., 2015). 

4.2. WFI Evaluation  340 

The performance of WFI will be evaluated and compared against the permutation feature 

importance (PFI) method (applied to RF and SCE model) and the mean decrease in impurity (MDI) 

method (applied to RF and XGB model). The PFI method follows the procedure of Molnar (2020): 

Assume a trained model M with p predictors, predictor matrix X, response vector Y, predicted 

vector Y’, and an error measure L(Y, Y’); (1) calculate the original model error based on the 345 

validation dataset (out-of-bag dataset in our case) eorg(M) = L(Y, M(X)); (2) for each predictor
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1,...,j p∈ , (i) generate permuted predictor matrix Xperm, j by duplicating X and shuffling the values 

of predictor Xj, (ii) estimate error eperm, j = L(Y, M(Xperm, j)), and (iii) calculate PFI of predictor j as 

PFIj = eperm, j/eorg(M). The MDI follows the procedure of the conventional random forest approach 

as illustrated in section 2. All three interpretation methods will be evaluated through recursive 350 

feature elimination (RFE) (Guyon et al., 2002) as follows: (1) train three models (i.e., SCE, RF 

and XGB) with all predictors; (2) calculate the importance scores using the three interpretation 

methods (i.e., PFI, MDI and WFI) embedded in their corresponding models (i.e., the PFI method 

will be applied to RF and SCE; MDI will be applied to RF and XGB; WFI is only available to 

SCE); (3) exclude the three least relevant predictors for each set of the important scores obtained 355 

in step 2; (4) retrain the models using the remaining predictors in step 3; (5) repeat step 2 to 4 until 

the number of predictors reaching a minimum threshold (which was set as five in this study).  

 

The evaluation of the three interpretation methods is based on the two aspects as interpretation 

accuracy and robustness. The interpretation accuracy (for a feature importance method) is defined 360 

as the difference between the predictive accuracy achieved by the most relevant predictors 

(identified by this feature importance method) and that achieved by all the considered predictors. 

In detail, the evaluation of interpretation accuracy starts from setting the evaluation metrics. In this 

study, we use the RMSE and adjusted R2 as the evaluation metrics for the model prediction. The 

adjusted R2 has been used instead of R2 because the previous metric can consider the number of 365 

predictors. The adjusted R2 is defined as:  

( )( )2
2

1 1
 1

1
R N

adj R
N P
− −

= −
− −

          (11) 

where P is the number of predictors and N is the number of instances. By evaluating the RMSE 

and adjusted R2 after each RFE iteration, we can observe the iterative reduction of the model 

predictive accuracy using the remaining predictors. For the remaining predictors that are more 370 

relevant to the model predictions, a smaller increment (or reduction) in RMSE (or adjusted R2) 

will be observed, thus the higher interpretation accuracy will be achieved. 
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The interpretation robustness means the relative changes of importance scores for the most relevant 

predictors in response to the reduction of irrelevant predictors. The interpretation robustness is 375 

evaluated as follows: for each RFE iteration, the number of each set of predictors will be reduced 

by three. The reduced sets of importance scores will be compared with those in previous iterations 

in terms of the relative changes in score values. Given the total shares of the importance scores for 

any set equals 100%, the RFE will increase the share of importance scores for the most relevant 

predictors after each iteration. Therefore, a monotonically increasing trend for the importance 380 

scores of a particular predictor should be expected in response to the iterative reduction of 

irrelevant predictors. In this study, the monotonicity is examined by using the Spearman's rank 

correlation coefficient (i.e., Spearman's ρ), which is commonly used to test the statistical 

dependence between the rankings of two variables, and is defined as: 

( )( )
( ) ( )2 2

i ii

i ii

RX RX RY RY

RX RX RY RY
ρ

− −
=

− −

∑
∑

         (12) 385 

where RXi is the ranks of variables X for the ith RFE iteration and RYi is the number of selected 

predictors for the ith RFE iteration; RX and RY are the means of RXi and RYi, respectively. A larger 

Spearman's ρ indicates the importance score for a predictor will increase along with the reduction 

of irrelevant predictors, which therefore will lead to relatively more robust importance scores in 

terms of the pattern of importance scores. 390 

5. Results  

5.1. Interpretation Accuracy and Robustness 

Generally, all three algorithms delivered reasonable predictive accuracy (by using all considered 

predictors) across all irrigated watersheds and seasons (Table 2). The SCE approached the best 

overall predictive accuracy for the testing dataset. When compared with RF, the SCE has a smaller 395 

drop in accuracy from training/validation to testing, which indicates the SCE algorithm can better 

address overfitting.  

