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Abstract. Feature importance has been a popular approach for machine learning models to 

investigate the relative significance of model predictors. In this study, we developed a Wilks 

feature importance (WFI) method for hydrological inference. Compared with conventional feature 

importance methods such as permutation feature importance (PFI) and mean decrease impurity 10 

(MDI), the proposed WFI aims to provide more reliable variable rankings for hydrological 

inference. To achieve this, WFI measures the importance scores based on Wilk’s Ʌ (a test statistic 

that can be used to distinguish the differences between two or more groups of variables) throughout 

an inference tree. Compared with PFI and MDI methods, WFI does not rely on any performance 

measures to evaluate variable rankings, which can thus result in less biased criteria selection during 15 

the tree deduction process. The proposed WFI was tested by simulating monthly streamflows for 

673 basins in the United States and applied to three interconnected irrigated watersheds located in 

the Yellow River Basin, China, through concrete simulations for their daily streamflows. Our 

results indicated that the WFI could generate stable variable rankings in response to the reduction 

of irrelevant predictors. In addition, the WFI selected predictors helped RF achieve its optimum 20 

predictive accuracy, which indicates the proposed WFI could identify more informative predictors 

than other feature importance measures.  

1 Introduction 

Machine learning (ML) has been used for hydrological forecasting and examining modeling 

processes underpinned by statistical and physical relationships. Due to the rapid progress in data 25 

science, increased computational power, and the recent advances in ML, the predictive accuracy 

of hydrological processes has been greatly improved (Reichstein et al., 2019; Shortridge et al., 

2016). Yet, the explanatory power of ML models for hydrological inference has not increased 

apace with their predictive power for forecasting (Konapala and Mishra, 2020). Previous studies 

have indicated that purely pursuing predictive accuracy may not be a sufficient reason for applying 30 
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a certain hydrological model to a given problem (Beven, 2011). The ever-increasing data sources 

allow ML models to incorporate potential driven forces that cannot be easily considered in 

physically-based hydrological models (Kisi et al., 2019). The increasing volume of input 

information has left one challenge as “how to extract interpretable information and knowledge 

from the model.” Even though obtaining exact mappings from data input to prediction is 65 

technically infeasible for ML models, previous research has shown opportunities to understand the 

model decisions through either post-hoc explanations or statistical summaries of model parameters 

(Murdoch et al., 2019). Nevertheless, the reliability of the interpretable information is still less 

studied. Therefore, quality interpretable information from ML models is much desired for evolving 

our understanding of nature’s laws (Reichstein et al., 2019). 70 

 

The main idea of model interpretation is to understand the model decisions, including the main 

aspects of (i) identifying the most relevant predictor variables (i.e., predictors) leading to model 

predictions and (ii) reasoning why certain predictors are responsible for a particular model 

response. Interpretability can be defined as the degree to which a human can understand the cause 75 

of a decision (Miller, 2019). The model interpretation for ML is mainly achieved through feature 

importance, which relies on techniques that quantify and rank the variable importance (i.e., a 

measure of the influence of each predictor to predict the output) (Scornet, 2020). The obtained 

importance scores can be used to explain certain predictions through relevant knowledge. 

Moreover, Gregorutti et al. (2017) pointed out that some irrelevant predictors may have a negative 80 

effect on the model accuracy. Therefore, eliminating irrelevant predictors might improve the 

predictive accuracy. Feature importance methods can be categorized as model-agnostic and model-

specific (Molnar, 2020). The model-agnostic methods refer to extracting post-hoc explanations by 

treating the trained model as a black box (Ribeiro et al., 2016a). Such methods usually follow a 

process of learning an interpretable model based on the outputs of the black-box model (Craven 85 

and Shavlik, 1996) and perturbing inputs and seeing the response of the black-box model (Ribeiro 

et al., 2016b). Such methods mainly include permutation feature importance (PFI) (Breiman, 

2001a), partial dependence (PD) plots (Friedman, 2001), individual conditional expectation (ICE) 

plots (Goldstein et al., 2015), accumulated local effects (ALE) plots (Apley and Zhu, 2016), local 

interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016b), Morries method (Morris, 90 

1991) and Shapley values (Lundberg and Lee, 2017; Shapley, 1953). In hydrology, Yang and Chui 
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(2020) used Shapley values to explain individual predictions of hydrological response in 

sustainable drainage systems at fine temporal scales. Kratzert et al. (2019a) used Morries method 140 

to estimate the rankings of predictors for a long short-term memory (LSTM) model. Worland et 

al. (2019) used the LIME to infer the relation between basin characteristics and the predicted flow 

duration curves. Konapala and Mishra (2020) used partial dependence plots to understand the role 

of climate and terrestrial components in the development of hydrological drought. Compared with 

the above model-agnostic methods, PFI is more widely used in hydrological inference due to its 145 

high efficiency and ability to take global insights into model behaviors (Molnar, 2020). Recent 

applications of PFI include inferring the relationship between basin characteristics and predicted 

low flow quantiles (Ahn, 2020) and comparing the interpretability among multiple machine 

learning models in the context of flood events (Schmidt et al., 2020). The above model-agnostic 

methods are handy for comparative studies of ML models with exceedingly complex (such as deep 150 

neuron networks) algorithmic structures to extract the interpretable information.  

 

On the other hand, the model-specific methods (also known as interpretable models), such as 

decision trees and sparse regression models, can inspect model components directly (Ribeiro et al., 

2016a). For instance, the weights (or coefficients) of a linear regression model can directly reflect 155 

how the predictions are produced, thus can provide critical information for ranking the model 

predictors. Due to the oversimplified input-output relationships, linear regression models may be 

inadequate to approximate the complex reality. As a consequence, these models may hardly 

achieve satisfactory predictive accuracy and obtain quality interpretable information. As one of 

the essential branches of interpretable models, tree-structured models such as classification and 160 

regression trees (CART) (Breiman et al., 1984) have been an excellent alternative to linear 

regression models for solving complex non-linear problems. The principle of CART is to 

successively split the training data space (i.e., predictors and response) into many irrelevant 

subspaces. These subspaces and the splitting rules will form a decision/regression tree, which asks 

each of the new observations a series of “Yes/No” questions and guides it to the corresponding 165 

subspaces. The model prediction for a new observation shares the same value as the average value 

for the training responses in that particular subspace. Mean decrease impurity (MDI) is the feature 

importance method for CART, and it summarizes how much a predictor can improve the model 

performance through the paths of a tree. Compared with linear regression models, trees are more 
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Deleted:  its

