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Abstract

The Okavango river system in southern Africa is known for its strong interannual variability 
of hydrological conditions. Here we present how this is exposed in surface soil moisture, land 
surface  temperature,  and  vegetation  optical  depth  as  derived  from  the  Land  Parameter 
Retrieval Model using an inter-calibrated, long term, multi-sensor passive microwave satellite 
data record (1998-2020). We also investigate how these interannual variations relate to state-
of-the-art  climate reanalysis  data from ERA5-Land. We analysed both the upstream river 
catchment  and  the  Okavango Delta,  supported  by  independent  data  records  of  discharge 
measurements,  precipitation  and  vegetation  dynamics  observed  by  optical  satellites.  The 
seasonal vegetation optical depth anomalies have a strong correspondence with MODIS Leaf 
Area Index (correlation catchment: 0.74, Delta: 0.88). Land surface temperature anomalies 
derived  from  passive  microwave  observations  match  best  with  those  of  ERA5-Land 
(catchment:  0.88,  Delta:  0.81),  as  compared to  MODIS nighttime LST (catchment:  0.70, 
Delta: 0.65). Although surface soil moisture anomalies from passive microwave observations 
and  ERA5-Land  correlate  reasonably  well  (catchment:  0.72,  Delta:  0.69),  an  in-depth 
evaluation  over the Delta  uncovered situations  where passive microwave satellites  record 
strong fluctuations, while ERA5-Land does not. This is further analysed using information on 
inundated area, river discharge and precipitation. The passive microwave soil moisture signal 
demonstrates a response to both the inundated area and precipitation. ERA5-Land however, 
which by default does not account for any lateral influx from rivers, only shows a response to 
the precipitation information that is used as forcing. This also causes the reanalysis model to 
miss record low land surface temperature values as it underestimates the latent heat flux in 
certain years.  These findings demonstrate  the complexity of this  hydrological  system and 
suggest that future land surface model generations should also include lateral land surface 
exchange. Also, our study highlights the importance of maintaining and improving climate 
data  records  of  soil  moisture,  vegetation  and  land  surface  temperature  from  passive 
microwave observations and other observation systems. 
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1 Introduction

Long-term data records of key components of the climate system, known as essential climate 
variables (ECV), are important for improving our understanding and predictability of climate 
behaviour  at  different  time  scales  (Hollmann  et  al.,  2013;  Bojinski  et  al.,  2014).  These 
records can help us to determine the root causes of observed climate change, e.g. natural or 
anthropogenic, assess its impacts and associated risks, and support mitigation and adaptation 
activities. In 2008, the European Space Agency (ESA) started the Climate Change Initiative 
programme  (CCI)  to  develop  these  ECVs  from satellite  data  records.  This  was  done  in 
response to  the  the United Nations Framework Convention on Climate Change (UNFCCC) 
need for systematic monitoring of the climate system. Today, the CCI programme covers 21 
satellite-based ECV records  (Projects (esa.int), last visited September 2021). 

Surface soil moisture (SSM) is one of these ESA CCI ECVs. These records are based on a 
fusion of both passive (PMW) and active microwave satellite retrievals (Dorigo et al., 2017). 
The current version 6.1 spans from 1979 until 2020 (Scanlon et al., 2021), and contains three 
separate SSM products, which are derived from active, passive, and a combination of active 
and passive sensors. The methodology and evaluation of the harmonisation and merging of 
the soil moisture retrievals from multiple satellites is described by Gruber et al. (2019). ESA 
CCI SSM data has been used for more than 10 years as the baseline for the annual evaluation 
and interpretation of global SSM conditions as reported in the leading BAMS' "State of the 
Climate''  reports  (Van der Schalie et al.,  2021) that are published as a supplement  to the 
Bulletin of the American Meteorological Society. Three datasets are produced as part of the 
passive  input  for  the  ESA  CCI  SM,  which  is  SSM  (SSMMW),  but  also  land  surface 
temperature (LSTMW), and vegetation optical depth (VODMW). 