Insert Table 2 here 
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Compared with other benchmark algorithms and interpretation methods, WFI shows the best 400 

interpretation accuracy as it has the overall smallest average reduction in predictive accuracy 

(considering all the RFE iterations) for the testing dataset (Figure 3). The iterative reductions in 

accuracy for training, validation and test datasets are listed in Figure S1, S2 and Figure 4, 

respectively. Surprisingly, we found that the predictors selected by SCE-WFI lead to even higher 

predictive accuracy on the testing dataset than the SCE-PFI selected ones. The possible reason is 405 

that the PFI method can only consider the effect of one predictor at a time, thus the interactions 

(i.e., quadratic terms) between the considered predictor and the rest predictors are overlooked. The 

WFI method on the other hand naturally considers all the interactions among predictors in the tree 

deduction process, thus the importance scores are considered to be more comprehensive than those 

generated by the PFI method. Similar evidence can also be found between RF-Purity (i.e., MDI 410 

method) and RF-PFI methods: the average reduction in accuracy for RF-Purity is less than that for 

RF-PFI under the testing dataset.  

Insert Figure 3 here 

Insert Figure 4 here 

 415 

Comparative studies among the three interpretation methods illustrate overfitting can greatly affect 

predictive and interpretation accuracy. For instance, RF-PFI owns the lowest average reduction in 

adjusted R2 among all models on the training dataset, while its value becomes the highest on the 

testing dataset. A smaller reduction in accuracy means the retained predictors are more informative 

in describing the complex relationships of hydrological processes. Based on this, SCE-WFI can 420 

provide the most informative predictors among all considered models because it suffers the least 

from overfitting. The results also indicate that the XGB algorithm suffers less from overfitting 

compared with RF. Nevertheless, the predictive accuracy for the XGB algorithm is not as good as 

it for RF or SCE (Table 2). 

Insert Table 2 here 425 

 

The Spearman's ρ values for the most relevant predictors (i.e., selected by the last iteration of RFE) 

across all drainage basins and seasons illustrate the robustness of all three interpretation methods 

embedded in different models. The results indicate the relative importance of a particular predictor 

increase in response to the reduction of irrelevant predictors (Figure 5 and Figure S3-S6). 430 
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Compared with other interpretation methods and ML algorithms, the SCE-WFI owns the highest 

absolute Spearman's ρ values for the majority of the cases (Figure 6). This indicates the reduction 

of irrelevant predictors would greatly influence the importance scores obtained by PFI and MDI. 

This challenges the application of the PFI and MDI since the removal of irrelevant predictors 

cannot guarantee the same or similar level of hydrological inference (i.e., the relative importance 435 

scores may vary distinctly according to the reduction of irrelevant predictors). In contrast, the WFI 

method provides more stable relative importance scores and will lead to more consistent 

hydrological inferences. 

Insert Figure 5 here 

Insert Figure 6 here 440 

5.2. Insights Toward Hydrological Processes 

To explore the relationships between the hydrological responses and their driving forces, the 

importance scores were aggregated and analyzed according to different types (i.e., precipitation, 

irrigation, evaporation, etc.). We chose the models with the smallest RMSE (among all the RFE 

iterations) on the testing dataset to investigate the relationships between importance scores and 445 

hydrological processes. The results indicate the importance scores differed significantly according 

to the algorithms and interpretation methods used (Figure 7). In particular, the aggregated predictor 

P1 (i.e., precipitation of the current timestep from all spatial locations) owns positive contributions 

(in reducing the RMSE) for SCE-WFI in the Spring irrigations, while it has no contribution for 

other ML algorithms and interpretation methods. To investigate whether the predictors identified 450 

by WFI are also meaningful to other algorithms, we reinserted the predictors assoicated with P1 

into the best-performance RF and XGB models. Surprisingly, we found both models showing 

slightly improved predictive accuracy (i.e., RMSE and adjusted R2) for Spring irrigations across 

all drainage basins on the testing dataset (Table 3). This finding reveals that even though the P1 

has no contribution in improving the predictive accuracy on the training dataset, it can still 455 

distinguish different hydrological behavior (i.e., with a small Wilk’s Ʌ value) and have the 

potential to improve the model performance on the testing dataset. In fact, the time of concentration 

for these basins are usually less than one day if the storm falls near the outlets of the irrigation 

basins. This fact proves the above hydrological inference is reasonable.  