Deleted: particularly useful

Deleted: where the underlying algorithmic structure is

Deleted: for direct extraction of 

Deleted:  from big data 
Formatted: Font color: Auto, English (Canada)

Formatted: Font color: Custom Color(RGB(39,37,37)),
English (United States)

Deleted: When compared to the model-agnostic methods, 
the model-specific methods (also known as interpretable 
models) such as decision trees and sparse regression models, 
can inspect model components directly (e.g., through the  
paths in a decision tree or the weight of a specific predictor 
in a linear model) (Ribeiro et al., 2016b). In fact, regression 
tree ensembles (RTEs) as one of the important branches in 
ML, are composed of hundreds of interpretable models (i.e., 
decision trees). As long as the predictive performance is  
satisfied, a reasonable inference can be achieved through 
statistical summaries (e.g., mean decrease in node impurity 
(Breiman, 2001) or how often a predictor has been used for 
node splitting (Chen et al., 2015)) of the decision trees. In 
hydrology, RTEs have been receiving increasing attention  
for hydrological forecasting owing to their superior 
predictive accuracy, yet their usefulness for hydrological 
inference in terms of using such a transparent inference 
process is still limited. Such studies can be found from 
Worland (2018) and Lawson et al. (2017). A possible reason  
causing the interpretable models to be less preferrable than 
model-agnostic interpretation methods is that people believe 
higher predictive accuracy can potentially lead to more 
faithful inference (Murdoch et al., 2019). Nevertheless, 
interpretable models such as decision trees are still  
considered understandable tools for inferring a particular 
model behavior because the transparent decision-making 
process functions similarly to how the human brain makes 
decisions for a series of questions.¶
¶ 
Even though both types of interpretation methods have been 
applied for hydrological inference, they possess several 
drawbacks. The model-agnostic interpretation methods 
assume that the same predictive accuracy will lead to the 
same, or at least similar inferences (i.e., importance scores).  
However, Schmidt et al. (2020) disclosed that such an 
assumption may not be valid since the problem of 
equifinality (which exists in conventional hydrological 
model descriptions) also exists for ML model inferences 
(i.e., different importance scores can be observed from  
different ML models). Such inconsistency in the inference 
may hamper effective reasoning for hydrological processes. 
The interpretable models, on the other hand, suffer less from 
the equifinality problem since the importance scores can be 
inspected internally (e.g., through paths of a decision tree).  
However, Scornet (2020) revealed that the interpretability of 
the mean decrease in impurity (MDI) (for measuring the 
importance scores of the classification and regression trees 
(CART) (Breiman et al., 1984)) is strongly affected by the ...



4 
 

understandable for inferring a particular model behavior because the transparent decision-making 300 

process functions similarly to how the human brain makes decisions for a series of questions 

(Murdoch et al., 2019). Based on CART, Breiman (2001a) proposed an ensemble of trees named 

random forest (RF), which significantly improved the predictive accuracy compared with CART. 

Previous studies reported that RF could outperform many other ML models in predictive accuracy 

(Fernández-Delgado et al., 2014; Galelli and Castelletti, 2013; Schmidt et al., 2020). The high 305 

predictive accuracy allowed RF to become very useful in interpretation, especially in hydrology 

(Lawson et al., 2017; Worland, 2018). As Murdoch et al. (2019) argued, higher predictive accuracy 

can lead to a more reliable inference.  

 

Owing to its widespread success in prediction and interpretation, Breiman’s RF has been under 310 

active development during the last two decades. For instance, Athey et al. (2019) presented 

generalized random forests for solving heterogeneous estimating equations. Friedberg et al. (2020) 

proposed a local linear forest model to improve the conventional RF in terms of smooth signals. 

Ishwaran et al. (2008) introduced random survival forests, which can be used for the analysis of 

right-censored survival data. Wager and Athey (2018) developed a nonparametric causal forest for 315 

estimating heterogeneous treatment effects (HTE). Du et al. (2021) proposed another variant of 

random forests to help HTE inference through estimating some key conditional distributions. 

Katuwal et al. (2020) proposed several variants of heterogeneous oblique random forest employing 

several linear classifiers to optimize the splitting point at the internal nodes of the tree. These new 

variants of RF are primarily focused on handling various regression and classification tasks or 320 

improving the predictive accuracy, yet the usefulness for interpretation is still less studied.  

 

In fact, many studies have reported that the feature importance methods used in Breiman’s RF 

(including PFI and MDI) are unstable (i.e., a small perturbation of training data may significantly 

change the relative importance of predictors) (Bénard et al., 2021; Breiman, 2001b; Gregorutti et 325 

al., 2017; Strobl et al., 2007). Such instability has become one of the critical challenges for the 

practical use of current feature importance measures. Yu (2013) defined that statistical stability 

holds if statistical conclusions are robust or stable to appropriate perturbations. In hydrology, 

stability is critical in terms of interpretation and prediction. For interpretation, if a distinctive set 

of variable rankings was observed after a small perturbation of training data, it thus unable to 330 
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conclude realistic reasonings of hydrological processes. For prediction, there is no guarantee that 

the predictors with low rankings do not bear more valuable information than the higher ones. This 

problem challenges the selection of a subset of predictors for the optimum predictive accuracy 

(Gregorutti et al., 2017). Strobl et al. (2008) and Scornet (2020) disclosed that positively correlated 

predictors would lead to biased criteria selection during the tree deduction process, which further 335 

amplifies such instability. To address the issues mentioned above, Hothorn et al. (2006) proposed 

an unbiased node splitting rule for criteria selection. The proposed method showed that the 

predictive performance of the resulting trees is as good as the performance of established 

exhaustive search procedures used in CART. Strobl et al. (2007) examined Hothorn’s method 

under the RF framework, which was called Cforest. They found that the bias of criteria selection 340 

can be further reduced if their method is applied using subsampling without replacement. 

