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Abstract. Although many multi-source precipitation products (MSPs) with high spatio-temporal resolution have been 10 

extensively used in water cycle research, they are still subject to various biases, including false alarm and missed bias. 

Precipitation merging technology is an effective means to alleviate this uncertainty. However, how to efficiently improve 

precipitation detection efficiency and precipitation intensity simultaneously is a problem worth exploring. This study presents 

a two-step merging strategy based on machine learning (ML) algorithms, including gradient boosting decision tree (GBDT), 

extreme gradient boosting (XGBoost), and random forest (RF). It incorporates six state-of-the-art MSPs (GSMaP, IMERG, 15 

PERSIANN-CDR, CMORPH, CHIRPS, and ERA5-Land) and rain gauges to improve the accuracy of precipitation from 

precipitation identification and estimation during 2000-2017 over China. Multiple environment variables and spatial 

autocorrelation are combined in the merging process. The strategy first employs classification models to identify wet and dry 

days and then combines regression models to predict precipitation amounts based on classified wet days. The merged results 

are compared with traditional methods, including multiple linear regression (MLR), ML regression models, and gauge-based 20 

Kriging interpolation. A total of 1680 (70%) rain gauges are randomly chosen for model training and 692 (30%) for 

performance evaluation. The results show that: (1) The multi-sources merged precipitation products (MSMPs) outperformed 

all original MSPs in terms of statistical and categorical metrics, which substantially alleviates the bias in temporal and spatial. 

The modified Kling-Gupta efficiency (KGE), critical success index (CSI), and Heidke Skill Score (HSS) of original MSPs 

have been improved by 15-85%, 17-155%, and 21-166%, respectively. (2) The spatial autocorrelation plays a significant role 25 

in precipitation merging, which considerably improves the model accuracy. (3) The performance of MSMPs obtained by the 

proposed method is superior to MLR, Kriging interpolation, and ML regression models. XGBoost algorithm is more 

recommended for large-scale data merging owing to its high computational efficiency. (4) The two-step merging strategy 

performs better when higher density gauges are used to model training. But it has strong robustness and can also obtain better 

performance than original MSPs even when the gauges number is reduced to 10% (237). This study provides an accurate and 30 

reliable method to improve precipitation accuracy under complex climatic and topographic conditions. It could be applied to 

other areas well if rain gauges are available. 
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1 Introduction 

As one of the critical parameters of the natural water cycle, precipitation helps us realistically understand the interaction 

between hydrological and climate systems. Meanwhile, precipitation monitoring is essential for extreme hydroclimatic disaster 35 

forecasting and water resources management (Yilmaz et al., 2005; Tao et al., 2016; Xu et al., 2018). Accurate precipitation 

estimates are of practical importance for social economy and security, agriculture, meteorology, ecology, and other fields 

(Awange et al., 2019). Traditional rain gauge measurements can provide reliable precipitation data. It only reflects the 

precipitation characteristics within a limited radius around the instruments (Collischonn et al., 2008; Jia et al., 2011). The 

distribution of gauges is scarce and irregular, particularly in Tibetan Plateau where this study is covered and where precipitation 40 

has significant spatiotemporal variability (Ma et al., 2021). Mapping precipitation spatial patterns based on gauges observations 

may cause large uncertainties. In contrast, satellite-based precipitation estimates and atmospheric reanalysis are attractive 

alternative tools for describing spatial continuous distribution due to their high spatio-temporal resolution.  

Up to the present, a series of advanced remote sensing techniques and numerical weather models have been employed to 

retrieve various multi-source precipitation products (MSPs) (Huffman et al., 2007; Joyce et al., 2004). For instance, the 45 

Tropical Rainfall Measuring Mission (TRMM) algorithm combines detection information from multiple sensors (including 

the microwave imager, infrared radiometer, and radar) to provide valuable precipitation information for tropical and subtropical 

regions (Huffman et al., 2007). The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 

2015) incorporates infrared cold cloud duration observations and satellite information to prepare a long time and high spatial 

resolution (0.05°) dataset. The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 50 

(PERSIANN) applies a state-of-the-art algorithm to generate global precipitation based on the geostationary longwave infrared 

imagery (Hsu et al., 1997). As an extension of TRMM, the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm 

enhances the estimation efficiency of solid and light precipitation, which has finer temporal resolution and wider spatial 

coverage than TRMM (Huffman et al., 2019). In addition to satellite-based precipitation products, the National Centers for 

Environment Prediction and National Center for Atmospheric Research (NCEP/NCAR) and the European Centre for Medium 55 

Range Weather Forecasts (ECMWF) have yielded many reanalysis products, such as ERA-Interim, NCEP/NCAR, and ERA5. 

The latest ERA5-Land provides a variety of land climate variables over serval decades with an enhanced spatial resolution 

compared to ERA5 (Hersbach et al., 2020). Nevertheless, previous studies have already demonstrated that MSPs usually suffer 

from various degrees of uncertainty caused by retrieval algorithms, complex terrain, limitation sensors resampling frequency, 

and assimilation techniques (Nerini et al., 2015; Arshad et al., 2021; Xu et al., 2022). This uncertainty tends to be more severe 60 

at shorter time scales (such as sub-daily and daily) and varies among different precipitation products (Lei et al., 2021). 

Therefore, how alleviating the errors of MSPs is a crucial priority step to improve their application efficiency (Jiang et al., 

2012; Sharifi et al., 2016; Lu et al., 2020). 
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An important means to improve the accuracy of MSPs is to combine multi-source products and gauge-based precipitation 

information. In this way, the deficiencies caused by a single or independent data source could be compensated (Xie and Arkin, 65 

1997; Nie et al., 2015). The widely used statistical methods include optimal interpolation (OI) (Xie and Xiong, 2011; Shen et 

al., 2014; Wu et al., 2018), quantile mapping (QM) (Piani et al., 2010a; Katiraie-Boroujerdy et al., 2020; Tong et al., 2021), 

geographically weighted regression (GWR) (Chao et al., 2018; Chen et al., 2020), inverse-root-mean-square-error weighting 

(Shen et al., 2014; Yang et al., 2017), one-outlier removed (OOR) (Shen et al., 2014), Bayesian model averaging (Ma et al., 

2017; Yumnam et al., 2022), geographical difference analysis (GDA) (Duan and Bastiaanssen, 2013; Arshad et al., 2021), 70 

Kriging-based method (Manz et al., 2016), and multi-method coupled (Wu et al., 2018; Lu et al., 2020). Although the 

aforementioned approaches have obtained better performance in some regions, they are strongly based on solid mathematical 

assumptions and suffer various limitations (Wu et al., 2020). For example, the QM method removes biases in the statistical 

periods but cannot capture precipitation wet/dry day lengths and interannual variability (Ajaaj et al., 2015). The OOR method 

simply calculated the weight by the linear average of all values (Ma et al., 2017). Most importantly, these statistical methods 75 

are difficult to describe the relationship between the precipitation process and complex environmental variables (Shen et al., 

2014; Wu et al., 2018).  

The rapid development of machine learning (ML) technology can overcome some limitations caused by the above 

methods. Compared to traditional approaches, ML can deal with complex nonlinear relationships without constructing explicit 

statistical models. Moreover, the strength of ML comes from its ability to solve different types of problems, from classification 80 

to regression and prediction, as well as its efficiency in learning and generalizing massive amounts of data (He et al., 2016). 

Those features make various ML methods extensively adopted in precipitation calibration and merging. Such as random forest 

(RF) (Baez-Villanueva et al., 2020; Chen et al., 2021), quantile regression forest (QRF) (Bhuiyan et al., 2018, 2019), support 

vector machine (SVR) (Kumar et al., 2019), convolutional neural network (CNN) (Le et al., 2020), deep neural network (DNN) 

(Tao et al., 2016), artificial neural networks (ANN) (Wehbe et al., 2020; Hong et al., 2021), long-short-term memory network 85 

(LSTM) (Tang et al., 2021; Yang et al., 2022), as well as multi-algorithms coupling (Wu et al.,2020; Tan et al., 2021; Zhang et 

al., 2021). However, most above studies mainly considered limited environmental information and spatial correlation related 

to precipitation while neglecting the spatial autocorrelation between gauge observations in merging processes. For example, 

the Euclidean distance in Baez-Villanueva et al. (2020), geographical coordinates, and inverse distance weighted (IDW) in 

Zhang et al. (2020). In addition, the uncertainty of MSPs is partly caused by unsatisfactory precipitation identification, which 90 

not only influences the statistical length and start/end time of wet/dry days, but further leads to the 

overestimation/underestimation of precipitation intensity. Correctly judging whether precipitation events occur is the key to 

enhancing precipitation performance fundamentally. Several studies have employed ML methods to discriminate 

precipitation/non-precipitation, such as Zhang et al. (2021) used SVM, RF, ANN, and extreme learning machine, Tao et al. 
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(2016) and Xiao et al. (2022) applied ANN, and Pham et al. (2019) used RF and SVM. However, those studies incorporated 95 

gauge observations with several MSPs or a single source. Each product has its pros and cons, and sufficient products should 

be considered to extract valuable information (Zhang et al., 2021, Lei et al., 2022). In addition, to the best of our knowledge, 

the gradient boosting decision tree (GBDT) and extreme gradient boosting (XGBoost) algorithms have not been well explored 

in precipitation discriminating and merging. 

To address above mentioned concerns, this study proposes a two-step merging strategy to incorporate six popular MSPs 100 

(one latest reanalysis and five satellite products) and relatively high-density rain gauges over China from 2000-2017, focusing 

on enhancing the precipitation discrimination ability and absorbing MSPs’ strengths. This strategy is based on XGBoost, GBDT, 

and RF classification and regression models, and multiple environmental information especially spatial autocorrelation are 

taken into consideration. The objectives of this study mainly include three-folds: (1) exploring the effectiveness of the proposed 

strategy in all aspects according to various metrices; (2) comparing the performance of the proposed strategy with traditional 105 

methods; (3) assessing the influence of MSPs’ spatial resolution and gauge density on model performance. This strategy is 

expected to improve the accuracy of existing MSP and explore the potential of more ML algorithms in precipitation. 