Insert Figure 7 here 460 
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Insert Table 3 here 

 

It should be noted that the variation of importance scores among predictors for the WFI method is 

much smaller than it for other feature importance methods. This is caused by the nature of Wilk’s 

Ʌ: In the node splitting process, a predictor that significantly increases the predictive accuracy 465 

may not necessarily have a strong separative power (i.e., a small Ʌ value) to differentiate two 

potential sub-spaces. As a consequence, such a predictor could gain a relatively higher importance 

score for accuracy-based interpretation methods than the WFI. However, predictors identified by 

accuracy-based interpretation methods maybe subject to overfitting, which does not guarantee a 

valid inference on the testing dataset. The WFI method (which evaluates every spliting and 470 

merging action based on Wilk’s test-statistics with the predefined significance level α) is less likely 

to be overfitted and expected to generate more reliable importance scores.  

 

Figure 8 and S8 depict the varying roles of a predictor played in the hydrological processes, that 

is, streamflows at 25%, 50%, 75%, 90%, 95%, 99% and 100% percentiles. We found the P3 and 475 

P5 (i.e., 3 and 5-day accumulative precipitation) have higher importance scores for peak flows 

than those for low flows during the spring irrigation periods, while no significant trends can be 

observed for P1. This is probably because the accumulative precipitation bears the information of 

both antecedent watershed conditions and the storms, which are the keys to the formation of 

streamflow peaks. Significant trends on importance scores also can be found for some irrigation-480 

related factors. For instance, the I1 and I3 (i.e., one- and three-day accumulative irrigation) in the 

first drainage area share relatively higher importance scores on low flows than those for the high 

and peak flows. This probably due to the majority of the irrigated lands in the first drainage area 

being paddy fields, which require flood irrigation to soak the rice fields (which are usually bunded) 

for a few days. Once the unsaturated zone of the soil becomes saturated (which usually happens 485 

two weeks after the beginning of irrigation), the groundwater table will be elevated and the 

irrigation factors such as I15 and I30 will increase their dominance on peak flows.  

Insert Figure 8 here 

 

Owing to the different characteristics of the study watersheds, the same factor may behave 490 

distinctively according to the landuse, irrigation schedule and cropping pattern. The third drainage 
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basin, for example, shows a decreasing (or increasing) trend of importance scores for I30 (or P5) 

as the flow magnitude increases. This indicates that the peak flows in this area are probably caused 

by excessive rainfall rather than long-term irrigation. This is quite different from the first irrigated 

area. In fact, most of the irrigated lands in the third drainage area grow corn which does not require 495 

to be soaked as rice does. Therefore, the irrigated water in this area will drain faster than that in 

the first irrigated area. Moreover, the third drainage baisn includes more mountainous area than 

other basins, which allows a shorter time of concentration, making the precipitation the dominant 

factor in the peak flows. 

6. Discussion 500 

Previous studies indicated that equifinality is a major challenge for hydrological inference using 

conventional machine learning approaches such as RF and MLP (Schmidt et al., 2020). Studies 

from Schmidt et al. (2020) mentioned that the patterns of importance scores (achieved by PFI) 

may vary significantly according to different algorithms. Their conclusions were verified by our 

results and at the same time, we also found that equifinality exists within an algorithm: the 505 

reduction of irrelevant predictors (from the full model) may lead to the same or similar predictive 

accuracy (Figure 4) but the importance score patterns across iterations could be distinctive (Figure 

7). To differentiate these two types of equifinality, we name the equifinality between algorithms 

as type-A equifinality and name the one within an algorithm as type-B equifinality. The 

comparative analysis in our study indicates the type-B equifinality can be addressed by the WFI 510 

method, which produces more robust importance scores than its counterparts. However, the WFI 

is a model-specific method, which means it cannot be extended to other algorithms and is thus 

unable to deal with the type-A equifinality. Nevertheless, the proposed WFI embedded in the SCE 

model provides a new and reliable solution for hydrological inference. 

 515 

The comparative studies between SCE-WFI and SCE-PFI indicate that the high robustness of 

importance scores by SCE-WFI may come either from the decision trees or the WFI method. 

However, when importance scores are compared between RF-Purity with RF-PFI, the RF-Purity 

importance scores are no more robust than the RF-PFI one’s. This leads to a deduction that the 

high robustness of importance scores by SCE-WFI is due to the WFI method rather than decision 520 

trees. The reason MDI does not share the merits of WFI is probabally because the tree deduction 
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processes for RF and XGB are both associated with predictive accuracy (i.e., square errors), which 

can lead to overfitting. The most relevant predictors determined by such “overfitted” trees are 

biased towards predictors for the highest square error reduction in training dataset, and may not 

guarantee a reasonable inference on the testing dataset. The WFI approach, on the other hand, 525 

evaluates every spliting and merging action based on Wilk’s test-statistics rather than accounting 

for predictive accuracy, thus generates relatively unbiased importance scores. A sound 

hydrological inference should derived from a “general solution” rather than a “special solution”. 

