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Abstract. The 2018-2019 drought in northwestern and central Europe caused severe damage to a wide range of sectors, and 

has made clear that even in temperate-climate countries adaptations are needed to cope with increasing future drought 

frequencies. A crucial component of drought management strategies is to monitor the status of groundwater resources. 10 

However, providing up-to-date assessments of regional groundwater drought development remains challenging due to the 

limited availability of high-quality data. This limits many studies to small selections of groundwater monitoring sites, giving 

an incomplete image of drought dynamics. In this study, a time series modelling-based method for data preparation was 

developed and applied to map the spatiotemporal development of the 2018-2019 groundwater drought in the southeastern 

Netherlands, based on a large set of monitoring data. The data preparation method was evaluated for its usefulness and 15 

reliability for data validation, simulation and regional groundwater drought assessment. The analysis showed that the 2018-

2019 meteorological drought caused extreme groundwater drought throughout the southeastern Netherlands, breaking 30-year 

records almost everywhere. Drought onset and duration were strongly variable in space, with especially higher elevated areas 

remaining in severe drought well into 2020. Groundwater drought development appeared to be governed dominantly by the 

spatial distribution of rainfall and the geological-topographic setting. The time series modelling-based data preparation method 20 

was found a useful tool to enable a spatially detailed record of regional groundwater drought development. The automated 

TSM-based data validation improved the quality and quantity of useable data, although optimal validation parameters are 

probably context-dependent. The time series simulations were generally found to be reliable; however, the use of time series 

simulations rather than direct measurement series can bias drought estimations especially at a local scale, and underestimate 

spatial variability. Further development of time-series based validation and simulation methods, combined with accessible and 25 

consistent monitoring data, will be valuable to enable better groundwater drought monitoring in the future.  

1 Introduction 

In the summer of 2018, a severe drought hit large parts of northwestern and central Europe. Extremely low precipitation 

coincided with high temperatures, both breaking multiple-decade records in many places (see Bakke et al., 2020; Philip et al., 

2020; Toreti et al., 2019). Recurring drought in summer 2019 and early 2020 worsened the situation in large parts of the area. 30 

Drying soils and declining water reserves caused damage to agricultural production and natural ecosystems, problems with 
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drinking water and energy production, and widespread forest fires, among other impacts (Bakke et al., 2020; Bastos et al., 

2020; Buras et al., 2020; Philip et al., 2020). The kind of ‘hot drought’ that occurred in 2018-2019 is expected to become more 

frequent in the future in central and northern Europe (Philip et al., 2020; Toreti et al., 2019). 

The Netherlands was one of the countries most hit by these weather extremes (Bakke et al., 2020). The damage was felt mainly 35 

in the southern and eastern parts of the country (Van de Velde et al., 2019; Van den Eertwegh et al., 2019; Witte et al., 2020b).  

In a country traditionally more focused on discharging water surpluses, the drought of 2018-2019 was felt by many water 

managers as a wake-up call, sparking a widespread search for solutions to prepare water systems for increasingly frequent 

drought extremes (De Lenne and Worm, 2020; IenW, 2019; Witte et al., 2020a; Van de Velde et al., 2019). In the southeastern 

Netherlands, as in many other parts of the world, groundwater is a crucial water source. Accordingly, much of the damage in 40 

2018 was directly related to deep declines in groundwater levels (LCW, 2020). Among other effects, the groundwater shortages 

caused severe damage in peatland and brook ecosystems (Witte et al., 2020b) and concerns over the sustainability of increased 

irrigation and drinking water abstractions (Van de Velde et al., 2019; Van den Eertwegh et al., 2019). Groundwater is often 

the most persistent water store in the landscape, reacting latest as a meteorological drought propagates into the hydrological 

system (Van Loon, 2015). This makes proper management of the groundwater a crucial component of drought management 45 

strategies.  

Previous studies have shown that the response of groundwater to meteorological drought can vary strongly in space. Variations 

in groundwater response are caused by differences in geology, water management and other catchment characteristics 

(Bloomfield et al., 2015; Hellwig et al., 2020; Peters et al., 2006; Van Loon and Laaha, 2015). To be able to mitigate and 

prevent drought damage, it is therefore essential to understand how groundwater drought develops in both time and space. In 50 

recent years, water managers in the Netherlands have indeed expressed a need for more up-to-date, locally-specific drought 

information and predictions to be able to take appropriate measures (IenW, 2019; Pezij et al., 2019; Witte et al., 2020a).  

Multiple recent research efforts have aimed at better understanding the variations in groundwater drought and its impacts at 

national and European scales (Bakke et al., 2020; Hellwig et al., 2020; Margariti et al., 2019; Van Loon et al., 2017; Brauns et 

al., 2020). The 2018(-2019) drought in Europe at larger scales has so far been studied from a meteorological perspective 55 

(Bakke et al., 2020; Philip et al., 2020; Toreti et al., 2019) as well as from a hydrological perspective in, among others, 

Scandinavia and Switzerland (Bakke et al., 2020; Brunner et al., 2019). For the Netherlands, some assessments of the drought 

in the groundwater have been made based on small numbers of measurement sites and physically-based modelling studies 

(Van den Eertwegh et al., 2019). What is still lacking, is a more detailed image of how the 2018-2019 drought manifested 

itself in the groundwater and how this varied in space, based on measurement data. This could provide valuable insights into 60 

groundwater drought dynamics and mitigation options in the Netherlands and similar groundwater-dominated lowland regions.  

Groundwater heads are widely monitored in observation wells. However, analysis of groundwater drought from these data 

over large areas is often challenged by data quantity or quality (Kumar et al., 2016). Firstly, data usually have to be obtained 

from multiple organisations and contain errors and other perturbations. Secondly, the length of measured time series is often 

not sufficient for drought analysis, for which at least 30-year series are recommended (Link et al., 2020). As a result, many 65 
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groundwater drought studies have focused on relatively few measurement wells with near-natural, long series or on simplified 

proxies (Bakke et al., 2020; Van Loon et al., 2017; Van den Eertwegh et al., 2019; Kumar et al., 2016). This may give an 

incomplete image of the true variability in drought dynamics. In addition, available data usually lags behind the present, 

hindering the up-to-date drought assessments that water managers need. 

To deal with these challenges, several studies have developed methods for automated validation and lengthening of 70 

groundwater head time series (Marchant and Bloomfield, 2018; Peterson et al., 2018; von Asmuth et al., 2012). This is usually 

done with various types of statistical models (Peterson et al., 2018; Van Loon et al., 2017). One type of statistical modelling 

that has proven very useful for groundwater data is time series modelling with impulse-response functions (Bakker and 

Schaars, 2019; von Asmuth et al., 2002). These models describe groundwater head variations at a specific location as a function 

of driving variables, usually weather data, and a fitted impulse-response function. This type of impulse-response time series 75 

modelling (TSM) allows accurate simulations to be made without a need for information on site characteristics. The 

simulations can be used to identify errors and other atypical behaviour in the data, and to lengthen and harmonise time series, 

as shown by e.g. Zaadnoordijk et al. (2019), Bartholomeus et al. (2008) and Marchant and Bloomfield (2018). As such, TSM 

can enable drought studies to use more observation points and to perform real-time monitoring, without the need for a complex 

physically-based model. Marchant and Bloomfield (2018) were the first to develop a full time series model-based method to 80 

study groundwater drought over a large region in the UK. Although TSM-based analyses appear a valuable tool for 

groundwater drought assessment, their wider applicability for various cases has not yet been well explored. To be able to 

widely use TSM data preparation for drought studies, several questions need to be answered.  

Firstly, it is not yet clear what methods are optimal for groundwater data validation. Raw groundwater data sets are usually 

strongly influenced by errors and disturbances, which can hamper the reliability of analyses such as model calibration and 85 

calculation of groundwater characteristics (Post and von Asmuth, 2013; Peterson et al., 2018; Ritzema et al., 2018). Time 

series modelling can be used to identify time series influenced by disturbances after analysis (e.g. Marchant & Bloomfield, 

2018), but also to remove irregularities from the data beforehand. In addition, TSM-based data cleaning can be combined with 

other more basic consistency checks, improving its effectiveness (Peterson et al., 2018). This validation method has not yet 

been evaluated for the case of groundwater drought analysis. 90 

Secondly, the reliability of time series simulations for groundwater drought analysis has not been properly tested. To 

understand the added value of using TSM data preparation, the gain in spatial and temporal cover needs to be balanced with a 

potential loss of information by cleaning and simulation. Researchers have often used TSM simulations directly as replacement 

of the data. This may be justified as these simulations often have a very good fit to observations (Bakker and Schaars, 2019; 

Zaadnoordijk et al., 2019); however, this approach inevitably also strips out part of the external influences that are not explicitly 95 

included in the model drivers (Peterson et al., 2018; Zaadnoordijk et al., 2019). Drought occurrence and development can be 

strongly affected by human impacts, as well as by local-scale natural influences such as surface water influence (Margariti et 

al., 2019; Van den Eertwegh et al., 2019). As such, excluding such external drivers of groundwater levels may provide an 

incomplete image of drought dynamics (Van Loon et al., 2016). In addition, models may have intrinsic difficulties to correctly 
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represent groundwater behaviour during extreme drought conditions, which may cause deviating soil and groundwater flow 100 

processes (Hellwig et al., 2020; Avanzi et al., 2020). This is especially important when time series models are used for 

‘nowcasting’ groundwater observation series. Under extreme drought conditions, this by definition involves modelling system 

conditions not present in the calibration period and may give incorrect results. It is therefore important to understand how the 

use of TSM simulations rather than measurement series affects the assessment of drought behaviour.  