Nevertheless, Xia (2009) found that Cforest only outperformed Breiman’s RF in some extreme 

cases and concluded that RF was able to provide more accurate predictions and more reliable PFI 

compared to Cforest. A similar finding was also achieved by Fernández-Delgado et al. (2014), 

who reported RF was likely to be the best among 179 ML algorithms (including Cforest) in terms 345 

of predictive accuracy based on 121 data sets. More recently, Epifanio (2017) proposed a feature 

importance method called intervention in prediction measure (IPM), which was reported as a 

competitive alternative to other PFI and MDI. Since the proposed IPM was specifically designed 

for high-dimensional problems (i.e., the number of predictor is much larger than the number of 

observed samples), which thus is not suitable for most hydrological problems. Bénard et al. (2021) 350 

proposed a stable rule learning algorithm (SIRUS) based on RF. The algorithm (which aimed to 

remove the redundant paths of a decision tree) has indicated stable behavior when data is perturbed, 

while the predictive accuracy was not as good as the Breiman’s RF. To sum up, the existing 

approaches do not guarantee stable and reliable variable ranking for robust interpretability and 

optimum predictive accuracy. 355 

 

Therefore, as an extension of the previous efforts, the objective of this study is to develop a Wilks 

feature importance (WFI) method with improved variable rankings for supporting hydrological 

inference and modelling. WFI is based on an advanced splitting procedure, stepwise cluster 

analysis (SCA) (Huang, 1992), which employed statistical significance of F-test, instead of least 360 

square fitting (used in CART), to determine the optimum splitting points. These points, in 
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combination with the subsequent sub-cluster mergence, can eventually lead to the desired 

inference tree for variable rankings. The importance scores of predictors can then be obtained 

according to the values of Wilk’s Ʌ for reflecting the significance of differences between two or 

more groups of response variables. Compared with MDI and PFI, WFI does not rely on any 365 

performance measures (e.g., least-square errors in MDI or mean square errors in PFI), and can thus 

result in less biased criteria selection during the tree deduction process. Comparative assessment 

of WFI, PFI and MDI performances under the RF framework will then be undertaken through 

efforts in simulating monthly streamflows for 673 basins in the United States. With a finer 

temporal resolution, the proposed approach has also been applied to three irrigated watersheds in 370 

the Yellow River Basin, China, through concrete simulations for their daily streamflows. 

2 Related Works 

2.1. Random Forest 

RF is an ensemble of decision trees, each of which is grown in accordance with a random subset 

of predictors and a bootstrapped version of the training set. As the ensemble members (trees) 375 

increase, the non-linear relationships between predictors and responses become increasingly stable. 

The prediction can thus be more robust and accurate (Breiman, 2001a; Zhang et al., 2018). The 

training set for building each tree is drawn randomly from the original training dataset with 

replacement. Such bootstrap sampling process will leave about 1/3 of the training dataset as out-

of-bag (OOB) data, which thus can be used as a validation dataset for the corresponding tree. 380 

 

There are many variants of RF according to the types of trees (e.g., CART). Based on splitting 

rules equipped in different types of trees, the resulting RF may use various feature importance 

measures. In this study, Breiman’s RF is selected as the benchmark algorithm to investigate the 

feature importance measures. The algorithm is implemented using the R package “randomForest” 385 

(Liaw and Wiener, 2002). There are three hyperparameters in RF as the number of trees (Ntree), 

the minimum number of samples in a node (Nmin) for a splitting action, and the number/ratio of 

predictors in a subspace (Mtry). In addition, Breiman’s RF has two feature importance measures: 

permutation feature importance (PFI) and mean decrease impurity (MDI).  
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2.2. Permutation Feature Importance 390 

PFI was initially proposed by Breiman (2001a) and can be described as follows: Assume a trained 

decision tree t (where t ∈{1,..., ntree}; ntree is the total number of decision trees in the forest) 

with a subset of predictor u (where u ∈ p; and p is complete set of predictors), predictor matrix X 

(with full predictors), response vector Y, predicted vector Y’, and an error measure L(Y, Y’); (1) 

calculate the original model error based on the OOB dataset of the tth decision tree: t(eorginal) = L(Y, 395 

t( uX )) (where uX is a subset of predictor matrix X); (2) for each predictor j (where j ∈ {1,..., p}), 

(i) generate permuted predictor matrix Xperm, j by duplicating X and shuffling the values of predictor 

Xj, (ii) estimate error for the permuted dataset t(eperm, j) = L(Y, t( ,
u
perm jX )); and (iii) calculate 

variable importance of predictor j for the tth decision tree as PFI(t)j = t(eperm, j) - t(eorginal); (note 

that PFI(t)j = 0 if predictor j is not in u); (3) calculate the variable importance for the forest by 400 

averaging the variable importance over all trees: PFIj = ( )1

1 ntree

jt
PFI t

ntree =∑ . The error measure 

L(Y, Y’) used in this study is mean squared error (MSE), given by:  

( )2*
1

1 N
n nn

MSE y y
n =

= −∑          (1) 

where ny and *
ny  are the nth observed and predicted quantities, respectively; N is the total number 

of quantities.  405 

2.3. MDI feature importance 

The MDI importance measure is based on the CART decision tree, which is illustrated using a 

hydrological dataset (Figure 1) including 20 instances and 3 predictors as X1 (i.e., precipitation), 

X2 (i.e., 3-day cumulative precipitation) and X3 (i.e., temperature), and a response Y (i.e., 

streamflow). It starts by sorting the value of Xj in ascending order (j indicates the column index of 410 

the predictors so that j ∈ {1, 2, 3}), and the Y will be reordered accordingly. Then we go through 

each instance of Xj from the top to examine each candidate split point. For a sample set with k 

instances, the total number of split points for Xj will be k-1. Any instance z (where z ∈ {1, …, k}) 

in Xj can split the predictor space into two subspaces as X1(i, j) = {X1,j, X2,j, …, Xz,j}(where i ∈ 
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{1, …, z}); and X2(i, j) = {Xz+1,j, Xz+2,j, …, Xk,j} (where i ∈ {z+1, …, k}).The response space Y 

will be correspondingly divided into two subspaces as Y1(i) = {Y1, Y2, …, Yz} (where i ∈ {1, …, 

z}); and Y2(i) = { Yz+1, Yz+2, …, Yk} (where i ∈ {z+1, …, k}). To maximize the predictive accuracy, 425 

the objective of the splitting process is to find the split point (based on the row and column 

coordinate z and j, respectively) with the minimum squared errors (SE) of Y1 and Y2:  

( ) ( )( ) ( )( )2 2

1 1 2 2
1

,
z k

i i z
SE z j Y i Y Y i Y

= =

= − + −∑ ∑ ;   in 1, ..., 1z k∀ −  ;   in 1, ..., 3j∀   (2) 

where 1Y and 2Y indicate the mean value of Y1 and Y2, respectively.  

