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Abstract. From the micro to mesoscale, water and energy budgets of mountainous catchments are largely driven by topographic

features such as terrain orientation, slope, steepness, and elevation together with associated meteorological forcings such as

precipitation, solar radiation, and wind speed. AUT:This impactsIt governs the snow deposition, melting, and transport, which

further impact the overall water cycle. However, this microscale variability is not well represented in Earth System Models due

to coarse resolutions. AUT:Moreover, the impact of resolution on the simulated water and energy balance lacks quantification. This study explores5

the impact of precipitation, shortwave radiation and wind speed on the water budgets AUT:distribution over a 15.28 ha small

mid-elevation (2000-2200 m) alpine catchment at Col du Lautaret (France). The grass dominated catchment remains covered

with snow for 5 to 6 months per year. The surface-subsurface coupled AUT:hyper-resolution (10 m) distributed hydrological model

ParFlow-CLM is used AUT:at very high resolution (10m) to simulate the impacts AUT:on the water cycle of meteorological

variability at AUT:spatio-temporal micro-scalevery small spatial and temporal scaleAUT:on the water cycle. These include 3D simulations10

of hydrological fluxes with spatially distributed forcing of precipitation, shortwave radiation, and wind speed compared to

3D simulations of hydrological fluxes with non-distributed forcing. Our precipitation distribution method encapsulates spatial

snow distribution along with snow transport. The model simulates the dynamics and spatial variability of snow cover using

the AUT:CLMCommon Land Model (CLM) energy balance module and under different combinations of distributed forcing.

The resulting subsurface and surface water transfers are AUT:solvedcomputed by the ParFlow module. Distributed forcing leads15

to spatially heterogeneous snow cover simulation, which becomes patchy at the end of the melt season and shows a good

agreement with the remote sensing images (AUT:MBEMean Bias Error (MBE) = 0.22). This asynchronous melting results in

a longer melting period compared to the non-distributed forcing, which does not generate any patchinessAUT:(MBE = 0.6, -0.4).

Among the distributed meteorological forcings tested, precipitation distribution, including snow transport, has the greatest

impact on spatial snow cover (MBE = 0.06) and runoff. Shortwave radiation distribution has an important impact on reducing20

evapotranspiration as a function of the slope orientation (decrease in AUT:regression slopeslope between observed and simulated

evapotranspiration from 1.55 to 1.18). For the primarily east-facing AUT:watershedcatchment AUT:studiesstudied here, AUT:the dis-

tribution of shortwave radiation adds a small differential snowmelt withdistributing shortwave radiations helps generating realistic timing

and spatial heterogeneity in the snowmelt, at the expense of an increase in mean bias error (0.06 to 0.22) for all distributed

forcing simulations compared to the simulation with only distributed precipitation. Distributing wind speed in the energy25

balance calculation has a more AUT:complicatedcomplex impact on our catchment as it accelerates snowmelt when meteorological

conditions are favourable but does not generate snow patches at the end of our test case. AUT:It shows that slope and aspect based

meteorological distribution can improve the spatio-temporal representation of snow cover and evapotranspiration in complex

mountain terrain.

1 Introduction30

Mountains are natural water reservoirsAUT:, which mitigate the variability of seasonal precipitation through snowpack accumula-

tion. The gradual melting of the snowpack helps meet the demand for freshwater and energy all year long. The warmer climate

expected in the near and far future for these AUT:mountain regions will impact this mitigation process.AUT:Earth System Models
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(ESMs) are then challenged to simulate water fluxes in mountainous catchments. Highly variable mountain topography, vegetation, soils, and

geological structures affect the water transfer at different scales AUT:which makes it difficult for Earth System Models (ESM) to35

simulate water fluxes in mountain catchments, as they have coarser spatial scale. In particular, topography controls precipitation

estimation and uncertainties related to rain/snow partition, snow redistribution, slope/aspect effect, and hill-shading that lead

to spatial differences in melting (Costa et al., 2020; Fang and Pomeroy, 2020; Pomeroy et al., 2003, 2007). Fan et al. (2019)

argued that variations in topography and catchment aspect can change hydrological fluxes and vegetation dynamics AUT:from

steep to gentle slope and from north to south aspectin particular when comparing steep to gentle slopes or north facing to south facing40

slopes. Therefore, water budget modeling in the mountains is challenging, and the impacts of spatial heterogeneity, like snow

depth distribution, calls for specific attention (Blöschl et al., 2019).

Land surface models (LSMs) are an imperative component of the ESMs to capture exchanges of mass, energy, and biogeo-

chemical variables between the Earth’s surface and the atmosphere (Hurrell et al., 2013; van den Hurk et al., 2011). However,

hydrological flux exchange between surface and subsurface in LSMs is often poorly constrained. AUT:Major approximations include45

free draining subsurface hydrology and coarse resolution with no specific subgrid parameterizationThe usually applied free draining subsurface

approximation is not really adequate to the task. This could also include slope and aspects features (as hill shading) or mete-

orological subgrid variability (Clark et al., 2015; Fan et al., 2019) or underground horizontal water redistribution (Tran et al.,

2020). The spatial variability of hydrological processes and associated variable flux responses are generally too fine to be repre-

sented in LSMs when used at several square km resolutions (Song et al., 2020). Bertoldi et al. (2014) mentioned that due to the50

lack of detailed subsurface characterization, they failed to simulate the heterogeneous soil moisture compared to observation

over sloping terrains at 20 m resolution. Similarly, another study acknowledged that precipitation, solar insolation, and wind

speed distribution in a hillslope catchment are vital to simulate the spatial heterogeneity in surface hydrological fluxes and

snow dynamics (Sun et al., 2018). Overall, the underrepresentation of subgrid processes within mountain catchment controls

the spatio-temporal snow cover, heterogeneous snow melting, and resulting streamflow responses.55

AUT:DifferentialSpatially and temporally heterogenous snowmelt in a mid-elevation catchment leads to spatial variation in sat-

uration and pressure head response which affects streamflow at the outlet. Loritz et al. (2021) AUT:modeled a 19 km2 catchment

in northern Luxembourg Ardennes low elevation mountains and mentioned the importance of the distribution of rainfall data
AUT:over the catchment forfor the spatial representation of surface and subsurface fluxes. The same study also highlighted that in

a snow dominated catchment, the calibration of hydrological models should consider the surface dynamics of snow along60

with AUT:the runoffrunoff as evaluation variables. Furthermore, evaluating the impact of snow redistribution AUT:by thecaused by

wind over a catchment is challenging because it involves the hyper-resolution of wind vector (1 m to 100 m)AUT:to simulate snow

transport in a mountainous catchment (Marsh et al., 2020; Pomeroy and Li, 2000). Liston et al. (2016) showed the relevance of the

physical-statistical distribution of wind field in capturing snow dynamics. Similarly, shortwave radiation plays a significant

role from a climatic, hydrologic, and biogeochemistry point of view. Nijssen and Lettenmaier (1999) mentioned that shortwave65

radiation affects the majority of AUT:energy exchanges between land and the atmosphereAUT:, including water vapor exchanges.

Land surface–radiation interactions rely on terrain, wind speed, and soil moisture, and are often neglected in ESMs. Sampaio

et al. (2021) highlighted that the daily/diurnal cycles of heat are also dependent on the surface orientation but are merely taken

3



into account in hydrological modeling. However AUT:important, forcing AUT:distribution ofthe distribution of only a single variable

sometimes is not enough to capture the real catchment behaviour. Combining the terrain-based distribution of precipitation data70

with solar radiation and wind speed helps AUT:capturing differential snow meltingto capture spatial patterns of snow melt along the

slope, including distribution and redistribution of snow in the catchment (Sun et al., 2018). However, these diverse approaches

in hydrological modeling are still limited and merely account for subsurface distribution, hyper-resolution simulation, terrain

effect and surface meteorological variable distribution.

In mountainous regions, it is hard to maintain a dense network of weather stations due to the complex terrain (Meerveld75

et al., 2008; Revuelto et al., 2017; Song et al., 2020). This adds complexity to setting up hyper-resolution distributed models.

However, there are proven statistical methods available for distributing the meteorological variables like precipitation, short-

wave radiation, wind speed, temperature, and humidity over the catchment (Liston and Elder, 2006). Many studies focus only

on accounting for temperature distributions in the forcings of the model to simulate the spatial variability of fluxes in snow-

dominated hillslope catchments (Aguayo et al., 2020; Fang and Pomeroy, 2020). However, these model resolutions remain too80

coarse to simulate the micro-scale hydrological behaviour. Moreover, only a few studies on snowpack simulation have used

hyper-resolution distributed forcing (Günther et al., 2019; Baba et al., 2019; Vionnet et al., 2012). These studies highlighted

the importance of meteorological distribution and the need for a hyper resolution modeling framework. Yet, the practice of

distributing multiple meteorological forcing in hyper-resolution hydrological modeling of mountainous catchments is limited.

In order to overcome these LSMs limitations and quantify the impacts of fine scale variability on water balance, we AUT:studied85

the impact ofused spatially distributed precipitation, wind speed, and shortwave radiation AUT:on the hydrological budget in a unique

modeling exercise AUT:usingof the hydrological budget of a small-scale alpine mid-elevation (2000-2200 m) catchment (15.28

ha) AUT:that can be investigated in details regarding surface and subsurface conditionsfor which we have detailed observations on surface and

subsurface conditions. We AUT:have used a hyper resolution subsurface hydrological model (ParFlow) coupled with the Common

Land Model (CLM) at 10 m resolution to simulate the hydrological fluxes and spatio-temporal snow cover dynamics. From the90

perspective of hillslope hydrology we addressed the following points:

– Ability of the hyper-resolution modeling using 3D critical zone model ParFlow-CLM to capture the water/energy fluxes

in a sub-alpine snow-dominated catchment.