Given these knowledge gaps, the current study aims to evaluate the usefulness of a time series modelling-based data preparation 105 

method for regional analysis of groundwater drought. A method is developed consisting of data validation, simulation and 

drought assessment (Sect. 3) and applied to the 2018-2019 groundwater drought in the southeastern Netherlands, to 

characterise its development and recovery in time and space (Sect. 4). The usefulness of the method is evaluated by its 

performance and reliability with regard to groundwater data validation and simulation; and its added value for the resulting 

regional drought assessment (Sect. 5).  110 

2 Study area and data 

The study area covers roughly the southeastern half of the Netherlands (Fig. 1). This is a low-topography area above sea level, 

dominated by Pleistocene deposits. The study area has mainly sandy sediments at the surface, but is also partially covered by 

river clays and loess deposits (Fig. 1b). Elevation is mostly between 0 and 30 m AMSL, with locally higher areas (Fig. 1a). 

Higher elevations occur in the limestone-loess hill landscape of southern Limburg and on glacier-pushed ridges in Utrecht and 115 

Gelderland (areas indicated in Fig. 1a). Land use is dominated by agriculture, while the glacial ridges are covered mainly with 

forest. The area has a temperate climate with a yearly precipitation surplus (P 700-950 mm j-1, ETref around 600 mm j-1). In 

addition, the groundwater system is affected by abstractions for drinking water and irrigation, as well as by drainage systems 

in the lowest-lying parts of the study area. 
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 120 
Figure 1: Study area. a: Elevation (AHN, 2019); b: Soil types (WUR, 2006). The higher elevated limestone-loess hill landscape in 
southern Limburg (LLH) and glacier-pushed sand ridges (GPR) are indicated.  

Groundwater head data were supplied by several regional water managing bodies. For some areas, additional series were 

obtained from the Dutch national groundwater database DINO (TNO). The data consist of groundwater head time series with 

a twice-monthly to sub-daily frequency, mostly running until spring 2019. In addition, metadata of the monitoring wells were 125 

available, including location, filter depth and surface level. Only data from the first filter of boreholes was used, generally 

representing the phreatic level. Those series were selected that contained > 10 years of consecutive data to ensure sufficient 

data for time series model fitting (see Zaadnoordijk et al. (2018)); and ended after 2018-08-31. The 2018-2019 meteorological 

drought peaked in summer 2018 (Fig. 3); therefore summer 2018 was chosen as the focus period for model evaluation. This 

resulted in 2722 series for further analysis. 130 

Daily precipitation (P) and reference evapotranspiration (ETref) were obtained from the Royal Netherlands Meteorological 

Institute (KNMI) for January 1990 to May 2020 (KNMI, 2020). Data were used from 15 general weather stations (for ETref) 

and 114 precipitation stations distributed homogeneously over the study area. Reference evapotranspiration is determined by 

KNMI following Makkink (1957). The ETref series did not always cover the full period of interest; gaps were filled with the 

nearest station that did have full data (maximum distance around 50 km). 135 

3 Methods 

The method for data preparation and drought analysis consists of three components (Fig. 2): 1) validation of the observed 

groundwater heads, 2) simulation of groundwater heads, and 3) conversion to a standardised groundwater index (SGI). Each 
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step is evaluated by one or more tests. In addition, the resulting drought assessment for the case study region is explored as an 

example of a regional-scale application. 140 

 
Figure 2: Method workflow. 

3.1 Time series modelling method 

This study has made use of time series modelling with predefined impulse-response functions, as developed by von Asmuth 

et al. (2002). Time series modelling was done with the Pastas package for Python developed by Collenteur et al. (2019). The 145 

used model setup largely follows Collenteur et al. (2019) and is described in more detail in Appendix A. In short, groundwater 

levels were simulated as a base level d, overlain by a temporal fluctuation in response to external stresses – in this case only 

recharge. Here, recharge is estimated as: 

�(�) = �(�) − � ∙ �����            (1) 

With f a calibration parameter. The use of the linear recharge model of Eq. 1 is a simplification that may not be optimal for all 150 

locations in this study (Collenteur et al., 2021; Bakker and Schaars, 2019). However, as linear recharge models have been 

successfully applied in many cases in the Netherlands (e.g. Zaadnoordijk et al., 2019; von Asmuth et al., 2012) and as we 

aimed to explore the potential of impulse-response time series modelling for drought studies rather than comparing different 

model setups, we chose to use the simplest model setup possible; see section 5.1.2 for further comments.  

The response of groundwater to a recharge impulse is modelled by a scaled gamma function as in von Asmuth et al. (2002) 155 

and Collenteur et al. (2019) (see Appendix A). The variation in groundwater heads over time is calculated by convolution of 

this impulse-response function with the recharge time series.  

This gives five parameters to be calibrated for each individual location. Parameter A represents the long-term response of the 

groundwater level to a constant recharge input of one unit, in this case 1 mm; a and n determine the shape of the recharge 

response function; f is the influence of ETref relative to precipitation; and d is the groundwater base level. For purposes of 160 

parameter calibration, also an exponential noise model is fit to the residuals with the additional noise decay parameter α. 
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Table A-1 gives the calibration settings used for each parameter. The default method for parameter optimisation was used, 

minimising the weighted squared noise using a least squared method (Collenteur et al., 2019).  

3.2 Series validation 

Raw groundwater data sets are usually strongly influenced by errors and disturbances. Often no information is available on 165 

potential sources of deviations, so that these have to be identified from the groundwater data itself (Post and von Asmuth, 

2013; Peterson et al., 2018; Ritzema et al., 2018). Phreatic groundwater levels typically follow an annual cycle, overlain by 

faster fluctuations in response to rainfall and evapotranspiration. An actual series of measured groundwater heads will often 

show deviations from this expected pattern. Deviations may be of short duration, such as caused by a typing error, temporary 

instrument failure or short-term groundwater abstraction. These can be denoted outliers: a small number of measurements far 170 

from the expected level, occurring over a short period (days or weeks) relative to the general (seasonal) fluctuations in most 

groundwater series (e.g. Peterson et al., 2018). Deviations may also be structural, affecting the series behaviour over months 

or longer. These are visible as level shifts, trends and other abnormal patterns in the data series (see Appendix A3). Such long-

term deviations can be caused by errors, such as instrument drift; however, they can also reflect real groundwater behaviour 

caused by local natural or human influences, such as surface water influence or abstraction (Post and von Asmuth, 2013; 175 

Zaadnoordijk et al., 2019; Margariti et al., 2019). Log book notes from data collectors available for a small subset of our dataset 

indeed showed frequent disturbances such as short-term abstractions, changes in water management, sensor problems, 

relocation of wells, well maintenance and other issues.  

To prepare the data for the drought analysis, we used a validation setup that treats short-term (outliers) and long-term deviations 

separately. The validation method aims to remove all important outliers: erroneous outliers will lead to incorrect conclusions 180 

on the occurrence of extremes, while real short-term disturbances in the groundwater heads are also less relevant for 

understanding the slow-developing impacts of drought, which is generally considered to occur on timescales of months to 

years (van Loon, 2016). Erroneous long-term deviations are also undesirable for drought analysis, as these disturb the 

groundwater level distribution on which drought thresholds are based (see Sect. 3.3). However, real long-term deviations in 

the groundwater level, such as caused by long-term abstraction and land use effects, should ideally be retained to capture the 185 

real variability in drought behaviour (Van Loon et al., 2016). Whether atypical behaviour in a series is caused by errors or by 

real external influences is very difficult to distinguish by automated methods. Our approach is therefore to classify the series 

according to their long-term behaviour; this allows for retaining some of the potentially influenced series in the analysis, while 

acknowledging their lower reliability.  

The outlier cleaning consisted of the following steps (see Table 1 for parameters): 190 

1. Basic metadata consistency check. Measurements below the well filter or > THinund above the surface level were 

removed, as these are likely to point to erroneous measurements or metadata. 
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2. Removing far outliers by range. As a fast first cleaning step, far outliers were identified by isolating the top and 

bottom fraction of the measurement range (Frange) and identifying them as outliers if their removal caused a reduction 

in range of > THred.  195 

3. Outlier removal by time series modelling. A model was fit for each series using precipitation and ETref from the 

nearest weather stations. All measurements outside a range of nsd times the standard deviation of the residuals around 

the simulation were removed. This step was repeated niter times to deal with outliers disturbing the model fitting 

(Peterson et al., 2018; Leunk, 2014). 

For the long-term behaviour classification, a new time series model was fit on the resulting cleaned series. The explained 200 

variance percentage (EVP, equal to �� ∙ 100) and model parameters A, f and d were saved. In addition, a linear trend was fitted 

through the residual series and the p-value and r2 of the trend were saved. Finally, the series were checked for consecutive 

periods with missing data of > 4 years which would hamper the required 10-year data period (Sect. 2) and, if these were 

present, only the time period after the last data gap was used. Based on these indicators the series were ordered into four 

categories of long-term behaviour (see Appendix A3 for examples): 205 

1. Discarded series: series with very strong deviations from the expected behaviour, as indicated by EVP < THEVP; or 

insufficient data for analysis (< 10 years, data gaps > 4 years, or no data over June-August 2018).  