2 Study area and Materials 

2.1 Study area 

China, between 73°-135°E and 15°-53°N, is selected as the study area, which is located in eastern Asia and west of the 110 

Pacific Ocean with a land area of 9.6 million km2 (Fig. 1). The elevation of China gradually increases from southeast to 

northwest, resulting in a complex topography including mountains, plateaus, hills, basins, and plains. China has a diverse 

climate, including temperate monsoon climate, subtropical monsoon climate, tropical monsoon climate, temperate continental 

climate, and plateau mountain climate. Tibetan plateau is dominated by the plateau mountain climate with a low temperature, 

strong radiation, abundant sunshine, and little precipitation. However, the southern region has a subtropical monsoon climate 115 

characterized by warm winter, hot summer, and abundant rainfall. Annual precipitation over China has high spatial variability, 

varying between 50 mm and 2000 mm from west to east. Meanwhile, the distribution of precipitation amounts and events 

throughout the year is also extremely uneven. Much more precipitation (70% - 80%) occurs during the warm season (May to 

October) than during the cold season (November to April), which is the primary factor for this study to conduct model training 

according to different seasons. In addition, China is mainly divided into nine river basins, from east to south, including 120 

Continental basin (CB), Songliao river basin (SLRB), Yellow river basin (YERB), Haihe river basin (HARB), Southwest basin 

(SWB), Yangtze river basin (YARB), Huaihe river basin (HURB), Southeast basin (SEB), and Pearl river basin (PRB) (Fig. 

1). The runoff of most basins mainly comes from precipitation, while CB is mainly from snow and glacier meltwater. 
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Figure 1: The topography of China and distribution of rain gauges. 125 

2.2 Materials 

2.2.1 Rain gauge observations 

 A relatively dense network of 2372 rain gauges over mainland China from 2000 to 2017 is collected in this study, provided 

by China Meteorological Administration (CMA). The daily precipitation data have been conducted strictly quality control by 

CMA. These quality control processes include removing extreme values, internal consistency check, and spatial consistency 130 

check (Shen et al., 2010). Therefore, gauges can be used after simple processing, such as converting units. It should be noted 

that there is a temporal mismatch (12h) between daily gauge-based precipitation (Beijing Time from 20:00 to 20:00, UTC + 

8:00) and MSPs (UTC, from 00:00 to 24:00). Considering that not all products have a sub-daily scale temporal resolution, we 

recalculate daily observations using sub-daily precipitation (i.e., 8:00 to 20:00 and 20:00 to 8:00) to keep consistent with MSPs. 

Gauges are mainly distributed in eastern but sparsely located in western China, especially in the hinterland of Qinghai-Tibet 135 

Plateau (TP) (as shown in Fig. 1). The gauge density used in this study is higher than in some previous studies (Wu et al., 2020; 

Yin et al., 2021; Zhang et al., 2021). The average control area for a single gauge is approximately 4000 km2 (9.6×106 km2/2372). 

Nevertheless, it is far from meeting the requirement of the World Climate Organization that the control area should be about 

600 km2 for plain and even smaller for mountains regions (WMO, 1965). 
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2.2.2 MSPs 140 

Six continuously updated products are selected to integrate, including a reanalysis product and five satellite precipitation 

products retrieved from multiple sensors. Limited by the availability of MSPs, the period of this study is from June 2000 to 

December 2017 (hereafter: 2000-2017). Specific information about MSPs is summarized in Table 1. 

IMERG is the level 3 product of Global Precipitation Measurement (GPM) algorithm. The IMERG algorithm 

incorporates the multi-source information from the GPM microwave imager, Visible and Infrared Radiometer (VIRS), and 145 

space-borne Ku/Ka-band dual-frequency radar. IMERG provides three types of products, including Early, Late, and Final Run 

products, which are retrieved around 4h, 12h, and 4month, respectively, after satellite monitoring. The IMERG Final run 

product outperforms the Early and Late because it combines the Global Precipitation Climatology Centre (GPCC) gauge 

observations. The latest version 6 Final run product is therefore chosen in this study. Moreover, the Global Satellite Mapping 

of Precipitation (GSMaP) GSMaP_Gauge applied in this study incorporates Climate Prediction Center (CPC) gauge data 150 

analysis (Kubota et al., 2007), which is more accurate than other GSMaP products such as GSMaP near-real-time (NRT).  

PERSIANN-Climate Data Record (PERCDR) has a long record from 1983 to the present. The PERSIANN algorithm is 

mainly based on Gridded Satellite (GridSat-BI) IR data and National Centers for Environmental Prediction (NCEP) Stage IV 

radar data (Ashouri et al., 2015), which does not fuse microwave information. The reliability of PERCDR is improved by using 

GPCC for calibration. CHIRPS v.2 product is also used in this study. It has higher spatial resolution than other MSPs, 155 

integrating satellite imagery, global climatology, and gauge observations. In addition, Climate Prediction Center Morphing 

Technique (CMORPH) version 1 dataset (Joyce et al., 2004) covers three categories’ products: CMORPH RAW, CMORPH 

bias-corrected (CRT), and CMORPH gauge blended datasets (BLD). CMORPH CRT is selected in this study due to its superior 

quality.  

ERA5-Land (herein ERA5L) is an enhanced land atmospheric reanalysis dataset of the fifth generation ERA5 produced 160 

by ECMWF. It provides various land surface variables for more than 70 years with continuous updates. ERA5L describes the 

evolution of the water and energy cycles on the land in a consistent manner (Hersbach et al., 2020). ERA5L adopts cycle 41r2 

of ECMWF’s Integrated Forecast System (IFS). Compared with ERA5 and older ERA-Interim, ERA5L employed a better 4-

dimensional variational (4D-var) assimilation technique, with an enhanced horizontal resolution (9km) and higher spatial 

resolution (0.1°). As one of the art-of-the-art reanalysis data, ERA5L has been widely used in many fields (Xin et al., 2021; 165 

Xu et al., 2022). 

The information sources employed in MSPs show significant differences, especially whether microwave signals are 

incorporated or not (Table 1). Moreover, various algorithms are adopted to retrieve precipitation in different MSPs. For instance, 

the Kalman filtering technique is employed for GSMaP, the Goddard Profiling Algorithm 2014 is used for IMERG, and the 

morphing technique is applied for CMORPH (Table 1). Each algorithm and signal source has its cons and pros. It is necessary 170 
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to combine them to maximize their advantages. Although several products already combine gauge observation data (e.g., 

GPCC and CPC) to reduce bias, only a few gauges within China are used. Given the relatively high gauge density used in this 

study, this has little impact on the independence of gauges and the reliability of results (Shen et al., 2013). The number and 

location of gauges used in GPCC over China is shown in Appendix A. 

Table 1. The information about seven MSPs used in this study 175 

MSPs Temporal-spatial  

resolution 

Spatial 

coverage 

Input sources Retrieval algorithm 

GSMaP 1h, 0.1° 60°S-60°N PMW, IR and Gauge Kalman filtering technique 

IMERG 0.5h, 0.1° 60°S-60°N PMW, IR and Gauge Goddard Profiling Algorithm 

PERCDR 3h, 0.25° 60°S-60°N IR and Gauge adaptive ANN 

CHIRPS daily, 0.05° 50°S-50°N IR, Gauge, and reanalysis Kalman filter model 

CMORPH 3h, 0.25° 60°S-60°N PMW, IR and Gauge Morphing technique 

ERA5L  1h, 0.1° Global Reanalysis and Gauge IFS Cy41r2 4D-Var 

2.2.3 Environment variables 

The environment variables used in this study include DEM, longitude, latitude, wind speed, relative humidity, soil 

moisture, cloud cover, and air temperature. 

DEM is downloaded from the Shuttle Radar Topographic Mission (SRTM) with a resolution of 90 m. Wind speed, relative 

humidity, soil moisture, and air temperature are obtained from the NASA Global Land Data Assimilation System Noah Land 180 

Surface Model (GLDAS_NOAH), with 3 h and 0.25° resolutions (Rodell., 2004). Cloud cover is collected from ERA5 

because it is not included in GLDAS_NOAH, with the resolution of hourly and 0.25°. Although Normalized Differential 

Vegetation Index (NDVI) is often used as a critical auxiliary variable to predict precipitation, it is susceptible to soil type and 

human activities. NDVI is more suitable for monthly or annual applications due to its temporal resolution (Ghorbanpour et al., 

2021; Shen et al., 2021; Tan et al., 2021). Inversely, the response of air temperature and soil moisture to daily precipitation is 185 

better than NDVI, especially in the desert and bare land (Bhuiyan et al., 2018). In addition, the interactions between cloud 

properties and precipitation are equally important (Sharifi et al., 2019).  

3 Methodology  

3.1 Data preprocessing  

In this study, the period of model training and precipitation interpolation are from 2000 to 2017 at the daily scale. To 190 

maintain data’s temporal and spatial consistency, all MSPs and environment variables at a sub-daily scale are aggregated to 

daily data. The spatial resolution of DEM (90m) and CHIRPS (0.05°) are upscaled to 0.1°, the PERCDR, CMORPH, cloud 

cover, and GLDAS_NOAH are downscaled to 0.1° using the bilinear interpolation method. In this study, the gauges are divided 

into two groups, 70% of rain gauges (1680) are spatially and randomly selected as training and calibrating samples, and the 



8 

 

remaining 30% (692) as validation samples. Due to the irregular distribution of rain gauges over China, random sampling is 195 

carried out for each river basin to ensure the spatial representativeness of the validation gauges. 

Inspired by previous researches (Baez-Villanueva et al., 2020; Zhang et al., 2020), we consider a covariate describing 

spatial autocorrelation between rain gauges in this study. The semivariogram based on Ordinary Kriging is adopted to calculate 

spatial autocorrelation factor, i.e., Kriging_based prediction (KP). Compared with other predict models, such as Inverse 

distance interpolation (IDW), the Kriging_based semivariogram considers not only the spatial relationship between predicted 200 

and neighboring known points but considers the statistical autocorrelation between known points. The Ordinary Kriging 

assumes the model: 

𝑧∗(𝑥0) = ∑ 𝜆𝑖𝑧(𝑥𝑖)
𝑛
𝑖=1 ,                                                                          (1)  

Where z(x0) is the predicted value of the unknown x0 point. z(xi) and i are the known value of neighboring rain gauge xi and 

its weight. Unbiasedness and minimum estimation variance are the conditions for choosing weights. The weight depends on 205 

the distance between the known points, the predicted position, and the overall spatial arrangement based on the known points. 

Spatial autocorrelation must be quantified before spatial arrangement can be applied in weights. The calculation processes of 

KP are as follows: 

(1) Calculate the distance and semivariogram between known points;  

𝛾(ℎ) =
1

2
[𝑧(𝑥𝑖) − 𝑧(𝑥𝑗)],                                                            (2) 210 

Where (h) is the semivariogram of xi and xj, h is the distance, z is the value of known of points. 

(2) A theoretical model is used to fit semivariogram and distances. The nugget, sill, and range can be obtained according to 

the fitted semivariogram. The commonly used semivariogram models are spherical, exponential, Gaussian, and linear 

models. Compared with the prediction performance of KP by different models, the spherical model with better 

performance was selected in this study. For more information about comparison results, refer to the Appendix B. The 215 

spherical model is as follows: 

𝛾(ℎ) = {

 
0                                                     ℎ = 0

𝐶0 + 𝐶 (
3

2
⋅

𝑏

𝑎
−

1

2
⋅

𝑏3

𝑎3)          0 < ℎ ≤ 𝑎

𝐶0 + 𝐶                                            ℎ > 𝑎

 ,                                                (3) 

Where (h) is semivariogram, h is the distance, C0, C, and a is the nugget, sill, and range, respectively.  