– Impact AUT:on the catchment hydrological fluxes of distributing precipitation, solar radiation and wind speed AUT:distribution

over AUT:the catchmentAUT:; and its response in simulating the catchment hydrological fluxes.95

– Snow cover spatio-temporal dynamics in a microscale catchment and its role in controlling the water budget.

From onward, the second section presents the study area AUT:location and its characteristics. The third section covers the method-

ology AUT:with details about the modeling framework. This section also includes details about the method to distribute the meteorological variables, in-

cluding the modeling framework and the distribution of the meteorological variables. The fourth section details the domain

discretization and model setup. The fifth and sixth sections present the results and discussion, respectively. Finally, the seventh100

section concludes the study.
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2 Study Area

2.1 Geography and geology

The study area lies in a mid-elevation AUT:range of sub-alpine region in the French Alps, close to the mountain pass, Col du Lautaretmountain

range in the southern French Alps, near the Lautaret Pass (Fig. 1). AUT:Being a micro-scale catchment, itThis micro-scale catchment105

covers 15.28 ha with elevation ranging between 2000 and 2200 m. It consists of steep slopes facing East in the upper area,

and a wetland in the lower area. The catchment is covered by snow for 5 to 6 months per year. The warm season grassland

dominates the summer with 5 % woody coverAUT:age that includes some larches, alders and bushes. Flux’Alp meteorological

station lies just AUT:adjacent toon the border of the catchment AUT:(Fig. 1) in a flat zone. Over the catchment, soil depths range from

20 cm on steep slopes to more than 2 m on the flat wetland. Soils are rich in clay with high porosity and retention capacity.110

This rich clay soil slowly AUT:transits to the hard rock towards the regolith upturns into regolith, then hard rock over some transition

zone, with thickness up to 5 m at the deepest locations. The base rock is highly fractured “Flysch des Aiguilles d’Arves”, a

shale-sandstone alternation, with bedding slopes ranging from sub-horizontal to sub-vertical (https://infoterre.brgm.fr/).

2.2 Climate

The study area is located in a typical mid-latitude alpine climate. Figure 2 shows meteorological observations for the simulated115

hydrological year starting on 11 November 2017 on the first snowy day to 10 November 2018. The catchment has a long winter

season with 5 to 6 months of snowfall (Fig. 2a) and snow cover. Flux’Alp meteorological station records a total of 1530 mm

year−1 precipitation, out of which 970 mm is snow AUT:(dry) in the studied period. According to 2017-2018 weather data, the

site-average temperature is 4 °C. The site AUT:has below-zero winter conditions, with atemperatures show a strong seasonal contrast,

between below-zero winter conditions (-7.4 °C AUT:minimum monthly mean AUT:in FebruaryAUT:temperature recorded) and a AUT:mild120

summer (14 °C AUT:maximum monthly mean AUT:in July) AUT:temperature(Fig. 2b). AUT:Strong windsWinds higher than 5 ms-1 (Fig.

2c) are common throughout the year, usually from the South-West direction along the mountain pass (Fig. 4a). Temperature

and specific humidity follow the same cyclic pattern (Fig. 2d). March is the most humid period of the year, while July is the

driest. AUT:The studied catchment has significant differences between summer and winter solar radiation (Fig. 2f). Additionally, mountains around the catch-

ment reduce the sunshine period with projected shadow, especially during winterSolar radiation (Fig. 2f) varies due to the seasonal cycle, and125

to shading effects from the southern high mountain range (elevation 3000 - 4000m elevation), which are particularly sensitive

in the winter when the sun is lower on the horizon.AUT:These observations time series are used as the input to force the model.

2.3 Monitoring

Most of the monitoring on the site has started in 2012. It includes the temperature and humidity (CS215, Campbell Sc.),

atmospheric pressure (Setra CS100, Campbell Sc.), wind speed and wind direction (Vector anemometer A100LK and W200P,130

Campbell Sc.), 4 components of net radiation (CNR4, Kipp and Zonen), snow height (SR50A, Campbell Sc.), and NDVI

(Normalised Difference Vegetation Index) measured through Skye Instruments SKR1800. Since 2015, the site received AUT:eddy
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Figure 1. (a) Overview of the study area at Col du Lautaret, France, the small sub-alpine catchment is delineated in red with the outlet at

the blue point. The green dot (black star in 1(c)) is the Flux’Alp micro-meteorological station. (b) Landscape views of the Lautaret pass area

in winter (January) and summer (July). (c) Catchment domain (84 × 42 grid cells at 10 m resolution) with river branches (violet), elevation

contours (green), and vegetation. Coloured pixels represent the distributed snow coefficients. The dotted area is the approximated footprint

for the daily wind directions considered for ET comparison in (section 3.3).

covariance sensorsone eddy covariance station composed of a LI-COR LI-7200 close-path gas analyser and a HS50 Gill 3D

sonic anemometer. In 2017 an OTT Pluvio AUT:weighting rain gauge was installed at the Flux’Alp weather station. Site setup,

monitoring, and data processing follow the ICOS (https://www.icos-ri.eu/) standardsAUT:, and the site has entered in this program since135

2020. All measured variables are recorded at 15 min time steps and then AUT:upscaled to a 30 min mean time series (sum for precipitation for

this study)averaged over 30 min, except precipitation, which is summed. The EddyPro Software was used to process the turbulent

fluxes at the same 30 min time step following the ICOS recommendations (Hellström et al., 2016).
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Figure 2. Daily meteorological observation at Col du Lautaret for the hydrological year 2017-2018: precipitation (a), air temperature (b),

wind speed (c), specific humidity (d), Atmospheric pressure (e) and shortwave (SW) and longwave (LW) incoming radiation (f).

3 Methodology

3.1 ParFlow-CLM AUT:(PF-CLM)140

In this study, we AUT:have used ParFlow-CLM, an integrated surface-subsurface coupled hydrological model, to simulate the

impact of distributed meteorological forcing on the water transfers (Jones and Woodward, 2001; Ashby and Falgout, 1996;

Kollet and Maxwell, 2006; Maxwell, 2013; Maxwell and Miller, 2005; Kollet and Maxwell, 2008). ParFlow is a parallel

integrated hydrological model optimised to solve the surface and subsurface exchange of fluxes. ParFlow solves the three-

dimensional Richards equation to calculate the water pressure field and transfer of fluxes between unsaturated and saturated145

porous media (Jefferson and Maxwell, 2015). Relative permeability and soil retention curves are based on the Van Genuchten

relationships (Van Genuchten, 1980). A multigrid-preconditioned conjugate gradient solver and the Newton-Krylov solver for

non-linear equations (Kuffour et al., 2020) make the model efficient to run in a parallel computing environment. ParFlow

includes a terrain-following grid which eases boundary conditions prescription. It accounts for the surface slope in Darcy’s

formula, which also eases numerical exchange between subsurface and overland flow. At the model surface, excess of water150

(pressure > Patm) in all saturated cell flows according to the two-dimensional kinematic wave equation (Kuffour et al., 2020).

ParFlow then maintains a continuous pressure head value from the bottom to the top of the domain and explicitly calculates
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fluxes between groundwater and surface water. Infiltration excess (Horton, 1933) or saturation excess (Dunne, 1983) runoff

are then generated according to Richards equations. Flow-routing uses the D4 scheme to determine the flow direction based

on individual slopes in the x and y direction and has been calculated according to Condon and Maxwell (2019). The CLM155

(Common land model) is a land surface model designed to compute the land-water-energy exchange between the Earth’s

surface and atmosphere (Dai et al., 2003). CLM accounts for land cover, surface temperature, soil moisture, soil texture,

soil colour, root depth, leaf and stem area, roughness length, displacement height, plant physiology and thermal and optical

properties of the medium to calculate the surface energy and water balance. It calculates evapotranspiration as the sum of

evaporation, vegetation evaporation, transpiration, and re-condensation. AUT:It also includes a five adaptive layer snow scheme to predict160

mass of water, mass of ice, layer thickness, and temperature as main driving variablesCLM models snow with up to 5 layers, following layer

thickness and temperature, water and ice mass in each layer. CLM two-stream radiative transfer scheme accounts for direct

and scattered radiation by snow in visible and near infrared wavelengths. In CLM, when pixels cover a large range of elevation,

the snow fraction is used to calculate the total snow cover area. In our study snow fraction was assigned 0 (no-snow) or 1

(snow) values. Our horizontal pixel resolution is small enough (10 × 10 m) that we consider their snow cover to be uniform.165

AUT:This implies that either our pixels are completely covered with snow or they are bareThis implies that our pixels are either completely

covered with or completely devoid of snow. Therefore, CLM can handle the spatial/temporal snow distribution, associated

water fluxes (melting, sublimation, infiltration), and evaporative fluxes according to spatial/temporal heterogeneous surface

conditions (temperature, water/snow inputs, incoming radiations, wind speed, and vegetation). After computing the surface

exchanges like evaporation, transpiration, snowmelt, and precipitation infiltration to and out of the soil, these are applied as170

source/sink in the Richards equations. Further information on ParFlow terminology and the model capability is included in the

user manual (https://github.com/parflow).

