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Reply to Reviewers’ comments (Reviewer#1) 

Legend 
Reviewers’ comments  

Authors’ responses 
Direct quotes from the revised manuscript 

 

We thank the reviewer for his/her time in reading our manuscript and detailed comments on our 

manuscript. Point-by-point replies to the comments or suggestions made can be found below. 

 
Reviewer #1: This study re-examines the “dry gets drier and wet gets wetter” (DDWW) paradigm 
from the perspective of terrestrial water storage anomaly (TWSA) using a large ensemble of 
GRACE reconstructions, global hydrological models, and land surface modes. Based on the 
proportional percentages of different patterns, the results showed the consistent/opposite pattern 
with the DDWW and then the authors claimed that the paradigm faces challenge in both history 
(1985-2014) and future (2071-2100).  

The topic is interesting and this study potentially provide a new perspective. However, I do not 
see the methods are convincing and the results are robust. First of all, I want to say that the 
dryness/wetness change itself contains different models, so it is not surprising to find the change 
models that do not follow the "DDWW" paradigm on a global scale. 
 
Response: We thank the reviewer for recognizing the potential of the manuscript’s new perspective 

and his/her detailed suggestions for improvement. All the concerns raised have been addressed in 

the revised manuscript. We hope the modified text along with the supplementary analyses and 

discussions will put forward the results in a much more robust way.  

 
Major comments: 
(1) My largest concerns are: Can GRACE observed TWS be used to estimate land surface 
dryness/wetness trends? How well (sensitive) can TWSA represent long-term trends in 
dryness/wetness across land surfaces? Is it better than traditional drought indices (e.g., the SPEI, 
PDSI or other methods)? There is no authoritative study demonstrating the suitability and 
applicability of the GRACE observed TWS in capturing surface dryness/wetness trends, especially 
on a global scale. Please note that, generally, the GRACE observed TWSA is applied to monitor 
changes in groundwater, land-ice evolution, and drought/flood events which occur on a short-term 
scale (see References). Hydrological processes are complex, but indices are often based on a 
relatively simple calculation. I take an example to show my understanding here. In glacier-covered 
mountains, as the climate warms, ice/glaciers are degrading with an increase in runoff/soil moisture 
(moisten the land surface). Meanwhile, as the mass decreases (water flows away), what GRACE 
observes is a decrease trend in gravity (drying). TWSA estimated trend and the real surface dry/wet 
trend can be absolutely opposite. Thus, changes in TWS do not equal to changes in surface 
dryness/wetness. Right? 

Let’s continue this topic and look at the Figure 3a. Over the past few decades, glacier melting 
and increasing runoff/wet trend in the southwest of Tibetan Plateau have been reported (e.g., the 
Fig. 4b of Yang et al., 2019), but the TWSA detect a drying trend in historic period. This clearly 
shows that the use of TWSA to estimate surface dry/wet trend is not robust. In addition, terrestrial 
water storage anomaly contains the information of changes in groundwater. With increasing human 
activity, large-scale pumping reduces groundwater (i.e., TWS observed a decrease trend) whereas 
the groundwater pumping and agricultural irrigation can moisten the land surface. I feel that the 
subtle effects of pumping and agricultural irrigation on dryness/wetness changes also cannot be 
captured by the TWSA. Therefore, I cannot confirm how valuable the perspective proposed by the 
author is for the capture of surface dry/wet changes. 
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Response: We thank the reviewer for the enlightening and detailed comment. We would like to 

discuss several aspects outlined in detail below. 

Firstly, it is worth noting that this study focuses on the status of the terrestrial water storage 

instead of just the land surface, which is jointly affected by the soil moisture, groundwater, snow 

and ice, river and lake, and water stored in the vegetation (Rodell et al., 2018). Therefore, as 

important indicators of the terrestrial system, TWSA and TWSA-inferred measures including the 

total storage deficit index (TDSI) (Nie et al., 2018), GRACE-drought severity index (GRACE-DSI) 

(Zhao et al. 2017), and Water Storage Deficit Index (WSDI) (Thomas et al., 2014) have been widely 

used in the assessment of the trends in dryness and wetness globally (van Dijk et al., 2014; Xie et 

al., 2016; Xie et al., 2019). Compared with previous measures that focus on the hydrometeorological 

fluxes (e.g., SPI, SPEI, and PDSI) or the single component of the land system like soil moisture 

(SSI), groundwater (SGI), and runoff (SRI), our currently employed TWSA-based metric (i.e., 

TWS-DSI) can offer an alternative perspective to assess the global dryness and wetness of the land 

systems. We completely agree with the reviewer that the indices are generally based on a simplified 

calculation, and the changes in TWS do not equal changes in surface dryness/wetness due to the 

movement of water to and from the aquifer systems (e.g., surface water groundwater interaction, 

root zone moisture distribution, deep percolation, etc.). However, what our study concentrates on is 

the overall status of the land system, instead of either of the single part (e.g., surface water), which 

is the vertical integration of all the components of the terrestrial system.  

Secondly, we would like to explain and emphasize the performance disparity and added value 

of our results by taking two regions as the example cases (see Figure R1). Figure R2 presents the 

monthly time series of GRACE TWSA from the CSR mascon solution and its main components 

from the WGHM in the southwest of the Tibetan Plateau (i.e., upper Brahmaputra River basin) 

during the period 2003-2016. It can be seen that both GRACE TWSA and WGHM modelling results 

present significant (p<0.05) decreasing trends with rates of −18.50±1.14 (GRACE) and −2.42±0.33 

mm/a, respectively (see Table R1). Meanwhile, the snow water also shows a significant downward 

trend at a rate −2.34±0.27 mm/a due to increasing air temperature (Meng et al., 2019), but there is 

an upward trend (0.34±0.09 mm/a) of surface water storage during the same period, which might 

be due to the redistribution of water from ice/glaciers/snow to the land surface and increasing 

precipitation (Chun et al., 2020). Another example in northwest India also reflects a similar 

principle. This region, consisting of three states (Haryana, Punjab, and Rajasthan), has experienced 

one of the severest groundwater depletion in the world over decades due to water pumping for 

irrigation (Rodell et al., 2009; Dangar et al., 2021). Both GRACE and WGHM reveal the significant 

decreasing trend of TWSA, with slopes of −17.65±2.55 and −30.82±1.42 mm/a, respectively 

(Figure R2). The significant negative trend of GWSA is as low as −31.99±1.27 mm/a. Nevertheless, 

the regional surface water (and even soil moisture) shows a slight increasing slope of 0.90±0.25 

mm/a (p<0.05), which might be triggered by the moistening of explored groundwater to the land 

surface by human interventions, as rightly mentioned by the reviewer, and depleting net 
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precipitation (Chen et al., 2014). Generally, both the upper Brahmaputra and northwest India have 

been considered as drying regions from the perspective of TWSA, though the opposite results will 

be obtained if only the surface water (and soil moisture) is selected for dryness/wetness assessment. 