 430 

Figure 1: Table on the left is a numeric hydrological dataset; figure on the top right is the tree 

deduction process for both CART and SCA with the dataset (note: the highlighted numbers in 

brackets of the leaf-nodes are the mean response values of those nodes; in this particular case, the 

two algorithms share the same node splitting rules, however, for most real-world cases, they lead 

to different decision trees); figure on the middle right illustrates the distinct difference of deduction 435 

process between CART and SCA (not related to the case); the bottom-right table is the statistic 

summaries for CART and SCA of this synthetic case. 
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After each split, each of the newly generated subspaces can be further split using the same process 

as long as the number of instances in a subspace is greater than a threshold. This process will be 

repeated until reaching a stopping criterion, such as a threshold value by which the square errors 

must be reduced after each split.  465 

 

The importance score of a particular predictor is measured based on how effective this predictor 

can reduce the square error in Eq. (1) for the entire tree deduction process (i.e., MDI). In the case 

of regression, “impurity” reflects the square error of the sample in a subspace (e.g., the larger the 

square error, the more “impure” the subspace is). The decrease in node impurity (DI) for splitting 470 

a particular space s is calculated as: 

( ) ( )( ) ( )( ) ( )( )2 2 2

1 1 2 2
1,2,..., 1,2,..., 1, 2,...,

, ,
i k i z i z z k

z k zDI z j s Y i Y Y i Y Y i Y
k k∈ ∈ ∈ + +

−
= − − ⋅ − − ⋅ −∑ ∑ ∑   (3) 

where z and j are the coordinates for the optimum splitting point of space s, k is the number of 

instances in space s andY  is the mean value of Y(i) in space s. Therefore, the Mean Decrease 

Impurity (MDI) for the variable Xj computed via a decision tree is defined as: 475 

( )
;

( , , )j s
s S j j

MDI X P DI z j s
∈ =

= ⋅∑          (4) 

where S is the total spaces in a tree, Ps is the fraction of instances falling into s. In other words, the 

MDI of Xj computes the weighted DI related to the splits using the jth predictor. MDI computed 

via RF is simply the average of the MDI computed via each tree of the forest. The ensemble (i.e., 

average) of important scores from the forest is assumed to be more robust than the individual tree. 480 

3. Wilks Feature Importance 

WFI is based on the stepwise cluster analysis (SCA) algorithm (Huang, 1992). The fundamental 

difference between WFI and MDI comes from the split criterion and the tree deduction process. 

Let us recall the split criterion of CART, in which the optimum split point for Xj is located based 

on the minimum squared errors of Y1 and Y2 as shown in Eq (1). In WFI, this function is achieved 485 

by comparing the two subspaces’ (i.e., Y1 and Y2) likelihood, which is measured through the Wilks’ 

Ʌ statistics (Nath and Pavur, 1985; Wilks, 1967). It is defined as Ʌ = Det(W)/Det(B+W), where 

Det(W) is the determinant of a matrix, W and B are the within- and between-group sums of squares 
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and cross-product matrices in a standard one-way analysis of variance, respectively. The W and B 505 

can be given by: 

1 2 1 2
( ) ( ) ' ( )z k zW Y Y Y Y

k
⋅ −

= − ⋅ −   (5)  

1 1 1 1 2 2 2 2
1 1

( ) ' ( ) ( ) ' ( )
z k z

i i
B Y i Y Y i Y Y i Y Y i Y

−

= =

       = − ⋅ − + − ⋅ −       ∑ ∑            (6) 

The value of Ʌ is a measure of how effective Xj can differentiate between Y1 and Y2. The smaller 

Ʌ value representing a larger difference between Y1 and Y2. The distribution of Ʌ is approximated 510 

by Rao’s F-approximation (R-statistic), which is defined as: 
1/

1/

1 ( 1) / 2 1
( 1)

S

S

Z S d mR
d m

−Λ ⋅ − ⋅ − +
= ⋅

Λ ⋅ −
  (7) 

1 ( ) / 2Z k d m= − − +  (8) 

2 2

2 2

( 1) 4
( 1) 5

d mS
d m

⋅ − −
=

+ − −
  (9) 

where statistic R is distributed approximately as an F-variate with n1 = d⸱(m-1) and n2 = d⸱(m-1)/2 515 

+ 1 degrees of freedom; m is the number of groups. Since the number of groups is two in this study, 

an exact F-test is possibly performed based on the following Wilks’ Ʌ criterion be: 

1 1( , 1) k dF d k d
d

−Λ − −
− − = ⋅

Λ
 (10) 

Therefore, the two subspaces can be compared for examining significant differences through the 

F-test. The null hypothesis would be H0: μ(Y1) = μ(Y2) versus the alternative hypothesis H1: μ(Y1) 520 

≠ μ(Y2), where μ(Y1) and μ(Y2) are population means of Y1 and Y2, respectively. Let the 

significance level be α, the split criterion would be: Fcal ≥ Fα and H0 are false, which implies that 

the difference between two subspaces is significant thus they should be split.  

 

The second difference between the CART and SCA algorithms lies in the tree deduction procedure. 525 

In CART, the splitting process will be repeated until any newly generated subspace can no longer 

be split. In SCA, once all the nodes in the current stage have been examined for splitting, merging 

will be followed in the next stage, as illustrated in Figure 1. The merging process will compare 

any pairs of nodes based on the value of Wilks’ Ʌ to test if they can be merged (i.e., for Fcal < Fα 
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and H0 are true, which indicates that these two subspaces have no significant difference thus should 530 

be merged). Such splitting and merging processes are iteratively performed until no node can be 

further split or merged. Once an SCA tree is built, the WFI for the variable Xj computed via an 

SCA tree is defined as: 

( ) ( )
;

1- ( , , )j s
s S j j

WFI X P z j s
∈ =

= ⋅ Λ∑          (11) 

where S is the total spaces in a tree, Ps is the fraction of instances falling into s, Ʌ (z, j, s) denotes 535 

the value of Ʌ obtained at the optimum splitting point of space s with row and column coordinates 

z and j, respectively. Similar to the calculation of MDI in Eq. (3), the WFI for Xj computes the 

weighted (1-Ʌ) value related to the splits using the jth predictor.  

 

According to the law of large numbers, WFI is expected to perform better under the RF framework 540 

since the randomized predictors ensure enough tree diversity, leading to more balanced importance 

scores. Therefore, we name the ensemble of SCA as the stepwise clustered ensemble (SCE). In 

addition to the three hyperparameters (i.e., Ntree, Nmin and Mtry) for Breiman’s RF, SCE also 

requires significance level (α), which is used for the F-test during the node splitting process.  