SSMMW data sets have been extensively evaluated  with ground observations, models, other 
satellite products, and related ECVs like precipitation (e.g. Hirschi et al., 2021; Beck et al., 
2021; Dorigo et al., 2015; Al-Yaari et al., 2019; Albergel et al., 2013; Loew et al., 2013).  
VODMW has been used in multiple studies with a focus on seasonal and interannual vegetation 
dynamics (e.g. Liu et al., 2015; Moesinger et al., 2020; Teubner et al., 2019) or specifically 
on L-band VOD characteristics (e.g. Schwank et al., 2021; Bousquet et al., 2021; Rodriguez-
Fernandez et al., 2018). Research on the quality of LSTMW (e.g. Holmes et al., 2009; Holmes 
et al., 2015) remains limited. The robustness of the interannual variability signals within these 
multi-decadal data records is still not always clear, and a combined assessment of all three 
variables is necessary for understanding these datasets, as the current joint retrieval algorithm 
make their values fundamentally intertwined (Owe et al., 2008). Such information provides 
unique  opportunities  for  both  monitoring  and  seasonal  forecasting,  e.g.  over  Africa  (e.g. 
Cook et al., 2021). 

The purpose of this paper is to improve insight into the interannual signals of the SSMMW, 
LSTMW and VODMW by presenting a case study over a region with a complex hydrological 
system, i.e. the Okavango, and how their skill compares to state-of-the-art climate reanalysis 
data from ERA5-Land (Muñoz-Sabater, 2019; Muñoz-Sabater, 2021). ERA5-Land aims to 
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quantify the water and energy cycles over land in a consistent manner, therefore allowing the 
characterisation of trends and anomalies. Although ERA5-Land (E5) data is known to be of 
high quality in many regions around the globe, for use in any specific regions this needs to be 
properly evaluated.  Therefore,  this  dataset  does not only function as a benchmark in this 
study, but will also be analysed in more detail to evaluate its ability to properly detect the 
natural dynamics and variability in the Okavango and how this compares to the signal of the 
passive microwave-based datasets. Other datasets are used as support for determining which 
dataset (i.e., either PMW or E5L estimates of the same variable) is more likely to reflect true 
conditions. This research can help to improve the synergy between EO data sets and land 
surface models, and to identify both strengths and shortcomings of either one. 

More specifically, the Okavango Delta and Okavango River Catchment in southern Africa 
were selected as the study area. The Okavango Delta (Republic of Botswana, 2013) consists 
of permanent  marshlands and seasonally flooded plains,  and is  one of the few endorheic 
“delta” systems (geomorphologically Okavango Delta is an alluvial fan,  Kgathi et al. 2006) 
that does not flow into the ocean. It is an exceptional example of the interaction between 
climatic, hydrological and biological processes, leading to a unique mix of flora and fauna, 
and has therefore been included in the UNESCO World Heritage List  since 2014. Three 
features in the local hydrological system stand out, i.e., the strong interannual variability, the 
lateral  water  influx  component  of  the  Okavango  River  into  the  Delta,  and  the  seasonal 
characteristics with a lag between rainfall, river discharge and flooding. Unfortunately, it is 
expected that global warming will affect this natural variability in the hydrological cycle over 
the Okavango Delta (Wolski et al., 2014; Wolski et al., 2012), for example reducing high-
water  periods  like  in  2009-2011.  These  kinds  of  negative  impacts  increase  the  need  for 
reliable monitoring capabilities.  

The structure  of  the paper  is  as  follows.  SectionChapter 2  introduces  the study area and 
includes the exact regions of interest (ROIs) that are used for the data extraction. Sect. 3.1 
describes  the  passive  microwave  data  and  other  data  sources.  Sect.  3.2  explains  the 
methodology,  concerning  the  inter-calibration  (3.2.1),  the  Land  Parameter  Retrieval 
ModelLPRM (LPRM,  3.2.2), evaluation of the dataset anomalies (3.2.3.), and of the river, 
flood and precipitation  contribution  to  SSM anomalies  over  the  Okavango  Delta  (3.2.4). 
Sect.Chapter 4, 5 and 6 provide the Results, Discussion and Conclusions of these different 
steps. 

2 Research Area

With a length of approximately 1600 km, the Okavango river is one of the largest in southern 
Africa (Muzungaire et al. 2012). The river is known globally for its large terminating inland 
“delta”.  The Okavango Delta  is  a  large  seasonally  pulsed  inland wetland,  a  mixture   of 
aquatic vegetation, open water, and dry land with the actively inundated area covering a part 
of the 28,000 km2 alluvial cone (Ringrose et al., 1988). 
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Figure 1: The research area comprising ROI1 (a part of the upstream area of the Cubango and the Cuito 
River) and ROI2 (the surrounding of the Okavango Delta) in relation to the Okavango drainage basin 
(grey). The black dot marks the location of the discharge station at Mohembo.