(3) Calculate the semivariogram between the unknown point and known points, and form a matrix to solve the weights: 

[

𝛾(ℎ11) ⋯ 𝛾(ℎ1𝑛) 1
⋮ ⋱ ⋮ ⋮

𝛾(ℎ𝑛1 ⋯ 𝛾(ℎ𝑛𝑛) 1
1 ⋯ 1 0

] ⋅ [

𝜆1

⋮
𝜆𝑛

𝜇

] = [

𝛾(ℎ10)
⋮

𝜆𝑛

𝛾(ℎ𝑛0)

],                                                   (4) 220 

Where  is Lagrange parameter. 

(4) Predict the value of the unknown point using eq. (1) according to the weights obtained from eq. (4).  
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3.2 A two-step merging strategy  

The specific process of the two-step merging strategy is illustrated in Fig.2. The random forest (RF), gradient boosting 

decision tree (GBDT), and extreme gradient boosting (XGBoost) are chosen to incorporate six MSPs (GSMaP, IMERG, 225 

PERCDR, CMORPH, CHIRPS, and ERA5L) and rain gauges. Although the RF method has been extensively employed in 

most previous studies, few studies compared it with GBDT and XGBoost models in precipitation merging. The environment 

variables, including soil moisture, cloud cover, relative humidity, air temperature, DEM, longitude, latitude, and spatial 

autocorrelation (KP) are selected as auxiliary variables (i.e., covariate) of the merging step1 and step2. The values of multiple 

covariables and MSPs extracted according to gauge locations are taken as independent variables, while gauge observations are 230 

taken as the dependent variable. Meanwhile, according to the annual distribution characteristics of precipitation, we group all 

input datasets into two seasons: warm season (May and October) and cold season (November to April), and models are trained 

independently in each season.  

The two-step merging strategy explored in this study can be generally described in two stages (Fig. 2) as follows: 

 (1) Precipitation classification. The biases of precipitation products mainly come from overestimating/underestimating 235 

the amounts of hit events and failing to correctly distinguish precipitation occurrence, including false alarm and missed events 

(Lei et al., 2022). Therefore, the first step aims to classify precipitation to reduce the missed and false alarmed bias. The gauge 

observations are distinguished to wet/dry days according to the 0.1mm/d threshold value (Lei et al., 2021; Yu et al., 2020; Jiang 

et al., 2021) and used as the benchmark for classification. The wet day is set as 1 and the dry day is set as 0. The feature values 

of MSPs and covariables corresponding to each grid are applied to construct XGBoost, GBDT, and RF classification models. 240 

The model determines whether a day in the grid is a wet day or a dry day according to the classification probability. Hence, 

the classification result contains only wet and dry days (0,1) of each grid and does not involve precipitation intensity. In 

addition, the model is constructed in warm and cold seasons using divided independent datasets, which leads to six 

classification models (i.e., two seasons with three models). 

(2) Precipitation regression. Precipitation regression focuses on improving the precipitation intensity of hit events. The 245 

MSPs and covariables values corresponding to the wet day of gauge observations are extracted, which are used to construct 

and train XGBoost, GBDT, and RF regression models. Similarly, six regression models are trained. The trained regression 

models are then applied to predict precipitation amounts of wet days (value equals 1) classified in step (1), while dry days 

remain 0. The final multi-source merged precipitation products (MSMPs) are obtained by predicted in each grid and day 

prediction. MSMPs in the whole period are derived from the combination of cold and warm seasons, which are named PXGB2, 250 

PGBDT2, and PRF2 respectively according to different models. 

To highlight the superiority of the two-step merging strategy, we compare it with single ML regression, multiple linear 

regression (MLR), and gauge-based Kriging interpolation methods. Meanwhile, the best-performing algorithm is selected by 
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intercomparing the three ML models in the two-step merging strategy. The detailed merging algorithms are introduced in 3.2.1-

3.2.4. 255 

 

Figure 2. The flowchart of merging strategy of this study (LAT is latitude, LON is longitude, RH is relative humidity, SM is soil 

moisture, TEM is temperature, and WS is wind speed). 

3.2.1 RF  

The RF model was proposed by Breiman (2001) and is widely applied to deal with regression, classification, and other 260 

tasks (Rodriguez-Galiano et al., 2012; Nguyen et al., 2021). The general structure of RF is shown in Fig. 3. RF is an ensemble 

learning algorithm composed of multiple decision trees and generally outperforms a single tree. For regression problems, the 

model returns predictions by averaging all individual decision trees. For classification problems, each tree in the forest is 

judged and classified separately, and the output of RF is the class of a majority vote on classification trees (Ho, 1998).  

The Bootstrap Aggregation (i.e., Bagging) technique is applied by the RF training algorithm for tree learners, which is 265 
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designed to improve the accuracy and stability of ML algorithms in classification and regression processes. The Bagging 

algorithm utilizes the out-of-bag (OOB) error to measure the prediction error of RF. It creates two independent datasets. One 

dataset, the Bootstrap sample (approximately two-thirds of all samples), is selected as “in-the-bag” data through sampling and 

replacement, while the remaining out-of-bag dataset (one-third) that is not selected during the sampling process is used to 

calculate the model’s OOB error (Breiman, 2001). The advantages of RF can be mainly summarized in four points: (1) 270 

processing high-dimensional data (a mass of features) without dimensionality reduction and feature selection; (2) measuring 

the importance of features and how they interact with each other; (3) avoiding overfitting and easy to implement; (4) balancing 

errors for asymmetric datasets, which is critical in the cold season when wet and dry days are unevenly distributed. In addition, 

several important parameters in RF are the number of decision trees (n_estimators), the maximum depth of each decision tree 

(max_depth), and the minimum number of samples required to split an internal node (min_samples_split). A trial-and-error 275 

procedure is used to optimize model parameters due to the large sample size used in this study (approximately 14 million 

pieces of data) and the limitation of computing resources. The optimal parameters of model training during the warm season 

and cold season is displayed in Appendix C.  

 

Figure 3. The overview structure of RF. 280 

3.2.2 GBDT 

The GBDT is an iterative decision tree model created by Breiman (1997) and subsequently developed by Friedman (2002), 

which is also called the multiple additive regression tree (MART) (shown in Fig. 4). The additive algorithm is utilized for 

classification or regression to continuously reduce residuals generated in the training process. GBDT uses the forward 

distribution algorithm and selects the classification and regression tree (CART) learner as a weak base learner. GBDT generates 285 

numerous weak learners through multiple iterations, and each learner is trained based on the residual of the previous learner. 

It finally integrates the multiple weak learners into a single strong learner by weighting the summation of each tree.  
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The main difference between RF and GBDT is that RF can be trained in parallel to reduce variances, while GBDT reduces 

the biases by fitting the residual of former trees. Due to the strong connection between weak learners, GBDT is difficult to be 

paralleled. Generally speaking, GBDT has superior generalization ability and robustness, which is less affected by training 290 

samples size and can deal with various data flexibly, including outliers and irrelevant features. Moreover, the prediction 

accuracy of GBDT is high in the case of relatively little parameter adjustment time. The main parameters of GBDT include 

the number of boosting stages to perform (n_estimators), the learning rate shrinks the contribution of each tree by learning_rate 

(learning_rate,) and the maximum depth of trees (max_depth). The n_estimators and learning rate are highly correlated with 

the performance of the model. The optimal parameters are shown in Appendix C. 295 

 

Figure4. The overview structure of GBDT. 

3.2.3 XGBoost 

The XGBoost model was proposed by Chen and Guestrin (2016) based on the structure of GBDT. XGBoost also combines 

multiple weak learners into a strong one, and the base learner in XGBoost can be either CART or linear classifier. XGBoost 300 

possesses the strength of GBDT and has several additional improvements: First, GBDT only uses the first-order derivative 

information in optimization, while XGBoost performs second-order Taylor expansion on the cost function to obtain the first-

order and second-order derivatives, thus acquiring more accurate loss functions. Second, XGBoost introduces a regularization 

term into the cost function to effectively control the complexity of the model. From the perspective of bias-variance tradeoff, 

it reduces the variance of the model, making the learned model more straightforward and preventing over-fitting. Third, 305 

XGBoost allows users to define custom optimization goals and evaluation criteria, increasing its flexibility. Moreover, 

XGBoost implements parallel processing when selecting the best split node for enumeration, substantially improving the 

computational efficiency compared with Gradient Boosting Machine (GBM). The critical parameters of XGBoost are 
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n_estimators, learning rate, max_depth, and scale_pos_weight. The default value of scale_pos_weight is 1, indicating the 

positive and negative samples are in equilibrium. This is not applicable for precipitation classification in the cold season. More 310 

attention should be paid to scale_pos_weight when model training. The optimal parameters are shown in Appendix C. 

3.2.4 MLR 

The MLR is the first type of regression algorithm used extensively in many fields, assuming a stable linear relationship 

between a dependent variable and multiple independent variables. Compared with nonlinear relationships, the MLR is easier 

to fit and each explanatory variable's statistical property is more intuitive. MLR is usually fitted using the ordinary least square 315 

method to minimize the sum of squares of residuals predicted by the model and observed by the sample. The overall model 

for MLR is: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑖𝑋𝑖 ,   𝑖 = 1, … , 𝑛,                                                     (5) 

Where n is the number of explanatory variables, Y is the dependent variable predicted by X1, X2…, Xn. 0 is the intercept, and 

1, 2…,i are regression coefficients. 320 

3.3 Performance evaluation and comparison 

In this study, the performance of all products is evaluated using 692 randomly selected independent gauges from 2000 to 

2017. The evaluation metrics mainly involve categorical and statistical metrics. The categorical metrics focus on analyzing the 

ability of products to capture precipitation events, including the probability of detection (POD), false alarm ratio (FAR), critical 

success index (CSI), Precision (precision), frequency bias (FB), Heidke Skill Score (HSS), and classification accuracy 325 

(Accuracy). The POD also called hit bias, represents the probability of precipitation events correctly detected. FAR and 

precision describe the ratio of falsely and correctly detected events among total detected precipitation events, respectively. The 

sum of FAR and precision is 1. The CSI incorporates POD and FAR, which demonstrates the overall ability of precipitation 

detection. The FB is the ratio of POD and FAR. It shows the balanced ability of products in detecting precipitation events. FB 

< 1 indicates that precipitation events are underestimated, and FB > 1 indicates overestimated. The FB equals 1 meaning that 330 

the number of missed events equals false alarmed events. HSS compares the predicted performance with random chance. The 

negative HSS shows random chance is better than the model predicted. The range of HSS is - to 1, the perfect value is 1. 