 545 

There could be two potential advantages of WFI over MDI. First, the decrease in node impurity 

(DI) will become smaller and smaller as long as the tree level goes down (as shown in the bottom-

right table in Figure 1). Such a mechanism naturally assumes that the predictors considered (for 

node splitting) in lower levels of the tree are less significant than those in upper levels. This effect 

is even aggravated by the existence of predictor dependence, which will depress the importance 550 

scores of independent predictors and increase the positively dependent ones (Scornet, 2020). As a 

consequence, some critical predictors may only receive small importance scores. In comparison, 

Wilk’s Ʌ is a measure of the separateness of two subspaces, which could avoid the above-

mentioned issue for MDI because values of (1-Ʌ) do not necessarily decline as long as the tree 

level goes down (as shown in the bottom-right table in Figure 1). Therefore, the predictors that are 555 

primarily considered in latter splits still possible to own higher importance scores than those in 

early splits. As a consequence, some critical predictors might be identified by WFI but overlooked 

by MDI. Second, the node splitting mechanism of WFI is based on F-test, which, therefore, may 

significantly reduce the probabilities that the two child-nodes are split due to chance. Such a 
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mechanism could be helpful to build more robust input-output relationships for prediction and 

inference by reducing overfitting. The above-mentioned potential advantages of WFI will be tested 

with a large number of hydrological simulations in the following two sections. 575 

4. Comparative studies over the NCAR CAMELS dataset 

4.1. Dataset description 

Catchment Attributes and Meteorological (CAMELS) dataset (version 1.2) (Addor et al., 2017; 

Newman et al., 2015) was used to evaluate the WFI performance. The dataset contains daily 

forcing and hydrologic response data for 673 basins across the contiguous United States that spans 580 

a very wide range of hydroclimatic conditions (Figure 2) (Newman et al., 2015). These basins 

range in size between 4 and 25,000 km2 (with a median basin size of 336 km2) and have relatively 

low anthropogenic impacts (Kratzert et al., 2019b). 

 

In attempting to demonstrate the relative importance of meteorological data and large-scale 585 

climatic indices on streamflow, we used monthly mean values of meteorological data in CAMELS 

dataset and 4 commonly used large-scale climatic indices (including Nino3.4 (Trenberth, 1997), 

Pacific decadal oscillation (PDO) (Mantua et al., 1997), interdecadal Pacific oscillation (IPO) 

(Mantua et al., 1997) and Pacific North American index (PNA) (Leathers et al., 1991)) to simulate 

the monthly streamflows. To refect the initial catchment conditions and lagged impact of climatic 590 

indices, the 2-month moving average meteorological data and climatic indices of the preceding 2 

months were incorporated as model predictors. Therefore, the input-output structure (with 22 

predictors) for each of these basins can be written as follows: 

( ) ( )
( ) ( ) ( )

1 1

1 1 1

1 2 1 2

1 2 1 2
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+ + 
 

+ + + =  
 
 
 

    (12) 

where Qt represents streamflow of month t. Pr, Rad, Tmax, Tmin and Vp represent monthly values 595 

of precipitation, short-wave radiation, maximum temperature, minimum temperature and vapor 

pressure, respectively.  
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Figure 2. Overview of the basin location and corresponding hydrological region. This map was 600 

created using ArcGIS software (Esri Inc. 2020). 

 

4.2. Evaluation procedures and metrics 

The model training was performed based on January 1980 to December 2005, while the testing 

was done based on the period of January 2006 to December 2014. The hyperparameters for both 605 

RF and SCE were set as follows: Ntree was set as 100, Nmin was set as 5, and Mtry was set as 0.5 

as suggested by Barandiaran (1998), indicating half of the predictors were selected in each tree. In 

addition, the significance level (α) was set as 0.05 for the F-test in SCE. 

The performance of WFI will be evaluated and compared against PFI (applied to RF and SCE) 

and MDI (applied to RF). To improve the stability of the PFI results, previous studies have 610 

suggested repeating and average the PFI over repetitions (Molnar, 2020). In this study, the PFI 

process was repeated 10 times and then averaged for stabilizing the results. To facilitate the 

comparisons among different variable rankings, importance scores from the three feature 

importance methods were scaled into the [0,1] range. All the feature importance methods will be 

evaluated through recursive feature elimination (RFE) (Guyon et al., 2002) as follows: (1) train 615 
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SCE and RF models with all predictors; (2) calculate the importance scores using the three 

interpretation methods embedded in their corresponding models; (3) exclude three least relevant 

predictors for each set of the importance scores obtained in step 2; (4) retrain the models using the 

remaining predictors in step 3; (5) repeat step 2 to 4 until the number of predictors less or equals 

to a threshold (set to 4 in this case study). To directly compare the quality of variable rankings 620 

from different feature importance measures, the selected predictors from WFI (after every RFE 

iteration) were also used to train RF. This procedure allows the effects of different variable 

rankings to be solely from feature importance methods (i.e., removed the effects from different 

node splitting algorithms). The same procedure was also performed for SCE-based PFI (i.e., SCE-

PFI) to examine whether the differences in variable rankings are from the WFI method or the tree 625 

deduction process in SCE. 

Two error metrics (i.e., adjusted R2 and RMSE) were used to evaluate the model performance. 

Adjusted R2 has been used instead of R2 because adjusted R2 can consider the number of predictors. 

Adjusted R2 is defined as:  

( )( )2
2

1 1
 1

1
R N

adj R
N P
− −

= −
− −

          (13) 630 

where P is the number of predictors and N is the number of instances.  

RMSE is defined as: 

( )
2

*

1

1 N

n n
n

RMSE y y
n =

= −∑          (14) 

where ny and *
ny  are the nth observed and predicted streamflow values, respectively. 

 635 

To evaluate the stability of a feature importance method, we consider reducing predictors during 

the RFE iterations as a form of perturbation in the dataset. Suppose the obtained importance score 

for a dominant predictor indicates an irregular changing pattern during the RFE iterations. In that 

case, the method thus is not stable because it can lead to many versions of inferences for such a 

predictor. On the other hand, if such a changing pattern is predictable (e.g., monotonically 640 
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increasing trend), a stable inference can be achieved among interactions because the predictable 

pattern can help analyze how a predictor reacts to the change in the dataset. In this study, the 

monotonicity is examined by using the Spearman's rank correlation coefficient (i.e., Spearman's ρ), 

which is commonly used to test the statistical dependence between the rankings of two variables 

and is defined as: 645 

( )( )
( ) ( )2 2

i ii

i ii

RX RX RY RY

RX RX RY RY
ρ

− −
=

− −

∑
∑

         (15) 

where RXi is the ranks of variables X for the ith RFE iteration and RYi is the number of selected 

predictors for the ith RFE iteration; RX and RY are the means of RXi and RYi, respectively. A larger 

Spearman's ρ indicates the importance score for a predictor will increase along with the reduction 

of irrelevant predictors, leading to stable importance scores. 650 

4.3. Predictive Accuracy and Interpretation Stability  

Figure 3 shows the model testing performances (adjusted R2) for 18 hydrological regions with all 

22 predictors. The results show that SCE and RF significantly outperform SCA and CART, 

respectively. When taking a close look at these two pairs of model performance, SCA and CART 

are close to each other, while SCE outperforms RF in most hydrological regions (except the 9th 655 

region). 