3.2 Meteorological distribution

3.2.1 Precipitation

The precipitation data from the rain gauge AUT:has beenwas first processed to account for the lack of gauge shield (Klok et al.,175

2001). The adopted algorithm follows as:

Pcorr(x0,y0) = P (x0,y0) ∗ (a+ b ∗u(x0,y0)), (1)

where, Pcorr is the corrected precipitation (mm), P is measured precipitation (mm) at observation station, u is the wind speed

at observation station in m s-1, a and b are correction factors, and are different for rain (a = 1.04, b = 0.04) and snow (a = 1.18,

b = 0.20) (Sevruk and WMO, 1986).180

To account for snow cover spatial variability on the catchment domain, Sc(x,y), the AUT:snow precipitationprecipitation fallen

as snow at (x,y) location was calculated using a snow coefficient map Cs(x,y). The snow coefficient map was prepared from

the ratio between the measured snow height at the gauge to the snow height measured through the laser scan on the same day

(21/02/2018) at the end of the accumulation period (Fig. 1). The snow height was calculated from the laser which AUT:basically
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is the difference of apparent snow height (from laser scan) at the end of the accumulation period and the digital elevation185

model (DEM) for the surface without snow. The snow DEM and surface DEM were prepared at the resolution of 2 m and

were upscaled to 10 m resolution using the AUT:nearest neighbour algorithm for modeling purposesminimum of each cell. The Sc(x,y)

calculation hypothesizes that distributed snow cover on that date aggregates all spatial heterogeneity of the snow deposition

including snow transport (redistribution). It also includes the snow compaction between the date of deposition and the laser

scan. Then the corrected AUT:snow precipitationprecipitation fallen as snow was calculated according to:190

Sc(x,y) = Sm(x0,y0) ∗Cs(x,y)), (2)

where, Sm(x,y) is the measured snow precipitation at the observation station. It must be noted that the laser scan didn’t

cover the upper part of the catchment. Zones not covered by the scanner were each given a fixed value according to our field

observation. Moreover, due to the small size of the catchment and the low elevation range (1993 m to 2204 m), precipitation

gradients between upper and lower elevations have not been considered and the rain has not been distributed in our study.195

3.2.2 Shortwave radiation

The shortwave radiation, SWc(x,y) AUT:has beenwas distributed from the observed shortwave radiation measurement, SWm(x0,y0)

at the meteorological station considering the sun position and the terrain effect (Liston and Elder, 2006). Equation 3 partitions

diffuse (30 %) and direct shortwave radiation (70 %) contributions from the observed shortwave radiation, and equation 4

accounts for the terrain features based on their orientation which was integrated as a solar cosine function in equation 3. The200

partition of diffuse and direct shortwave radiation was taken from the CLM technical setup (Oleson et al., 2004).

SWc(x,y) = (0.7cosi(x,y)+ 0.3) ∗SWm(x0,y0)), (3)

cosi(x,y) = cosβ(x,y) ∗ cosZ(x,y)+ sinβ(x,y) ∗ sinZ(x,y) ∗ cos(µ(x,y)− ξs(x,y)), (4)

SWc is the corrected shortwave radiation (W m-2) at a coordinate location, SWm is measured shortwave radiation at the

observation station, i is the solar angle function of the slope angle β, the slope southern azimuth ξs, sun southern azimuth µ205

and solar zenith angle Z.

3.2.3 Wind speed

Wind speed was spatialized to better account for the estimation of turbulent fluxes (Liston and Elder, 2006). The wind speed

was distributed as

Ww(x,y) = 1+0.58Ωs(x,y)+ 0.42Ωc(x,y), (5)210

Ωs(x,y) = β(x,y) ∗ cos(θ(x,y)− ξ(x,y)), (6)

Ωc(x,y) = 0.25
∑

(z(x,y)− 0.5(zi(x,y)+ zj(x,y)))/d, (7)

Wc(x,y) =Ww(x,y) ∗Wm(x0,y0), (8)
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where, Ww is the wind weighting factor at a coordinate location as a function of wind direction slope (Ωs) and curvature (Ωc),

i and j are the search direction (N-S, E-W, NE-SW, SE-NW), d is 2η for cardinal axes and 2
√
2η for others, η is the search215

distance and, AUT:Zz is the elevation, β is the slope angle, θ is the wind direction and ξ is the slope azimuth. The search distance

d for curvature was set to 50 m (Revuelto et al., 2020). Finally, the wind weighting factor (Ww) was multiplied with the wind

speed measured (m s-1) at the observation station (Wm) to obtain the terrain corrected wind speed (Wc).

Along with precipitation, shortwave radiation, and wind speed, three more variables are used to force the model: temperature,

pressure, and specific humidity. However, as the model was set to a microscale catchment with little elevation variability, we220

did not distribute these parameters.

3.3 Wind direction mask

To compare the simulated evapotranspiration with the observation, a wind direction mask was prepared to approximately

represent the Eddy-Covariance station footprint area. AUT:As we only simulate a small catchment, actual footprint is sometimes not included in

the limits of the catchment. To overcome this problem we haveAs the catchment and the footprint area only partly coincide, we selected225

simulated pixels in an approximated footprint area based on a wind direction mask (Fig. 1) and averaged simulated values

over the mask. The wind direction mask was prepared according to the prevailing wind directions towards the Flux’Alp station

between the 10 percentile (122.39°) and 90 percentile (260.51°) wind direction. AUT:We assumed that when the wind blows towards this

direction there is an enhanced similarity between observed and simulated evapotranspiration.We then compared observed evapotranspiration to

the simulated average value over the mask, only when the wind blows from a direction included in the mask, as this maximises230

the comparability of simulated and measured values.

3.4 Sentinel-2 snow cover

Snowmelt dynamics was compared to Sentinel-2A and Sentinel-2B products from Sentinel-2 mission developed by European

Space Agency (ESA) for high resolution satellite imagery (Drusch et al., 2012). We AUT:have downloaded four Sentinel-2 images

out of which two belong to the accumulation period and two AUT:belong to the melting period. These images were selected to235

show the spatial and temporal distribution of snow in the catchment. For this purpose, we have calculated the normalised snow

difference index (NDSI) from the downloaded images as (Dozier, 1989),

NDSI =
Green(band3)−SWIR(band11)

Green(band3)+SWIR(band11)
, (9)

where, ’Green’ and ’SWIR’ are the corresponding bands in the green and shortwave infrared region of the satellite, respectively.

The green band is represented by ’band 3’ and the SWIR band is represented by ’band 11’ in Sentinel-2 product. AUT:Sentinel240

’band 3’ was available at 10 m resolution while ’band 11’ at 20 m resolution. NDSI calculation was carried out by resampling

’band 11’ at 10 m resolution (Hofmeister et al., 2022). The Sentinel-2 snow pixels were selected with NDSI > 0.4 (Riggs et al.,

1994). In the model, the snow pixels were selected for snow depth threshold over 1 cmAUT:, which is the minimum non zero

height for snow.
AUT: [New section on ’Performance indicators’ added below.]245
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3.5 Performance indicators

3.5.1 Slope

Slope for the linear regression without intercept (y = αx) is represented as,

α=

∑n
i=1(xiyi)∑n
i=1(x

2
i )

, (10)

where, x is observed value and y is predicted value.250

3.5.2 R-square (R2)

R-square or coefficient of determination is defined as,[ ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

]2

, (11)

where, x is the observed value and y is the predicted value, and x̄, ȳ are the mean of observed and predicted values, respectively.

3.6 Root mean square error (RMSE)255

RMSE score is represented as,

√√√√ 1

n

n∑
i=1

(xi − yi)2, (12)

where, n in the number of samples and x is observed value while y is predicted value.

3.7 Mean bias error (MBE)

MBE score is represented as,260

√√√√ 1

n

n∑
i=1

(yi −xi), (13)

where, n in the number of samples and y is predicted value while x is observed value. MBE score is represented for the

Sentinel-2 images as an average between the spatial similarity of snow and non-snow pixels (mismatch between the image

pixels).

4 Domain discretization and simulation setup265

The surface domain of 15.28 ha was discretized at a AUT:horizontal hyper-resolution of 10 m with the total number of 84 × 42 ×

11 (longitude × latitude × levels) cells on a terrain following grid (Fig. 1). AUT:Individual cell height (z-direction levels) varies
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from 4 cm for the top soil layer to 110 m for the deepest layer (Fig. 3a). AUT:As mentioned earlier, tThe model was mainly built

and forced using the observations; hence, the input data either belongs to observation data or AUT:secondary data derived from

observation. These data include AUT:the temperature, precipitation, wind speed, short wave, humidity, and atmospheric pressure270

plotted in figure 2. AUT:These observations data were available at 30 minutes intervals from the instruments. The data which were available at a higher

temporal resolution were upscaled to the 30 minutes temporal resolution using the mean and sum approach. Leaf Area Index (LAI) AUT:and Stem Area

Index (SAI) AUT:werewas calculated from NDVI measurements AUT:while Stem Area Index (SAI) was assigned a constant value

based on field survey. Displacement height (d) and roughness length (z0) were calculated from the vegetation height following

Brutsaert rules (Brutsaert, 1982). AUT:Grass height was calculated from the snow height sensor during the summer months considering NDVI to275

identify the vegetation/snow periodsThe snow height sensor show sensitivity to the grass height when there was no more snow on the

ground. We, therefore, used the signal of this sensor when NDVI values were above 0.4 to estimate grass height. LiDAR Digital

Surface Model (DSM) of 2 m resolution was available for the catchment and upscaled to 10 m resolution AUT:for various elevation

related parametrization in the modelusing the minimum of each cell. Upscaled DSM AUT:has beenwas processed with PriorityFLOW

to generate the slope maps in x and y direction (Condon and Maxwell, 2019). The Landcover map was made through field280

observations while the Manning coefficients were assigned using the landcover map. AUT:River pixels were assigned a constant

manning value of 0.05 s m-1/3 and the rest of the catchment were assigned a constant manning value of 0.03 s m-1/3. The

lateral and bottom boundary conditions were set to no flow and the surface boundary condition was AUT:set at atmospheric

pressure AUT:condition that allows AUT:surface runofffluxes to leave at positive hydraulic head (Kollet and Maxwell, 2006). Hence,

the inflow and outflow were restricted to exchange only through the surface. Subsurface AUT:has beenwas made heterogeneous285

with three layers consisting of soil, regolith, and flysch AUT:which were divided into 11 numerical cellswith a total of 11 different lay-

ers (Fig. 3a). The bottom of the domain was set deep enough to accommodate various subsurface water transfers (118 m

deep from the surface). The soil physical parameters used in this study include porosity, permeability, soil horizons, and Van

Genuchten parameters. The AUT:resulting water retention curves AUT:arewere plotted on Fig. 3c, d for the three different horizons.