𝑃𝑂𝐷 =
𝐻

𝐻+𝑀
 ,                                                                                      (6) 

𝐹𝐴𝑅 =
𝐹

𝐻+𝐹
 ,                                                                                       (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐻

𝐻+𝐹
 ,                                                                                  (8) 335 
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𝐶𝑆𝐼 =
𝐻

𝐻+𝑀+𝐹
 ,                                                                                     (9) 

𝐹𝐵 =
𝑃𝑂𝐷

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

𝐻+𝐹

𝐻+𝑀
 ,                                                                              (10) 

𝐻𝑆𝑆 =
2(𝐻𝑁−𝐹𝑀)

(𝐻+𝑀)⋅(𝑀+𝑁)+(𝐻+𝐹)⋅(𝐹+𝑁)
 ,                                                                      (11) 

The Accuracy shows the proportion of total days that are correctly classified as wet and dry days. One point that needs to 

be emphasized is that this study takes Accuracy as the evaluation metric to describe the accuracy of ML classification models 340 

(RF, GBDT, and XGBoost) in training processes, thereby determining the optimal parameters of the model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐻+𝑁

𝐻+𝑀+𝐹+𝑁
× 100%,                  (12) 

Where H is the total number of precipitation events simultaneously observed and predicted, M is the total number of 

precipitation events observed but not predicted, F is the total number of precipitation events predicted but not detected, N is 

the total number of no-precipitation events. The optimal value of POD, precision, CSI, Accuracy, and FB is 1, while FAR is 0. 345 

The statistical metrics are used to evaluate the error of precipitation intensity, including root mean square error (RMSE), the 

modified Kling-Gupta efficiency (KGE) and its components (Pearson correlation coefficient (CC), bias () and variability ratio 

()). The CC measures the magnitude of the correlation between the model predicted and observed values. The RMSE accesses 

the error between predicted and observed values. The KGE combining the CC, , and  reflects the overall goodness of fit 

between model predicted and observed.  > 1 indicates precipitation amount is overestimated and vice versa. The formulas for 350 

these metrics are expressed as follows: 

𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2              (13) 

𝐶𝐶 =
∑ (𝑃𝑜𝑖−𝑃𝑜̅̅̅̅ )(𝑃𝑚𝑖−𝑃𝑚̅̅ ̅̅̅)𝑛

𝑖=1

√∑ (𝑃𝑜𝑖−𝑃𝑜̅̅̅̅ )2⋅(𝑃𝑚𝑖−𝑃𝑚̅̅ ̅̅̅)2𝑛
𝑖=1

                   (14) 

𝛽 =
𝜇𝑚

𝜇𝑜
 ,                      (15)  

𝛾 =
𝑆𝐷𝑚∕𝜇𝑚

𝑆𝐷𝑜∕𝜇𝑜
 ,                     (16) 355 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑚𝑖 − 𝑃𝑜𝑖)2𝑛

𝑖=1 ,                 (17) 

Where Po and Pm are the value of gauge observed and predicted precipitation, respectively. N is the total number of samples. 

m and o are the mean value of gauge observed and predicted precipitation. SDo and SDm are the standard deviation of gauge 

observed and predicted precipitation, respectively. The optimal value for CC, KGE, ,  is 1, while for MAE and RMSE is 0. 
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4 Result 360 

4.1 Evaluation the precipitation detection ability of MSMPs  

The classification accuracy (Accuracy) of different ML models for wet/dry days is shown in Table 2. The general 

performances are considerable. The Accuracy for the three models is higher than 91% in the whole period, which is 91.8%, 

91.7%, and 91.8% for RF, GBDT, and XGBoost, respectively. The Accuracy in the cold season is better than that in the warm 

season. There is no significant difference among the three classification algorithms. The main reason is that the input variables 365 

used in this study are sufficient in variety and quantity. 

Table 2. The classification accuracy (Accuracy) of wet/dry day during the warm season and cold season 

 RF GBDT XGBoost 

Cold season 93.6 93.5 93.6 

Warm season 89.9 89.8 89.9 

Whole period 91.8 91.7 91.8 

 To evaluate the efficiency of the proposed strategy in precipitation detection ability. The multi-source merged 

precipitation products (MSMPs: PGBDT2, PXGB2, and PRF2), gauge-based Kriging interpolated (Kriging), and original 

precipitation products (MSPs) are assessed and compared based on independent gauge observations. The six categorical 370 

metrics (POD, FAR, CSI, precision, FB, and HSS) are shown in Fig.5 and the average values of all gauges are expressed in 

Table 3. The overall accuracy of three MSMPs substantially outperforms other products. The best values of all metrics (except 

for POD) are generated in MSMPs. Kriging has the highest POD with a value of 0.93 (Fig. 5a), followed by ERA5L (0.94) 

and GSMaP (0.93). However, the POD of PGBDT2, PXGB2, and PRF2 are 0.84, 0.85, and 0.85, respectively. The FAR (Fig. 

5b) of MSMPs is 0.13, decreased by 59 - 75% compared with the original MSPs (0.32-0.52). In addition, PRF2 obtains the 375 

highest CSI with a value of 0.76, much better than original MSPs (0.3-0.65) and Kriging (0.66) (Fig. 5c). In terms of precision 

(Fig. 5d), MSMPs show an obvious improvement. The precision increases from 0.48-0.68 (MSPs) to 0.87 (MSMPs). For FB 

(Fig. 5e), MSPs and Kriging deviate from 1, and PERCDR has the worst value (1.83). Although ERA5L achieves a high POD, 

its FB is 1.75, indicating ERA5L has seriously overestimated wet days and misclassified many precipitation events. Fortunately, 

MSMPs strike a good balance between hit and false alarmed rates. The FB of MSMPs is closer to 1, which is 0.96 for PGBDT2, 380 

0.99 for PXGB2, and 0.98 for PRF2. In terms of HSS (Fig. 5f), except for Kriging (0.67) and GSMaP (0.66), the HSS of MSPs 

is lower than 0.5 (0.3-0.49). In contrast, the MSMPs (0.79-0.8) improve by 20 - 163%.  

Table 3. The average value of categorical metrices of multiple products compared with gauge observations during whole period. 

Metrics CHIRPS CMORPH PERCDR GSMaP IMERG ERA5L Kriging PGBDT2 PXGB2 PRF2 

POD 0.36 0.70 0.75 0.93 0.78 0.94 0.95 0.84 0.85 0.85 

FAR 0.36 0.37 0.52 0.32 0.41 0.45 0.32 0.13 0.13 0.13 
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CSI 0.30 0.48 0.39 0.65 0.50 0.54 0.66 0.75 0.75 0.76 

precision 0.64 0.63 0.48 0.68 0.59 0.55 0.68 0.87 0.87 0.87 

FB 0.61 1.20 1.83 1.39 1.38 1.75 1.45 0.96 0.99 0.98 

HSS 0.30 0.48 0.31 0.66 0.49 0.49 0.67 0.79 0.79 0.80 

Note: the values in bold are the best performing of each metric. 

The general performance of most MSPs (e.g., CMORPH, PERCDR, and IMERG) in the warm season is better than that 385 

in the cold season (Fig. 5). However, the MSMPs’ performance difference between warm and cold seasons is smaller than that 

of MSPs, demonstrating that the ability of MSMPs is more balanced throughout the year. Moreover, the metrics’ variation of 

original MSPs is considerable in the cold season, particularly FAR and precision. The boxplot of FAR (Fig. 5b) and precision 

(Fig. 5d) for CHIRPS, CMORPH, and PERCDR have wider ranges, which represents these values are unevenly spatially 

distributed. In contrast, MSMPs have more concentrated ranges of boxplots in most metrics. These results emphasize the 390 

necessity of prioritizing precipitation state recognition in the merging process, which can largely improve the precipitation 

capture efficiency of MSPs.  
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Figure 5. Boxplots of six categorical metrics (POD, FAR, CSI, precision, FB, and HSS) for ten products, including six MSPs, one 

gauge-based interpolated data, and three ML-based merged data.  395 
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Figure 6. The performance of six categorical metrics of ten products under various daily precipitation threshold. 

Fig. 6 shows the average value of six categorical metrics for ten products under different precipitation intensities, 

including no-precipitation (<0.1 mm/d), light precipitation ([0.1, 5)), moderate precipitation ([5, 20)), heavy precipitation ([20, 

50)), and violent precipitation (>50 mm/d). Overall, MSMPs have the best performance regardless of precipitation intensities, 400 

followed by Kriging and GSMaP, signifying that ML classification techniques improve the detection capability of all 

precipitation thresholds, not only for light and moderate precipitation events. The performance of all products for no-
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precipitation is considerably better than other precipitation intensities. For instance, the FAR, CSI, and HSS of MSMPs are 

0.07, 0.88, and 0.79-0.8, respectively, in no-precipitation. Most MSPs have a poor ability to capture light and moderate 

precipitation (0.1-20 mm/d). MSPs’ CSI range between 0.07-0.43 and HSS is 0.06-0.54, while the HSS of MSMPs varies 405 

between 0.58 to 0.6. In addition, the FB fluctuates greatly in light precipitation, with the lowest value of 0.34 for CHIRPS and 

the largest value of 2.09 for PERCDR (Fig. 6e). The MSMPs show the best FB values of 0.85. The accuracy begins to decrease 

when precipitation intensity is above 20mm/d (i.e., heavy and violent precipitation). For violent precipitation (> 50mm/d), the 

accuracy reduction of MSMPs and Kriging is relatively tiny compared with original MSPs. MSMPs have the highest POD 

(0.39-0.4), CSI (0.33), and HSS (0.47). However, the FAR and precision show a different trend with better accuracy in violent 410 

precipitation than in moderate and heavy precipitation (Fig. 6b, d). In addition, although the POD of ERA5L and Kriging 

outperform MSMPs in whole events, they are inferior to MSMPs in moderate, heavy, and violent precipitation. Generally, 

XGBoost and RF models are slightly superior to GBDT when dividing precipitation thresholds (Fig. 6a). Kriging exhibits 

better performance than most original MSPs. Nevertheless, it is only based on gauge observations and does not combine other 

climate variables associated with precipitation processes. When MSPs, gauge, and multiple covariates are considered, the 415 

MSMPs are more accurate than Kriging. 