2. Deep-groundwater series: mean water table depth (WTD) > 5 m. These series typically showed a very slow, smoothed 

behaviour and often poor model fit; the used validation method is probably less suitable for these series. 

3. Atypical series: series with mild deviations: EVP >= THEVP, but containing a trend or atypical parameters. This points 210 

to potential errors, external (human) influence or groundwater processes that deviate from the TSM assumptions used 

in this study. Locations were marked as atypical if they had a trend in the residuals with p < 0.05 and r2  > THr2; or 

unusual values for the f and A parameters (THf and THA). 

4. Normal series: EVP >= THEVP, no other issues. 

The cleaned measurement series of the normal, atypical and deep categories were aggregated to daily means and saved for 215 

further use. Table 1 shows the validation parameters used for this study. Several parameters were chosen by initial trial-and-

error testing; the sensitivity to these parameters was tested as explained below.  

Table 1: Used parameters for the series validation. 

 Parameter 
 

Used value 
 

Justification 

O
u

tl
ie

rs
 MetaCheck Metadata check performed yes   

THinund Maximum allowed inundation 0.2 m Shallow inundation possible in study 
area, deep inundation unlikely (Leunk, 
2014) 

Frange Fraction of range identified as potential 
outlier in far outlier cleaning 

0.2 Tested 

THred Minimum range reduction (fraction) to 
remove outliers in far outlier cleaning 

0.5 Tested 
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nsd Threshold number of standard deviations to 
remove outliers 

4 Tested 

niter Number of iterations in TSM outlier cleaning 2 Tested 
L

o
n

g
-t

er
m

 c
la

ss
if

ic
at

io
n

 THEVP EVP threshold to discard series 60 % Visually estimated as suitable; see 
Appendix A2 

THr2 r2 threshold of trend in residuals to mark 
series as atypical 

0.15 Tested 

THf Threshold in f value to mark series as atypical > -0.05 or 
< -1.95 

Close to parameter bounds; see Table 
A1 

THA Threshold in A value to mark series as 
atypical 

>1.5 Far from normal range of values for the 
given dataset; see Table A1 

 

The performance of the validation method was evaluated on a test set of 180 randomly selected series (30 from each province). 220 

These series were visually checked for the occurrence of 1) outliers (series to clean); 2) serious long-term deviations such as 

level shifts or strong trends (series to discard); and 3) milder long term-deviations such as lighter trends (series to mark as 

atypical); see figures A1-4 for examples.  

The validation routine was applied to the test set with the standard parameters of Table 1; and with 20 alternative parameter 

sets (Table A2). In set 2-11, the parameters were varied individually to more conservative (less cleaning and discarding) and 225 

more rigorous values (more cleaning and discarding). In set 12-19, combinations of conservative/rigorous outlier cleaning and 

long-term deviation identification parameters were tested; and in set 20 and 21 versions are tested with only TSM-based outlier 

cleaning (no basic cleaning step) and no outlier cleaning at all.  

The validation results from all parameter sets were compared to the visual validation and scored by 1) correct identification of 

outliers (cleaned if needed); 2) correct identification of serious long-term deviations (discarded if needed); and 3) correct 230 

identification of mild long-term deviations (marked as atypical if needed). Scoring was done as True or False Positive 

(deviations correctly recognised) and True or False Negative (absence of deviations correctly recognised) for the three 

categories. 

3.3 Series simulation 

The cleaned series from the validation step were used to simulate groundwater heads for the drought analysis. It was chosen 235 

to use simulated series, rather than interpolating the measurement series with TSM (Marchant and Bloomfield, 2018), to ensure 

regular series without sudden level shifts and prevent influence of remaining outliers. A model was fit on the cleaned 

measurement series (see section 3.1 and appendix A1); and for those models with an EVP > 60% (Table 1), a daily-step 

groundwater head series was simulated for the period of interest, in this case 1 January 1990 to 31 May 2020. As most 

measurement series originally ran until spring 2019, roughly one year of ‘nowcasting’ was added to the data. 240 

The performance of the simulations was assessed by the root mean squared error (RMSE) and the mean error (ME) of the 

simulated groundwater levels over the full length of the measurement series. ME was calculated as �� = ����(������ −
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������) to quantify bias. To assess model performance under dry conditions specifically, the measurements of each series 

were subdivided into ‘low-head periods’ (measured head < 20th percentile), ‘medium-head periods’ (20th to 80th percentile) 

and ‘high-head periods’ (> 80th percentile), and the RMSE and ME were re-calculated for these periods. Finally, RMSE and 245 

ME were determined specifically over July-November 2018, the period in which the meteorological and hydrological droughts 

peaked. All performance measures were expressed both as the absolute value in meters, and as fraction of the mean water table 

depth (WTD) at the location. The latter measure may give a better image of the scale of the errors, as the impact of a small 

change in groundwater head on vegetation and hydrological processes is generally much larger where groundwater levels are 

normally shallow (Bartholomeus et al., 2012; Witte et al., 2020b).  250 

The sensitivity of the simulation of drought conditions to the calibration period was also tested. Models were re-calibrated on 

the period until the start of the 2018 growing season (1 April 2018) and the groundwater behaviour for the rest of 2018 was 

‘nowcasted’ with the available weather data. Simulation performance was again valuated by the RMSE and ME over July-

November 2018, and compared with the simulations calibrated on the full period.  

The groundwater behaviour at an individual measurement location can be summarised through the recharge response time, 255 

which can be derived from the fitted time series models. The response time was here defined as the time after which 50 % of 

the groundwater head response to a recharge event has occurred (e.g. Zaadnoordijk et al., 2019). It was derived by intersecting 

the step response function obtained from Pastas (function get_step_response) with the line 0.5A. These response times are a 

characteristic of the full groundwater series, not just the drought period. Still, the response times and their spatial distribution 

give a further indication of the validity of the time series models and the drivers of groundwater drought development.   260 

3.3 Drought index 

To identify drought periods in time series of hydrological variables, and to compare drought severity between locations, 

standardised drought indices are used. We quantified the development of meteorological drought over 2018-2020 by the three-

month-aggregated Standardised Precipitation Evaporation Index (SPEI) (Vicente-Serrano et al., 2010). The study area was 

divided into four zones (see Fig. 2); the SPEI-3 for each zone was calculated from the average precipitation of all weather 265 

stations within the zone and the distance-weighted mean ETref of the three stations closest to the midpoint. This midpoint 

method was necessary to obtain representative values for each zone from the relatively few evapotranspiration stations present 

(15). SPEI was calculated by a normal distribution transformation for simplicity; the three-month accumulation time was 

chosen because this most clearly showed the meteorological droughts at a time scale comparable to the variations in 

groundwater level. 270 

For groundwater heads the Standardised Groundwater Index (SGI) was applied  (Bloomfield and Marchant, 2013). The SGI 

method consists of transforming a measured groundwater head series at a specific location to a standard normal distribution; 

this produces a drought index series varying roughly between -3 and 3, indicating conditions from extremely dry to extremely 

wet compared to the normal situation. When analysing drought indices for multiple locations, a common reference period must 

be used. It is generally recommended to use a period of at least 30 years to ensure a proper estimation of the long-term “normal 275 



11 
 

situation” (McKee et al., 1993; Van Loon et al., 2016; Ritzema et al., 2018). Here, the period January 1990 - December 2019 

is used throughout as the reference period. 

For precipitation, the transformation step is usually done by fitting a gamma distribution function to the data (McKee et al., 

1993). For groundwater heads, however, distribution shapes vary widely between locations (Bloomfield and Marchant, 2013; 

Dawley et al., 2019; Loáiciga, 2015). Fitting individual parametric distribution functions to each location based on the 30-year 280 

monthly series used here is likely to give unreliable results; for example, Link et al. (2020) find that in most cases more than 

100 data points are needed for fitting reliable parametric distributions on hydrological series, while incorrect transformations 

give a high risk of biased drought index values (Svensson et al., 2017). Groundwater levels were therefore transformed using 

a normal scores transform (see e.g. Bloomfield and Marchant, 2013). This is a nonparametric transformation method that has 

the advantage of being simple and transparent and circumvents the risk of bias due to erroneous distribution fits. For each 285 

location, the simulated series was first aggregated to monthly mean levels. Transformation was then done separately for each 

calendar month. For each calendar month with n years of data, in this case 30, cumulative probability values are taken, 

uniformly spaced over the interval (1/2� ) to (1 − 1/2�); the corresponding SGI values are found by applying an inverse 

cumulative distribution function to these values. The resulting SGI values are assigned to the groundwater head measurements 

of the given calendar month by their rank from low to high. This method of calculating SGIs results in a limited number of 290 

‘discrete’ SGI values that correspond directly to the rank of the groundwater level compared to the rest of the reference period. 

Table 2 gives the SGI values and their corresponding rank and drought severity in this study. The drought severity classes 

follow the classification by McKee et al. (1993) that has been frequently used in drought studies. Note that the SGI, unlike the 

SPI, is not aggregated over multiple months; the SGI values given here therefore represent ‘SGI-1’. 

Table 2: Used categories for the standardised groundwater index, with the corresponding groundwater level rank in a 30-year 295 
record. 