In line with both the interannual variation in local and upstream rainfall and the longer-term 
effects of surface-groundwater interactions, substantial interannual variability in the Delta’s 
inundated area was recorded over the period 1932-2000 (Wolski and Murray-Hudson, 2008), 
with annual minima of about 3000 km2 up to annual maxima of 12000 km2 (Wolski et al., 
2017; Gumbricht et al., 2004). Whereas estimates for the total annual water budget stemming 
from direct rainfall in the Okavango Delta ranges between 25% to 50%, the Okavango River 
inflow accounts for the other 50% to 75% (McCarthy et al., 1998; McCarthy et al., 2000; 
Ashton and Manley, 1999; Ashton and Neal, 2003, Wolski et al., 2006). 

In this study we focus on only two perennial rivers in the Okavango catchment - the Cubango 
River and the Cuito River (Ashton and Neal, 2003). Data was extracted from the catchment 
area within ROI1 of Figure 1. These rivers originate in Angola and are a vital lifeline to the 
Okavango  Delta  with  an  average  yearly  inflow  at  Mohembo  of  9863  millions  of  Mm3 

(approximately  300 m3/s)  in the period 1932-2001 and a 71.4% contribution  to  the total 
water budget of the Delta. 
 
The Angolan part of the basin is characterised by a subtropical climate, while in Botswana 
and Namibia parts are classified as semi-arid (Kgathi et al. 2006). During drought years in the 
1980s and 1990s, the annual inflow at Mohembo reduced up to 45% (McCarthy et al., 2000; 
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Ashworth,  2002;  Ashton,  2003;  Ashton  and  Neal  2003)  which  then  coincided  with 
proportional declines of the Okavango Delta outflow to the Thamalakane and Boteti rivers 
(Ashton & Manley 1999; Ashworth 2002, Ashton and Neal 2003). Throughout these periods 
a growing demand for water arose in Botswana and Namibia (MGDP, 1997; Ashton, 2003). 
Overall, the dry phase was caused by multi-decadal oscillations in rainfall, and likely related 
to processes of internal variability in the climate system (Wolski et al., 2012).

ROI1 and ROI2 were chosen to study how their significantly different water influxes affect the 
signal of the data sources used in the evaluation. The Delta is of particular interest, as it is 
mostly driven by a strong and highly variable lateral influx from the Okavango River that 
creates a pattern of seasonally varying wetness that is asynchronous or off-phase with the 
rainy season.  

3 Material and Methods

3.1 Data

3.1.1 Passive microwave observations

The three main variables that are used for the analysis are surface soil moisture (SSMMW), 
vegetation optical depth (VODMW) and land surface temperature (LSTMW). These variables are 
derived from passive microwave observations from multiple satellite sensors that observe in 
similar frequencies and overlap in time. 

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E, Kawanishi et al., 2003) 
is a twelve-channel, six-frequency, passive microwave radiometer developed by the Japan 
Aerospace Exploration Agency (JAXA) and was active between 2002 and 2011. AMSR-E is 
part of the payload carried onboard the Aqua (EOS PM-1) NASA scientific research satellite, 
which  has  a  polar  orbit  with  a  1:30  pm  /  am  equatorial  crossing  time  for  ascending  /  
descending swaths. AMSR-E was launched to obtain data to improve our understanding of 
global-scale  water  and  energy  cycles  and  played  a  key  role  in  the  development  of  soil 
moisture  retrieval  algorithms.  For  the  technical  specifics,  see  Table  1.  Only  descending 
brightness temperature data was used for this study, as due to the thermal equilibrium during 
night time, these are more stable and of higher quality (Owe et al., 2008; Van der Schalie et 
al., 2021).