The pairwise comparisons of these four algorithms over 673 basins show a high coefficient of 

determination (0.913) of adjusted R2 between SCE and RF, and an even higher coefficient of 

determination (0.965) between SCE and RF (Figure 4). This result indicates that, in general, it is 

not likely to have a distinct performance gap for a particular simulation task either between SCE 660 

and RF, or between SCE and RF. Therefore, SCE can be a good substitute for RF. 
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Figure 3. Adjusted R2 for 18 hydrological regions. Each box indicates statistical summaries (i.e., 

the bars represent median value; the lower and upper boundaries of a box represent 1st and 3rd 

quantiles, respectively; dots represent outliers) of adjusted R2 for all the basins in a particular 

hydrological region. 855 

 

 

Figure 4. Pairwise comparison for adjusted R2 over 673 US basins. 
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The left column in Figure 5 shows simulation performances based on RFE iterations for three 

feature importance measures embedded in SCE and RF. In general, both models can improve their 860 

simulation performance by eliminating irrelevant predictors. When the number of predictors 

reduces to 7 (i.e., at 5th iteration), both models reach their highest predictive accuracy over the 

OOB and testing dataset. This result indicates that it is plausible to use the OOB dataset to identify 

the optimum subset of predictors. Comparing the simulation performance for the training period, 

the simulation performance for SCE is much lower than it for RF, while an opposite result is 865 

observed for the testing period. This result highlights the issue of overfitting for RF. One 

exceptional that RF outperforms SCE (for the testing period) happens to the last (i.e., 6th) iteration, 

where RF with MDI selected predictors outperforms SCE with WFI selected ones. We can assume 

that RF may have a better chance to outperform SCE with insufficient predictors. Nevertheless, 

SCE owns the overall best performance with PFI-selected predictors. 870 

The upper left panel in Figure 6 shows that from 0th to 5th iterations, over 55% to 60% of basins 

(as indicated in yellow diamonds) simulated by SCE with WFI selected predictors outperforms 

those simulated by RF with MDI selected ones. In comparison, the number drops to about 40% at 

the 6th iteration. This result agrees with the results for Figure 5. The lower left panel in Figure 6 

shows that from 1st to 5th iterations, there is a higher chance that SCE with PFI selected predictors 875 

outperforms RF with MDI selected ones for over 75% of the hydrological regions (as we can see, 

the black boxes are above the blue line).  

To further investigate the solo effect of variable rankings, the WFI and SCE-PFI selected 

predictors in each RFE iterations were used for RF simulations. The results are shown in the right 

column in Figure 5. The RF simulations with WFI selected predictors owned the highest predictive 880 

accuracy in most RFE iterations over the training, OOB validation and testing datasets. In 

particular, the WFI selected predictors have shown significant strength in the last two iterations 

and facilitated RF to improve its predictive accuracy. It is worth mentioning that even though SCE-

PFI selected predictors allowed SCE to achieve its optimum performance, they did not deliver 

optimum performance for RF. This result shows WFI selected predictors provide a better universal 885 

solution than the PFI-selected ones. 

The upper left panel in Figure 7 shows that a majority of basins simulated by RF with WFI selected 

predictors outperform those simulated by RF with MDI selected ones. In particular, at the 6th 
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iteration, basins in 16 (out of 18) hydrological regions may probably own better performance with 

WFI selected predictors than the MDI-selected ones. In addition, as the number of predictors 890 

decreases, there are increasing chances that WFI selected predictors could generate higher 

performance than the MDI-selected ones. Based on a two-sided Mann-Kendall (M-K) trend test 

(Kendall, 1948; Mann, 1945), such increasing trend is significant with the Z score equals 2.63 and 

p-value smaller than 0.01. Another significant increasing trend (with the Z score equals 1.88 and 

p-value equals 0.06) also can be observed for the paired studies of WFI and RF-PFI. In contrast, 895 

no significant increasing trend can be observed for the pairs of SCE-PFI and MDI, as well as SCE-

PFI and RF-PFI. This finding indicates WFI could generate robust variable rankings, based on 

which informative predictors are more likely to be kept for optimum simulation performance. In 

contrast, other feature importance measures may lose critical predictors during the RFE process. 

 900 
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Figure 5. Iterative change in accuracy in mean values of 673 US basins. The solid lines indicate 

adjusted R2, while the dashed lines represent RMSE. Figures on the left column show SCE and RF 

performances based on variables selected by themselves, while figures on the right show RF model 

performances based on variables selected by SCE and RF. The models with an iteration number 905 

of 0 represent the model with all 22 predictors. 
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Figure 6. Pairwise comparisons of model performance with different feature importance measures. 

Each of these red points represents the percentage of basins simulated by model A outperform 910 

model B (based on adjusted R2), in one particular hydrological region. The blue line represents 50% 

percent, and the yellow square represents the mean percentage of 18 hydrological regions. 

 

 

 915 
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Figure 7. Pairwise comparisons of RF model performance with different feature importance 

measures. Z scores and P values are calculated based on the two-sided Mann-Kendall trend test. 

If the Z score greater than 1.96, an increasing trend can be assumed with a significance level of 920 

0.05. If the Z score greater than 1.645, an increasing trend can be assumed with a significance level 

of 0.1. Other notations are the same as those in Figure 6. 

Figure 8 shows the summaries of selected predictors (in the last iteration) with different feature 

importance measures. Pr (monthly precipitation at time step t) and Pr2 (mean values for monthly 

precipitation at time step t and t-1) are considered the two most important predictors for the SCE 925 

algorithm with WFI selected predictors. In contrast, MDI considers Tmax2 (mean values for the 

monthly maximum temperature at time step t and t-1) as the most important predictor for monthly 

streamflow simulation. It is acknowledged that streamflow is more responsive to precipitation than 

air temperature. Therefore, we can assume that RF may capture more acuate responses of 

streamflow with WFI selected features than MDI or PFI selected ones. This assumption could be 930 

one of the reasons that RF with WFI selected predictors outperforms the others. It should be noted 

that IPO is considered as an important predictor for 56 out of 673 basins with WFI, while this 
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predictor has only employed in 21, 5 and 10 basins with SCE-PFI, MDI and RF-PFI methods, 

respectively. 

 935 

 

Figure 8. Summaries of the predictors used in last iterations for 673 US basins. 