The WFI approach obtained such a “general solution” for hydrological inference by learning the 

differences among complex hydrological behaviors. However, the MDI and PFI methods are more 530 

likely to obtain a “special solution” for hydrological inference since they are based on predictive 

accuracy (which is always case sensitive and may lead to overfitting). This challenges the MDI 

and PFI to reflect the whole picture of hydrological process.  

Insert Figure 9 here 

 535 

The analysis of BMA weights for the posterior-informed WFI indicates that the BMA algorithm 

can select the most promising SCE decision trees for each flow quantile range (Figure 9 and S9 to 

S13). The evenly distributed BMA weights under each flow quantile range illustrates the BMA 

algorithm could obtain the global optimum solution for its objective (i.e., smallest RMSE). The 

varying BMA weights among decision trees highlights the diversities of random predictors 540 

selected for building these decision trees. 

7. Conclusions 

The Wilk’s feature importance was developed to improve the interpretability of decision trees and 

regression tree ensembles. Our results indicate the proposed WFI provides a more robust 

hydrological inference, compared with the well-known PFI method and MDI method. In addition, 545 

we found WFI can identify more informative predictors, compared with PFI and MDI in terms of 

predictive accuracy (i.e., adjusted R2 and RMSE). With the provisions of the BMA algorithm, the 

posterior information allowed the WFI methods to downscale the global importance scores to local 

ones. The localized importance scores can reflect the varying characteristics of a predictor 

involved in the hydrological processes. 550 
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There are three main achievements of the proposed WFI in hydrology: firstly, the issue of 

equifinality that exists in conventional statistical models can be partially addressed by using the 

proposed WFI method; secondly, some critical predictors that may be overlooked by conventional 

feature importance methods can be captured through the WFI; thirdly, the posterior-informed WFI 555 

can help to gain insights into some hydrological behaviours.  

 

Although a complete description of all the decision trees within the model is infeasible, the 

proposed WFI could be a step closer for hydrologists to get a preliminary understanding of the 

hydrological process through machine learning. However, several challenges still exist in the 560 

current interpretation approach such as how to find the best balance amonst the model complexity, 

performance, and interpretability. A complex model may yield higher performance skills than a 

simple model, but at the same time, will introduce the multicollinearity problem, which in turn 

will hamper the model interpretability. Moreover, current applications of importance scores are 

still limited. As interpretable machine learning models continue to mature, the potential benefits 565 

of hydrological inference could be promising if the importance scores can be associated with 

physically-based hydrological models.  
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Figures: 

 675 

Figure 1: Map of the study area. Note: due to the extreme flat surface, three interconnected 

drainage areas are approximately delineated. In this map, G indicates groundwater gauges, W 
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indicates weather stations, R indicates rain stations, C indicates irrigation canals and O indicates 

drainage outlets. Both 2nd and 3rd drainage areas contain two crisscrossed drainages with strong 

hydrological connections. The map was created using ArcGIS software (Esri Inc. 2020). 680 

 

 

Figure 2: Table on the left is a numeric hydrological dataset; figure on the top right is the tree 

deduction process for both CART and SCA with the dataset (note: the highlighted numbers in 

brankets of the leaf-nodes are the mean response values of those nodes; in this special case, the 685 

two algorithms share the same node splitting rules, however, for most real-world cases, they lead 

to different decision trees); figure on the middle right illustrates the typical difference of deduction 

process between CART and SCA (not related to the case); table on the bottom right is the statistic 

summaries for CART and SCA of this case. 

 690 

Instance X1 X2 X3 Y

1 244.5 244.5 16.9 4430
2 23.4 23.4 6.3 592
3 58.6 144.3 12.5 1032
4 5.6 8.6 14.5 627
5 38.6 52.2 12.1 1060
6 183.2 183.2 17.4 2580
7 94.6 128.8 21.3 1940
8 0 1.2 5.2 506
9 18.5 18.5 23 632

10 0 27.6 9.6 527
11 43.2 97.3 19.6 986
12 4.3 4.3 9.3 522
13 38.4 38.4 14.8 929
14 37.5 37.5 35.8 584
15 16.5 136.2 8.6 1120
16 56.1 56.1 36.7 681
17 43.6 43.6 18.4 759
18 2.3 15.3 12.6 503
19 198.6 211.5 6.9 3680
20 46.5 77.2 20.1 977

Tree level Decrease in impurity Wilk’s Ʌ

1 20946255 0.17

2 1059237 0.36

3 969815 0.24
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Figure 3: Reduction in accuracy (RMSE is on the left and adjusted R2 is on the right) on average 

across three drainage basins, seasons and RFE iterations. 
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Figure 4: Iterative reduction in accuracy for the testing dataset. Note: The solid lines indicate 695 

adjusted R2, while the dashed lines represent RMSE. 