The Advanced Microwave Scanning Radiometer 2 (AMSR2, Imaoka et al., 2012) onboard 
the GCOM-W1 satellite is the follow-up of AMSR-E, and was launched in 2012. Although 
incorporating improvements, both the general setup and orbital characteristics (e.g. overpass 
times) areis similar to AMSR-E (see Table 2). However, unfortunately there is a gap between 
AMSR-E and AMSR2 of about 9 months,  making a direct  intercalibration of time series 
complicated. 
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To overcome this gap and to extend the passive microwave observation record back to 1998, 
we make use of the Tropical Rainfall Measuring Mission's (TRMM, Kummerow et al., 1998) 
Microwave Imager (TMI). TMI observes in X-band and higher frequencies. TRMM is not in 
a polar orbit because of its focus on the Tropical regions and therefore does not cover the 
entire  globe.  Data  is  only  available  between  40°N  and  40°S  and  due  to  its  orbital 
characteristics has a variable crossing time, see Table 1. To find a good balance between data 
availability and data stability (the more stable temperature distribution between the soil and 
vegetation close to thermal equilibrium),  Oonly brightness temperature data was used that 
had a  local  overpass  time  between 10:30 pm and 4:30 am, to  best  match  AMSR-E and 
AMSR2.

For this study we use  VODMW and SSMMW derived from X-band brightness temperature 
data due to its availability on all three sensors, while. Ka-band is the main frequency used for 
the LSTMW. All brightness temperatures were collected and gridded into a 0.25° grid for the 
studyOkavango Delta area.  

Table 1: Overview and characteristics of passive microwave satellite sensors used in the study.

Sensor Provider Temporal 
coverage 

Bands Spatial 
coverage

Swath Width Equatorial 
crossing time 

Data level Footprint 
size (X, Ka)

Advanced Microwave 
Scanning Radiometer for 
EOS (AMSR-E) on AQUA

JAXA / 
NASA

07/2002 –
10/2011

C, X, 
Ku, K, 
Ka, W

Global 1445 km Asc: 13:30 
Desc: 1:30

L2A v3 40 km, 
11 km

Advanced Microwave 
Scanning Radiometer 2 
(AMSR2)  on GCOM-W1 

JAXA / 
NASA

05/2012 – 
ongoing

C, X, 
Ku, K, 
Ka, W

Global 1450 km Asc: 13:30 
Desc: 1:30

L1R 33 km,
10 km

Tropical Rainfall Measuring 
Mission's (TRMM) 
Microwave Imager (TMI)

NASA 01/1998 –
12/2013

X, Ku, 
K, Ka, 
W

N40o to 
S40o

780 km (897 
after orbit 
boost 2001)

Varies (non polar-orbit) L1C (XCAL, Berg et al., 
2016)

50  (58) km,13  (14) 
km

3.1.2 Ancillary data sets 

In  our  analysis  we  use  several  ancillary  data  sets  to  determine  the  ability  of  passive 
microwave-based  satellite  data  records  to  correctly  capture  interannual  variations.  These 
ancillary datasets are split into two types:

Firstly, data was used from the ERA5-Land climate reanalysis model (Muñoz-Sabater, 2019; 
Muñoz-Sabater,  2021), which is an enhanced resolution (9 km x 9 km) land-only offline 
rerun of the ECMWF ERA5 climate reanalysis (Hersbach et al., 2020). SSME5, LSTE5 and 
PRE5 were extracted. For both SSME5 and LSTE5 the Layer 1 (0-7cm) was used. LAIE5 was 
excluded from the analysis  as it only contained a climatology based on satellite EOs (no 
interannual variability). ERA5-Land data was extracted from the Copernicus Climate Change 
Service (C3S) Climate Data Store (CDS). As it has an hourly resolution, the values closest to  
the satellite overpasses were chosen. Data covers the complete period of 1998 to 2020.

Secondly,  independent  observational  datasets  are  used,  which  have  the  sole  purpose  of 
functioning as a benchmark. These consist of the Okavango River Discharge measurements 
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(ORD, Okavango Research Institute, 2021), Okavango Delta Inundated Area (ODIAMD), Leaf 
Area Index (LAIMD,  Yang et al.,  2006) and nighttime LST (LSTMD,  Wan, 2014) from the 
Moderate  Resolution  Imaging  Spectroradiometer  (MODIS),  and  precipitation  from  the 
NASA Global Precipitation mission’s IMERG product (PRIM, Huffman et al., 2015).