Having discussed that, given the consistency of the TWSA decreasing/increasing trends with the 

previous studies, we believe that the presented results are robust.  

We regret the error and consequential confusion between the land surface dryness/wetness and 

the integrated land system dryness/wetness. In the revised version, we have rectified the same and 

stressed our research objectives of examining the dry gets drier and wet gets wetter paradigm over 

global land from the TWSA perspective. Our findings can provide novel implications for the large-

scale detection of dryness and wetness of terrestrial systems in a changing environment.  

 

 
 
Figure R1. The location and the elevation of the two study cases, i.e., (a) upper Brahmaputra and 

(b) northwest India. 
 

 
 
Figure R2 Time series of TWSA and its main components from the GRACE and WGHM during 

2003-2016 in the (a) upper Brahmaputra River basin and (b) northwest India. Note: The 
dashed and the solid black lines represent the GRACE and WGHM data, respectively. 
TWSA is the terrestrial water storage anomaly, RSA is the river storage anomaly, SWSA is 
the surface water storage anomaly, SWEA is the snow water equivalent anomaly, CWSA is 
the canopy water storage anomaly, SMSA is the soil moisture anomaly, GWSA is the 
groundwater storage anomaly. Anomalies in all the components are corresponding to the 
baseline period of 2004-2009. Scales of the left and right y-axis are set differently for clarity 
and better comprehension. 
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Table R1 Linear trends in TWSA and its main components from the GRACE and WGHM during 
2003-2016 in the upper Brahmaputra and northwest India. Please refer to Figure R2 for 
abbreviations of different water storage components. The significant (p<0.05) trends are 
shown in bold fonts. 
Region Upper Brahmaputra Northwest India 
Variable Slope (mm/a) Error (mm/a) Slope (mm/a) Error (mm/a) 

GRACE TWSA -18.50  1.14  -17.65  2.55  
WGHM TWSA -2.42  0.33  -30.82  1.43  
WGHM RSA 0.08  0.08  0.12  0.03  

WGHM SWSA 0.34  0.09  0.90  0.25  
WGHM SWEA -2.34  0.27  0.00  0.00  
WGHM CWSA 0.00  0.00  0.00  0.00  
WGHM SMSA -0.08  0.04  0.14  0.12  
WGHM GWSA -0.42  0.07  -31.99  1.27  

 
References: 
Chen, J., Li, J., Zhang, Z., Ni, S. 2014. Long-term groundwater variations in Northwest India from 

satellite gravity measurements Glob. Planet. Change, 116, pp. 130-138, 
https://doi.org/10.1016/j.gloplacha.2014.02.007  

Chun, K.P., He, Q., Fok, H.S., Ghosh, S., Yetemen, O., Chen, Q., Mijic, A. 2020. Gravimetry-based 
water storage shifting over the China-India border area controlled by regional climate variability. 
Sci. Total. Environ. 714, 136360. https://doi.org/10.1016/j.scitotenv.2019.136360  

Dangar, S., Asoka, A., Mishra, V. 2021. Causes and implications of groundwater depletion in India: 
a review. J. Hydrol., 596 (2021), Article 126103, 10.1016/j.jhydrol.2021.126103 

Meng, F., Su, F., Li, Y., Tong, K. 2019. Changes in terrestrial water storage during 2003–2014 and 
possible causes in Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124, 2909–
2931. https://doi.org/10.1029/2018JD029552  

Nie, N., W. Zhang, H. Chen, and H. Guo, 2018: A Global Hydrological Drought Index Dataset Based 
on Gravity Recovery and Climate Experiment (GRACE) Data. Water Resour. Manag., 32, 1275–
1290. https://doi.org/10.1007/s11269-017-1869-1  

Rodell, M., Velicogna, I., Famiglietti, J.S. 2009. Satellite-based estimates of groundwater depletion 
in India. Nature, 460, pp. 999-1002, https://doi.org/10.1038/nature08238 

Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M. H. 
Lo, 2018: Emerging trends in global freshwater availability. Nature, 557, 651–659, 
https://doi.org/10.1038/s41586-018-0123-1. 

Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014: A GRACE- based water storage 
deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 1537–1545, 
https://doi.org/10.1002/2014GL059323. 

Van Dijk, A.I.J.M., Renzullo, L.J., Wada, Y., Tregoning, P. 2014. A global water cycle reanalysis 
(2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-
model ensemble Hydrol. Earth Syst. Sci., 18 (8), p. 2955. 

Xie, Z., Huete, A., Cleverly, J., Phin, S., McDonald-Madden, E., Cao, Y., Qin, F. 2019. Multi-climate 
mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in 
Australia. Remote Sens. Environ. 231: 111270. https://doi.org/10.1016/j.rse.2019.111270 

Xie, Z., Huete, A., Restrepo-Coupe, N., Ma, X., Devadas, R., Caprarelli, G. 2016. Spatial 
partitioning and temporal evolution of Australia's total water storage under extreme hydroclimatic 
impacts, Remote Sens. Environ., 183, 43–52, https://doi.org/10.1016/j.rse.2016.05.017  

Zhao, M., A. Geruo, I. Velicogna, and J. S. Kimball, 2017: Satellite observations of regional drought 
severity in the continental United States using GRACE-based terrestrial water storage changes. 
J. Clim., 30, 6297–6308, https://doi.org/10.1175/JCLI-D-16-998 0458.1. 