SGI Drought category  Rank 
(dry → wet) 

> 0 No drought >15 (wettest 15 years) 

0 to -1 Mild drought 6 – 15 

-1.5 to -1 Moderate drought  3 – 5 

-2 to -1.5 Severe drought  2 

< -2 Extreme drought  1 (driest year) 

The SGI values for the months outside the reference period (January 2020 – May 2020) were estimated by linearly interpolating 

the groundwater head-SGI relation for the calendar month. If the heads fell outside the range reached in the reference period, 

they were assigned the most extreme SGI value. 

To test how the use of TSM simulations rather than measurement series affects drought analysis, SGI values were also 300 

calculated directly for a selection of locations that had long measurement series. To collect enough series for comparison while 

preventing the influence of differing time periods, a minimum of 27 years was used. All series with at least 27 years of data 
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(starting before 1 January 1993) were selected from the cleaned measurement series, resulting in 531 series. The SGI values 

for 2018 were calculated in the same way as for the simulated series, with the SGI of a calendar month calculated only if at 

least 25 years of data were available. In some cases the number of data points will thus be some smaller than for the simulation-305 

based SGI. However, an n of 25 instead of 30 does not affect the classification for the lowest drought categories as shown in 

Table 2; also an exploratory test (not shown) indicated that the slight mismatch in period did not affect the patterns in the 

resulting comparison. The simulation-based and measurement-based SGI values were compared by regression (Spearman’s 

ρ). 

4 Results 310 

4.1 Usefulness of TSM method for drought data validation and simulation 

4.1.1 Validation performance 

The validation performance for the standard validation parameter set is shown in Table 3. For a large majority of test series 

the routine performed a correct action with regard to cleaning outliers, discarding strongly deviating series and marking 

atypical series. In the outlier cleaning, there is a relatively large fraction of false positives (removal of non-existing outliers). 315 

This mainly occurs for points in well-modelled series, without affecting the character of the series or the drought extremes. 

The false negatives (outliers not recognised) partly did concern influential outliers; another relatively frequent problem was 

the incomplete removal of a group of outliers (not shown in Table 3). With regard to the strong long-term deviations, there is 

a relatively large fraction of false positives (unduly discarded series). This is partly caused by the incomplete outlier cleaning 

for some of the series. The number of series marked as atypical by both the visual and automated validation is relatively small. 320 

This category is hard to identify consistently by visual inspection, which may explain the false positives and negatives.  

Table 3: Validation performance for the standard parameter set (Table 1). Number of series with insufficient data is 19, so ntotal=161. 
True Positive=identified in both manual and automatic validation; True Negative=not identified in either manual or automatic 
validation; False Positive=identified in automatic validation but not in manual validation; False Negative=identified in manual but 
not in automated validation. Excl. deep: excluding deep-GWL series. Last column: percentage of series with outliers and long-term 325 
deviations correctly or reasonably identified.   

Outliers True Positive True Negative False Positive False Negative False Negative 
excl. deep 

Correct clean 
action 

71 (44%) 56 (35%) 26 (16%) 8 (5%) 6 (4%) 79 % 

Strong long-term 
deviations 

True Positive True Negative False Positive False Negative False Positive 
excl. deep 

Correct 
discard action 

32 (20%) 103 (64%) 26 (16%) 0 (0%) 22 (14%) 84 % 

Mild long-term 
deviations 

True Positive True Negative False Positive False Negative False Positive 
excl. deep 

Correct mark 
action 

7 (4%) 131 (81%) 11 (7%) 12 (7%) 7 (4%) 86 % 

 

The parameter sensitivity test (see Table 4 and Appendix A2) showed that the standard parameter set performed relatively well 

in comparison with other parameter sets. The sensitivity to the parameters of the far outlier cleaning (Frange, THred) and the 
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number of iterations in the TSM outlier cleaning (niter) was low, while the standard deviation range for the TSM cleaning (nSD) 330 

and the thresholds for discarding and marking series (THEVP and THr2) did have a large effect. Applying an outlier cleaning 

step in general increased the simulation performance (mean EVP 60 to 62 %, set 1 vs 21) and allowed more series to be retained 

for analysis (60 % to 64 % of series), with the TSM cleaning being responsible for most of the outlier cleaning. Taking a 

conservative low EVP threshold appears to give a good performance on the strong deviation identification (set 8 and 16), but 

the number of false negatives is high, while a strict EVP threshold of 80 % causes a majority of series to be discarded. Changing 335 

the threshold on the residual trend to mark series as atypical (set 10 and 11) caused either almost all or almost no series to be 

marked and did not substantially improve the performance. 

Table 4: Summary results of validation parameter sensitivity test. Nr Discard/Atypical: number of series discarded/marked as 
atypical. Cleaning/Discard/Marking correct %: percentage of series with correct action identified for cleaning, discarding and 
marking. See Table A1 for explanation of the parameter sets. 340 

Set Name Mean 
EVP [%] 

Nr 
Discard 

Nr 
Atypical 

Cleaning 
correct % 

Discard 
correct % 

Marking 
correct % 

1 Standard 61.9 58 18 79 84 86 

2 FarOutliersConservative 62 58 18 80 84 86 

3 FarOutliersRigorous 61.9 58 18 79 84 86 

4 OutliersConservative 60.6 64 17 80 81 86 

5 OutliersRigorous 68.8 41 28 60 86 82 

6 IterationsConservative 61.7 61 18 79 82 86 

7 IterationsRigorous 62.2 58 18 79 84 86 

8 EVPConservative 61.9 29 33 79 86 80 

9 EVPRigorous 61.9 119 4 79 47 88 

10 TrendConservative 61.9 58 7 79 84 88 

11 TrendRigorous 61.9 58 39 79 84 74 

12 OutliersConservative_EVPConservative 60.5 29 30 80 86 82 

13 OutliersConservative_EVPRigorous 60.5 122 4 80 45 88 

14 OutliersConservative_TrendConservative 60.5 66 7 80 80 88 

15 OutliersConservative_TrendRigorous 60.5 66 36 80 80 75 

16 OutliersRigorous_EVPConservative 71.1 15 45 59 89 75 

17 OutliersRigorous_EVPRigorous 71.1 82 8 59 68 87 

18 OutliersRigorous_TrendConservative 71.1 36 13 59 87 85 

19 OutliersRigorous_TrendRigorous 71.1 36 45 59 87 72 

20 Standard_TSMcleaningOnly 62.1 57 19 79 84 86 

21 Standard_NoOutlierCleaning 59.9 64 16 68 81 88 

 

When applied to the full study dataset, the validation procedure discarded 31 % of the groundwater head measurement series, 

so that 1869 of the original 2722 series remained for analysis. A poor model fit was the most frequent cause for discarding. 10 

% of the series were maintained as atypical series, while another 12 % of locations had a deep groundwater table, being less 

suitable for the used validation method. 345 
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4.1.2 Simulation performance 

In the simulation step, 1632 locations were modelled with sufficient quality (EVP > 60 %). Overall, these series were simulated 

with an average error of 14 cm, resulting on average in a 20 % error in the groundwater table depth (Table 5). The bias is low 

with -1 mm. Subdivision into dry, normal and wet conditions (0-20th, 20-80th and 80-100th percentile of groundwater levels, 

respectively) shows that the errors are larger for more extreme groundwater levels (dry and wet conditions). More precisely, 350 

the models tend to underestimate the extremes: there is a positive average bias in periods of low groundwater levels, and a 

negative bias when groundwater levels are in their high ranges. There was no clear spatial pattern in this bias. Also during the 

main period of groundwater drought in July-November 2018, the simulation error is above average with 18 cm, but there is 

only a small negative bias of 1 cm. 

Table 5: Performance of the groundwater head simulations for the full simulation period and summer 2018. RMSE=Root Mean 355 
Squared Error, ME=Mean Error of simulations versus measurements, given in meters and as fraction of the mean groundwater 
table depth (WTD). 

  RMSE ME  

Mean value (range) [m] Fraction WTD [-] Mean value (range) [m] Fraction WTD [-] 

Full period 0.14 (0.03…1.7) 0.20 -1.2·10-3 (-0.3…0.2) 8.1·10-3 

Dry  0.16 (0.03…2.0) 0.25 0.076 (-0.7…0.6) 0.15 

Normal  0.12 (0.02…1.6) 0.18 -3.3·10-3 (-0.3…0.4) 0.039 

Wet  0.15 (0.03…1.7) 0.20 -0.070 (-1.3…0.3) 0.089 

Jul-Nov 2018 0.18 (6.0·10-3…3.2) 0.29 -0.010 (-2.9…1.5) 0.22 

Jul-Nov 2018, calibrated 
until   
1 April 2018 

0.20 (1.0·10-3…3.7) 0.31 -0.015 (-3.5…1.2) 0.24 

4.1.3 Calibration period sensitivity 

In addition to the fully calibrated simulations, the sensitivity of the model simulations during drought to the used calibration 

period was tested (Table 5, last row). When the 2018 drought summer was simulated with a TSM model calibrated until spring 360 

2018, the average error in the predicted groundwater heads was 20 cm, giving a relative error in the groundwater depth of 31 

%, thus performing slightly poorer than the fully calibrated simulations (error of 20 %). Similar to the fully calibrated 

simulations, there is a (small) negative mean error, indicating that the declines in groundwater level over summer, and thus the 

severity of drought, are slightly overestimated. This means that, as expected, the simulation of groundwater levels under 

extreme drought conditions outside the range of conditions in the model calibration has a relatively low reliability. However, 365 

the difference in average error is only 0.03 m, indicating that the effect is relatively small compared to the error already present 

in the fully calibrated simulations. There are no clear spatial patterns in the RMSE of the simulations (not shown). The 

sensitivity to the calibration period thus appears independent of specific catchment characteristics in the study area. 
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4.2 Development and recovery of the 2018-2019 groundwater drought in the Netherlands  

The groundwater drought of 2018-2019 was driven by exceptionally dry weather conditions. The meteorological drought 370 

started in spring 2018 and peaked in late summer (Fig. 3). After a relatively normal winter, summer 2019 again showed 

moderate to severe drought. The winter of 2019-2020 was relatively wet, but exceptionally low rainfall in spring 2020 caused 

a return to extreme meteorological drought conditions. The meteorological drought was not spatially uniform. Especially in 

spring 2018 and summer 2019, the western part of the study area experienced less dry conditions than the east (Fig. 3).  