A majority  of  the  water  entering  the  Okavango  Delta  originates  from the  Delta  inlet  at 
Mohembo. Therefore, we use ORD from the Mohembo station (see Fig. 1) to indicate the 
long term variability of the lateral inflow into the Delta. Measurements, using E-type gauge 
plates,  are  done  on  a  regular  (fortnightly)  basis  by  the  Botswana  Department  of  Water 
Affairs,  and the data are shared by the Okavango Research Institute  of the University of 
Botswana. The advantage of using this data set is that it has a long historical record dating 
back to 1974. For this study, data was extracted for the 1998 to 2020 period. 

ODIAMD represents the inundated area in the Okavango Delta,  and is derived from using 
shortwave infrared (SWIR) observations from the MODIS sensor (Wolski et al., 2017). More 
specifically data for band b7 from the MCD43A4 product was used. Reflectances of training 
areas  are  used  to  dynamically  determine  the  threshold  used  for  the  derivations  of  the 
inundation. An automated and up to date monitoring tool for the flooding extent can also be 
found online (http://www.okavangodata.ub.bw/). 

The LAIMD is defined as the one-sided green leaf area per unit ground area (Chen et al., 1992; 
Yang et al., 2006). The LAIMD for the study area, including both the drainage Catchment and 
the Delta, was extracted from the MOD15A2H Version 6 MODIS dataset. This is an 8-daily 
product that uses the best available pixel within the 8-day period. The product has a spatial 
resolution of 500 m, and the mean was extracted for the complete ROIs. 

1 km nighttime, about 1:30 am, surface temperature from MODIS was extracted from the 
MYD11A2.006 product, which is based on the average over 8 days of all available LSTMD 

observations. For this study the mean values of the two areas were extracted. The temporal 
coverage is from February 2000 to the end of 2020 for the LAIMD and July 2002 to the end of 
2020 for the LSTMD. 

For PRIM, data was used from the Integrated Multi-satellitE Retrievals for GPM (IMERG, 
Huffman et al., 2015), which is produced at 0.1° resolution. IMERG is a unified algorithm 
that  provides  rainfall  estimates  based  on  a  combination  of  observations  from  multiple 
passive-microwave sensors, infrared sensors and precipitation gauges. Mean daily data was 
used from the GPM_3IMERGDF version 6, covering June 2000 to December 2020. 

3.2 Methods

3.2.1 Intercalibration of PMW brightness temperatures

The  intercalibration  of  AMSR-E,  AMSR2  and  TRMM  is  based  on  the  methodology 
described in Van der Schalie et al. (2021). In this approach a two-step linear regression model 
is used, which first defines a global slope and afterwards a local intercept. Secondly, it uses a 
cost function that not only minimises the differences between brightness temperatures of the 
individual polarizations, i.e. vertical (V) and horizontal (H), but also for the ratio between the 
two. This is because the Land Parameter Retrieval Model (LPRM, see next section) used for 
the  SSMMW,  VODMW and  LSTMW retrievals  is  very  sensitive  to  the  polarisation  ratio. 
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Inconsistencies in this ratio between different sensors can lead to an imbalance in how the 
radiative  transfer  model  distinguishes  between  the  emission  from  the  soil  and  the  from 
vegetation,  respectively,  leading  to  biases  in  the  resulting  retrievals. This  intercalibration 
methodology was, previously only applied only to the Ku-, K- and Ka-band, but isis here also 
used for applied to the X-band data in the same way. 

More specifically, the following cost function is minimised in the linear regression instead of 
a standard least squares approach:

∑
❑

❑

❑H∑
❑

❑

❑V∑
❑

❑

❑      (1)

with:

❑H /V √❑     (2)

√❑     (3)

Where TB is the brightness temperature for the two polarisations and from the base (s1) and 
calibrated (s2) satellite. The  and  are the slope and intercept for the linear regression. The T 
refers to the time steps with overlapping observations for a single location.

This intercalibration methodology was, previously only applied only to the Ku-, K- and Ka-
band, but isis here also used for applied to the X-band data in the same way. After retrieving 
sensor specific SSMMW, VODMW and LSTMW from the inter-calibrated TBindividual sensors, a 
linear regression is applied between the different sensors using their respective overlap . This 
is  done  to  remove  any leftover inconsistencies.  IThe  improved  inter-calibration  between 
sensors can lead to a reduced need for break corrections (e.g. Preimesberger et al., 2020) and 
help to better address related issues at the source. 