 

(2) My another question is why the authors confirm that an ensemble way is more reliable than a 
single way? This draft does not show the individual results of different methods, nor does it compare 
the differences in these results, so I can't be sure that the way of ensemble is reliable. In the Figure 

https://doi.org/10.1016/j.gloplacha.2014.02.007
https://doi.org/10.1016/j.scitotenv.2019.136360
https://doi.org/10.1016/j.jhydrol.2021.126103
https://doi.org/10.1029/2018JD029552
https://doi.org/10.1007/s11269-017-1869-1
https://doi.org/10.1038/s41586-018-0123-1
https://doi.org/10.1002/2014GL059323
https://doi.org/10.1016/j.rse.2019.111270
https://doi.org/10.1016/j.rse.2016.05.017
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S2, there are gaps between gravity satellite observations and climate model simulations. Besides, 
why the authors use the GRACE observation to correct the CMIP6 historical simulation? Do you 
think the simulation of CMIP6 is unreliable (relative to GRACE)? Why? How to define and 
calculate the TWS in hydrological models, CMIP6, and land surface models? Are they talking about 
the same thing (and same with the GRACE’s TWS)? How different are the estimated TWS between 
these methods? I don't think simply integrating the various outputs is a right path, because of the 
inherent scale differences between climate models, hydrological models, and satellite observations, 
and I think the TWS in these methods is not the same object. 

 

Response: We thank the reviewer for the comment. Please find the detailed explanation of all the 

concerns below. 

 

The rationale of selecting multi-model ensemble: We have compared the GRACE observations and 

each individual simulation, as well as their ensemble mean, during April 2002-December 2014. The 

global distributions of NRMSE are shown in Figure R3. Three GRACE reconstructions present 

relatively lower error than the global hydrological models and land surface models, especially in 

the high-latitude northern hemisphere where snow, ice, and glaciers contribute more to TWS than 

other regions, which is not considered in most of the global models. The ensemble-mean solution 

illustrates the reasonably good accuracy with the NRMSE generally below 0.2, highlighting the 

reduced uncertainty compared with individual solutions. It is not surprising that the GRACE 

reconstructions compare better than other data because they are directly calibrated with the GRACE 

measurements during 2002-2017. While their performances need more validation beyond the 

GRACE era (i.e., prior to April 2002 and during July 2017-June 2018). Similar patterns are also 

discovered from the probability density functions of NRMSE, of which there is an overall negative 

deviation in the ensemble-mean relative to other solutions except for the CSR reconstruction (see 

Figure R4). The Taylor diagram also confirms the enhanced accuracy of TWSA after taking the 

average of the large ensemble, with the increased correlation and decreased standard deviation.  

In addition, the comparison between CMIP6-inferred and GRACE TWSA in the past (April 

2002-December 2014) is conducted (see Figure R5). The spatial distributions clearly show that the 

ensemble mean of eight global climate models outperforms each member globally, particularly in 

some parts of Australia, southern Africa, and North America. An overall decrease in NRMSE is 

observed according to the probability density functions, which is also detected from the Taylor 

diagram results (see Figure R6). Generally, the ensemble way could reduce the uncertainty of 

individual data sources in the past and future period, and the GRACE-based bias correction method 

also reduces the bias in projected TWSA. We have added discussion for the multi-source uncertainty 

from different data sources and methods in the revised manuscript. 

 

Better representation of TWS in GRACE: Unlike GRACE observations other historical simulations, 

e.g., the CMIP6 outputs, are generally affected by large systematic biases owning to the uncertainty 

in the projected meteorological forcing and the lack of complete parameterizations for surface water, 

canopy water, and groundwater storage, even some of the key climate inputs such as precipitation 
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and air temperature have been proven underestimated or overestimated nearly over the global land 

(Kim et al., 2020; Wu et al., 2021). Therefore, we applied the trend-preserving method to perform 

the bias correction for the CMIP6 TWSA in conjunction with the GRACE observations. The detailed 

calculation procedures have been introduced in a recent study (Xiong et al., 2022).  

We acknowledge that there exist differences between different sources of TWS including the 

GRACE, GHMs, LSMs, and global climate models (GCMs) from CMIP6 (see Table R2). Many 

LSMs only simulate snow and soil moisture compartments, whereas most GHMs simulate all 

storage compartments, excluding glaciers. For example, the VIC and CPC models lack the modules 

of groundwater and surface water storage, which could affect the TWSA over regions with intensive 

human intervention such as groundwater abstraction and reservoir operation. The lack of simulation 

in water stored in lakes and reservoirs, aquifers, and vegetation inevitably make multiple GCMs 

suffer from large uncertainty compared with the GRACE observations that represent the full signal 

of TWSA components, although the raw GRACE data also experiences signal leakage and spatial 

resample on the grid-scale (Scanlon et al., 2016). In addition, the associated GRACE reconstructions 

based on statistical methods and machine learning techniques may also overestimate or 

underestimate the true TWSA due to missing the inherent physics of the hydrological processes (Li 

et al., 2021). However, given the fact that no single model, satellite solution, and/or reconstruction 

perform best everywhere globally, it is still evident that using the ensemble mean of different model 

outputs can help in eliminating the systematic and/or bias errors implicit to the individual outputs, 

at least on a global scale (Long et al., 2017; Scanlon et al., 2018; Sun et al., 2021). 