They show a reduction of permeability and porosity with depth. Soil horizons distribution (Fig. 3b) was determined from an290

electromagnetic survey measuring apparent electrical conductivity (related to water and clay content) and ground penetrating

radar (GPR) measuring soil thickness. Electromagnetic survey AUT:has beenwas done for the whole catchment however, GPR

survey AUT:has beenwas performed for three transverse profiles across the stream to validate the electromagnetic survey. The soil

properties were determined by field permeability experiments and laboratory mercury porosity experiments. Elaboration about

the detailed hydro-geological characterization is beyond the scope of this study and will be detailed in a companion paper295

(Gupta et al., 2022, in preparation). This study is more focused on surface dynamics due to AUT:surface meteorological variable

distribution.

The model AUT:has beenwas forced with half-hourly meteorological forcing, however, results were AUT:writtensaved at hourly

time-step. The Universal Time Zone (UTC) was considered in terms of monitoring and modeling for this study. Before running

the actual simulations, a 10-year spin-up AUT:run AUT:was performed with ‘SeepageFace’ (no runoff) conditions AUT:was performed300

to bring the model into a hydrological balance. The yearly subsurface storage difference AUT:is used as spin-up parameter which reached

the equilibrium was used to evaluate whether the spin-up had taken the model into equilibrium, which happened at the end of
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(a) (b) (c)

(d)

Figure 3. Subsurface configuration used for discretizing the domain. (a) The vertical distribution of the subsurface layer with the thickness

(right) and depth (left) of each grid cell. (b) Spatial distribution of subsurface layer including soil (burly wood), regolith (dark brown), and

flysch (blue). These layers vary in their hydro-geological parameters e.g. in terms of conductivity, and porosity to the soil transfer functions

which are shown in (c- Soil retention curve) and (d- hydraulic conductivity curve).

the 10th year. AUT:Each simulation was also run for two consecutive years with the same forcing to avoid any imbalance in

subsurface storage (Ajami et al., 2014). The different simulations setup for this study AUT:includeare detailed in table 1.
AUT:1-dimensional column simulation of only precipitation distributed mean forcing (Pix-PM)305

AUT:3-dimensional simulation of only precipitation distributed mean forcing (1D-PM)

AUT:3-dimensional simulation of all distributed mean forcing (1D-AM)

AUT:3-dimensional simulation of all distributed forcing (2D-AD)

AUT:3-dimensional simulation of only precipitation distributed forcing (2D-PD)

AUT:3-dimensional simulation of only shortwave radiation distributed forcing (2D-SD)310

AUT:3-dimensional simulation of only wind speed distributed forcing (2D-WD)

All simulations named 1D AUT:are the simulations with non-distributed forcinguse forcings that are uniform across the watershed

(Table 1). Rain is the major hydrological model input hence, we keep the same amount of precipitation input in all simulations

(1443.72 mm), which corresponds to the spatial average of precipitation after applying the distribution AUT:formulaecorrection

(eq. 2). Precipitation is reduced compared to what is measured at the rain gauge station (1531.96 mm) because the precipitation315

distribution process leads to a non-conservative spatial snow distribution over the catchment. AUT:ThisThe equal amount of pre-

cipitation input leads us to easily see the partitioning between different hydrological fluxes AUT:among separateacross the different

meteorological forcing simulations. AUT:1D-PM, therefore, corresponds to a classical hydrological simulation for a small catch-

ment when one applies the meteorological forcing directly from a nearby weather station. By contrast, 1D-AM accounts for

local terrain slope and aspect according to equation 5-8, and applies uniformly across the watershed the mean corrected in-320
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coming radiation. AUT:SimilarlyTherefore, shortwave radiation amount is not the same considering the measured value (AUT:yearly

averaged shortwave radiationAUT:, 1D-AM: 190.8 W m-2) and the AUT:mean distributed value AUT:(yearly averaged shortwave

radiation, 1D-PM: AUT:152.1 W m-2)AUT:when taking into account the slope anglesAUT:(152.1 W m-2)AUT:. The shortwave radiation distribution

scheme accounts for the slope hence, the shortwave radiation on average is reduced: as the weather station is less shaded than the generally

east facing watershed, accounting for slope and aspects reduces the average incoming radiation. AUT:Meteorological parameters325

were further distributed to better analyse their respective influence. Pix-PM, 2D-PD, and 2D-WD all relate to 1D-PM, and

used the zenithal solar radiation observation (measured shortwave radiation) directly from the radiation sensor AUT:For shortwave

radiation forcing, we did several simulations to better analyse the results. Pix-PM, 1D-PM, 2D-PD, and 2D-WD are run with the zenithal solar radiation

observation (measured shortwave radiation) directly from the radiation sensor,AUT:2D-AD and 2D-SD are related to 1D-AM as they used the

same distributed incoming solar radiation, according to equation 5-8. AUT:and 2D-AD and 2D-SD are run with distributed solar radiation330

according to equations 5-8. The average of the distributed shortwave radiation is used to force the 1D-AM simulation (Table 1). 1D-PM corresponds to a

classical hydrological simulation for a small catchment when one applies the meteorological forcing directly from a nearby weather station. The latter four

proposed simulations AUT:have beenwere run to quantify the effect of spatially distributed forcing all together or individuallyAUT:

(Table 1).
AUT:Meteorological distribution algorithms described in section 3.2 aims at representing the slope, curvature, and aspect effect in the spatial distribu-335

tionMeteorological forcings were distributed according to algorithms described in section 3.2. to represent the effects of slope,

curvature and aspect on the spatial distribution of those forcings. Fig. 4 presents snapshots of heterogeneities produced by these

algorithms. Even at a micro-scale, one can observe the spatial meteorological variability along the grid after applying equations

2-8. In Fig. 4b, for an averaged 0.53 mm snow rate, the distribution algorithm produceAUT:s large heterogeneities ranging from

0.2 mm to 1.2 mmAUT:. Deeper accumulation is, with deeper accumulation mainly on lowlands. Similarly for shortwave radiation340

(Fig. 4c) for input radiation of 400.8 W m-2 on November 11 at noon, the algorithm AUT:reducesreduced the radiation to 349.7

W m-2 on average with more than (+/-) 50 W m-2 AUT:difference depending on the location. In wind speed distribution, there
AUT:iswas not so much variation in the spatial mean before and after wind speed distribution. The mean wind speed before and

after the spatial distribution AUT:iswas 5.6 m s-1 and 5 m s-1, respectively (Fig. 4d).

5 Results345

5.1 AUT:Non-distributed forcing simulationSimulations with spatially uniform forcings

AUT:1D-PM and 1D-AM represent our reference simulations, with uniform forcings across the watershed (see Table 1). Their

results were presented in Figure 5. AUT:Figure 5a, b shows the catchment response fromAccording to the 1D-PM AUT:simulation AUT:(Fig.

5a)AUT:for a full hydrological year and the monthly budgets for storage variation, surface and subsurface fluxes. It shows that the hydrological year

begins with the snow accumulation period until the end of March. December and January AUT:arewere the snowiest AUT:monthspe-350

riodsAUT:. Some, with some snowmelt events (magenta line) AUT:that can be observed during this period because ofdue to short above zero

degree episodesAUT:(Fig. 2b) AUT:but, which generate very little runoff (black line). In April, AUT:warmer positive temperatures and

rain on snow events generate continuous melting AUT:in our simulation and AUT:is simulated because of warmer positive temperature (Fig. 2b)
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Simulation ID Precipitation Shortwave

radiation

Wind speed Description

Pix-PM Distributed mean Non-distributed Non-distributed 1-D column simulation with only precipitation

distributed mean forcing

1D-PM Distributed mean Non-distributed Non-distributed 3-D simulation of only precipitation distributed

mean forcing

1D-AM Distributed mean Distributed mean Distributed mean 3-D simulation of all distributed mean forcing

2D-WD Distributed mean Non-distributed Distributed 3-D simulation of only wind speed distributed

forcing

2D-SD Distributed mean Distributed Non-distributed 3-D simulation of only shortwave radiation dis-

tributed forcing

2D-PD Distributed Non-distributed Non-distributed 3-D simulation of only precipitation distributed

forcing

2D-AD Distributed Distributed Distributed 3-D simulation of all distributed forcing

Table 1. Distributed and non-distributed approach adopted for different simulations.

  

(a)

(c) (d)

(b)

Figure 4. (a) Windrose diagram. (b) Precipitation distribution along the catchment. (c) Shortwave radiation distribution over the catchment.