 375 
Figure 3: Development of the meteorological drought over 2018-2020 in the west, north, mid-east and southeast sections of the study 
area given by the 3-month SPEI. The map shows the four sections.  

The development of the groundwater drought in the southeastern Netherlands over 2018 is visualised in Figures 4 and 5. The 

2018 growing season started with uniformly normal to high groundwater levels over the study area (Fig. 4). Drought started 

developing in May and June, with drought onset varying between locations. By July and August, severe to extreme 380 

groundwater drought occurred over most of the area. In September, heavy rain in the west of the study area slightly alleviated 

the drought conditions. However, the drought situation worsened again in autumn, reaching its height in October and 

November when the simulations show almost uniform extreme drought over the study area. By December, a slow recovery is 

visible.     
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 385 
Figure 4: Monthly distributions of the Standardised Groundwater Index over 2018 in the southeastern Netherlands. 

The simulated data show distinct spatial patterns in the development of the groundwater drought (Fig. 5). Especially southern 

Limburg and the ridges in Utrecht and Gelderland with their distinct geology and topography (see Fig. 1) reacted more slowly 

than the rest of the study area and did not experience drought conditions yet in 2018. Also the fast recovery of the low-lying 

western Utrecht area in autumn stands out. 390 

 
Figure 5: Groundwater drought development in 2018: SGI of simulated series. WTD: Water table depth. 

The simulations over 2019-2020 show that also drought recovery was strongly variable in space (Fig. 6). In spring 2019, 

groundwater heads in the west of the study area were again approaching normal levels, but the eastern regions had recovered 

poorly. By this time extreme groundwater drought had also developed on the high ridges and in southern Limburg. The summer 395 

of 2019 again brought severe to extreme groundwater drought, this time clearly concentrated in the east of the study area, 
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corresponding to the differences in meteorological drought. In March 2020, groundwater levels had returned to relatively high 

levels. However, the exceptionally dry weather in April rapidly resulted in a new severe drought situation by May.   

 
Figure 6: Groundwater drought over 2019-2020: SGI of extended groundwater series. WTD: Water table depth. 400 

The groundwater response times derived from the time series models are shown in Fig. 7. The response times range from a 

few days to up to two years, but are generally relatively short: 94 % of locations has a response time of less than one year. The 

spatial distribution of the response time corresponds with the topography and the occurrence of glacial sand ridges in the 

landscape (Fig. 1) and with the propagation speed of meteorological drought to groundwater drought in 2018-2020 (Fig. 5, 6). 

  405 
Figure 7: Response time to recharge as derived from the fitted response functions. See Fig. 1 for the location of subregions.  

4.3 Usefulness of TSM method for regional drought assessment 

For a subset of the locations (n = 531), a long groundwater measurement series was available and the SGI values resulting 

from the simulated series could be compared to those obtained directly from the cleaned measurement series (Fig. 8). The 
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comparison shows that the simulations follow the same general drought behaviour as the measurement series, as the two follow 410 

a 1:1 line (Spearman’s ρ = 0.8). However, the simulations generally show a smaller spatial variation than the measurements. 

This is also visible in measurement-based SGI maps (Fig. 9), which show more scatter and local extremes than the simulation-

based drought maps. In addition, the simulations for 2018 tend to slightly overestimate drought severity in the low ends of the 

drought (lower left in Fig. 8). This is contrary to the general tendency of the head simulations towards positive bias during 

drought periods, shown in Table 5. 415 

 
Figure 8: Comparison of SGI values over April-December 2018 based on cleaned long measurement series (x axis) and based on 
simulated series (y axis) for all location-month combinations (grey dots). Black dots show the average over all locations for each 
month, with quartiles (spatial variation). 

 420 
Figure 9: SGI for three months in 2018 based directly on cleaned long measurement series. Empty symbols indicate insufficient data 
to enable drought index quantification. 
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5 Discussion 

5.1 Usefulness of TSM data preparation for drought analysis 

The performed study aimed to evaluate the usefulness of time series modelling-based data processing methods for groundwater 425 

drought studies. The application of a TSM-based method to the 2018-2019 drought in the Netherlands has provided new 

insights into how TSM methods can be used for data validation, how reliable they are for the quantification of extreme 

groundwater drought situations, and how they can contribute to regional groundwater drought assessments. 

5.1.1 Validation methods for groundwater data 

A validation method was applied that combines basic error tests with time series modelling-based identification of 430 

irregularities, while treating short-term outliers and long-term atypical behaviour separately. Pre-analysis outlier cleaning was 

found to improve the useability of series for the TSM simulations as well as the identification of long-term series behaviour. 

Outlier cleaning is therefore likely to improve results compared to performing a more limited validation, or identifying 

impacted series only after simulation. The validation method performed reasonably with regard to outlier removal, but not 

optimally (Table 3, Table A3). The time-series based outlier cleaning appeared more effective in comparison to basic cleaning 435 

methods, although the latter can be valuable as a computationally cheap cleaning step for large data sets. 

The TSM-based validation also appeared suitable for identifying long-term atypical behaviour in the head measurement series. 

However, the thresholds for separating series in different reliability classes (here ‘discard’ and ‘atypical’) are likely to be 

dependent on the data used and the aim of the study, and are difficult to set objectively. The current study aimed to provide a 

spatially detailed regional drought assessment, covering the range of site conditions; this requires retaining as many series as 440 

possible, while removing the most unreliable and disturbed series and identifying series with milder potentially unreliable 

behaviour. The chosen parameters were found reasonable to reach this separation (see Fig. A5, A6) but setting objective 

parameter values would require comparison with a large data set with detailed information on the sources of variations and 

errors, which was not available in this study. 

In this study, we could not explicitly separate erroneous and real atypical patterns. Many of the long-term non-weather 445 

influences on the groundwater, such as structural abstractions and land use, are likely to be included implicitly in the 

simulations, as the time series models will model any external influence that correlates with weather or modifies the recharge 

response. Still, the validation is likely to retain some series with erroneous patterns and discard some real behaviour. The 

separation of errors could be improved by including additional driving factors in the time series modelling, such as surface 

water fluctuations (Bakker and Schaars, 2019; Van Loon et al., 2016; Zaadnoordijk et al., 2019); however, this requires 450 

substantially more data and modelling effort. Another potential approach is to make use of the spatial coherence of groundwater 

behaviour to separate errors. For example, Lehr and Lischeid (2020) and Marchant and Bloomfield (2018) used the spatial 

coherence of observed groundwater patterns as an indication of their reliability, and to relate clusters of similar series to some 

external (human) impact. It would be valuable to explore such extensions of TSM to improve validation methods for 
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groundwater drought analysis. This will allow for a better understanding of the different natural ánd human drivers of drought 455 

development.  

Although the validation-simulation method generally performed well for the given data, it was less suitable for locations with 

deep groundwater tables (here > 5 m), dominated by multi-year head fluctuations. Here, model fit was often low, leading to 

poor outlier identification and models being discarded for a large proportion of these locations (66 % discarded vs 27 % for 

shallower locations). This issue was also found by Marchant and Bloomfield (2018) and Zaadnoordijk et al. (2019) for 460 

locations with thick unsaturated zones. To enable TSM simulation in such cases, measurement series are needed that are 

substantially longer than the minimum of 10 years used here to include several response cycles of the groundwater system. 

5.1.2 Reliability of TSM groundwater level simulations during extreme drought 

It was found that impulse-response function-based time series models on a general level produced reliable groundwater head 

simulations. They described most of the groundwater head series very closely, with a low overall bias (Table 5). The 465 

comparison of simulation- and measurement-based SGI values (Fig. 8) showed a good correlation (Spearman’s ρ = 0.8). Also, 

as discussed further below, the general patterns shown by the drought index maps match well with the experience of water 

managers during the 2018-2019 drought. 

However, the model simulations also showed important deviations, especially at local scales and during the most severe 

drought periods. The simulation RMSE and mean errors amounted locally to high levels (Table 5), especially during more 470 

extreme conditions. Also expressed as fraction of the WTD large errors occurred (Table 5). This means that application of the 

current TSM method could lead to misinterpretations of drought impacts at local scales, for example on the survival of marsh 

vegetation or groundwater-dependent streams (Bartholomeus et al., 2012; Witte et al., 2020b). Generally, extreme conditions 

were underestimated somewhat by the time series models. This overall underestimation of extreme conditions was also found 

by Mackay et al. (2015) with a process-based groundwater model. Interestingly, the simulations for summer 2018 showed an 475 

overestimation of drought conditions, where the simulations appeared to miss the variability towards less extreme drought that 

is visible in the measurements (Figs. 8, 9).  