 

Results from the individual model outputs: Apart from the ensemble mean results in Figure R7 that 

28.1% (23.3%) of global land confirms (opposes) the DDWW paradigm in the past and the 

percentage supporting the DDWW pattern is lower than 20% in the future, we also carried out an 

independent analysis at the individual member level (see Figure R8). For the historical period, a 

clear overestimation of the CSR reconstructions is detected with 42.4% of the area agreeing with 

the DDWW pattern, and 36.6% showing the opposite situation. Moreover, the modelled results from 

VIC and WGHM illustrate the underestimation of the area validating the DDWW paradigm, 

reaching 15.6% (WGHM) and 12.2% (VIC), respectively. Their proportion with the opposite 

DDWW paradigm is 10.2% (WGHM) and 17.8% (VIC), respectively. Therefore, it can be 

concluded that the differences among different members of the ensemble limitedly affect the 

evaluation of the DDWW during the historical period. In the future, the GFDL-ESM4 model 

presents overestimation but the IPSL-CM6A and CanESM5 models have underestimation for 

different percentages compared with the ensemble-mean. Specifically, the area dominated by the 

DDWW paradigm changes from 8.9% (CanESM5) to 21.9% (GFDL-ESM4), while that showing 

the opposite pattern ranges from 7.8% (CanESM5) to 14.8% (GFDL-ESM4) under the SSP126 

scenario. For the SSP245 scenario, the DDWW-validated regions account from 7.4% (CanESM5) 

to 21.5% (GFDL-ESM4), the opposite pattern occurs over a range from 9.7% (CanESM5) to 16.0% 
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(GFDL-ESM4) of the global land. The proportion supporting the DDWW paradigm varies from 

10.4% (CanESM5) to 24.0% (GFDL-ESM4), while that presenting the opposite pattern ranges from 

8.4% (CanESM5) to 22.3% (GFDL-ESM4) under the SSP585 scenario. Overall, the comparatively 

large difference among various models might source from unforced internal climate variability of 

distinctive CMIP6 members and the different emission scenarios (Kumar et al., 2015). 

In the revised version of the manuscript, we have clarified the reasons why we use GRACE to 

perform bias-correction for GCMs data, presented the individual results for the examination of the 

DDWW paradigm, and added discussion on the uncertainty sourced from different models, satellite 

products, and methods. The differences in the TWSA from distinctive sources are also discussed. 

 

 
 
 
Figure R3. Global distribution of NRMSE between TWSA derived from the GRACE mission and 

each member and the ensemble-mean of DATASET from Apr. 2002 to Dec. 2014. 
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Figure R4. (a) Probability density function and (b) Taylor diagram of NRMSE between TWSA 

derived from the GRACE mission and each member and the ensemble-mean of DATASET 
from Apr. 2002 to Dec. 2014. 

 
 
 

 
 
Figure R5. Global distribution of NRMSE between TWSA derived from the GRACE mission and 

each member and the ensemble-mean of the eight GCMs from Apr. 2002 to Dec. 2014. 
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Figure R6. (a) Probability density function and (b) Taylor diagram of NRMSE between TWSA 

derived from the GRACE mission and each member and the ensemble-mean of eight GCMs 
from Apr. 2002 to Dec. 2014. 

 
Table R2. Summary of attributes of different models used in this study 

Dataset GRACE WGHM VIC PCR-GLOBWB Noah CPC CLSM CMIP6 

Parameter Satellite GHM LSM GCM 
Surface water 

storage √ √ × √ × × × × 

Soil moisture √ √ √ √ √ √ √ √ 
Groundwater 

storage √ √ × √ × × √ × 

Canopy water √ √ × √ √ × √ × 

Snow water √ √ × √ √ × √ √ 
Soil layers (no.) / 1 3 2 4 10 10 5~10 

Soil depth (m) / 2 2 1.5 2 1.6 1 2~10 
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Figure R7 Global statistics of the regions with different patterns during the historical (1985-2014) 
and future (2071-2100) periods under SSP126, SSP245, and SSP585 scenarios. Note: DD 
indicates the dry gets drier; DW indicates the dry gets wetter; WW indicates the wet gets wetter; 
WD indicates the wet gets drier; TD indicates the transition gets drier; TW indicates the 
transition gets wetter; Uncertain indicates the regions showing insignificant (p>0.05) trends in 
TWS-DSI. 

 
 

 

Figure R8. Same as Figure R7, but based on individual dataset during the (a) historical (1985-2014) 
and future (2071-2100) periods under (b) SSP126, (c) SSP245, and (d) SSP585 scenarios, 
respectively. 
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in CMIP6 models evaluated against GRACE data. J. Clim. 34, 8205–8217. 
https://doi.org/10.1175/JCLI-D-21-0021.1  

Xiong, J., Guo, S., Yin, J., Ning, Z., Zeng, Z., Wang, R. 2022. Projected changes in terrestrial water 
storage and associated flood potential across the Yangtze River basin. Sci. Total Environ. 817, 
152998. https://doi.org/10.1016/j.scitotenv.2022.152998  

 

(3) I found a fault in the fundamental calculation. The presented area percentages are calculated by 
the number of grids, which are not the real area of the Earth sphere. Such calculation can greatly 
reduce the proportion in the tropics, but we think the “wet wetter” paradigm is generally well 
followed there. 
 
Response: We thank the reviewer for pointing out this fault. We have performed the re-calculation 

based on the actual area instead of the number of grid cells to evaluate the DDWW paradigm over 

global land (see Figure R9). All the results have been updated in the revised manuscript. 

 

 
 

Figure R9. Spatial distribution of actual area of the 1° grid cells over global land. 
 
 
(4) The titles of section 3.1 and section 3.2 are the same, i.e., “Global trends of dryness and wetness”. 
How rough! Despite an admirable effort by the authors to process data and conduct calculations, the 
manuscript lacks discussion and more is showing calculation results. Uncertainties regarding to the 
new methods and results should be fully discussed. 

 

Response: We apologize for this oversight. The sub-title of section 3.2 has been changed to 

“Assessment of the DDWW Paradigm”. As suggested, we have added discussions for the 

uncertainty regarding the new methods and data in the revised manuscript. Please see the section 

“3.3 Uncertainties and Implications” for more details. Please find the appended discussion below: 

Each ensemble member of the DATASET has embedded uncertainties inherently originating 

from one or more of forcing variables, simplified assumptions of complex processes in the models 

and their physical structure, retrieval algorithms, and systematic biases, which inevitably have 

propagated to the results presented herein. For example, the original GRACE mascon observations 

contain the measurement error and signal leakage at gridded scale, and they further spread into the 

reconstruction of TWSA when training via the statistical methods (Humphrey and Gudmundsson, 

https://doi.org/10.1175/JCLI-D-21-0021.1
https://doi.org/10.1016/j.scitotenv.2022.152998
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2019; Li et al., 2021a). Unlike observed GRACE and reconstructed GRACE-like data, the TWSA 

simulations from the GHMs, LSMs, and GCMs are featured by incomplete representation (Table 