4.2 Evaluation the precipitation amounts of MSMPs  

To explore the accuracy of precipitation amounts of MSMPs. Five statistical metrics (RMSE, KGE, and its components: 

CC, β, and γ) are employed to compare original MSPs and Kriging with PGBDT2, PXGB2, and PRF2 based on daily 

observations. According to comparison results (Fig. 7, Table 4), the MSMPs perform better than all original MSPs. The KGE 420 

of MSPs has been improved by 15-85% in the whole period (Fig. 7a). The KGE is 0.74-0.76 for MSMPs, 0.62 for Kriging, 

and 0.34-0.66 for MSPs. MSMPs have a strong correlation with gauge observations in the warm season (CC: 0.83), cold season 

(CC: 0.9), and the whole period (CC: 0.85) (Fig. 7b), which is substantially better than MSPs (warm:0.45-0.75; cold: 0.45-

0.83; whole: 0.47-0.76). In addition, the β shows that all MSPs and Kriging overestimate precipitation amounts (Fig. 7c). This 

overestimation is more prominent in the cold season, with values ranging between 5%-38%. In contrast, MSMPs show 425 

significant improvements and obtain better skills in all seasons. Although GSMaP and CMORPH have better performance than 

PRF2 during the warm season and whole period, they suffer from a large magnitude of overestimation (Kriging: 6%, 

CMORPH:13%) in the cold season. In terms of γ, the average variability ratio of CHIRPS, CMORPH, and IMERG is more 

consistent with 1 than MSMPs (Fig. 7d). However, they show more discreteness, particularly for CHIRPS. In comparison, the 

distribution of MSMPs values is more compact. The results indicate that MSMPs can merge the complementary advantages 430 

of original data and reduce errors to a large extent, especially in the cold season. For RMSE (Fig. 7e), the values in the warm 

season are higher than that in the cold season. This is because precipitation is mainly concentrated in the warm season, and 

higher precipitation amounts often lead to larger RMSE. The RMSE for MSMPs decreases by 16 - 52% compared with original 
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MSPs (4.99 - 8.85mm/d). Among MSMPs, PXGB2 exhibits the smallest RMSE with a value of 4.2 mm/d.  

 435 

Figure 7. Boxplots of five statistical metrics (CC, RMSE, KGE, β, and γ) for ten products.  

Table 4. The average values of statistic metrices of multiple products compared with gauge observations during whole period (The 

unit of RMSE is mm/d). 

Metrics CHIRPS CMORPH PERCDR GSMaP IMERG ERA5L Kriging PGBDT2 PXGB2 PRF2 

KGE 0.41 0.58 0.34 0.66 0.64 0.48 0.62 0.76 0.76 0.74 
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CC 0.47 0.66 0.51 0.76 0.71 0.66 0.78 0.85 0.85 0.85 

β 1.09 1.05 1.14 1.02 1.09 1.2 1.07 1.02 1.03 1.06 

γ 1.1 0.95 0.71 0.82 0.9 0.74 0.78 0.85 0.84 0.83 

RMSE  8.85 6.29 7.22 4.99 5.94 6.36 4.81 4.22 4.20 4.22 

Note: the values in bold are the best performing of each metric. 

 440 

Figure 8. Spatial distribution of RMSE (a-c) and KGE (d-e) for GSMaP (a, d), Kriging (b, e), and PXGB2 (c,f) in the whole period 

from 2000-2017 using independent rain gauges over mainland China. 

Fig.8 illustrates the spatial distribution of RMSE and KGE for GSMaP, Kriging, and PXGB2 in the whole period. The 

reason for showing only these three products is that they perform better among original products and MSMPs. The spatial 

comparison among them is more representative and brevity. The RMSE gradually increases from north to south, which is 445 

consistent with the precipitation change pattern (Fig. 8a). The PXGB2’s RMSE in south China has better performance than 
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Kriging and GSMaP. For PXGB2, approximately 48% of the gauges have RMSE less than 4 mm/d. The percentage of gauges 

with RMSE higher than 8 mm/d is 14% for GSMaP, 8% for Kriging, and 4% for PXGB2. In addition, the spatial distribution 

of KGE shows that the low values are mainly gathered in the northwest (Fig. 8d-f). About 36% of the gauges with KGE higher 

than 0.8 for PXGB2, while only 15% for GSMaP and 30% for Kriging. The PXGB2 improves KGE performance over the 450 

northwest region and narrows the gap between the southeast and northwest regions. These results indicate that the two-step 

merging approach could mitigate the spatial variability of products and is less susceptible to topography. 

4.3 Variable importance of ML models 

The variable importance can quantitatively explain their contribution to improving model accuracy and recognize crucial 

input variables. The permutation feature importance is utilized to calculate variable importance values of models. The basic 455 

idea of this method is to randomly shuffle the order of a specific variable while keeping other variables unchanged and compute 

the accuracy difference (the evaluation metric is Accuracy for the classification model, mean squared error for the regression 

model) with the original model. As shown in Fig. 9, the importance of variables for GBDT, XGBoost, and RF and their ranks 

are different, which is related to the inherent structure of each model. This phenomenon also exists between classification and 

regression models. Nonetheless, KP is always the most important variable in each model, proving that the Kriging_based 460 

predictor considering the spatial autocorrelation between rain gauges is pretty helpful to improve model efficiency. For all 

models, the top three variables in importance are KP, GSMaP, and IMERG. The CMORPH, PERCDR, ERA5L, and 

temperature is considered next significant. The importance of ERA5L and temperature in XGBoost and RF classification 

models is more obvious than that in regression models. Additionally, longitude, latitude, DEM, cloud cover, and relative 

humidity exhibit relatively low influence on precipitation merging. The impacts of CHIRPS, soil moisture, and wind speed on 465 

prediction results are negligible. However, this does not mean that these predictors are not important for precipitation in whole 

regions. The slight importance of the latter variables may be affected by data quality and the correlation degree with 

precipitation. For example, CHIRPS is the worst performance product among original MSPs. Overall, it is necessary to employ 

multiple covariables in classification and regression models since complex precipitation processes cannot be thoroughly 

described by a single variable. 470 



23 

 

 

Figure 9. Permutation feature importance of three (GBDT, XGBoost, and RF) classification models (a-c) and three 

regression model (d-f) in the warm season (LAT is latitude, LON is longitude, RH is relative humidity, SM is soil 

moisture, TEM is temperature, and WS is wind speed). 

5 Discussion 475 

5.1 Comparison of the different merging strategies 

From the aspect of merging processes, different models and training samples could affect the accuracy of the integrated 

dataset. Therefore, three additional merging scenarios are considered for quantitative comparison with the proposed strategy 

to highlight the impact of samples’ division and algorithm selection on fusion results. Fig. 10 gives a brief overview of four 

scenarios and their corresponding merged precipitation products. Scenario1 is the method adopted in this study; scenario 2 480 

separately trains model in each season based on four regression models (GBDT, XGBoost, RF, and MLR), the corresponding 

results are PGBDT_R, PXGB_R, PRF_R, and PMLR; scenario3 applies classification and regression models during the entire 

period, the results are PGBDT_E, PXGB_E, and PRF_E; while scenario4 solely employs four regression models during the 

entire period, the results are PGBDT_ER, PXGB_ER, PRF_ER, and PMLR_ER.  

 485 
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Figure 10. Four scenarios with different sample periods and different models 

Fig. 11 shows the evaluation results (CC, CSI, KGE, FB, and HSS) of four scenarios between 14 MSMPs and independent 

gauge observations. The performance of scenario1 is apparently better than other scenarios. For scenarios2, although the 

statistical metrics (CC and KGE) are only slightly worse than scenario1, the categorical metrics (CSI, FB, and HSS) are 490 

considerably weakened. In the whole period (Fig. 11a), the HSS is between 0.64-0.68 for scenario2, much lower than 0.79-0.8 

for scenario1. Moreover, the FB of scenario2 is larger than 1.38 (Fig. 11a), indicating that the number of precipitation events 

have been overestimated. A similar phenomenon also occurs in warm and cold seasons (Fig. 11b, c). Meanwhile, the MLR 

performs worse than the three ML models. The results of scenario2 demonstrate that only relying on regression models to 

merge precipitation can describe precipitation intensity but not capture precipitation occurrence well. In terms of scenario3, 495 

the overall performance is superior to scenario2 but inferior to scenario1. The CSI (Fig. 11c) for scenario1 and scenario3 range 

from 0.73-0.74 and 0.70-0.72, respectively. Scenario3 suggests that merging precipitation in different seasons could balance 

the performance differences within a year. Scenario4 shows the worst performance regardless of season, with poor CSI, FB, 

and HSS. Especially for the PMLR-ER dataset, its accuracy is even worse than GSMaP and Kriging. This is because MLR is 

difficult to describe the complex relationship between precipitation and other variables. The four scenarios can be ranked by 500 

prediction accuracy from best to worst: Scenario1 > Scenario3 > Scenario2 > Scenario4. The approach (i.e., Scenario1) 

employed in this study is proved to be more accurate than other traditional strategies. 
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 505 

Figure 11. Five evaluation metrics (CC, CSI, KGE, FB, and HSS) for different products under four scenarios during the whole 

period, warm season, and cold season. 

5.2 Models efficiency  

The GBDT, XGBoost, and RF models show similar improvements in the two-step merging strategy. Nevertheless, 

different models have their inherent advantages and disadvantages. There is an apparent disproportion between positive and 510 

negative samples (wet and dry days) when training the classification model, which directly impacts the model’s classification 

accuracy. In this study, the proportion of positive and negative samples in the cold season is approximately 1: 3.2. In terms of 

this imbalance problem, RF and XGBoost algorithms have built-in parameters to adjust. However, GBDT requires additional 

oversampling methods such as the Synthetic Minority Over-sampling Technique (SMOTE) method to solve, which increases 

the complexity of model training. Meanwhile, it can be inferred from the results of Table 3, Fig. 5, and Fig. 11 that the FB of 515 

XGBoost outperforms RF in all seasons, indicating XGBoost has better equilibrium ability for disproportional samples. In 

addition, Fig. 12 displays the computational costs of training for three models under different sample sizes. The result exhibits 

that the training time of GBDT and RF is much higher than XGBoost, which is mainly related to the model structure and 

parallel training. XGBoost parallels the feature granularity rather than the tree granularity. The most time-consuming part of 

decision tree learning is sorting feature values to determine the optimal split node. XGBoost ranks the values before training 520 

and then saves them into a block structure, which is repeatedly used in subsequent iterations. In this way, the training time 
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could be vastly reduced (Chen et al., 2016; Wang et al., 2019). Therefore, considering the complexity, accuracy, and 

computational costs of the model, XGBoost is an optimal choice for predicting daily precipitation over China. 