As this study focuses on anomalies at a seasonal timescale, the temporal coverage obtained 
by the current three sensors is sufficient. However, as was shown by Van der Schalie et al. 
(2021) and as is done for the passive microwave based data input for the ESA CCI SM, other  
sensors like GPM, FengYun-3B and FengYun-3D can be included without issues, resulting in 
improved revisit times and coverage. 

3.2.2 Land Parameter Retrieval Model

The Land Parameter Retrieval Model (LPRM, Owe et al., 2008) is a retrieval algorithm that 
simultaneously solves for SSMMW, VODMW and LSTMW without the use of any ancillary data 
sources on vegetation or temperature. The model is based on the tau omega (τ-ω) model (Mo 
et  al.,  1982),  which  simulates  the  top-of-the-atmosphere  brightness  temperatures  by 
modelling the individual contribution of the soil, vegetation and atmosphere. LPRM mainly 
distinguished  itself  from other  algorithms  through  the  analytical  derivation  of  the  VOD 
(Meesters et al., 2005) and the use of Ka-band observations for the LSTMW (Holmes et al. 
2009). Here we use the latest  version 6.0 of LPRM, as developed by Van der Schalie et al. 
(2017). 
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LPRM  is  currently  the  main  algorithm  used  for  all  the  passive  microwave-based  SSM 
retrievals in ESA CCI SM (Dorigo et al., 2017). Due to its unique analytical solution for the 
derivation of VODMW that uses no external source of information for the vegetation, LPRM 
has also been used in several studies of long term vegetation dynamics (Liu et al., 2012; Liu 
et al., 2015), land degradation (Liu et al., 2013; Van Marle et al., 2017) and the development 
of climate data records of VODMW like the VOD Climate Archive (VODCA, Moesinger et al., 
2020). 

3.2.3 Evaluation of anomalies

To have a better understanding of the quality of the different datasets in detecting interannual 
variability and anomalies, a two-step comparison analysis is done. First, the anomalies are 
visualised  over  time  and  their  dynamics  assessed.  Second,  the  relations  between  related 
datasets are quantified using correlations and visualised using  densityscatter plots. This is 
done separately for the catchment and the delta.

The SSMMW is compared to the SSME5, both representative for the moisture conditions in the 
first few centimetres of the soil. As this is a direct comparison, in this step the focus will be 
on  their  similarity  and  differences,  without  analysing  what  causes  it.  Additionally,  an 
extensive analysis is conducted (Section 3.2.4) to determine which of the data sets most likely 
reflects the ground conditions, based on their relation to ORD, ODIAMD and PR.  

For VODMW there is a comparison with another regularly used satellite-based datasat,  LAIMD. 
Theoretically the VODMW represents the attenuation of the microwave emission through the 
vegetation cover, which is related to both the structure and moisture content of the vegetation. 
The LAIMD is representative of the projected single-sided green leaf area per unit ground area. 
Although VOD and LAI are fundamentally  different,  it  is  assumed that  for dynamic and 
sparsely  to  moderately  vegetated  regions,  i.e.  excluding  forests,  the  X-band  also  mostly 
measures  the  response  of  the  leaves  with  the  microwave signal  via  the  vegetation  water 
content (Jackson & Schmugge, 1991). Further defining the quality and ability of VODMW to 
detect  interannual  variability  can  be  especially  useful  in  improving  the  applicability  and 
understanding  of  independent  vegetation  data  records  based  on  passive  microwave 
observations like VODCA (Moesinger et al., 2020).  

Here the anomalies of LST from three different sources, e.g. passive microwave (LSTMW), 
model  (LSTE5,)  and  thermal  infrared  (LSTMD)  are  evaluated.  These  represent  slightly 
different parts of the soil surface, being 0 - 7 cm, 0 - 0.1 cm and 0 cm (skin) respectively. The 
mismatch in depth is also a reason why we choose for night time comparisons, as there is  
much more thermal  stability.  When looking over longer  periods (e.g.  weeks,  months) we 
assume that  the  slightly  different  definitions  of  the  soil  temperature  should  still  show a 
similarity in underlying anomalies, as in correlating well.

Here the anomalies of LST from three different sources, e.g. passive microwave (LSTMW), 
model (LSTE5,) and thermal infrared (LSTMD), which all represent the skin temperature of the 
land surface - are evaluated. 