The Spearman's Rho (ρ) values for the predictor with the highest importance score at the last RFE 

iteration illustrate the stability of all three interpretation methods embedded in SCE and RF (Figure 

9). The results indicate the importance score for the predominant predictor increase in response to 940 

the reduction of irrelevant predictors. Compared with other feature importance measures, WFI 

owns the highest ρ values in general with the p-value less than 0.01, indicating a significant 

correlation between the importance score and the reduction of irrelevant features. In comparison, 

eliminating irrelevant predictors will significantly influence the importance score of predominant 

predictors obtained by PFI and MDI. This fact challenges the application of the PFI and MDI since 945 

the removal of irrelevant predictors cannot guarantee the same or similar level of hydrological 

inference because the importance score may vary distinctly according to the reduction of irrelevant 

predictors. In contrast, the WFI method provides more stable importance scores and will lead to 

more consistent hydrological inferences. 



23 
 

 950 

Figure 9. Mean Spearman's ρ values for the most important features. The mean p-value means 

how likely it is that the observed correlation is due to chance. Small p-values indicate strong 

evidence for the observed correlations. 

 

5. Application of WFI over irrigated watersheds in the Yellow River Basin, China 955 

5.1. Study Area and Data 

Daily streamflow simulations for three irrigated watersheds located in the alluvial plain of the 

Yellow River in China were conducted to test the capability of the proposed WFI method at a finer 

temporal resolution. These watersheds share a total area of 4,905 km2, consisting of 52% irrigated 

land, 17% residential area, 15% desert, 12% forested land, and 4% water surface (Figure 10). The 960 

landscape of the study area is characterized by an extremely flat surface with an average slope 

ranging from 1:4000 to 1:8000, with mostly highly permeable soil (sandy loam). The climatic 

condition of the study area is characterized by extreme arid environments with annual precipitation 

ranging from 180 to 200 mm, and annual potential evaporation ranging from 1,100 to 1,600 mm 

(Yang et al., 2015).  965 
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Figure 10: Map of the study area. Note: due to the extremely flat surface, three interconnected 

irrigated watersheds are approximately delineated. In this map, G indicates groundwater gauges, 

W indicates weather stations, R indicates rain stations, C indicates irrigation canals and O indicates 

drainage outlets. Both 2nd and 3rd irrigated watersheds contain two crisscrossed drainages with 975 

strong hydrological connections. The map was created using ArcGIS software (Esri Inc. 2020). 

 

Initial catchment conditions were also considered in this case study to improve the model 

performance. Specifically, moving sums of daily precipitation, temperature and evaporation time 

series over multiple time periods 𝛿𝛿P,T,E = [1, 3, 5] prior to the date of predictions were set as 980 

predictors to reflect the antecedent watershed conditions. Similarly, the moving window for daily 

irrigation time series 𝛿𝛿I = [1, 3, 5, 7, 15, 30]. In addition, daily groundwater level data are used as 

additional predictors to reflect the baseflow conditions of the catchments. The daily time-series 

data were divided into two subsets: one from 2001/01/01 to 2011/12/31 for model training and 
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OOB validation and the other from 2012/01/01 to 2015/12/31 for model testing. Table 1 list the 

weather, rain and groundwater stations used for each basin. The streamflow processes show 

distinct behaviors in terms of flow magnitude and duration due to the different irrigation schedules 

in spring and winter. To analyze such temporal variations, daily streamflow for spring-summer 995 

(April to September) and autumn-winter (October to March) were examined separately. In this 

case study, the same hyperparameters for RF and SCE are used as in Section 4. 

Table 1: Weather, rain and groundwater gauges, and irrigation canals used in each irrigation 
basin.  

Watershed ID Stations/canals  outlets 
1 C1, C2, C3, W1, R1, G1, G2, G3 O1 
2 C1, C2, C3, C4, W2, R2, R3, R5, G4, G5 O2(A)+ O2(B) 

3 C1, C2, C4, W2, W3, R4, R5, R6, G4, G5, G6, G7 G8, G9 O3(A)+ O3(B) 

Note: Streamflow for each watershed is integrated as the sum of the gauged streamflows within 
this area. 
 

5.2. Results Analysis  

Generally, SCE and RF delivered reasonable predictive accuracy (using all considered predictors) 1005 

across all watersheds and seasons (Table 2). The SCE approaches the best overall predictive 

accuracy for the testing dataset. Compared with RF, the SCE has a smaller drop in predictive 

accuracy from the training to testing period, indicating the SCE algorithm captured a more robust 

input-output relationship during the training period. This result agrees with those for the large-

scale dataset in Section 4. The convergence tests for training, OOB validation, and testing datasets 1010 

were shown in Figures S1, S2 and 11, respectively. The results from the testing period (Figure 11) 

show that SCE always outperforms RF as the number of trees increases.  

 

Table 2: The adjusted R2 for SCE and RF with all considered predictors.  

Basin Season Training OOB Testing 
SCE RF SCE RF SCE RF 

1st spring 0.94 0.98 0.87 0.88 0.82 0.81 
1st winter 0.98 0.99 0.94 0.95 0.91 0.90 
2nd spring 0.94 0.98 0.86 0.89 0.77 0.76 
2nd winter 0.98 0.99 0.95 0.96 0.66 0.65 
3rd spring 0.94 0.98 0.85 0.88 0.69 0.68 
3rd winter 0.98 0.99 0.95 0.95 0.83 0.82 

 1015 
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Figure 11: Convergence of the SCE and RF model based on RMSE over the testing period. 

 

The iterative reductions in accuracy for training, OOB validation and test datasets are listed in 1170 

Figure S3, S4 and S5, respectively. The summary (Figure 12) shows that WFI owns the smallest 

reduction in accuracy (for both adjusted R2 and RMSE) over the testing period, followed by SCE-

PFI, MDI and RF-PFI. A smaller reduction in accuracy means the selected predictors are more 

informative in describing the complex relationships of hydrological processes. As a consequence, 

WFI can identify the most informative predictors compared with other methods. Figure 12 also 1175 

shows that over the training period, RF receives a much smaller impact from RFE in terms of 

adjusted R2 compared with SCE, which is because the least-square fittings employed in the CART 

training process pursue the highest R2 over the training period. 
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 1215 

Figure 12: Change in predictive accuracy averaged across three watersheds and two seasons. 

Note: the change in predictive accuracy for a particular case is calculated as the accuracy for the 

last iteration minus it for the full predictors. 