 

Figure 12. Comparison of computation time of three ML classification models. 525 

5.3 The influence of gauge density and spatial resolution 

The density of rain gauges could influence the performance of the merged product as well as the gauge-based 

interpolated product. Gauges with different densities are used to train model and interpolation, including 10%, 30%, 

50%, and 70% of total gauges. Fig. 13 shows the higher gauge density leads to the better performance of the merged and 

interpolated products. However, PXGB2 is less affected by the density than Kriging. The decreased magnitude of 530 

Kriging’s accuracy is more significant than PXGB2’s as the gauge number is reduced. For instance, the deterioration of 

the KGE is 0.04 for PXGB2 (0.76 to 0.72) but 0.32 for Kriging (0.63 to 0.31), which is also smaller than Baez-Villanueva 

et al. (2020) and Zhang et al. (2021). The precipitation capture efficiency of PXGB2 decreases slightly and always shows 

a better performance. The CSI and HSS of PXGB2 vary from 0.73-0.76 and 0.77-0.79, respectively. The FB is relatively 

stable under different gauge numbers. In addition, even gauge density is reduced to 10% (237 gauges, i.e., 40,000 km2 535 

per gauge), PXGB2 also outperforms Kriging at 70% (1680 gauges) and the best original MSPs (i.e., GSMaP). In 

comparison, the performance of Kriging is inferior to GSMsP when gauge density is less than 50%, especially at 10%, 

which shows the gauge-based interpolation method is more suitable for gauge density regions and could lead to 

considerable uncertainties in low gauge density regions. In general, these results demonstrate that the proposed method 

is effective and robust, and it is expected to be applied to improve precipitation accuracy in areas with scarce data.   540 
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Fig. 13 Performance of PXGB2 and Kriging products using training dataset with different rain gauge densities (10%, 30%, 50, 70%). 

The dotted orange line shows the average of the best original product (GSMaP). The gray dotted line in (f) represents the reference 

line with a value of 1.  

 545 

Fig. 14 The performance (KGE and CSI) of PXGB2 prepared MSPs with different spatial resolutions (0.05°, 0.1°, and 0.25°) 

during the whole period, warm season, and cold season. 

This study uses a simple interpolation method to resample products to keep a consistent spatial resolution and avoid 

additional uncertainties, as many previous studies have done (Chao et al., 2018; Zhang et al., 2020; Baez-Villanueva et 
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al., 2020; Wu et al., 2020; Wang et al., 2020; Hong et al., 2021). Fig. 14 shows the performance of PXGB2 obtained by 550 

training models with precipitation products under different spatial resolutions (0.05°, 0.1°, and 0.25°). It demonstrates 

that there are only slight differences between various resolutions during the whole period as well as warm and cold 

seasons, which is consistent with the previous study (Baez-Villanueva et al., 2020). Therefore, it can be considered that 

unifying the spatial resolution of all products to 0.1° has a negligible impact on the merging results in this study. 

5.4 Comparison with the previous studies 555 

The study combines classification and regression models to improve the accuracy of MSPs, which pays special 

attention to optimizing precipitation detection ability and reducing the error caused by missed and false alarms. This 

research has made significant progress based on the achievements that previous studies have been done. In terms of 

precipitation occurrence, the classification accuracy (91.8%) is better than the ANN model (86.5%) applied by Xiao et 

al. (2020) and the RF model (77.5%) employed by Pham et al. (2019). The POD of MSMPs is lower than GSMaP and 560 

ERA5L, which is similar to Xiao et al. (2020). In addition, Yin et al. (2021) improved the CC of the original product by 

11% and RMSE by 7% over China, which is slightly inferior to the improvement of this study (CC and RMSE improved 

12% and 16%, respectively). Furthermore, the overall performance of MSMPs is substantially better and could provide 

more accurate precipitation information for hydrological research. The CC of MSMPs is up to 0.85, much higher than 

0.78 in Zhang et al. (2021), 0.61 in Yin et al. (2021), and 0.72 in Wu et al. (2020) over China. Although the validation 565 

method and period vary in different studies, their conclusions still have reference value. The outperformance of this 

study is mainly due to the consideration of precipitation products from multiple sources, environmental variables, and 

relatively higher gauge density. Most importantly, the spatial autocorrelation considered in this study plays an important 

role in the merging process. Compared with considering spatial distance (Baez-Villanueva et al. (2020), geographical 

coordinates, and spatial correlation (Zhang et al., 2021), it can not only describe spatial autocorrelation between gauges 570 

but also between rain gauges and predicted points. In addition, some previous studies based on statistical methods were 

complex and difficult to reproduce for researchers in other fields (Yang et al., 2017; Ma et al., 2021; Yin et al., 2021). 

For instance, Yang et al. (2017) combined the MSPs and gauges by bias correction, gauge observation gridding, and data 

merging. In comparison, the proposed method only relies on ML and does not involve other statistical methods, which 

is easy to implement and has strong transferability. 575 

5.5 Limitation and uncertainties 

Although this proposed merging strategy has achieved outstanding performance, some issues still need to be discussed 

and further improved in future studies. The gauge observations are taken as the reference in model training and evaluation. 

However, it suffers from uncertainties induced by diverse climates, complex topography, and measuring instruments (Ma et 
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al., 2015; Lei et al., 2021). These uncertainties are more obvious in the gauges located in snow and glacier coverage regions 580 

and would be propagated to merged precipitation results. Moreover, gauges at high altitudes are sparsely distributed and have 

strong spatial heterogeneity, making it challenging to describe precipitation distribution accurately. In future studies, the input 

datasets could be divided into more groups according to different terrain or altitude zones, and precipitation data in high altitude 

regions could be corrected by combining topographic factors, snowfall, and glacier mass balance data to mitigate their 

uncertainties.  585 

This study assumes that the rain gauge represents the areal precipitation pattern in its corresponding grid, but this 

assumption is not fully satisfied in practical application, especially in the Tibetan Plateau. This spatial scale mismatch 

problem between precipitation gridded and single gauge observations could be alleviated by downscaling coarse products 

to a finer resolution. Some studies have downscaled all products before merging them with gauge observations (Chen et 

al., 2018; Chen et al., 2021). However, downscaling daily precipitation is challenging because it is difficult to describe 590 

the relationship between precipitation and environmental variables (Chen et al., 2021). More effective downscaling 

algorithms are worth exploring in the future. 

Due to the limitation of gauge observations, the benchmark and MSPs used in this study are not near-real-time products. 

The merged products are more suitable for studying hydrometeorological changes in long time series than in the middle or 

short term. Multi-source precipitation products with near real-time and finer temporal resolution can be continuously merged, 595 

such as IMERG Early Run and GSMaP_NRT, to improve the accuracy of precipitation for flood prediction if rain gauges are 

available. In addition, although the trained model has spatial transferability, there is uncertainty when applied to precipitation 

prediction outside the training period.  

6 Conclusion 

This study proposes a two-step merging strategy including GBDT, XGBoost, and RF classification and regression 600 

algorithms to merge multi-sources precipitation products, multiple environment variables, and rain gauges from 2000 to 2017 

over China. The performance of three merged products (MSMPs) is validated based on 692 randomly selected independent 

gauges and compared with original MSP, Kriging, and other traditional merging scenarios (e.g., ML regression and MLR). 

Several statistical and categorical metrics are employed to quantitatively describe the precipitation detection capability and 

precipitation uncertainties. The main findings of this study can be concluded as follows: 605 

(1) The precipitation capture ability of MSPs has been substantially improved. The MSMPs are better than all original 

MSPs and Kriging regardless of the precipitation intensity. The CSI for MSPs and Kriging is 0.30-0.65 and 0.66, 

while MSMPs are increased to 0.75-0.76. The HSS has also been improved by 21-166 % (0.79-0.8) compared with 

MSPs (0.30-0.66). 
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(2) The statistical biases of precipitation amounts induced by hit events are obviously alleviated. The improvement of 610 

CC, KGE, and RMSE is 12-81%, 15-85%, and 16-52%, respectively. The spatial difference in precipitation accuracy 

between northwest and southeast China is also narrowed. 

(3) It is essential to incorporate spatial autocorrelation in the merging strategy. Kriging-based predictor (KP) is the most 

important covariable in precipitation merging, followed by GSMaP, IMERG, and ERA5L. The degree of importance 

for covariables in models also relates to their inherent accuracy. 615 

(4) Compared with traditional MLR and ML regression models, the proposed method in this study has superior 

performance in all aspects. Meanwhile, the MSMPs predicted by considering annual precipitation characteristic 

distribution are better than those in the whole period. 

(5) The higher gauge density used in model training could lead to a better performance of the proposed method. However, 

this method could also remarkably improve original products even with few gauges. 620 

(6) The comprehensive ability of RF and XGBoost is slightly better than GBDT. Considering the computation efficiency, 

it is more recommended to use XGBoost to prepare merged precipitation products. 

The two-step merging strategy proposed in this study achieves satisfactory performance over China. It is robust and 

efficient in such a region characterized by complex terrain, variable climate, and uneven distribution of gauges. Therefore, this 

method has great referential significance and can also achieve excellent results when applied in other regions and countries. 625 
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Appendix A:  The number and location of stations used in GPCC over China 

 

Fig. S1 The number and location of stations used in GPCC over China 640 

From the latest GPCC dataset, the number of China’s International Exchange Stations used in GPCC has fluctuated between 

360-370 (In Fig. S1, the number is 362 July 2015), which has increased in recent years. Before 2017, only about 200 China’s 

stations are used in GPCC. Despite the use of these stations, satellite precipitation products are corrected based on monthly 

GPCC, making it insufficient to improve daily performance. 

Appendix B:  Comparison of different semivariogram models 645 

The widely used semivariogram models include: spherical, exponential, Gaussian, power, and linear. We have discussed 

the different of the Kriging_based prediction (KP) based on five semivariogram models. The expresses of five models 

as follows: 

(1) Spherical model: 

𝛾(ℎ) = {

 
0                                                     ℎ = 0

𝐶0 + 𝐶 (
3

2
⋅

𝑏

𝑎
−

1

2
⋅

𝑏3

𝑎3)          0 < ℎ ≤ 𝑎

𝐶0 + 𝐶                                            ℎ > 𝑎

        (S1)                                             650 

(2) Exponential model: 

𝛾(ℎ) = {

 
0                                                     ℎ = 0

𝐶0 + 𝐶 (1 − exp (
−ℎ

𝑟
))           ℎ > 0

          (S2) 

where (h) is semivariogram, h is the distance, C0, C, and a is the nugget, sill, and range, respectively.  

(3) Gaussian model: 
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𝛾(ℎ) = {

 
0                                                     ℎ = 0

𝐶0 + 𝐶 (1 − exp (
ℎ2

𝑟2))           ℎ > 0
        (S3) 655 

where the range is √3
2

𝑎 

(4) Power model: 

𝛾(ℎ) =
 

ℎ𝑎          0 < 𝑎 ≤ 2                       (S4) 

(5) Linear model: 

𝛾(ℎ) = {

 
0                                                     ℎ = 0

𝐶0 + 𝐶 (
ℎ

𝑎
)                             0 < ℎ ≤ 𝑎

𝐶0 + 𝐶                                            ℎ > 𝑎

       (S5) 660 

In order to compared the performance of the five semivariogram models, the Kriging_based predictions (KP) of total 

2372 gauges are estimated and validated. The accuracy of KP will directly influence the model training and merging 

results. The evaluated results of different model are show in Table R1. 