S2). They are generally based on the simplified hydrological processes, resulting in the missing 

some of the TWSA components. For example, the widely used Noah model lacks the surface water 

and groundwater storage in TWSA, and all the GCMs can only simulate the snow water and soil 

moisture within a limited depth from 2 to 10 m below land surface (Xiong et al., 2021b; Wu et al., 

2021).  Moreover, the eight CMIP6 GCMs are forced with the future projections of many 

meteorological variables such as precipitation and air temperature, which have been reported 

showing underestimation or overestimation nearly over the global land (Eyring et al., 2016; Kim et 

al., 2020). Despite employing bias correction with GRACE data, propagated uncertainty from the 

forcing and models can influence the accuracy of TWSA simulations (Xiong et al., 2022). Although 

it is challenging to explicitly attribute and quantify these uncertainties in absence of a true reference 

observation dataset, the ensemble averaging method has been used to integrate the multi-source 

TWSA data. The global distributions of NRMSE between GRACE observations and each ensemble 

member and their mean during April 2002-December 2014 show improved performance of the latter 

(Figure S7). Three GRACE reconstructions present relatively lower error than the GHMs and LSMs, 

especially in the high-latitude northern hemisphere where snow, ice, and glaciers contribute more 

to TWS than other regions, which is not considered in most of the global models. The ensemble-

mean solution illustrates the reasonably good accuracy with the NRMSE generally below 0.2, 

highlighting the reduced uncertainty compared with the individual solution. It is not surprising that 

the GRACE reconstructions compare better than other data because they are directly calibrated with 

the GRACE measurements during 2002-2017. While their performances need more validation 

beyond the GRACE era (i.e., prior to April 2002 and during July 2017-June 2018). Similar patterns 

are also evident from the probability density functions of NRMSE, of which there is an overall 

negative deviation in the ensemble-mean relative to other solutions except for the CSR 

reconstruction (see Figure S8). This outperformance of the ensemble dataset is ascertained by the 

increased correlation and decreased standard deviation as shown by the Taylor diagram (Figure S8). 

In addition, the comparison between GCM-modelled and GRACE TWSA in the past (April 2002-

December 2014) is conducted (see Figure S9). The spatial distributions clearly show that the 

ensemble-mean of eight GCMs outperforms each member globally, particularly in Australia, 

southern Africa, and North America. An overall decrease in NRMSE is observed according to the 

probability density functions, which is also detected from the Taylor diagram results (see Figure 

S10). 

Further, we carried out an independent analysis at the individual member level (see Figure S11). 

For the historical period, a clear overestimation of the CSR reconstructions is detected with 42.4% 

of the area agreeing with the DDWW pattern, and 36.6% showing the opposite situation. Moreover, 

the modelled results from VIC and WGHM illustrate the underestimation of the area validating the 

DDWW paradigm, reaching 15.6% (WGHM) and 12.2% (VIC), respectively. Their proportion with 
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the opposite DDWW paradigm is 10.2% (WGHM) and 17.8% (VIC), respectively. Therefore, it can 

be concluded that the differences among different members of DATASET limitedly affect the 

evaluation of the DDWW during the historical period. In the future, the GFDL-ESM4 model 

presents overestimation but the IPSL-CM6A and CanESM5 models have underestimation for 

different percentages compared with the ensemble mean. Specifically, the area dominated by the 

DDWW paradigm changes from 8.9% (CanESM5) to 21.9% (GFDL-ESM4), while that showing 

the opposite pattern ranges from 7.8% (CanESM5) to 14.8% (GFDL-ESM4) under the SSP126 

scenario. For the SSP245 scenario, the DDWW-validated regions account from 7.4% (CanESM5) 

to 21.5% (GFDL-ESM4), the opposite pattern occurs over a range from 9.7% (CanESM5) to 16.0% 

(GFDL-ESM4) of land. The proportion supporting the DDWW paradigm varies from 10.4% 

(CanESM5) to 24.0% (GFDL-ESM4), while that presenting the opposite pattern ranges from 8.4% 

(CanESM5) to 22.3% (GFDL-ESM4) under the SSP585 scenario. Overall, the comparatively large 

difference among various models might source from unforced internal climate variability of 

distinctive CMIP6 members and different emission scenarios (Kumar et al., 2015). 

Our choice of the significance level (i.e., 0.05) may also affect the rationale of the DDWW 

examination results, thus different significance levels are alternatively tested (see Figure S11). At a 

significance level of 0.01, 22.2% of land area agrees well with the DDWW theory, while the 17.1% 

of area illustrates the opposite pattern during the period 1985-2014. As for the 0.1 significance level, 

the DDWW-validated regions account for 30.6% of the total area, with 25.4% of land agreeing with 

the opposite hypothesis. In the future period, a similar pattern is discovered that both DDWW-

confirmed and DDWW-opposed regions are increasing on account of the enhancement of projected 

strength of radiative forcing, with the reduction of the area showing insignificant trends in wetting 

and drying. However, the magnitudes of results at the 0.01 significance level are generally lower 

than that at the 0.1 significance level due to the different thresholds of detected trends in drying and 

wetting. 

Despite the multisource uncertainties, our study can provide important implications for the 

long-term trends in dryness/wetness over global land in the past and future from the perspective of 

TWSA. Compared with other widely used indexes that are purely derived from the 

hydrometeorological variables (e.g., SPI, SPEI, and PDSI) or incorporate a single component of the 

TWSA (e.g., SSI, SGI, and SRI), our developed TWS-DSI describes the overall status of the land 

system, which is jointly influenced by different components including soil moisture, river runoff, 

and groundwater that play different roles in the hydrological cycle (Tapley et al., 2019). The new 

insights benefit the comprehensive evaluation of terrestrial conditions over regions where some 

parts of TWSA (e.g., groundwater storage and snow water) have been rapidly depleting due to 

intensive human activities and warming climate worldwide, including the Qinghai-Tibet Plateau 

and northwest India (Rodell et al., 2009; Xing et al., 2021). Furthermore, the projected changes in 

global TWSA and associated TWS-DSI improve our understanding of the large-scale hydrological 

response under climate change, particularly in regions with strong human interventions such as the 
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south and east of Asia. Despite the magnitude bias from satellite products, simulations of LSMs and 

GHMs, and GCMs projections, the ensemble averaging method has presented an effective and 

efficient ability to alleviate the multi-source uncertainty, which can be further applied over data-

sparse areas globally with limited in-situ observations like Africa and central Asia. In addition, the 

regional aggregation of the analysis based on the IPCC AR6 SREX references regions can supply 

valuable inferences for policymakers and stakeholders for better water resources management in a 

changing environment (Iturbide et al., 2020). 