 

Figure 5: Spearman's ρ values for the first drainage basin during the Spring irrigation period. The 

p-value means how likely it is that the observed correlation is due to chance. Small p-values 
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indicate strong evidence for the observed correlations. Capital letters from A to E represent the 700 

five most relevant features identified by different models. 

 

Figure 6: Spearman's ρ values for all three basins and irrigation seasons. Note: the RFE process 

keeps at least five and up to seven of the most relevant predictors in the last iteration, according to 

the remainder of total considered predictors divided by three. Capital letters from A to F represent 705 

the most relevant features identified by different models. 
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Figure 7: Importance scores aggregated by predictor types. Note: each type of predictor includes 

predictors from all considered spatial locations. For example, P1 includes predictors for all the 

considered climatic stations with 1-day precipitation. The importance score of P1 is the average of 710 

the importance score from the predictors of P1. 
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Figure 8: Posterior-informed importance scores at different flow quantile intervals for the Spring 

irrigation period. Note: the importance scores at different quantile intervals are represented as box 

and whisker plots, the mean feature importance (measured using normal WFI method) is 715 

represented as red diamonds. The green and blue diamonds are feature importance at 25th and 100th 

flow quantiles, respectively. The line plots on the right side represent how importance scores vary 

along with the changes in flow quantile. The “x” and “y” axis of the line plots are flow quantiles 

at 25, 50, 75, 95, 95, 99 and 100 (%), and feature importance (%), respectively. 
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 720 

Figure 9: BMA weights of SCE decision trees for the first drainage basin at the Spring irrigation 

period under seven flow quantile ranges. 
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Tables: 

Table 1: Weather, rain and groundwater gauges, and irrigation cannels used in each irrigation 725 
basin.  

Drainage area Stations/cannels  outlets 
1st Drainage area C1, C2, C3, W1, R1, G1, G2, G3 O1 

2nd Drainage area C1, C2, C3, C4, W2, R2, R3, R5, G4, 
G5 O2(A)+ O2(B) 

3rd Drainage area 
C1, C2, C4, W2, W3, R4, R5, R6, G4, 

G5, G6, G7 G8, G9 O3(A)+ O3(B) 

Note: Streamflow for each drainage area is predicted as the sum of the gauged streamflows within 
this area. 
 
Table 2: The adjusted R2 for three algorithms with all considered predictors.  730 

Dataset Season SCE RF XGB 

Training 

1st Spring 0.94 0.98 0.90 
1st Winter 0.98 0.99 0.98 
2nd Spring 0.94 0.98 0.89 
2nd Winter 0.98 0.99 0.97 
3rd Spring 0.94 0.98 0.87 
3rd Winter 0.98 0.99 0.97 

Validation 

1st Spring 0.87 0.88 0.83 
1st Winter 0.94 0.95 0.94 
2nd Spring 0.86 0.89 0.81 
2nd Winter 0.95 0.96 0.93 
3rd Spring 0.85 0.88 0.78 
3rd Winter 0.95 0.95 0.93 

Testing 

1st Spring 0.82 0.81 0.79 
1st Winter 0.91 0.90 0.91 
2nd Spring 0.77 0.76 0.74 
2nd Winter 0.66 0.65 0.65 
3rd Spring 0.69 0.68 0.67 
3rd Winter 0.83 0.82 0.82 

 
 
Table 3: Predictive accuracy for adding the predictors from P1 back to the best models of RF and 
XGB. Note: the best models of RF and XGB is selected based on the lowest RMSE on the testing 
dataset.  735 

 Basin RF with P1 RF without P1 XGB with P1 XGB without P1 

RMSE 
1st 2.42 2.44 2.52 2.55 
2nd 3.16 3.17 3.16 3.22 
3rd 5.81 5.81 5.73 5.87 

Adj_ R2 
1st 0.81 0.81 0.80 0.79 
2nd 0.77 0.76 0.75 0.74 
3rd 0.69 0.69 0.70 0.68 
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