Table S1 The performance of KPs estimated from five models 

Metrics Spherical Exponential Gaussian Power Linear 

CC 0.806  0.810  0.782  0.799  0.803  

RMSE 4.530  4.486  4.862  4.625  4.582  

RB 0.028  0.032  0.044  0.040  0.006  

FAR 0.276  0.284  0.269  0.302  0.282  

POD 0.931  0.943  0.895  0.942  0.937  

CSI 0.688  0.687  0.674  0.670  0.685  

KGE 0.692  0.685  0.684  0.661  0.675  

β 1.028  1.032  1.044  1.040  1.006  

γ 0.830  0.816  0.876  0.798  0.814  

precision 0.724  0.716  0.731  0.698  0.718  

HSS 0.708  0.706  0.696  0.686  0.705  

Note: the values in bold represent the best performing values.  665 

It can be seen from Table R1 that the overall performance of five models is good. The performance of spherical model 

shows the best CC, RMSE, and RB. The exponential model shows the best CSI, KGE, precision, HSS. The difference 

of semivariogram models is relatively small and the spherical model with slight better performance is adopted in this 

study.  

 670 
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Appendix C:  Model parameters 

Table S2 The optimal parameters of RF model training 

 Period  n_estimators max_depth min_samples_split 

classification 
warm 150 60 7 

cold 150 default 7 

regression 
warm 200 default 10 

cold 200 70 4 

 

Table S3 The optimal parameters of GBDT model training 

 Period  n_estimators max_depth learning_rate 

classification 
warm 100 9 0.2 

cold 100 7 0.4 

regression 
warm 100 10 0.1 

cold 200 9 0.1 

 675 

Table S4 The optimal parameters of XGBoost model training 

 Period  n_estimators max_depth learning_rate scale_pos_weight 

classification 
warm 100 10 0.2 1.1 

cold 150 10 0.2 1.2 

regression 
warm 300 10 0.05 1 

cold 150 9 0.1 1 

 

 

References 

Ajaaj, A. A., Mishra, A., Khan, A. A.: Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. 680 

Stochastic environmental research and risk assessment 30.6 (2016): 1659-1675, 2016. 

Arshad, A., Zhang, W., Zhang, Z., Wang, S., Shalamzari, M. J.: Reconstructing high-resolution gridded precipitation data using 

an improved downscaling approach over the high altitude mountain regions of upper Indus basin (UIB), Sci. Total Environ., 

784, 147140, https://doi.org/10.1016/j.scitotenv.2021.147140, 2021. 

Ashouri, H., Hsu, K.L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., Cecil, L.D., Nelson, B.R., Prat, O.P.: PERSIANN-685 

CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, Bull. 

Amer. Meteor. Soc., 96, 69-83, http://dx.doi.org/10.1175/BAMS-D-13-00068.1, 2015. 

Awange, J. L., Hu, K. X., Khaki, M.: The newly merged satellite remotely sensed, gauge and reanalysis-based multi-source 

weighted-ensemble precipitation: evaluation over Australia and Africa (1981–2016), Sci. Total Environ., 670, 448-465, 

https://doi.org/10.1016/j.scitotenv.2019.03.148, 2019. 690 



34 

 

Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Beck, H.E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., 

Giraldo-Osorio, J.D., Xuan Thinh, N.: RF-MEP: A novel Random Forest method for merging gridded precipitation products 

and ground-based measurements, Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606, 2020. 

Bhuiyan, E., Abul, M., Nikolopoulos, E. I., Anagnostou, E. N.: Machine learning–based blending of satellite and reanalysis 

precipitation datasets: A multiregional tropical complex terrain evaluation, J. Hydrometeorol., 20(11): 2147-2161, 2019. 695 

Bhuiyan, M., Nikolopoulos, E. I., Anagnostou, E. N., P Quintana-Seguí, Barella-Ortiz, A.: A nonparametric statistical 

technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula. 

Hydrol. Earth Syst. Sci., 22(2), 1371-1389, https://doi.org/10.5194/hess-22-1371-2018, 2018. 

Breiman, L.: Arcing the edge, Statistics Department, University of California at Berkeley, Tech. Rep. 486, 1997. 

Breiman, L.: Random forests. Mach. Learn. 45, 5–32, 2001. 700 

Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J., Yu, Z.: Geographically weighted regression based methods for merging satellite 

and gauge precipitation, J. Hydrol., 558, 275-289, https://doi.org/10.1016/j.jhydrol.2018.01.042, 2018. 

Chen, C., Hu, B., Li, Y.: Easy-to-use spatial Random Forest-based downscaling-calibration method for producing high 

resolution and accurate precipitation data, Hydrol. Earth Syst. Sci., https://doi.org/10.5194/hess-2021-332, 2021. 

Chen, S., Xiong, L., Ma, Q., Kim, J., Chen, J., Xu, C.: Improving daily spatial precipitation estimates by merging gauge 705 

observation with multiple satellite-based precipitation products based on the geographically weighted ridge regression method, 

J. Hydrol., 589: 125156, 2020. 

Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. 785-794, 2016. 

Chen, Y., Huang, J., Sheng, S., Mansaray, L. R., Liu, Z., Wu, H., Wang, X.: A new downscaling-integration framework for 710 

high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-derived precipitation data and 

geographical ancillary data. Remote Sens. Environ., 214, 154-172, 2018. 

Collischonn, B., Collischonn, W., Carlos, E., Morelli, T.: Daily hydrological modeling in the Amazon basin using TRMM 

rainfall estimates, J. Hydrol., 360, 207–216, https://doi.org/10.1016/j.jhydrol.2008.07.032, 2008. 

Duan, Z., Bastiaanssen, W.G.M.: First results from Version 7 TRMM 3B43 precipitation product in combination with a new 715 

downscaling–calibration procedure. Rem. Sens. Environ. 131, 1–13, 2013. 

Friedman, J.H.: Stochastic gradient boosting, Comput. Stat. Data An., 38, 367–378, https://doi.org/10.1016/S0167-

9473(01)00065-2, 2002. 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., 

Michaelsen, J.: The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes, 720 

Sci. Data 2, 1–21. https://doi.org/10.1038/sdata.2015.66, 2015. 



35 

 

Ghorbanpour, A. K., Hessels, T., Moghim, S., Afshar, A.: Comparison and assessment of spatial downscaling methods for 

enhancing the accuracy of satellite-based precipitation over Lake Urmia Basin, J. Hydrol.,596, 126055. 

https://doi.org/10.1016/j.jhydrol.2021.126055, 2021. 

He, X., Chaney, N., Schleiss, M., Sheffield, J.: Spatial downscaling of precipitation using adaptable random forests, Water 725 

Resour. Res., 52, 8217–8237, https://doi.org/10.1002/2016WR019034, 2016. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, 

D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, 

G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., 

Healy, S., Hogan, R.J., H´olm, E., Janiskov´a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, 730 

I., Vamborg, F., Villaume, S., Th´epaut, J.-N.: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 (730), 1999–2049, 

2020 

Ho, T. K.: The Random Subspace Method for Constructing Decision Forests (PDF), IEEE. T. Pattern. Anal., 20 (8): 832–844. 

https://doi.org/10.1109/34.709601, 1998. 

Hong, Z., Han, Z., Li, X., Long, D., Wang, J.: Generation of an improved precipitation data set from multisource information 735 

over the Tibetan plateau. J. Hydrometeorol., https://doi.org/10.1175/JHM-D-20-0252.1, 2021. 

Hsu, K. L., Gao, X., Sorooshian, S., Gupta, H.: Precipitation Estimation from Remotely Sensed Information Using Artificial 

Neural Networks, J. Appl. Meteorol. 36(9), 1176–1190. https://doi.org/10.1175/1520-

0450(1997)036<1176:PEFRSI>2.0.CO;2, 1997. 

Huffman, G.J., Bolvin, D.T., Nelkin, E.J. et al.: Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical 740 

Documentation. https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_doc.06.pdf, 2019. 

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., et al.: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, 

Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, J. Hydrometeorol. 8 (1), 38–55. 

https://doi.org/10.1175/JHM560.1, 2007. 

Jia, S., Zhu, W., Lű, A., Yan, T.: A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM 745 

in the Qaidam Basin of China, Remote Sens. Environ., 115(12), 3069-3079. https://doi.org/0.1016/j.rse.2011.06.009, 2011. 

Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., Wang, J.: Evaluation of the ERA5 reanalysis precipitation 

dataset over Chinese Mainland. J. Hydrol., 595, 125660, 2021. 

Jiang, S., Ren, L., Yang, H., Yong, B., Yang, X., Fei, Y., Ma, M.: Comprehensive evaluation of multi-satellite precipitation 

products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model 750 

averaging method, J. Hydrol., 452-453. http://dx.doi.org/10.1016/j.jhydrol.2012.05.055, 2012. 

Joyce, R., Janowiak, J., Arkin, P., Xie, P.: CMORPH: A Method that Produces Global Precipitation Estimates from Passive 



36 

 

Microwave and Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol., 5 (3), 487–503, 

https://doi.org/10.1175/1525-7541(2004) 005<0487:CAMTPG>2.0.CO;2, 2004. 

Katiraie-Boroujerdy, P. S., Rahnamay Naeini, M., Akbari Asanjan, A., Chavoshian, A., Hsu, K., Sorooshian, S.: Bias correction 755 

of satellite-based precipitation estimations using quantile mapping approach in different climate regions of Iran, Remote Sens., 

12(13): 2102, 2020. 

Kubota, T., Shige, S., Hashizume, H., Aonashi, K., Takahashi, N., Seto, S., Hirose, M., Takayabu, Y.N., Ushio, T., Nakagawa, 

K., Iwanami, K., Kachi, M., Okamoto, K.: Global precipitation map using satellite-borne microwave radiometers by the 

GSMaP project: production and validation. IEEE Trans. Geosci. Remote Sens., 45 (7), 2259–2275. 760 

https://doi.org/10.1109/TGRS.2007.895337, 2007. 

Kumar, A., Ramsankaran, R., Brocca, L., Munoz-Arriola, F.: A machine learning approach for improving near-real-time 

satellite-based rainfall estimates by integrating soil moisture, Remote Sens., 11(19), 2221-, https://doi.org/10.3390/rs11192221, 

2019. 

Le, X. H., Lee, G., Jung, K., An, H. U., Lee, S., Jung, Y.: Application of convolutional neural network for spatiotemporal bias 765 

correction of daily satellite-based precipitation, Remote Sens., 12(17), 2731, 2020. 