 

Specific comments: 

(1) Line 13-14: Why the sum of the patterns is 27.1% plus 22.4% (not 100%)? What about other 
patterns? 

 

Response: We thank you for the informative comment. There is a total of six patterns been detected 

including “the dry gets drier (DD, 16.7%)”, “the dry gets wetter (DW, 8.4%)”, “the wet gets wetter 

(WW, 11.4%)”, “the wet gets drier (WD, 14.9%)”, “the transition gets drier (TD, 2.6%)”, and “the 

transition gets wetter (TW, 1.7%)”. Apart from these patterns, there is 44.3% of the total area 

showing uncertain trends. Given our main objective of examining whether the DDWW paradigm 

holds true from the perspective of TWSA, the percentages of areas showing alternative patterns (i.e., 

DW, WD, TD, and TW) are not included in the Abstract section. However, we have revised and 

systematically summarized the examination results in the Conclusion section. 

 

(2) Line 20: What’s the meaning of “fresh availability”? 

 
Response: We regret this error. We have changed it with “freshwater availability” in the revised 

manuscript.  

 
(3) Line 25: What do you mean “enhance”? What do you mean “vice versa”? 

 
Response: We are sorry for the confusion. We have clarified this statement in the revised manuscript 

as follows:  

This deficit is expected to increase due to the enhancement of atmospheric water vapor in humid 

regions (i.e., convergence zones) under a warming climate, and decrease over arid regions (i.e., 

divergence zones) (Durack et al., 2012). 

 

(4) Line 26-27: “in hydrologic cycle under climate change in both regional and global scales”. Is 
this expression a bit exaggerated? 

 
Response: As suggested, we have weakened and re-organized this sentence as follows:  

The DDWW paradigm has been used to represent the historical and future trends in various 

constituent components of the hydrologic cycle on regional (Chou et al., 2009; Allan et al., 2010; 
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Hu et al., 2019; Zeng et al., 2019) and global scales (Held and Soden, 2006; Donat et al., 2016). 

 

(5) Line 29-30: “rational”-->“rationale”. Do so many references really question the rationale of 
DDWW? 

 
Response: Thank you for pointing this out. We have corrected the references list. The revised 

sentence reads as below:  

However, the rationale of DDWW mechanism is recently questioned at different levels through the 

growing accessibility of datasets, models, and indicators (Polson and Hegerl, 2017; Yang et al., 2019; 

Y. Li et al., 2021). 

 

(6) Line 40-41: “The uncertainties within previous studies are mainly sourced from different choices 
of measures and datasets”. However, this study do not reduce such uncertainties, and there are also 
great uncertainties, as there are various data sources and interpolation methods. 

 
Response: We have modified this sentence in the revised manuscript. To avoid the uncertainty 

sourced from different data sources, we developed an ensemble-mean method for the historical 

TWSA simulation and applied the GRACE observations to perform the bias correction for a large 

set of future projections of TWSA. The cross-comparisons within different data sources indicate 

that the ensemble-mean and the bias-corrected TWSA have better accuracy than the raw data, 

highlighting that the data uncertainty can be alleviated. Moreover, we have added discussion for the 

uncertainty derived from various datasets and interpolation methods in the revised manuscript. 

Please see our responses to Major comments 2 and 4 for more details.  

 

(7) Line 45: It is true that “neglect the hydrological process on the land surface”, but the TWSA 
used for estimating dryness/wetness is also an index and neglect the hydrological process. 

 
Response: We thank you for this comment. Some widely used meteorological drought indices such 

as SPEI, SPI, and PDSI are undoubtedly intended to be convenient and generalized indicators of 

meteorological water deficit. However, their inconsistent ability to recreate hydrologically relevant 

patterns of the land system at regional scales owing to the trade-off between the simplicity of 

meteorological factors and the data needs as well as computational requirements of process-based 

variables, suggesting that they may not capture plot-specific terrestrial processes (e.g., preferential 

flow and groundwater recharge) (Barnard et al., 2021; Slette et al., 2020). Such hydrological 

processes can be considered and reflected by terrestrial-based indicators such as SSI (soil moisture), 

SGI (groundwater), SRI (runoff), and TWS-related measures. We have revised this statement in the 

revised manuscript as follows: 

 

Meanwhile, some meteorological indices derived from precipitation and evapotranspiration like the 

standardized precipitation evapotranspiration index (SPEI), aridity index (AI), and standardized 

precipitation/evapotranspiration index (SPI/SETI) may not capture the integrated response of the 
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land system due to  the trade-off between the simplicity of meteorological factors and the data needs 

as well as computational requirements of process-based variables (Huntington, 2006; Dai, 2011; 

Slette et al., 2020; Barnard et al., 2021). 

Reference: 

Barnard, D.M., Germino, M.J., Bradford, J.B., Connor, R.C., Andrews, C.M., Shriver, R.K. 2021. 
Are drought indices and climate data good indicators of ecologically relevant soil moisture 
dynamics in drylands? Ecol. indic. 133, 108379. https://doi.org/10.1016/j.ecolind.2021.108379 

Slette, I.J., Smith, M.D., Knapp, A.K., Vicente-Serrano, S.M., Camarero, J.J., Beguería, S., 2020. 
Standardized metrics are key for assessing drought severity. Glob. Change Biol. 26, e1–e3. 

 

(8) Line 47: “merely highlight differently single aspect of the water cycle, lacking the complete 
representation of the terrestrial water storage (TWS)”. Why do you think a complete representation 
of TWS would be better than an index regarding single aspect of water cycle? I think there are 
already comprehensive drought/wet indices. 