The model deviations during drought may be due to external influences not accounted for by the model, such as surface water 

influence and local irrigation, both of which are widespread in the study area. Indeed, local influences such as external water 

supply were found to alleviate groundwater drought locally in 2018 (Van den Eertwegh et al., 2019). In addition, the models 480 

may have underestimated the severity of earlier droughts; this would inflate the extremeness of the 2018 drought. Similar bias 

issues can be seen in Hellwig et al. (2020), who analysed groundwater drought in Germany using a physically-based model. 

Their simulations overestimated drought severity during a drought in 1973, but not in 2003, confirming that bias can differ 

between individual drought events.  

In addition, the deviations may be related to the model setup itself. As noted before, we have here worked with a simple linear 485 

recharge model. Although this has been shown to suffice in many situations (e.g. Zaadnoordijk et al., 2019; von Asmuth et al., 

2012), there are also various cases where linear recharge models were shown to be invalid (Bakker and Schaars, 2019; 
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Collenteur et al., 2021). Nonlinear or threshold responses in the soil-groundwater system may be especially important during 

extreme conditions, as evapotranspiration and deep percolation may become limited by low soil moisture or drainage becomes 

disconnected (Bakker and Schaars, 2019; Aulenbach and Peters, 2018; Peterson and Western, 2014). Indeed, several studies 490 

have shown that nonlinear recharge representations can improve model performance during (extreme) drought conditions 

(Berendrecht et al., 2006; Peterson and Western, 2014; Collenteur et al., 2021). The overestimation of drought severity in 2018 

found here (Fig. 8) may, among other factors, be related to a lack of evapotranspiration limitation in the models (Collenteur et 

al., 2021). The effect of extreme drought on evapotranspiration and flowpaths can be complex and spatially variable (Teuling 

et al., 2013; Avanzi et al., 2020). Further exploring the value of nonlinear time series models for groundwater drought analyses 495 

in different situations is therefore an important topic for further research.  

The reliability of groundwater simulations during extreme drought was found to be sensitive to the used calibration period, 

with reliability decreasing when the calibration period lacked similarly extreme conditions. This is an important aspect for the 

application of TSM for groundwater level nowcasting for real-time drought assessment. However, the difference in simulation 

performance compared to simulations that did include the 2018 drought in their calibration was relatively small (Table 5-6). 500 

This suggests that the type of impulse-response time series models used in this study are relatively robust for series lengthening 

and nowcasting, also in drought conditions. This is also shown by the lengthened series over 2019-2020, which matched well 

with general observations provided by other studies and reports (LCW, 2020; Van den Eertwegh et al., 2019). Still, if water 

managers are to be provided structurally with up-to-date information on regional groundwater drought, any models have to be 

re-calibrated frequently, so that reliable, recent measurement data remains important.  505 

Despite the potential loss of information caused by TSM-based data preparation, consisting of processes and external 

influences not included in the models, it also provides important gains. Given the spatial variability in hydrological drought 

dynamics and the need for long data series for drought identification, TSM methods can be especially useful in drought studies 

to increase the amount of data available without a need for additional site information. In this study, it enabled a regional image 

of drought development (Figs. 5, 6) that is far more detailed than that obtained by using direct measurement series only (Fig. 510 

9). In addition, the model parameters gave additional insight in groundwater behaviour, for example through the response time 

(Bakker and Schaars, 2019; Collenteur et al., 2019). TSM data preparation, especially if further developed, can therefore likely 

be useful in many regional groundwater drought studies. However, in some cases direct use of data, inclusion of more external 

drivers or (a combination with) more physically-based model methods will be more suitable (e.g. Bakker and Schaars, 2019) 

as in this study may have been the case for more local scales. The application of TSM methods therefore remains dependent 515 

on the aim and scale of a drought case study.  
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5.2 Analysis of the 2018-2019 groundwater drought in the Netherlands 

5.2.1 Spatiotemporal development of groundwater drought in 2018-2019 

The regional-scale analysis of the 2018-2019 groundwater drought in the southeastern Netherlands provided a new, detailed 

image of the drought development in time and space. The analysis showed that extreme groundwater drought was widespread 520 

over the study region in 2018 and 2019, breaking 30-year records for the summer and autumn months almost everywhere (Fig. 

4). However, the timing and duration of the drought varied strongly in space. In the western parts of the study area drought 

was terminated before the end of 2018, while the higher-lying areas reached drought conditions only by 2019 (Fig. 5-6). This 

image corresponds well with how the drought was generally experienced by water managers. The Dutch Commission on Water 

allocation (LCW), which regularly surveys the drought status in the Netherlands based on input from water managers, reported 525 

widespread exceptional drops in groundwater levels, especially in the higher-lying sandy areas of the country, combined with 

a relatively fast recovery in the west (LCW, 2020). Also the severe damage observed in groundwater-dependent ecosystems 

in the southeastern Netherlands (Witte et al., 2020a) and widespread drying of groundwater-fed streams (Van den Eertwegh et 

al., 2019) match the assessment of an extreme groundwater situation. 

The time series models made it possible to extend the available groundwater head measurement series beyond 2018 and obtain 530 

an estimate of drought recovery dynamics over 2019-2020. This showed that despite near-normal to high rainfall in the winters 

of 2018-19 and 2019-20 (Fig. 3) groundwater levels were restored only locally, and severe groundwater drought continued 

into 2019 or even 2020 over large parts of the study area (Fig. 6). These findings are consistent with general reports of the 

situation by local water managers (LCW, 2020; Van den Eertwegh et al., 2019). The results confirm that the drought should 

be viewed as a multi-year event rather than a single-year summer drought. The multi-year character increases the risk of lasting 535 

negative effects, especially in natural ecosystems. In addition, it stresses the importance of winter season groundwater 

management and water retention as determining factors in drought development. Both these issues have already become 

apparent in the Netherlands after 2018 (De Lenne and Worm, 2020; Witte et al., 2020a; Witte et al., 2020b).  

5.2.2 Driving factors of spatial drought distribution 

The current study did not aim to fully quantify the driving factors of the spatial variations in drought dynamics. However, the 540 

results suggest that the variation in drought severity, timing and duration was governed mainly by the spatial distribution in 

rainfall and the geological-topographic setting. The influence of spatial variations in weather was visible in late 2018 and 2019. 

In this period, a gradient in meteorological drought towards the east caused groundwater drought to be concentrated in this 

area. The effect of the geological-topographic setting is visible for the higher elevated parts of the study area, especially the 

glacial sand ridges and the limestone-loess hills, which clearly had a later, longer-lasting drought response than lower-lying 545 

areas (Figs. 5-6). This pattern is also visible in the groundwater response times (Fig. 7). The slow drought response in the 

higher elevated areas is likely explained by a thick unsaturated zone and low drainage density, while the fast recovery of the 

low-lying western parts may have been aided by thinner unsaturated zones and possibly some surface water influence. These 
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factors have been found by other studies to influence drought behaviour (Bloomfield et al., 2015; Hellwig et al., 2020; Peters 

et al., 2006; Van Loon and Laaha, 2015; Kumar et al., 2016). In addition, the topographic-geological setting in the study area 550 

correlates with variations in land use, soil type and aquifer characteristics; these factors may have played an additional role.  

The dominant role of landscape position in shaping drought development calls for locally adapted, but also regionally 

coordinated mitigation strategies. The response times obtained from the time series analysis form a useful first indicator of the 

landscape characteristics that control the propagation of meteorological drought to groundwater drought. The response times 

found here are somewhat shorter than the drought response times reported by Van Loon et al. (2017) for part of the eastern 555 

Netherlands. However, they are very similar to those found by Zaadnoordijk et al. (2019), who performed time series analysis 

on groundwater series from the whole Netherlands. As they used different data and different model quality criteria, the 

similarity is reassuring and points to the stability of the time series models. 

6 Conclusions 

The performed study aimed to evaluate the usefulness of time series modelling-based data processing methods for regional-560 

scale groundwater drought assessment. A TSM-based method was set up for data validation and drought quantification and 

applied to the regional 2018-2019 groundwater drought in the southeastern Netherlands to test its usefulness and reliability. 

Automated TSM-based data validation was found able to improve the quality of input data. However, optimal validation 

parameters are likely to be context-dependent. In addition, improvements in the validation method are desired, especially in 

the separation of real and erroneous head disturbances. The simulated groundwater head series were generally found to be 565 

reliable; however, it was shown that the use of time series simulations may bias drought estimations and underestimate spatial 

variability, producing large errors at a local scale. Still, the use of time series model simulations in drought analysis provides 

large advantages, as it enables a spatially detailed record of drought development that may be impossible to obtain with direct 

measurement series only.  

The drought analysis for the southeastern Netherlands provided a complete, detailed image of the development of the 2018-570 

2019 groundwater drought in time and space. The findings confirm that the meteorological drought in 2018 caused extreme 

groundwater drought throughout the southeastern Netherlands, starting in late spring and peaking in October-November of 

that year. The timing of drought onset and the duration of drought varied strongly in space. Drought development appeared to 

be governed dominantly by the spatial distribution of rainfall and the geological-topographic setting. In much of the area, the 

drought continued as a multi-year drought into 2019 and 2020, especially in the eastern and higher elevated regions.  575 

Taken together, we conclude that time series modelling forms a useful tool to obtain a fast, detailed and up-to-date image of 

drought development; however, for a proper understanding of the different driving factors of drought the availability of recent 

and consistent monitoring data remains crucial.   
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Appendix A 

A1 Time series model setup 580 

Groundwater head modelling was done by impulse-response transfer function-noise models using the Pastas package in Python 

(Python 3.6, Pastas 0.13). The model setup used in this study largely follows Collenteur et al. (2019). The code for building 

and simulating the models, as applied in the validation and simulation steps in this study, is given at the end of this section. 