Lei, H., Li, H., Zhao, H., Ao, T., Li, X.: Comprehensive evaluation of satellite and reanalysis precipitation products over the 

eastern Tibetan plateau characterized by a high diversity of topographies, Atmos. Res., 259, 

https://doi.org/10.1016/j.atmosres.2021.105661, 2021. 

Lei, H., Zhao, H., Ao, T.: Ground validation and error decomposition for six state-of-the-art satellite precipitation products 770 

over mainland China. Atmos. Res., 106017, 2022. 

Lu, X., Tang, G., Wang, X., Liu, Y., Wei et al., Zhang, Y.: The development of a two-step merging and downscaling method 

for satellite precipitation products, Remote Sens., 12(3): 398, 2020. 

Ma, Y., Sun, X., Chen, H., Hong, Y., Zhang, Y., 2021: A two-stage blending approach for merging multiple satellite precipitation 

estimates and rain gauge observations: An experiment in the northeastern Tibetan Plateau, Hydrol. Earth Syst. Sci., 25(1), 359-775 

374. 

Ma, Y., Yang, H., Yang, C., Yuan, Y., Tang, G., Yao, Y., Di, L., Li, C., Han, Z., Liu, R.: Performance of optimally merged 

multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan plateau. J. Geophys. 

Res.-Atmos., 123, https://doi.org/10.1002/2017JD026648, 2017. 

Ma, Y., Zhang, Y., Yang, D., Farhan, S.: Precipitation bias variability versus various gauges under different climatic 780 

conditions over the Third Pole Environment (TPE) region. Int. J. Climatol. 35 (7) https://doi.org/10.1002/joc.4045, 2015. 

Manz, B., Buytaert, W., Zulkafli, Z., Lavado, W., Willems, B., Robles, L. A., Rodríguez‐Sánchez, J. P.: High‐resolution 

satellite‐gauge merged precipitation climatologies of the Tropical Andes. J. Geophys. Res-Atmos., 121(3), 1190-1207, 2016. 



37 

 

Nerini, D., Zulkafli, Z., Wang, L.P., Onof, C., Buytaert, W., Lavadocasimiro, W., Guyot, J: A comparative analysis of TRMM-

rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications, J. 785 

Hydrometeorol. 16, 2153–2168, https://doi.org/10.1175/JHM-D-14-0197.1, 2015. 

Nguyen, G. V., Le, X. H., Van, L. N., Jung, S., Yeon, M., Lee, G.: Application of Random Forest Algorithm for Merging 

Multiple Satellite Precipitation Products across South Korea, Remote Sens., 13(20), 4033, https://doi.org/10.3390/rs13204033, 

2021. 

Nie, S., Luo, Y., Wu, T., Shi, X., Wang, Z.: A merging scheme for constructing daily precipitation analyses based on objective 790 

bias-correction and error estimation techniques. J. Geophys. Res.-Atmos., 120, 8671–8692, 2015. 

Pham, Q. B., Yang, T. C., Kuo, C. M., Tseng, H. W., Yu, P. S.: Combing random forest and least square support vector regression 

for improving extreme rainfall downscaling, Water, 11(3), 451, https://doi.org/10.3390/w11030451,2019. 

Piani, C., Haerter, J., Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe. 

Theor Appl Climatol 99:187–192, 2010a. 795 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., 

Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. 

Soc., 85(3), 381-394. https://doi.org/10.1175/BAMS-85-3-381, 2004. 

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J. P.: An assessment of the effectiveness of 

a random forest classifier for land-cover classification, ISPRS J. Photogramm., 67, 93-104, 800 

https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012. 

Sharifi, E., Saghafian, B., Steinacker, R.: Downscaling satellite precipitation estimates with multiple linear regression, artificial 

neural networks, and spline interpolation techniques, Geophys. Res.-Atmos., 124, 789–805. 

https://doi.org/10.1029/2018JD028795, 2019. 

Sharifi, E., Steinacker, R., Saghafian, B.: Assessment of GPM‐IMERG and other precipitation products against gauge data 805 

under different topographic and climatic conditions in Iran: Preliminary results, Remote Sens., 8(2), 135. 

https://doi.org/10.3390/rs8020135, 2016. 

Shen, Y., Pan, Y., Yu, J., Zhao, P., Zhou, Z.: Quality assessment of hourly merged precipitation product over China. Trans. 

Atmos. Sci. 36 (1), 37–46. https://doi.org/10.13878 /j.cnki.dqkxxb.2013.01.005 (in Chinese), 2013. 

Shen, Y., Xiong, A., Hong, Y., Yu, J., Pan, Y., Chen, Z., Saharia, M.: Uncertainty analysis of five satellite-based precipitation 810 

products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote. Sens, 

35(19), 6843–6858, 2014. 

Shen, Y., Xiong, A., Wang, Y., Xie, P.: Performance of high resolution satellite precipitation products over China. J. Geophys. 

Res.: Atmos. 115, 2010. 

https://doi.org/10.3390/w11030451,2019


38 

 

Shen, Z., Yong, B.: Downscaling the GPM-based satellite precipitation retrievals using gradient boosting decision tree 815 

approach over Mainland China, J. Hydrol., 602, 126803, https://doi.org/10.1016/j.jhydrol.2021.126803, 2021. 

Tan, J., Xie, X., Zuo, J., Xing, X., Liu, B., Xia, Q.: Coupling random forest and inverse distance weighting to generate climate 

surfaces of precipitation and temperature with multiple-covariates, J. Hydrol., 598(7), 126270, 

https://doi.org/10.1016/j.jhydrol.2021.126270, 2021. 

Tang, X., Yin, Z., Qin, G., Guo, L., Li, H.: Integration of Satellite Precipitation Data and Deep Learning for Improving Flash 820 

Flood Simulation in a Poor-Gauged Mountainous Catchment, Remote Sens., 13(24), 5083, 2021. 

Tao, Y., Gao, X., Hsu, K., Sorooshian, S., Ihler, A.: A deep neural network modeling framework to reduce bias in satellite 

precipitation products, J. Hydrometeorol., 160114111258006, https://doi.org/10.1175/JHM-D-15-0075.1, 2016. 

Tong, Y., Gao, X., Han, Z., Xu, Y., Xu, X., Giorgi, F.: Bias correction of temperature and precipitation over China for RCM 

simulations using the QM and QDM methods, Clim. Dynam., 2021, 57(5): 1425-1443, 2021. 825 

Wang, R., Lu, S., Li, Q.: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption 

for residential buildings, Sustain. Cities Soc., 49, 101623, https://doi.org/10.1016/j.scs.2019.101623, 2019. 

Wehbe, Y., Temimi, M., Adler, R. F.: Enhancing precipitation estimates through the fusion of weather radar, satellite retrievals, 

and surface parameters, Remote Sens., 12(8): 1342, 2020. 

World Meteorological Organization (WMO): Guide to Hydrometeorological Practices, 402, World Meteorological 830 

Organization Issue 168 of WMO (Series), 1965. 

Wu, H., Yang, Q., Liu, J., Wang, G.: A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China, 

J. Hydrol., 584, 124664, https://doi.org/10.1016/j.jhydrol.2020.124664, 2020. 

Wu, Z., Zhang, Y., Sun, Z., Lin, Q., He, H.: Improvement of a combination of TMPA (or IMERG) and ground-based 

precipitation and application to a typical region of the east China plain, Sci. Total Environ., 640-641(NOV.1), 1165-1175, 2018. 835 

Xiao, S., Zou, L., Xia, J.: Bias correction framework for satellite precipitation products using a rain/no rain discriminative 

model, Sci. Total Environ., https://doi.org/10.1016/j.scitotenv.2021.151679, 2021. 

Xie, P., and P. A. Arkin.: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and 

numerical model outputs, Bull. Am. Meteorol. Soc., 78, 2539–2558, 1997. 

Xie, P., Xiong, A.Y.: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses, J. 840 

Geophys. Res.- Atmos., 116(D21), https://doi.org/10.1029/2011JD016118, 2011. 

Xin, Y., Lu, N., Jiang, H., Liu, Y., Yao, L.: Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong 

Kong-Macao greater Bay Area, China. Journal of Hydrology, 602, 126791, 2021. 

Xu, J., Ma, Z., Yan, S., Peng, J.: Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation 

products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over 845 



39 

 

mainland China. Journal of Hydrology, 605, 127353, 2022. 

Xu, J., Ma, Z., Yan, S., Peng, J.: Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation 

products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over 

mainland China, J. Hydrol., 605: 127353, 2022. 

Xu, Q., Chen, J., Peart, M.R., Ng, C.N., Hau, B.C., Law, W.W.: Exploration of severities of rainfall and runoff extremes in 850 

ungauged catchments: a case study of Lai Chi Wo in Hong Kong, China, Sci. Total Environ. 634, 640–649. 

https://doi.org/10.1016/j.scitotenv.2018.04.024, 2018. 

Yang, X., Yang, S., Tan, M. L., Pan, H., Zhang, H., Wang, G., He, R., Wang, Z.: Correcting the Bias of Daily Satellite 

Precipitation Estimates in Tropical Regions Using Deep Neural Network, J. Hydrol., 127656, 2022. 

Yang, Z., Hsu, K., Sorooshian, S., Xu, X., Dan, B., Yuan, Z., Koen.: Merging high‐resolution satellite‐based precipitation fields 855 

and point‐scale rain gauge measurements - a case study in Chile. J. Geophys. Res.- Atmos., 122, 5267–5284, 

https://doi.org/10.1002/2016JD026177, 2017. 

Yilmaz, K.K., Hogue, T.S., Hsu, K.L., Sorooshian, S., Gupta, H.V., Wagener, T.: Intercomparison of rain gauge, radar, and 

satellite-based precipitation estimates with emphasis on hydrologic forecasting, J. Hydrometeorol., 6 (4), 497–517. 

https://doi.org/10.1175/JHM431.1, 2005. 860 

Yin, J., Guo, S., Gu, L., Zeng, Z., Xu, C.Y.: Blending multi-satellite, atmospheric reanalysis and gauge precipitation products 

to facilitate hydrological modelling, J. Hydrol., 593(1), https://doi.org/10.1016/j.jhydrol.2020.125878, 2021. 

Yu, C., Hu, D., Liu, M., Wang, S., Di, Y.: Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation 

products in China area. Atmos. Res., 241, 104952, 2020. 

Yumnam, K., Guntu, R. K., Rathinasamy, M., Agarwal, A.: Quantile-based Bayesian Model Averaging approach towards 865 

merging of precipitation products, J. Hydrol., 604: 127206, 2022. 

Zhang, L., Li, X., Zheng, D., Zhang, K., Ge, Y.: Merging multiple satellite-based precipitation products and gauge observations 

using a novel double machine learning approach, J. Hydrol., 594(6), 125969, https://doi.org/10.1016/j.jhydrol.2021.125969, 

20 