 
Response: Thank you for this suggestive comment. Given the difference in the formulation and 

subsequent implications, we do not directly compare the performances of the individual 

hydrometeorological or individual water storage component-based indices and our assessment. We 

acknowledge the significance of already existing such indices. However, our study provides a new 

perspective for the assessment of the DDWW paradigm over global land, which is a potentially 

crucial supplement to the current measures that just regarding the single aspect of the water cycle 

(e.g., SSI, SGI, and SRI). Therefore, we believe that the current TWS-based assessment put forward 

a measure of dryness/wetness/transition behaviours that evolve due to synergistic impacts of natural 

and anthropogenic drivers, which are exceedingly difficult to disentangle in the coupled human-

natural systems (AghaKouchak et al., 2021; Rodell et al., 2018). The traditional drought/wet indices, 

though comprehensive in different contexts, do not represent such integrated variations. To better 

convey our message, we have modified the text as below: 

 

A few indexes like the standardized soil moisture index (SSI), standardized groundwater index 

(SGI), and standardized runoff index (SRI), however, focus on a single aspect of the water cycle 

and do not describe the integrated status of the terrestrial water storage (TWS) (AghaKouchak, 2014; 

Wu et al., 2018; Guo et al., 2021). In the coupled human-natural systems, where the synergistic 

impacts of natural and anthropogenic drivers are exceedingly difficult to disentangle, an integrated 

representation of the land systems is of paramount importance for policymakers (AghaKouchak et 

al., 2021; Rodell et al., 2018).  

 
References 
AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A. Anjileli, M., 

Azarderakhsh, H., Chiang, F., Hassanzadeh, E., Huning, L.S., Mallakpour, I., Martinez, A.,  
Mazdiyasni, O., Moftakhari, H., Norouzi, H., Sadegh, M., Sadeqi, D., Van Loon, A.F., Wanders, 
N. 2021. Anthropogenic Drought: Definition. Rev. Geophys Challenges and Opportunities 
10.1029/2019rg000683  

Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W., Lo, M.H. 
2018. Emerging trends in global freshwater availability. Nature. 557(7707): 651–659. 
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10.1038/s41586-018-0123-1  
  
(9) Line 50: “TWS consisting of water storage in surface water, soil moisture, groundwater, snow 
and ice, and canopies can physically provide integrated information...” But groundwater pumping 
reduces groundwater (TWS is decrease) and makes the surface wet. 

 
Response: Thank you for the suggestion. We have modified this sentence.  Please refer to our 

response to Major comment 1 for details. 

 

(10) Line 93: What’s the meaning of offline physically based? 

 

Response: Thank you for the question. The physically-based VIC model was used to carry out the 

historical TWSA simulation during the period 1985-2014, which is not real time (offline) and forced 

with the Global Meteorological Forcing Dataset from Princeton University. We have revised the 

expression as follows:  

 

The physically-based, semi-distributed, and grid-based VIC model is managed by the NASA Global 

Land Data Assimilation System Version 2.1 (GLDAS-v2.1) (Liang et al., 1994; Syed et al., 2008). 

 

(11) Is it necessary to carry out regional studies according to the IPCC? The zoning studies make 
no sense in fact. They are just another display for the same results. 

 
Response: Thank you very much for your comment. The IPCC SREX references regions have been 

popularly applied for the regional synthesis of historical trends and future climate change 

projections, particularly in the assessment of global dryness/wetness (e.g., the DDWW paradigm) 

(Yang et al., 2019; Balting et al., 2021; Dong et al., 2021). In this study, we not only downscaled 

the spatial distribution of trends in dryness/wetness, but also calculated the percentage of area with 

various patterns in different regions, to provide practical inference in managing the risks of extremes 

from the perspectives of policymakers and stakeholders. Moreover, given our use of eight global 

climate models from the CMIP6 archive, aggregating regional information with the recommended 

reference regions also benefits the climatic consistency and better representation of regional climate 

features as well as the representativeness of model results (Iturbide et al. 2020). Therefore, we would 

like to divide the global land area into 43 zones as defined by the IPCC Sixth Assessment Report 

(AR6) (IPCC, 2021). Moreover, we would like to kindly reiterate that, to the best of our knowledge, 

there has been no global study, focussing on examining the DDWW paradigm from a TWS 

perspective.   

 
References: 
Balting, D.F., AghaKouchak, A., Lohmann, G., Ionita, M. 2021. Northern Hemisphere drought risk 

in a warming climate. Clim. Atmos. Sci. 4(1), 61. https://doi.org/10.1038/s41612-021-00218-2. 
Dong S, Sun Y, Li C, Zhang X, Min S-K and Kim Y-H 2021 Attribution of extreme precipitation 

with updated observations and CMIP6 simulations J. Clim. 34 871–81.  
Yang, T., Ding, J., Liu, D., Wang, X., Wang, T., 2019. Combined use of multiple drought indices for 

https://doi.org/10.1038/s41612-021-00218-2
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global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737–748. 
https://doi.org/10.1175/JCLI-D-18-0261.1 

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The physical science basis. 
Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, 
N. Caud, Y. Chen, L.Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, 
T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. 
In Press. 

Iturbide, M., Gutiérrez, J.M., Alves, L.M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A.S., 
Di Luca, A., Faria, S.H., Gorodetskaya, I.V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H.T., 
Jones, R.G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G.T., Nurhati, I.S., 
Pinto, I., Seneviratne, S.I., van den Hurk, B. and Vera, C.S. (2020) An update of IPCC climate 
reference regions for subcontinental analysis of climate model data: definition and aggregated 
datasets. Earth System Science Data, 12(4), 2959–2970. https://doi.org/10.5194/essd-12-2959-
2020 

 
(12) The conclusion section is not well written. What new things the manuscript provide? It is 
recommended to summarize from two aspects: method and finding. How well does the new 
method/perspective works and what is the scientific value of the results in this study? 

 

Response: Thank you for the suggestion. We have re-written the conclusion section from two aspects 

of methods and findings. The new methods, findings, and implications have been added. Please find 

the revised text below. 

 

In this study, the historical TWSA series over global land during 1985-2014 was calculated 

from the ensemble-mean of nine model outputs including three each from GHMs (VIC, WGHM, 

PCR-GLOBWB), LSMs (Noah, CLSM, CPC), and GRACE reconstructions (CSR, JPL, GSFC). 