The working of impulse-response type transfer function-noise models for groundwater series is explained in von Asmuth 

(2002) and Collenteur et al. (2019). In principle, the method models groundwater heads as: 585 

ℎ(�) = ∑ ℎ�(�) + � + �(�)�
���           (A1) 

where hm are the variations in heads caused by one or several stresses m; d is the base level; and r the residual at time t. Here 

only recharge was used as explanatory variable. Recharge is estimated as a linear combination of precipitation P and reference 

evapotranspiration ETref: 

�(�) = �(�) − � ∙ �����            (A2) 590 

With f a model parameter. The response of groundwater to a recharge impulse is calculated with a scaled gamma function 

(option ps.Gamma in Pastas): 

�(�) = �
����

���(�)
���/�            (A3) 

With Γ the Gamma function, A a scale parameter and a and n shape parameters. The variation in groundwater heads over time 

hm is obtained by convolution of this impulse-response function with the recharge time series.  595 

This gives four parameters to be fit for each individual location. Parameter A represents the long-term response of the 

groundwater level to a constant recharge input of one unit, in this case 1 mm; f is the influence of ETref relative to precipitation; 

and d is the groundwater base level. For purposes of parameter calibration, also an AR(1) noise model is fit to the residuals, 

giving the additional noise decay parameter α.The default method for parameter optimisation was used, which minimises the 

sum of weighted squared noise by a least squares method (ps.LeastSquares). Table A1 gives the calibration settings for each 600 

of the parameters, as well as the range found in the raw groundwater head series in this study. Based on these ranges additional 

bounds were set for parameters A and f for the long-term behaviour classification (see section 3.2); series with unusual 

parameters beyond these bounds were classified as ‘atypical’ and potentially unreliable.  

Table A1: Parameter calibration settings: initial value and bounds during optimisation (default settings Pastas); the range of values 
found in this study when modelling the initial 2723 cleaned series; and reliability bounds used for the series classification. 605 

 
Initial value 
(Pastas) 

Allowed range 
(Pastas) 

Found values in this study 
(10th-90th percentile) 

Reliability bounds for 
classification 
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A  1 ���������⁄  >0 0.10…1.2 <1.5 

a   10  72…473  

n  1  0.61…1.9  

f  -1 -2…0 -1.4…-0.44 -1.95…-0.05 

d  Mean of series  0.95..41  

α 15  17…636  

 

Except for the simulations used to test the calibration period effect, the full period of available data between 1990 and 2019 

was used for calibration. Calibration was done at a weekly timestep (recharge and observation series subsampled to a weekly 

frequency before optimisation) to allow a more even spread of optimisation points over time. Simulation of series was done at 

a daily timestep from 1990-01-01 to 2020-05-31. 610 
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A2 Validation parameter sensitivity 

A2.1 Parameter sets 

The validation routine was run with 21 different parameter sets (table A2). In set 2-11, the parameters are varied individually; 

in set 12-19, combinations of outlier cleaning and long-term deviation identification parameters are tested; and in set 20 and 615 

21 versions are tested with only TSM-based outlier cleaning (no basic cleaning step) and no outlier cleaning at all.  

""" 
Basic time series model function for groundwater heads. 
Based on Collenteur et al. (2019) doi: 10.1111/gwat.12925 
Used in groundwater drought in the southern Netherlands project 
Esther Brakkee, spring 2020 
Applied with Pastas 0.13 and Python 3.6 
""" 
import pandas as pd 
import Pastas as ps 
 
def PastasModelParsSim (heads,rain,evap,calibstart="1990-01-01", 
                        calibend="2019-12-31",simstart="1990-01-01", 
                        simend="2020-05-31",method="Linear"): 
    ''' 
    function to make a basic impulse-response time series model 
    INPUT: 
        -head dataframe with 'DateTime' in '%d-%m-%Y %H:%M' and 'Head' in m+MSL 

 -daily-step series for rain and reference evapotranspiration, with 
'DateTime' in '%d-%m-%Y %H:%M' and 'Precip'/'Evap' in mm/d 

    PARAMETERS: 
        -calibstart, calibend: start and end of calibration period in  
        '%Y-%m-%d' 

 -simstart, simend: same for simulation period 
 -ONLY LINEAR MODELLING FOR NOW 

    OUTPUT: 
        dictionary with simulated series, model parameters, fit criteria, 
        residuals and noise 
    ''' 
    #create model 
    ml = ps.Model(heads, name='Model') 
    if method=="Linear": 
        rm = ps.RechargeModel(rain, evap, rfunc=ps.Gamma)#linear is default 
    ml.add_stressmodel(rm) 
    #solve model with weekly timestep 
    ml.solve(freq="7D",tmin=calibstart,tmax=calibend,report=False) 
    #get output 
    res=ml.residuals() 
    pars=ml.get_parameters() #A,n,a,f,d,noise-alpha 
    evp=ml.stats.evp() 
    noise=ml.noise() 
    sim=ml.simulate(tmin=simstart, tmax=simend, freq="D") 
    #all outcomes into a dictionary 
    outcomes={"EVP":evp,"parameters":pars,"residuals":res,"method":method, 
              "sim":sim,"noise":noise} 
    return outcomes 
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Table A2: Used parameter sets for the sensitivity test. See table 1 for explanation of the parameters. 
Nr Name Meta 

Check 
Frange THred nSD niter THEVP THr2 

1 Standard Yes 0.2 0.5 4 2 60 0.15 

2 FarOutliersConservative Yes 0.1 0.7 4 2 60 0.15 

3 FarOutliersRigorous Yes 0.2 0.4 4 2 60 0.15 

4 OutliersConservative Yes 0.2 0.5 6 2 60 0.15 

5 OutliersRigorous Yes 0.2 0.5 2 2 60 0.15 

6 IterationsConservative Yes 0.2 0.5 4 1 60 0.15 

7 IterationsRigorous Yes 0.2 0.5 4 5 60 0.15 

8 EVPConservative Yes 0.2 0.5 4 2 40 0.15 

9 EVPRigorous Yes 0.2 0.5 4 2 80 0.15 

10 TrendConservative Yes 0.2 0.5 4 2 60 0.4 

11 TrendRigorous Yes 0.2 0.5 4 2 60 0.05 

12 OutliersConservative_EVPConservative Yes 0.1 0.7 6 1 40 0.15 

13 OutliersConservative_EVPRigorous Yes 0.1 0.7 6 1 80 0.15 

14 OutliersConservative_TrendConservative Yes 0.1 0.7 6 1 60 0.4 

15 OutliersConservative_TrendRigorous Yes 0.1 0.7 6 1 60 0.05 

16 OutliersRigorous_EVPConservative Yes 0.2 0.4 2 5 40 0.15 

17 OutliersRigorous_EVPRigorous Yes 0.2 0.4 2 5 80 0.15 

18 OutliersRigorous_TrendConservative Yes 0.2 0.4 2 5 60 0.4 

19 OutliersRigorous_TrendRigorous Yes 0.2 0.4 2 5 60 0.05 

20 Standard_TSMcleaningOnly No 0 1 4 2 60 0.15 

21 Standard_NoOutlierCleaning No 0 1 100 0 60 0.15 

 

A2.2 Test results 

Outliers 620 

Table A3 gives the full outlier cleaning performance results for all parameter sets. Cleaning of outliers in general was able to 

increase the EVP of series TSM models from 60 % to 62 % on average (set 1 vs 21). Also, applying a cleaning step allows for 

more series to be retained. The basic, range-based outlier step adds relatively little to the cleaning quality compared to the time 

series model-based cleaning (set 20 vs 1). The range-based cleaning step appeared useful in a small number of cases where it 

improved the quality of the TSM cleaning; in addition, it is a computationally cheap step and was therefore retained in the 625 

validation.  

As expected from the minor effect of the far outlier cleaning, the thresholds of this step have little effect on the validation 

performance (set 2 and 3). Changing the TSM-based outlier cleaning thresholds does result in large effects: lowering the SD 
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threshold to 2·SD (set 5) causes the mean EVP (logically) to increase substantially, but also causes removal of many data 

points that would visually not be identified as errors (many false positives). Applying a more conservative TSM outlier cleaning 630 

with 6·SD (set 4) has the reverse effect, with many outliers not identified and more series being discarded. The number of 

iterations applied in the TSM outlier cleaning only slightly affected the resulting EVP of the series models. Apparently the 

first cycle already cleans the main outliers in most cases.  

Table A3: Validation performance with regard to outliers. Left columns: number of series (of n=180) classified in each category. 
TP=outliers identified in manual and automatic validation; TN=outliers not identified in either manual or automatic validation; 635 
FP=outliers identified in automatic validation but not in manual validation; FN=outliers identified in manual but not in automated 
validation. Last column: percentage of series with outliers correctly cleaned.   