 

Figure 13 shows the Spearman's ρ values of the most relevant predictor (i.e., with the highest 1220 

importance score in the last RFE iteration). The result indicates that WFI owns the highest 

absolute ρ values for the majority of the cases. This result agrees with those demonstrated in 

section 4. In fact, the highest absolute Spearman's ρ values for the rest of the relevant predictors 

(selected for the last RFE iteration) mainly belong to the WFI method (as shown in Figure 14), 

which further illustrates that WFI could provide stable relative importance among essential 1225 

predictors for hydrological inference.  
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Figure 13: Spearman's ρ values for the most important predictor. Note: the most important 

predictor is the predictor with the highest importance score in the last RFE iteration. The p-value 

means how likely it is that the observed correlation is due to chance. Small p-values indicate strong 1230 

evidence for the observed correlations.  
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Figure 14: Spearman's ρ values for three watersheds and seasons. Note: the RFE process of this 1260 

case study keeps at least five and up to seven of the most relevant predictors in the last iteration, 

according to the remainder of the total considered predictors divided by three. Capital letters from 

A to F represent the most relevant predictors identified by different feature importance methods.  

 

The importance scores were aggregated and analyzed according to different types (i.e., 1265 

precipitation, irrigation, evaporation, etc.) to explore the relationships between the hydrological 

responses and their driving forces. We chose the models with the smallest RMSE (among all the 

RFE iterations) on the testing dataset for the hydrological inference. The results indicate the 

importance scores differed significantly according to the algorithms and interpretation methods 

used (Figure 15). In particular, the aggregated predictor P1 (i.e., daily precipitation for timestep t 1270 

from all spatial locations) owns positive contributions (in reducing the RMSE) for WFI in the 

Spring irrigations. At the same time, it has merely no contribution for other feature importance 

methods. To investigate whether the predictors identified by WFI are also meaningful to other 
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algorithms, we reinserted the predictors in P1 into the best RF model (in which the set of predictors 

reaches the smallest RMSE over the testing dataset). Indeed, we found the RF with reinserted 

predictors showing slightly improved predictive accuracy (i.e., RMSE and adjusted R2) for Spring 1285 

irrigations across all watersheds on the testing dataset (Table 3). This result illustrates that even 

though the predictors in P1 have no contribution in improving the predictive accuracy on the 

training dataset, it can potentially distinguish different hydrological behavior (i.e., with a small 

Wilk’s Ʌ value) and lead to improved model performance on the testing dataset. In fact, the time 

of concentration for these basins is usually less than one day if the storm falls near the outlets of 1290 

the irrigation basins. This fact proves the above hydrological inference is reasonable.  

 

 

Figure 15: Importance scores aggregated by predictor types. Note: each type of predictor includes 

predictors from all considered spatial locations. For example, P1 includes predictors for all the 1295 
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considered climatic stations with 1-day precipitation. Therefore, the importance score of P1 is the 

average of the importance score from the predictors of P1. 1315 

 

Table 3: Predictive accuracy for reinserting the predictors in P1 to the RF model (Spring irrigation). 
 

Basin RF with P1 RF without P1 

RMSE 
1st 2.42 2.44 
2nd 3.16 3.17 
3rd 5.81 5.81 

Adjusted

R2 

1st 0.81 0.81 
2nd 0.77 0.76 
3rd 0.69 0.69 

Note: The RF model was based on the optimum set of predictors in RFE iterations. 

6. Discussion 

There could be several reasons why WFI can have more robust variable rankings than other feature 1320 

importance measures. First, WFI does not rely on performance measures to evaluate the variable 

importance. Instead, it depends on Wilk’s Ʌ, which prevent any splitting that due to chance. In 

fact, in the node splitting process, a predictor that significantly increases the predictive accuracy 

may not necessarily have the ability to differentiate two potential sub-spaces. Therefore, the WFI 

method (which evaluates every splitting and merging action based on Wilk’s test-statistics with 1325 

the predefined significance level α) is expected to generate more robust variable rankings. Second, 

WFI considers all the interactions among predictors in the tree deduction process, while PFI can 

only consider the effect of one predictor at a time. Thus the interactions between the target 

predictor and the rest predictors are overlooked. For example, in section 4, the SCE-PFI selected 

predictors achieved higher performance (over the testing dataset) than the WFI selected ones. 1330 

However, these SCE-PFI selected predictors are model-specific, which means when transferring 

these predictors to the other model (e.g., RF), they may not deliver the optimum performance. In 

contrast, the WFI selected predictors have good transferability: they helped RF achieve optimum 

predictive accuracy. Similar evidence was also found by Schmidt et al. (2020), who reported that 

the variable rankings from PFI might vary significantly according to different algorithms. This fact 1335 

has been considered a major challenge for hydrological inference because one cannot reach the 

same reasoning with different algorithms. Based on the results above, we can conclude that the 

WFI could produce more robust variable rankings, which enables a universal solution rather than 

a specific one for hydrological inference.  
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6. Discussion¶
Previous studies indicated that equifinality is a major 
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RFE was used to identify the most relevant predictors for optimum predictive accuracy. This 

approach could be quite useful in real-world practice, especially in hydrology, where the 1480 

simulation problem may involve hundreds of inputs (from climate models, observations or remote 

sensing, etc.) describing the spatial and temporal variabilities of the system. Each of these inputs 

may contain useful information, while it also contains noise that will mislead the model (e.g., 

increase the simulation errors). Therefore, it is critical to eliminate those variables that cannot 

improve the predictive accuracy. WFI, in combination with the RFE process, can thus be used for 1485 

facilitating hydrological inference and modelling. 

7. Conclusions 

WFI was developed to improve the robustness of variable rankings for tree-structured statistical 

models. Our results indicate that the proposed WFI can provide more robust variable rankings than 

well-known PFI and MDI methods. In addition, we found that the predictors selected by WFI can 1490 

replace those selected by RF with its default methods to improve the model predictive accuracy.  

 

The achievements of the proposed WFI approach could be two-fold: firstly, robust variable 

rankings are provided for a sound hydrological inference. In specific, some critical predictors that 

may be overlooked by conventional feature importance methods (PFI and MDI) can be captured 1495 

through WFI. Secondly, the enhanced variable rankings combined with RFE process can help 

identify the most important predictors for the optimum model predictive accuracy.  

 

The proposed WFI could be a step closer for earth system scientists to get a preliminary 

understanding of the hydrological process through ML. Future studies may focus on the 1500 

development of tree-structured hydrological models that not only be viewed as black-box 

heuristics but also can be used for rigorous hydrological inference. Even though the focus of this 

paper is hydrological inference, WFI can also be applied to a variety of important applications. 

Moreover, current applications of importance scores are still limited. As interpretable ML 

continues to mature, its potential benefits for hydrological inference could be promising. 1505 
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