Future TWSA projections from 2070 to 2100 under SSP126, SSP245, and SSP585 scenarios were 

derived from the average of eight selected CMIP6 GCMs after bias-correction using GRACE 

observations. Subsequently, TWS-DSI was estimated to detect the long-term trends in 

dryness/wetness in the past and future periods. Further, the DDWW paradigm has been re-examined 

with a significance level of 0.05 from the perspective of terrestrial water storage change. The 

uncertainty sourced from different choices of models, methods, and confidence levels has been 

discussed systematically. The new findings were summarized as follows. 

(1) During the historical period, 32.9% and 22.1% of land area present significant (p<0.05) 

drying and wetting trends, respectively. During the future period under climate change, the 

proportion of drying areas with a significant slope increases from SSP126 (23.6%) to SSP585 

(30.1%) scenario. Similar change is detected in the percentage with significant wetting trends, which 

reaches 15.7%, 17.4%, and 23.4% under SSP126, SSP245, and SSP585 scenarios, respectively. 

(2) A total of 28.1% of the global land area shows the DDWW paradigm valid, in which 16.7% 

and 11.4% of the area is drying and wetting, respectively during the period 1985-2014. 23.3% of 

the area, however, shows the opposite pattern like “dry gets wetter” (DW, 8.4%) or “wet gets drier” 

(WD, 14.9%), respectively. The proportion of areas supporting the DDWW paradigm is 18.2%, 

17.4%, and 20.7% under SSP126, SSP245, and SSP585 scenarios, respectively. Alternatively, the 

https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/essd-12-2959-2020
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area opposing the DDWW paradigm achieves 17.9%, 22.4%, and 28.5%, respectively. 

(3) The ensemble-mean of TWSA generally compares better with GRACE observations during 

2002-2014 than the individual solution, especially for the eight bias-corrected CMIP6 GCMs. 

Independent experiments based on the individual TWSA dataset suggest that the divergent choices 

of data source might lead to reasonable overestimations (CSR mascon) and underestimations 

(WGHM and VIC) for both the DDWW-agreed and DDWW-opposed patterns. Moreover, the use 

of distinctive GCMs suggests slightly overrated (GFDL-ESM4) and underrated (CanESM5) 

percentages of DDWW-pro and DDWW-con area in the future under multiple emission scenarios. 

(4) Sensitivity analysis on different choices of significance levels from 0.01 to 0.1 indicate 

similar patterns, in which 22.2% (17.1%) of the land area supports (opposes) the DDWW theory 

historically under the 0.01 level, and the DDWW-validated regions account for the 30.6% of total 

area with 25.4% of land agreeing with the opposite hypothesis under the 0.1 level. Such consistency 

is also evidenced from the projected TWS-DSI in the future under various scenarios. 

New insights from the TWSA perspective highlight that the widely-used DDWW paradigm is 

still challenging in both historical and future periods under climate change. In addition, our 

developed ensemble-mean method can effectively and efficiently alleviate the uncertainty sourced 

from different data sources, implying an alternative way to assess the TWSA variations over major 

basins globally. The regional aggregation of our study based on IPCC SREX reference regions can 

provide important inferences for decision-makers and stakeholders for the sustainable management 

and utilization of water resources under global change.  

 
(13) Figure 1: Which method was used to calculate the slopes in the left panel? Which method was 
used to analyse the significance of trends? Which level? 

 
Response: We estimated the long-term trends in TWS-DSI during 1985-2014 using the linear 

regression method, and the significance of trend values is evaluated using the t-test at a 5% 

significance level (Greve et al., 2014). The area having a significant trend of increasing/decreasing 

TWS-DSI is considered undergoing wetting/drying, otherwise it is defined as an uncertain region. 

We have added the explanation in the method section of the revised manuscript as follows:  

 

Long-term trends in TWS-DSI were estimated using the linear regression method and the 

significance of trend values are evaluated using the t-test at a 5% significance level (Greve et al., 

2014). The area having a significant trend of increasing/decreasing TWS-DSI is considered 

undergoing wetting/drying, otherwise, it is defined as an uncertain region. 

Reference: 

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S.I., 2014. Global 
assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721. 
https://doi.org/10.1038/NGEO2247 

 
(14) Figure 2: What does the fan shape in the map means? 

https://doi.org/10.1038/NGEO2247
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Response: Thank you for the comment. The fan shape represents the regional proportion of area 

with different trends. The figure caption has been revised as Figure R10 below. 

 

 
 

Figure R10 Global distribution of the long-term trends in TWS-DSI in 43 selected IPCC SREX 
regions during the (a) historical (1985-2014) and future (2071-2100) period under (b) 
SSP126, (c) SSP245, and (d) SSP585 scenarios. Note: The pie chart represents the regional 
proportion of area with different trends. “D” and “W” indicate regions with drying and 
wetting trends, respectively. Please refer to Figure S1 (added below) for abbreviations of the 
IPCC SREX regions. 

 

(15) Figure 4: I cannot figure the fan shapes and their meaning clearly. 

 
Response: Thank you for your comment. The figure has been revised accordingly as Figure R11: 
 

 
 

Figure R11 Global assessment of the DDWW paradigm in 43 selected IPCC SREX regions during 
the (a) historical (1985-2014) and future (2071-2100) period under (b) SSP126, (c) SSP245, 
and (d) SSP585 scenarios. Note: The light grey colour represents an insignificant pattern. 
The pie chart represents the regional proportion of area with different patterns to the total 
area with significant (p<0.05) patterns. “D” and “W” indicate regions with drying and 
wetting trends, respectively. DD indicates the dry gets drier; DW indicates the dry gets 
wetter; WW indicates the wet gets wetter; WD indicates the wet gets drier; TD indicates the 
transition gets drier; TW indicates the transition gets wetter. Please refer to Figure S1 (added 
below) for abbreviations of the IPCC SREX regions. 
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Figure S1. Location of the 43 selected Special Report on Managing the Risks of Extreme Events 

and Disasters to Advance Climate Adaptation (SREX) regions from the Intergovernmental 
Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). The regional 
abbreviations are listed in Table S3. 