(d) Wind speed distribution over the catchment. All are plotted for the 11/11/2017 at 5:30 pm and 12:00 pm for shortwave radiation.

but also rain on snow events. ThisproduceAUT:s the highest river discharge peaks AUT:on the hydrograph which follows thewith a strong daily

cycleAUT:(between min and max discharge values at daily timestep) and the rain timing (highest discharge peaks), further intensified by coinciding355
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rain events. This period also increaseAUT:sd the subsurface storage AUT:(Fig. 5b) which produceAUT:s a base flow AUT:that combines

with the snowmelt contribution to the streamflow.later in May (Fig. 5b). AUT:In May streamflow show a combination of base flow and

snowmelt (snowmelt in May in Fig. 5a, subsurface storage decrease in May in Fig. 5b).

  

(a)

(c) (d)

(b)

Figure 5. (a) Precipitation (rain – blue and snow – light blue), streamflow (black), snowmelt (magenta) and net radiation (green) regimes

along the simulation period for only precipitation distributed mean simulation (1D-PM). (b) Monthly water budget for 1D-PM simulation

including rain (blue) snow (light blue), Runoff (red), ET (green), and condensation (purple). The Black dotted line is the total subsurface

water storage. (c)(d) same as (a) and (b) but for all distributed mean simulation (1D-AM). VD is the volume difference in percentage between

plotted simulations.

One of the most important and noticeable pointAUT:s while using AUT:the non-distributed forcing AUT:iswas the sudden disappear-

ance of the snow at the end of the snowmelt season, which AUT:is usually not observed AUT:on actualin the field. AUT:ThisIt means that360

all the pixels behaved in the same wayAUT:, and there AUT:iswas no noticeable impact on the AUT:subsurface hydrology of the catchment

spatial snow variability when considering a uniform forcing. From June to the beginning of the next snow period, summer rain

produceAUT:s almost instantaneous river responseAUT:s and subsurface storage sustainAUT:s stream AUT:dischargerunoff for several

months. During this period, one can note a radical change of net radiation because of the AUT:change of the albedoland cover change

from snow AUT:cover to herbaceousto grass. The net radiation contributes to snowmelt in early spring. Factors responsible for this365

phenomenon includeAUT:s higher sun elevation, clear sky conditions, and higher daily temperature.

During winter and springAUT:, the monthly cumulated ET AUT:iswas very small (Fig 5b) because of low available energy and

complete snow coverAUT:age. After the complete snowmelt, the model simulateAUT:sd much higher monthly cumulated ET AUT:ac-

cording to the prescribedfollowing the LAI cycle. ET at this period AUT:iswas higher than the monthly cumulated rain (June, July,
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September), which means that ET participates in the extraction of shallow water storage during the summer. This can be seen370

by the difference in subsurface storage decline between the summer (higher water storage diminution) and the winter (lower

water storage diminution). In October one can notice a small increase in AUT:the subsurface storage when ET decreases because

of vegetation decay. At the end of the hydrological year, the subsurface water storage has a deficit of AUT:0.15-0.62 mm, which

is much smaller than the annual cycle amplitude.
AUT:Figure 5c, d present the same time series and monthly water budgets for the 1D-AM simulation. AUT:1D-AM simulation (Fig. 5c, d) mostly375

differs from 1D-PM AUT:The major differenceAUT:compared to 5a, b AUT:is thatas precipitation, solar radiation and wind velocity AUT:arewere

prescribed using the spatial average of the distributed AUT:fieldforcing. AUT:TheThis AUT:major difference comes from solar radiation reduc-

tionreduces solar radiation from 190.8 W m-2 to 152.1 W m-2 on average which reduces melting and ET. AUT:Snow lasts 9

more days on the ground, runoff increases from 73% to 80% of total precipitation (runoff coefficient, Table 2), and infiltration

increases by 10.66 mmAUT:It leads to a 9 days longer snow period, an increased runoff and an increased infiltration of 34.61 mm (Table 2). AUT:This380

unbalance vanishes after 10 years leading to a higher water table and then higher runoff with a 0.8 runoff coefficient when a steady state is reached. AUT:This

means that fFor similar geomorphology, any reduction in input solar radiation because of catchment orientation or else AUT:will

leadleads to higher water tables and then higher runoff coefficient. AUT:Compared to the 1D-PM simulation this simulation

showed reduced runoff peaks in the early melt season which leads to more percolation. Increased percolation leads to higher

base flow during the late summer and delays the base flow response by around one month compared to 1D-PM simulation.385

Runoff in the 1D-AM simulation increases overall by 9.4 % compared to the 1D-PM simulation.

5.2 AUT:Distributed forcing simulationsSimulations with spatially distributed forcing

AUT:In the following section, we will discuss the differences in surface hydrological fluxes for all combined and individually distributed simulations, along

with their role in streamflow generation.

AUT:This section present the simulation run with a fully distributed forcing (2D-AD), with its difference from the previous390

uniformly forced simulations, and the three simulations based on forcings with only one distributed variable (2D-WD, 2D-PD,

2D-SD) to explore the contributions of each individual spatial distribution. AUT:Looking at the surface fluxes onFigure 6a AUT:, one can

see thatAUT:show that snowmelt lasts longer in 2D-AD simulation, tailing across June and early July, with streamflow decreas-

ing until even later in JulyAUT:the simulation with all distributed forcing (2D-AD) have longer snowmelt period with a long steady decline during the

streamflow recession till mid-July. AUT:These snowmelt dynamics were smoother than it was simulated in either uniformly forced sim-395

ulation (1D-PM and 1D-AM) AUT:Compared to the non-distributed forcing simulation 1D-PM, the distributed forcing is causing a smoother snowmelt

dynamicAUT:which last till July and correspondingly impacts the net radiation, recharge and streamflow discharge dynamic. AUT:In

the most intense melt period in May, this resulted in ∼30% lower peak streamflow values in 2D-AD compared to 1D-AM or

1D-PM simulations.AUT:It leads to significant differences for streamflow values during the core of the melting period up to 50 % more for 1D-AM and

1D-PM compared to 2D-AD. However, AUT:the resulting annual water budget AUT:termsAUT:havechanged only AUT:by 2 % AUT:difference at400

scale of annual water budgetbetween 1D-AM and 2D-AD simulationsAUT:, and by -7 % between 1D-PM and 2D-AD simulations.
AUT:As mentioned in the previous section, time averaged distributed shortwave radiation input was lower in simulation 1D-AM

compared to 1D-PM, due to accounting for shading effects. Simulation 2D-AD has the same time average radiation input as
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1D-AM and was closer to this simulation in the yearly budget. AUT:From this point of view, forcing distribution at that scale seems not to

add much information compared to a 1D forcingSmall scale distribution of meteorological forcings therefore only adds information on405

dynamics, and not on yearly budgets. AUT:1D-AM simulation has a mean of distributed shortwave which reduces the surface runoff from snow melt

and more percolation to the subsurface. This percolation appears as base flow in late summer which becomes very close to the runoff volume of 2D-AD

simulation.AUT:The tailing snowmelt through June generated more percolation to the subsurface, resulting in stronger base flow in

late summer, thereby catching up with the total runoff volume simulated in 1D-AM.

  

(a)

(c)

(b)

(d)

Figure 6. Same figure as 5a for (a) all distributed run (2D-AD), (b) only precipitation distributed run (2D-PD), (c) only shortwave radiation

distributed run (2D-SD) and (d) only wind speed distributed run (2D-WD). VD is the volume difference in percentage between plotted

simulation.

AUT:Looking atAs visible in the results of the simulations with only one distributed forcing AUT:individually distributed simulations410

AUT:results(Fig. 6b, c, d), AUT:it seems thatthe AUT:this smoothing effectsmoother decline in snowmelt AUT:is caused byresulted from both the

precipitation and shortwave radiation distributionAUT:(Fig. 6b, c). AUT:At the contraryHowever, the simulation 2D-WD, where only

the wind speed forcing was distributed, did not present such a smooth decline on snowmelt and AUT:only wind speed distributed

(2D-WD) results AUT:seemwere very similar to the non-distributed AUT:resultssimulation (1D-PM). AUT:One can even refer to figure 6d for

easier inter-comparison with figure 5a. The melting period tail length AUT:seems to be was controlled by the snowpack depth variability415

(Fig. 9a, b) and higher accumulated snow on some pixels. This AUT:is combinedcombines with solar radiation effects, which also

produceAUT:s spatial variability in snowmelt on the catchment even if the snow precipitation AUT:iswas uniformly distributed

(Fig. 6c). Only wind speed distribution (2D-WD) simulation AUT:showsshowed the highest melting regimes from mid-March to

mid-May when temperature and incoming radiations AUT:arewere favourable for melting AUT:withresulting in daily melting peaks

18



larger than 4 mm h-1 (Fig. 6d). In detail, wind speed distribution showAUT:s AUT:an increase in the melting rate which leads to420

higher subsurface storage when compared to 1D-PM.