Set Name Missing 

Data 

Outliers 

TP 

Outliers 

TN 

Outliers 

FP 

Outliers 

FN 

Mean 
EVP 

Outliers 
Good 
[%] 

1 Standard 19 71 56 26 8 61.9 79 

2 FarOutliersConservative 19 72 56 26 7 62 80 

3 FarOutliersRigorous 19 71 56 26 8 61.9 79 

4 OutliersConservative 19 36 92 5 28 60.6 80 

5 OutliersRigorous 19 96 0 64 1 68.8 60 

6 IterationsConservative 19 71 56 26 8 61.7 79 

7 IterationsRigorous 19 71 56 26 8 62.2 79 

8 EVPConservative 19 71 56 26 8 61.9 79 

9 EVPRigorous 19 71 56 26 8 61.9 79 

10 TrendConservative 19 71 56 26 8 61.9 79 

11 TrendRigorous 19 71 56 26 8 61.9 79 

12 
OutliersConservative_ 
EVPConservative 

19 37 92 5 27 60.5 80 

13 
OutliersConservative_ 
EVPRigorous 

19 37 92 5 27 60.5 80 

14 
OutliersConservative_ 
TrendConservative 

19 37 92 5 27 60.5 80 

15 
OutliersConservative_ 
TrendRigorous 

19 37 92 5 27 60.5 80 

16 
OutliersRigorous_ 
EVPConservative 

22 93 0 64 1 71.1 59 

17 
OutliersRigorous_ 
EVPRigorous 

22 93 0 64 1 71.1 59 

18 
OutliersRigorous_ 
TrendConservative 

22 93 0 64 1 71.1 59 

19 
OutliersRigorous_ 
TrendRigorous 

22 93 0 64 1 71.1 59 

20 
Standard_ 
TSMcleaningOnly 

19 73 54 26 8 62.1 79 

21 
Standard_ 
NoOutlierCleaning 

19 0 110 0 51 59.9 68 

 



29 
 

Serious long-term deviations: discarding of series 

Table A4 shows the validation performance with regard to serious long-term deviations in the series. Changing the EVP 640 

threshold for discarding series logically has a strong effect on the number of discarded series (set 8 and 9). Taking a 

conservative low EVP threshold appears to give a good performance on the strong deviation identification (set 8 and 16), but 

the number of false negatives, leading to potentially erroneous outcomes, is high. The outlier cleaning also affects the 

identification of long-term deviations. More rigorous outlier cleaning, especially by reducing the SD threshold, led to 

discarding a smaller number of series and slightly better performance on the long-term deviation identification, with 645 

conservative outlier cleaning having the reverse effect (set 2-5). However, the changes are small.  

Table A4: Validation performance with regard to strong long-term deviation. Left columns: number of series (of n=180) classified 
in each category. TP=discarded in manual and automatic validation; TN=not discarded in either manual or automatic validation; 
FP=discarded in automatic validation but not in manual validation; FN=discarded in manual but not in automated validation. Excl 
deep: false positives excluding deep-GWL series. Discard number: number of series discarded of n=180. Last column: percentage 650 
of series with long-term strong deviation correctly identified.   

Set Name Discard 
TP 

Discard 
TN 

Discard 
FP 

Discard 
FP excl 
deep 

Discard 
FN 

Discard 
number 

Discard 
Good 
[%] 

1 Standard 32 103 26 22 0 58 84 

2 FarOutliersConservative 32 103 26 22 0 58 84 

3 FarOutliersRigorous 32 103 26 22 0 58 84 

4 OutliersConservative 33 97 31 27 0 64 81 

5 OutliersRigorous 24 115 17 13 5 41 86 

6 IterationsConservative 32 100 29 25 0 61 82 

7 IterationsRigorous 32 103 26 22 0 58 84 

8 EVPConservative 17 121 12 8 11 29 86 

9 EVPRigorous 34 42 85 73 0 119 47 

10 TrendConservative 32 103 26 22 0 58 84 

11 TrendRigorous 32 103 26 22 0 58 84 

12 OutliersConservative_ 
EVPConservative 

17 121 12 8 11 29 86 

13 OutliersConservative_ 
EVPRigorous 

34 39 88 74 0 122 45 

14 OutliersConservative_ 
TrendConservative 

33 95 33 29 0 66 80 

15 OutliersConservative_ 
TrendRigorous 

33 95 33 29 0 66 80 

16 OutliersRigorous_ 
EVPConservative 

12 129 3 1 14 15 89 

17 OutliersRigorous_ 
EVPRigorous 

32 76 50 41 0 82 68 

18 OutliersRigorous_ 
TrendConservative 

21 116 15 11 6 36 87 

19 OutliersRigorous_ 
TrendRigorous 

21 116 15 11 6 36 87 

20 Standard_ 
TSMcleaningOnly 

32 104 25 21 0 57 84 
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21 Standard_ 
NoOutlierCleaning 

33 97 31 27 0 64 81 

 

Mild long-term deviations: series to be marked as atypical 

The fraction of series marked as atypical in the data is relatively small across the different parameter sets. The used r2 threshold 

to identify trends affects this number. A high threshold of 0.4 results in very few atypical series being identified; a low threshold 655 

results in many false positives, as weak trends were present in a large proportion of the series. The identification of atypical 

series is also affected by the outliers cleaning parameters. More rigorous outlier cleaning (set 5) causes more series to be 

marked as atypical. Also the EVP threshold to discard series affects the number of series marked as atypical. With a high EVP 

threshold discards many mildly atypical series are discarded by an insufficient EVP. A low EVP threshold brings more series 

into the ‘atypical’ category.  660 

Table A5: Validation performance with regard to mild long-term deviations. Left columns: number of series (of n=180) classified in 
each category. TP=marked as atypical in both manual and automatic validation; TN=not marked as atypical in either manual or 
automatic validation; FP=marked as atypical in automatic validation but not in manual validation; FN=marked as atypical in 
manual but not in automated validation. Excl deep: false positives excluding deep-GWL series. Atyp number: number of series 
marked atypical of n=180. Last columns: percentage of series with mild long-term deviations correctly identified.   665 

Set Name AtypTP Atyp TN Atyp FP Atyp FP 
excl deep 

Atyp FN Atyp 
number 

Atyp 
Good 
[%] 

1 Standard 7 131 11 7 12 18 86 

2 FarOutliersConservative 7 131 11 7 12 18 86 

3 FarOutliersRigorous 7 131 11 7 12 18 86 

4 OutliersConservative 7 132 10 6 12 17 86 

5 OutliersRigorous 9 123 19 14 10 28 82 

6 IterationsConservative 7 131 11 7 12 18 86 

7 IterationsRigorous 7 131 11 7 12 18 86 

8 EVPConservative 10 119 23 18 9 33 80 

9 EVPRigorous 0 142 4 2 15 4 88 

10 TrendConservative 2 139 5 1 15 7 88 

11 TrendRigorous 8 111 31 24 11 39 74 

12 OutliersConservative_ 
EVPConservative 

10 122 20 15 9 30 82 

13 OutliersConservative_ 
EVPRigorous 

0 142 4 2 15 4 88 

14 OutliersConservative_ 
TrendConservative 

2 139 5 1 15 7 88 

15 OutliersConservative_ 
TrendRigorous 

7 113 29 22 12 36 75 

16 OutliersRigorous_ 
EVPConservative 

13 106 32 24 7 45 75 

17 OutliersRigorous_ 
EVPRigorous 

2 135 6 4 15 8 87 

18 OutliersRigorous_ 
TrendConservative 

3 131 10 5 14 13 85 



31 
 

19 OutliersRigorous_ 
TrendRigorous 

10 104 35 30 9 45 72 

20 Standard_ 
TSMcleaningOnly 

8 131 11 7 11 19 86 

21 Standard_ 
NoOutlierCleaning 

8 134 8 4 11 16 88 

 

A3 Example figures 

 

Figure A1: Example of a series with a clearly undesired outlier. The isolated low points in 2013 are caused by temporary extraction 
to clean the well. The series also contains smaller outliers in e.g. 1994 and 2006. 670 

 

Figure A2: Example of a series with a serious long-term deviation. The level shift around 1996 is caused by changes in water 
management in the area. Also an outlier in 1999. 



32 
 

 

Figure A3: Example of a series with potentially unreliable long-term behaviour. There seems to be a trend from 1996 and a 675 
stabilisation after 2006, but the variations could be caused by weather variations and do not give reason to discard the series. 

 

Figure A4: Example of a series with a deep groundwater table and resulting multi-year variation. Series located on the Veluwe ice-
pushed ridge, mean WTD 35 m. 

EVP 34.5 % EVP 53.8 % 

 
EVP 60.4 % 

 

EVP 78.5 % 

Figure A5: Examples of series with a range of EVP values (explained variance percentage). 680 
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p=0, r2=0.1, EVP=65% p=0, r2=0.15, EVP=50% 

 

p=0, r2=0.29, EVP=44% 

 

 

p=0, r2=0.64, EVP=31% 

Figure A6: Examples of series with a range of trend r2 values in the model residuals. Both the series itself and the residuals with 
fitted trend are shown. 

Code and data availability 

All code for data processing, modelling and visualisation is available on request from the first author. Groundwater data are 

freely available from the national groundwater database DINO (www.dinoloket.nl). The used weather data can be obtained 685 

from the Royal Dutch Meteorological Institute (KNMI) via http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi or 

through a script via https://www.knmi.nl/kennis-en-datacentrum/achtergrond/data-ophalen-vanuit-een-script.  

http://www.dinoloket.nl/
http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/data-ophalen-vanuit-een-script
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