Streamflow differences between simulations basically follow the melting differences. The impact of the late April and early

May rain-on-snow period AUT:iswas visible on streamflow on figure 6a, b. It must be noted that AUT:there are differences in term

of incoming solar radiationincoming solar radiation differ between simulations. AUT:Due to non-distributed shortwave radiation in

2D-PD simulation, the melting peaks were higher compared to 2D-AD simulation. This resulted in rapid runoff in 2D-PD425

simulation and less percolation to subsurface which caused a volume difference of -7.3 % compared to 2D-AD simulation.
AUT:UnsurprisinglyThe 2D-WD and 2D-PD simulations showed AUT:largerlower streamflow values compared to 2D-AD and 2D-SD

simulations. This happenAUT:sed because for the former two, the catchment receives 38.7 W m-2 less radiation than the latter

two. AUT:The shortwave radiation distribution slowed the melting, which enhanced percolation to the subsurface. This subsur-

face percolation appeared as the base flow in the late summer. Though the base flow in 2D-SD simulation was lower than430

2D-AD, however, due to equal precipitation in all pixels, 2D-SD simulation showed higher early melting peaks (Fig. 6c). This

counter balance between 2D-AD and 2D-SD simulation showed a volume difference of only -0.5 %. In 2D-WD simulation due

to rapid runoff at melting season, the subsurface storage decreased which result in far lower baseflow with volume difference

of -7.0 % compared to 2D-AD simulation (Fig. 6d). To conclude, the amount of precipitation in a pixel correlated with the

snowmelt peaks; however, rapid melting decreases the subsurface storage which result in lowered streamflow. Concerning the435

AUT:late summer period when snow gets melted, these differences AUT:arewere not visible on the streamflow.
AUT:Figure 7 shows observed and simulated evapotranspiration time series over the two weeks summer window from 08/07 to 25/07 and scatter plots over

the two vegetative months from early July to end of August. This is a snow-free period. For better comparison with observations we selected simulated pixels

in an approximated footprint area based on a wind direction mask (Fig. 1) and averaged simulated values over the mask (section 3.3). AUT:Pixel simulation

(Pix-PM) corresponds to the 1D vertical column run at FluxAlp cell (without lateral flow).440

AUT:TheEvapotranspiration in the pixel run (orange curve and orange dots) AUT:was clearly overestimated AUT:compared to

observed evapotranspiration as one can see on both the time series and the scatter plots. AUT:This is also the caseSimilarlyAUT:, AUT:for

the non-distributed simulation (green curve and green dotsAUT:, 1D-PM)AUT:, AUT:and for and the distributed simulations 2D-PD

and 2D-WD AUT:which have comparable evapotranspiration amplitude (Fig. 7c, e). However, 2D-AD and 2D-SD AUT:haveshow

reduced simulated ET which better matches the observations (Fig. 7b, d). This AUT:happens because the average shortwave radiation after445

the distribution is less than the shortwave radiation without distribution (section 4). Also, the catchment is facing east which actually reduces direct incom-

ing solar radiation from noon to sunsetreflects the lower (average) shortwave radiation in the forcings where the solar radiation has

been distributed according to the terrain (section 4): as the catchment generally faces east, this distribution reduced the direct

incoming solar radiation from noon to sunset.

The evapotranspiration AUT:ofin both Pix-PM and 1D-PM overestimateAUT:sd ET compared to observations. First the pixel run450

(Pix-PM) AUT:iswas supposed to simulate a catchment border (Flux’Alp location) with dryer soil/ground condition (top of a

ridge) and the ET observations AUT:arewere supposed to average both the wet zoneAUT:s close to the river and the dryer zones.

However, it AUT:iswas not the case in our AUT:pixel2D-AD and AUT:1D-PM2D-SD simulations. AUT:The linear slope in these two

simulations moved much close to the identity line (slope = 1.18) compared to other simulations. This explains that along with
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(a)

(c) (d) (e)

(b)

Figure 7. (a) Evapotranspiration simulation masked with wind direction mask for 17 days in summer for all distributed run (2D-AD). Scatter

plot for the July-August 2018 period for (b) all distributed run (2D-AD), (c) only precipitation distributed run (2D-PD), (d) only shortwave

radiation distributed run (2D-SD) and (e) only wind speed distributed run (2D-WD). The slope line represents the corresponding linear fit

for the scatter plots, slope value of each simulation highlighted at the top.

subsurface percolation, the shortwave radiation distribution simulated the better ET. In 2D-PD and 2D-WD simulations, the455

linear slope equals the slope of the pixel run (slope = 1.55) which corresponds to much higher evapotranspiration compared to

observation. Shortwave radiation distribution (Fig. 7d) AUT:seems to haveshowed the most important impact in our measurement

area. AUT:Shortwave radiation distribution showed the smoothed runoff curve, higher subsurface percolation, increased base flow

and increased runoff. The corresponding reduced ET in 2D-SD (and 2D-AD), averaged on the footprint area, also corresponds

much better to the AUT:Eddy-Covariance observationsAUT:(decrease in regression slope from 1.55 to 1.18).460

5.3 Hydrological budget

Annual water budgets (Table 2) showAUT:s that the AUT:main impact of forcing distribution is caused by the shortwave radiation distribution

and subsequent ET calculation AUT:has large impact. It made a difference of ∼100 mm at the annual budget scale. This increases
AUT:the runoff coefficient from 0.73 to 0.77runoff from 73% to 79% of the total annual precipitation AUT:by diverting the difference of

flux towards runoff. AUT:One can also noteThis also result in the water storage change over the year AUT:as explained in previous sec-465

tion. As we started from the same initial conditions for all simulations AUT:and additionally run the spinup for another 2 years,

it AUT:reachesreached more than AUT:3010 mm AUT:in subsurface storage when SW is reduced (1D-AM, 2D-AD and 2D-SD) and
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Simulations Precipitation (mm) Runoff (mm) Runof coef.AUT:(mm) ET (mm) Subsurface storage (mm)

1D-PM 1443.72 1060.74 0.73 372.94 -0.62

1D-AM 1443.72 1159.99 0.80 263.30 10.66

2D-AD 1443.72 1142.30 0.79 266.78 11.68

2D-PD 1443.72 1058.87 0.73 361.48 -0.78

2D-SD 1443.72 1136.39 0.79 269.71 14.98

2D-WD 1443.72 1062.48 0.74 372.23 5.96

Table 2. Annual water budget terms in the catchment for different simulations.

AUT:15.55.96 mm for 2D-WD simulation. AUT:ItThe subsurface storage change remains AUT:much smaller than the ET difference

and AUT:it minimizesdoesn’t impact the runoff coefficientAUT: hence not change our conclusions.

Figure 8 shows monthly water budgets for 2D-AD and individually distributed simulations. Snow precipitation from Novem-470

ber to March AUT:doesntdo not infiltrate much to fill up the subsurface storage (dotted line). January rain on snow events slightly

reduce the subsurface storage. Very similar runoff values AUT:arewere observed AUT:up to the end of February among the different
AUT:forcingscenarios. In contrast, from midAUT:- March to June the subsurface storage AUT:is was replenished by melting (AUT:Fig.

5a, Fig. 6) AUT:and runoff increaseswhich later increases the runoff. The 2D-WD forcing produced the largest values of recharge

(∼430 mm) and the AUT:2D-SD2D-AD the largest values of streamflow. From May to October, streamflow at the outlet and ET475

decreaseAUT:sd the subsurface storage. Higher shortwave radiations (2D-PD and 2D-WD) led to longer ET periods. One can

finally note that reduction in ET because of vegetation senescence in November AUT:leads to increasedand beginning of subsurface

storage.

5.4 Snow dynamics

Figure 9 shows the temporal dynamics of the snow AUT:mantle and the impact AUT:in terms ofon albedo. Snow depth plots for Pix-PM480

run (purple line) and 1D-PM run (red line) AUT:arewere superimposed. The 1D-PM run showAUT:s little variability in snow depth

(red shading). AUT:These two run follow a dynamic consistent with the observations (black line) and an overestimation along the accumulation periodThe

dynamics of these two runs is consistent with the observations (black line) although snow height is overestimated during the

initial accumulation period. AUT:This isThis was probably because of the rough snow/rain partition temperature threshold and the

inability of the snow scheme to account for compaction. The snowmelt dynamic AUT:is particularly well simulated (snow cover485

within the Sentinel-2 image acquisition date), especially along the dry period at the end of April. In early May one can note

some discrepancies again probably because of our limited ability to separate rain and snow in the precipitation forcing, close to

the phase change temperatureAUT: range. This can be seen on the pixel simulated AUT:Aalbedo which returnAUT:ed to its maximum

snow albedo value at the end of the melting season (0.8), which AUT:iswas not the case AUT:onin the observations. Concerning

simulated albedo, it AUT:globallymostly followAUT:s the observations, however, AUT:it is clear that the snow age parameterisation in490
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(a)

(c)

(b)

(d)

Figure 8. Same figure as 5b for (a) all distributed run (2D-AD), (b) only precipitation distributed run (2D-PD), (c) only shortwave radiation

distributed run (2D-SD) and (d) only wind speed distributed run (2D-WD).

the model AUT:iswas not adequate enough to simulate the albedo where observation showAUT:s albedo decrease during melting

periodAUT:s.

In the 2D-AD simulation AUT:patchiness startsthe snow cover becomes discontinuous early in May and some AUT:snow cover pixels

last up to more than one month laterpixels stay covered with snow more than one month later compared to the 1D-PM simulation

(Fig. 9a). AUT:Depth variability increases during snow accumulation events and is slightly reduced during meltingSnow depth variability in the wa-495

tershed, as indicated by the height of the shading in figure 9a, increases during the snow accumulation period, then diminishes

during snowmelt. This effect can also be seen in the 2D-PD simulation but not in any other distributed forcing simulation (Fig.

9b). As 2D-AD and 2D-PD simulations were prescribed the same input precipitation and temperature, this means this effect

(the deeper the snow, the faster the melting) AUT:iswas intrinsic to the snow scheme. AUT:AtOn the contrary, 2D-SD simulation

showAUT:s a slight increase of depth variability during the melting period.500

It can be observed in figure 9b that none of the individually distributed simulations AUT:haveshow longer snow cover compared

to the all distributed AUT:runsimulation (Fig. 9a). It indicates that AUT: snow variability during snow accumulation events simulating the

variability of snow deposition and transport patterns during snow accumulation was not enough to capture the actual behaviour

of snow dynamics. AUT:It is the combination of AUT:bothprecipitation and shortwave radiation distributed forcing AUT:that resulted

in AUT:longer snow periodsthe longer duration of the snow cover AUT:with more patchinessand the development of the typically observed505

patchiness at the end of the season. AUT:accountingLonger snow period resulted from the precipitation spatial variability during

accumulation events and AUT:differential snow melting resulted from the shortwave radiation spatial distributionAUT: dominance
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(a)

(b)

Figure 9. (a) Snow depth (left axis) for different simulations compared with observations (black line). Colour lines are the average depth over

the catchment and shadings the spatial variability. Right axis: observed (black line) and 1D-PM simulated albedo (yellow line). Averaged

precipitation (rain in blue and snow in cyan) are plotted at the top of the graph. (b) same as (a) but for the only precipitation (2D-PD), only

shortwave radiation (2D-SD) and only wind speed (2D-WD) distributed run.

for differential snow melting. The 2D-WD simulation AUT:does not showAUT:ed AUT:much impact on thelow snow depth variability which
AUT:iswas very similar to the 1D-PM simulation at the end of the snow AUT:accumulation period (Fig. 9b). HoweverAUT:, along

spring (mid-March to end of April) it produced the same snow depth spatial variability as 2D-SD and higher snowmelt regimes510

(Fig. 9b and 6d). Wind speed distribution AUT:is also AUT:impactingresult in snow patchAUT:iness through wind transport (accounted

for in the snow distribution algorithm). In figure 9AUT:b, the 2D-WD simulation showAUT:s AUT:a small increase in snow variability

compared to 1D-PM simulation. However, the wind distribution favours more spatial dynamics when combined with other

forcings.

Spatial distribution of snow cover during the melting period is shown on figure 10 for all simulations.AUT: For comparison and515

validation, we used four cloud-free ’Sentinel-2’ images (Table 3). On 21st of November first snow events AUT:arewere followed by a partial

melting over the catchment (AUT:1st Sentinel-2 image1st row in Fig. 10). Our 2D-AD and 2D-PD simulations AUT:arewere partially

good at representing this feature, but the simulated melting was overall not enough.AUT:It is interesting to see that aApart from the
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Figure 10. Snow map for different simulations compared with the Sentinel-2 images for 4 cloud free images: snow pixels (light skyblue) and

non-snow pixel (green). MBE is the mean bias error between the model and Sentinel-2 image.

Satellite platform Date of acquisition Resolution (m) Cloud cover (%) Cloud cover over catchment (%)

1 Sentinel 2B 2017-11-21 10 1.2 None

2 Sentinel 2A 2017-12-06 10 3.3 None

3 Sentinel 2A 2018-05-25 10 12.8 None

4 Sentinel 2B 2018-06-19 10 2.1 None

Table 3. Images characteristics from ESA’s Sentinel-2 mission.

upper part of the catchment where snow distribution AUT:iswas not well controlled, the AUT:first pixels that get out of snow belongsearly

snowmelt is located to the eastern edge of the catchment, a central area aligned with the river left bank and the outlet area.520

The 2D-AD simulation has AUT:lessmore snow cover than 2D-PD because of reduced incoming radiation caused by a reduced

solar angle which decreaseAUT:s the melting. On 6th of December, the catchment AUT:iswas completely covered by snow for all

simulations. It has to be noted that this date corresponds to early season snow events when the 2D-AD and 2D-PD simulations
AUT:arewere able to represent the snow dynamic even for very low snow depth. This means in particular that 1) our AUT:spinup

process has initiated wellmodel spinup has well initialised the ground temperature profile and its distribution and 2) our distribution525

algorithm AUT:iswas well adapted, especially for snow deposition. On 25th of May AUT:the catchment is partially snow covered which is

specific to the advancement of melting seasonthe snow cover has partially melted, developing kind of snow patches typical at this ad-

vanced stage of the melting season. Again 2D-PD simulation represents very well the snow pixels to non-snow pixels ratio and

the snow distribution (MBE = 0.06). One can see on both Sentinel-2 image and 2D-PD simulation some SW-NE alignmentAUT:,

slightly present on the snow distribution coefficient map (green/blue pixels on Fig. 1c), the timing of disappearance AUT:iswas530
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Variable Metrics 2D-AD 2D-PD 2D-SD 2D-WD

Evapotranspiration Slope 1.18 1.55 1.18 1.55

R-Square 0.44 -0.36 0.44 -0.34

RMSE 50.77 79.14 50.90 78.41

Albedo R-Square 0.85 0.88 0.77 0.85

RMSE 0.12 0.10 0.14 0.12

Snow cover (Sentinel-2) MBE 21 Nov, 2017 0.25 0.18 0.34 0.34

06 Dec, 2017 0.00 0.00 0.00 0.00

25 May, 2018 0.22 0.06 0.59 -0.40

19 June, 2018 0.24 0.04 -0.01 -0.01

RMSE 21 Nov, 2017 0.63 0.65 0.58 0.58

06 Dec, 2017 0.00 0.00 0.00 0.00

25 May, 2018 0.74 0.75 0.78 0.63

19 June, 2018 0.50 0.23 0.07 0.07

Table 4. Statistical metrics for observed and simulated parameters among different simulations (MBE: mean bias error, RMSE: root mean

square error).

remarkably well simulated for these pixels. AUT:The 2D-AD is not as good (MBE = 0.22) because of more snow cover than the Sentinel-2 image.

However, this does not mean that 2D-AD simulation is worse than 2D-PD. This will be discussed in the next section.The 2D-AD simulation has more

snow cover than 2D-PD simulation and Sentinel-2 image on 25th May (MBE = 0.22). However, we showed (section 5.2.) that

the 2D-AD simulation was better in simulating the snow variability and evapotranspiration compared to 2D-PD simulation.

The overestimation in 2D-AD simulation may come from the snow distribution scheme or the albedo scheme of CLM.535

AUT:Table 4 shows the performance indicators for different spatio-temporal variables in the catchment. The goodness of fit

for evapotranspiration was better when we distribute shortwave radiation in the catchment. 2D-AD and 2D-SD simulations

have better value of slope, R2 and RMSE. Albedo simulation was more dependent on the snow stay in the catchment. Hence,

the simulation where we distribute precipitation (2D-PD) showed better accountability in albedo simulation. Higher R2 value

for albedo in 2D-WD distribution may come from the initial accumulation of a large amount of snow. However, we have540

shown that snow in this simulation melts quite early compared to other simulations. Finally, precipitation distribution was

more important for the spatial snow cover. However, shortwave radiation influence the late melting pattern. In the Sentinel-2

images, the higher performance of 2D-PD simulation than 2D-AD may come from the precipitation distribution itself. Looking

at performance indicators together, we could see that 2D-AD was the best simulation which captured the spatial and temporal

pattern of evapotranspiration and snow cover in the catchment. It means that precipitation and evapotranspiration need to be545

distributed together for a more accurate representation of hydrological fluxes.
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6 Discussion

AUT:The presented simulations disentangle the combined effects of AUT:snowprecipitation and solar radiation distributions. This

makes us able to simulate AUT:a realistic patchy snow cover AUT:spatial distribution at 10 m resolution (Fig. 10) which is a commonly

observed phenomenon over mid-elevation mountainous catchments (Revuelto et al., 2020). AUT:The Lidar-based snow distri-550

bution map is particularly effective for its accurate prediction of distributed snow depth in mountain and forest landscapes as

recently suggested (Painter et al., 2016; Hojatimalekshah et al., 2021; Jacobs et al., 2021). AUT:We moved one step ahead in

using the Lidar map to distribute snow precipitation over the catchment in hydrological models. The all distributed simulation

(2D-AD), which encapsulateAUT:s snow distribution (based on snow map) and shortwave radiation distribution AUT:(based on

small scale terrain)AUT:based on slope, efficiently simulateAUT:s AUT:the snow cover and evapotranspiration spatio-temporal dynam-555

ics AUT:these characteristics in our test case. AUT:However, the 2D-AD simulation is not the best one in terms of spatial melting. AUT:The reduction in melt

when solar incidence is taken into account, this simulation lags the complete melt by ∼20 days (Fig. 9).However, this simulation shows a ∼20-day

delay in complete snowmelt due to reduced solar radiation, when the solar angle and terrain aspect are taken into account (Fig.

9). AUT:One reason could be that we might slightly overestimate snow deposition when using the snow coefficient map. Indeed,

the yearly spatial average amount of snow/precipitation (1442 mm) is not the same as what is measured with the gauge (1530560

mm) and at the moment, we have no means to control the average value we used in this study. This leads to an uncertainty

on the cumulated snow amount that could be tuned globally with the snow coefficient map.AUT:This can be seen looking at the simu-

lated snow depth at the laser scan date which clearly overestimates the laser scan observation by ∼0.5 m. Another reason AUT:formight be the lack

of melting, AUT:which could come from the snow albedo calculation AUT:in ParFlow-CLM. AUT:Indeed, looking at Fig. 9, snow

aging reduces too much the albedo during winter months and gives an albedo too high in April when it is re-initialized to its565

fresh snow value because of very small snowfall events. Those fresh snow episodes AUT:. The unusual shoot-up of albedo in April lead

to a decrease in melting and subsequently higher snow depth distribution in the catchmentalso decreased the simulated melting in the catchment

during spring. Both of these defaults should be further corrected with an up-to-date snow scheme and a tuned snow coefficient

map for a more precise snow depth distribution.
AUT:Our study focuses on the impact of terrain slope and aspect on the simulated spatio-temporal dynamics of snow cover and570

evapotranspiration in critical zone hydrological models, as this has become a debated issue in recent years (Rush et al., 2021;

Parsekian et al., 2021; Fan et al., 2019).AUT: However, these are not the only source of variability. Elevation based precipitation

distribution (Dahri et al., 2016; Avanzi et al., 2021; Jabot et al., 2012) AUT:and land-use based spatial evapotranspiration patterns

(Yan et al., 2018; Melton et al., 2021) AUT:have also a large impact on mountain hydrology and have been studied extensively in

the last few decades. In the studied catchment we considered that land use variability was not the main driver for hydrological575

responses and temperature differences within the 200 m elevation gradient were partially accounted for through the laser scan

map of snow deposition. If one would like to upscale the results to larger catchments with higher land use variability and higher

elevation gradients, then temperature variability and land use variability should be accounted for together with terrain slope

and aspect.
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AUT:The results show theThis study shows large sensitivity of AUT:Eevapotranspiration to incoming solar radiation corrections580

(decrease in regression slope from 1.55 to 1.18). In the presented results, evapotranspiration spatial average remainAUT:s larger

than observations. The reason to overestimate AUT:the evapotranspiration could come from our footprint area (Oishi et al., 2008)

which is not as precise as it should be. AUT:However, it has been highlighted in many studies that comparing simulation of spa-

tially heterogeneous variables with point observation is a difficult task (Pradhananga and Pomeroy, 2022; Zhu et al., 2021; Iseri

et al., 2021). In our case, footprint area calculation from Eddypro (Kljun et al., 2004) gave an average peak distance of ∼70585

m and a 90 % contribution distance of ∼400 m for summer months daily hours. These distances are larger than the catchment

width in the upwind direction AUT:and include areas not simulated. AUT:Moreover, footprint area calculation is not easy on such mountainous

terrain. Moreover, the theoretical background of footprint calculation supposes a flat terrain with a fully developed turbulent

surface layer. This is not the case in our terrain which is undulating, inducing moisture heterogeneity with some wetlands

in the lowlands. For these reasons, we chose a simpler approach for AUT:athe first order estimation of model performance, but590

considering soil moisture heterogeneities AUT:which consists in the presentedthrough wind direction mask (Fig. 1). AUT:We hypothesize

this spatial average is better than a single pixel to compare simulated evapotranspiration series with observations.

ParFlow-CLM is a critical zone physically based model built to AUT:be very close to theclosely follow the physics of hydrological

processes (Kuffour et al., 2020; Tran et al., 2020). This requires reliable data for forcing, ground, vegetation and hydrology

to keep consistency in the model framework AUT:to simulate allwhile simulating water path with the same accuracy. We AUT:then595

chose to work AUT:only with local observations, from which we built distributed forcing based on the presented algorithm AUT:and

from which weto evaluateAUT:d the model (Liston and Elder, 2006). The model calibration itself consisted in building the model,

which means underground geometries and their associated parameters, only from observationAUT:s AUT:are only used. AUT:Build-

ing a model from observation is use to enhance our ability to understand the physical processes from hydrological modeling

(Sidle, 2006, 2021). However, we don’t have AUT:spatial observations for each pixel. We then built the model on assumptions600

AUT:by supposing that what we measure AUT:at a place is also valid for AUT:similar places where we do not AUT:have observationshave

measurements. Available observations then restrict ranges to tune the model once we consider embedded parameterization,

which explicitly solves melting and evapotranspiration following AUT:basic physical laws. AUT:ThenFinally, we forced the model

with reliable observed meteorological data. From this approach, we AUT:can clearly seesimulated the importance of snow processes

and the role of incoming radiation distributions. Indeed, the model has been evaluated against the radiation budget observation605

(albedo), energy budget observation (latent and sensible heat fluxes), water budget terms including snow cover, the ability of the

model to produce baseflow, and snowmelt timing (Table 4). Validation with Sentinel-2 images during accumulation and melting

period shows that simulations AUT:are very close tofollowed the observations in terms of onset and offset of AUT:snowmeltsnowcover.
AUT:Spatial distribution of snow is also reported very close to the satellite observation when slope effects are considered in precipitation and solar radiation

forcing.610

AUT:A LastThe last remark about the model configuration is that the domain has a no-flow boundary condition on the sides and

at the bottom of the domain AUT:(Chen et al., 2022; Kollet and Maxwell, 2006). AUT:It restricts the option of flux leaving from

the domain only through ET and streamflowAUT:outlet are then the only way to get the water out. In other words, this means that AUT:we

are not simulating larger scale flow paths (water that enters from the sides of the domain or that gets out through the bottom of
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the domain) AUT:are not simulated AUT:which is probablealthough it may exist for high altitudinal mountainous catchments. AUT:This615

subsurface water transfer could also lead to small differences in outlet and evapotranspiration partitioning but it will not change

the conclusions of this study. We started some particle tracking calculations from 3D velocity fields produced by ParFlow for

our simulations. They show a very weak percolation and transfer to deep horizons. Most of the water transfers occur in the first

10 AUT:mlayers. AUT:This subsurface water transfer could also lead to small differences in outlet and evapotranspiration partitioning but it will not change

the conclusions of this study. AUT:It further adds that the flux leaving the bottom of the domain is not so much of a concern.620

AUT:Importance of critical zone processes in improving the understanding of hydrological cycle is strongly debated (Arora

et al., 2022; Wlostowski et al., 2021). AUT:These processes often remain unexplored in large scale hydrological models. Fan

et al. (2019) AUT:highlighted the inclusion of two main processes to account for in the ESMs which includes the slope/aspect effect and soil depthrec-

ommended to include slope/aspect effect and soil depth in the ESMs to improve the hydrological cycle and its feedbacks on

the climate. Our study contributes to this identified issue along with an algorithm to take into account surface heterogeneity.625

In this study, we precise how slope/aspect impact hydrological budget given spatial variability in the meteorological forcing

along with surface to subsurface transfers, and how it can be successfully included in critical zone hydrological modeling. The

adopted algorithm efficiently captures the surface heterogeneity in the snow cover and evapotranspiration. The same algorithm

also influences the temporal distribution of snowmelt and water balance. AUT:The approach of meteorological distribution and

cross validation from field observations and Sentinel-2 remote sensing images is also valid for subsequent years in the catch-630

ment. This will be presented in the companion paper to be published. This highlights the importance of slope, aspect, and

curvature inclusion in hydrological studies.

7 Conclusions

Earth system models are gaining ample highlights in socio-economic impact studies. They include more and more processes,

including the complete continental water cycle, but still face difficulty to parameterize small scale sub-mesh processes. These635

processes are crucial in mountain landscapes, both for surface hydrology and their feedback on climate. In this study, we

modeled the spatial variability of the snow cover over a small mid-altitude catchment and its impact on the hydrological

budget using the 3D critical-zone model ParFlow-CLM at 10 m resolution. For this purpose, we prepared distributed forcings

for precipitation (that AUT:includemimic snow transport), incoming solar radiation (that includes differential snow melting), and

wind speed to force the model. AUT:We have shown that the snow lasts longer for more than a month in our modeling setup when distributing all640

forcings together compared to non-distributed forcing. These longer snow stays lead to an increase in streamflow, subsurface water storage, and runoff coef-

ficients but decrease in evapotranspiration because of shorter vegetation periods. We have shown that the precipitation distribution has the largest impact on

hydrological behaviour because it favours the appearance of snow patches during the melting season. Shortwave radiation distribution has a smaller effect on

creating snow patches in our simulation but enhances the differential snow melting when combined with precipitation distribution. Our wind speed distributed

simulation also induces melting spatial variability in the core of the melting period but reduces at the end of the melting period, as only taken into account645

for evapotranspiration processes. However, the wind has a major role in snow re-distribution. This is well accounted for in our precipitation distribution algo-

rithm using a laser scan of the snow mantle during the accumulation period which registered the snow variability aligned with the prevailing wind direction.
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Furthermore, accounting for distributed solar incidence reduces the incoming radiation in our catchment which subsequently reduces evapotranspiration. This

led to higher runoff coefficients at catchment scales. In conclusion, this study shows the relative importance of small-scale processes in earth system models

when run at hyper-resolution. The terrain substantially controls the hydrological behaviour over the mid-elevation alpine catchment for runoff generation,650

evapotranspiration, and snow dynamics, which has to be accounted for using terrain based meteorologic forcing distribution. It will help to minimise the

erratum in water resource management.The major conclusions of the study could be summarised as:

– AUT:Precipitation distribution (including wind redistribution) has the largest impact on driving the patchiness of the snow

cover in the catchment. This leads to one month longer presence of snow in the catchment when accounting for precipi-

tation distribution in simulations compared to simulations ignoring it.655

– AUT:Modulation of incoming solar radiation by the local slope in the catchment is the second most impacting topographic

parametrization for melting as well as for evapotranspiration which then impact the water budget of the catchment.

– AUT:Distributing wind speed according to the terrain induces some spatial variability in the simulated snowmelt at the

heart of the melting period, but reduces this variability at the end of the melting period.

– Most AUT:of hydrological processes are slope dependent, but it is merely taken into account in land surface and hydro-660

logical models. The study quantifies the hydrological impacts in terms of melting, streamflow, and evapotranspiration

dynamic when taking into account, or not, the slope effect. Considering critical zone models applied to mountainous area,

we AUT:believe that it is mandatorystrongly recommend to consider subgrid-scale slope/aspect effects in large scale models,

especially when they are used for hydrological studies. AUT:It will improve the spatial representation of snow processes

and evapotranspiration and minimise biases in water resource management.665

AUT:Solar radiation angle with respect to catchment slope is the second most impacting topographic parametrization for melting as well as for evapo-

transpiration.
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