Because the focus is on the (seasonal) variability over a multi-decadal timespan, a 91 day 
moving average (±45 days) is first applied to the data sets. The climatology for the anomaly 
calculation is  based on the 2003-2020 period,  as the LSTMD is  only available  from 2003 
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onwards and overall consistency for the baseline is preferred. As the window for the moving 
average is 91 days, little impact is assumed from data loss due to cloud cover in the MODIS 
datasets.  

It is worth keeping in mind that none of these datasets provide the “truth” or measure exactly 
the same quantity, therefore differences are to be expected. In the analysis component (see 
following Section), extra attention will be given to a specific case in the Okavango Delta 
where a clear divergence is observed between the different SSM datasets. 

3.2.4 Analysis of river flooding and precipitation contribution to soil moisture 
anomalies in the Okavango Delta

As further  in  this  study (Sect  4.1) the signal  of  the two SSM data sources  (SSMMW and 
SSME5) is shown to diverge over the Okavango Delta, an in-depth analysis is set up to explain 
the main drivers of their respective signals. This can help to better understand what the SSM 
data sets represent and give users insight in how to use them for their research activities and 
applications.  

A first step in this is to directly compare the SSM data sets to the ORD, ODIAMD and both 
PRE5 as  PRIM.  These  data  sets  can  provide  insight  into  what  is  the  driver  of  the  SSM 
anomalies in this region. As described in section 2, about 50%-75% of the total influx of 
water into the Okavango Delta comes from the ORD, while PR on average contributes 25%-
50%, so we expect to see this reflected in the SSM either via the ORD or the ODIAMD signals.

Following this, a multiple linear regression exercise is conducted. This is done to look into 
the influence of the ODIAMD, ORD and PR signals on the SSMMW and SSME5 anomalies in 
the  Delta.  This  allows  us  to  determine  the  drivers  of  the  SSM  anomalies,  and  more 
importantly, how they differ between the two. Instead of using the absolute anomalies in this 
analysis, the Z-score is preferred, as thiess normalisation removes issues with conversion of 
units and can be interpreted as for standardised anomalies. A visualisation will also be made 
of the climatologies  from the different  datasets,  including their  10 and 90 percentiles,  to 
further define the connection and time lag between the signals of the different parameters. 

4 Results

4.1 Soil Moisture

Figure 2 shows the anomalies of SSMMW and SSME5 over the Okavango catchment and Delta, 
with Figure 2E/F comparing them directly to each other in a densityscatter plot. In both areas 
the two datasets  correlate  moderately well,  0.7217 and 0.70694 respectively.  In the Delta 
however, a mismatch occurs oin some occasions, leading to a visible flat line in the density 
scatterplot where the anomalies of SSMMW vary while the anomalies of SSME5 are close to 0 
(Fig. 2E). The signal SSMMW anomalies over the Catchment, and SSME5 anomalies over both 
the catchment and Delta, seem to have clear short-term variability as can be seen from the 
peaks in  the wet  season, while  the dry season remains  mostly stable  around 0.  Only the 
anomalies of SSMMW over the Delta diverge from this and show a more multi-year variation, 
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with highs in the years around 2011 and lows in the early and late periods of the time period. 
These cases will be further analysed in Sect. 4.4 in combination with the ORD and PR.  

The absolute range of the anomalies differs to some extent between the two products: SSMMW 

anomalies range between -0.03 and 0.025 m3m-3 in the Catchment and -0.05 and 0.05 m3m-3 

in the Delta, whereas SSME5 anomalies range between -0.10 and 0.06 m3m-3 in the Catchment 
and -0.08 and 0.10  m3m-3 in the Delta. However, the dynamics of the signal are very similar. 
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Figure 2: SSMMW and SSME5 absolute anomalies over the Okavango Catchment (A,B,E), with the intensity 
of the colouring based on the z-score of the positive (blue) and negative (red) anomalies, and the 
Okavango Delta (C,D,F) in time series and density plots. A daily time step is used from the moving 
average data set. 

4.2 Vegetation Optical Depth

Figure 3 shows the anomalies  of VODMW and LAIMD over the Okavango Catchment  and 
Delta, with Figure 3E/F again showing a direct comparison in a densityscatter plot. The two 
datasets  have  a  0.741 correlation  over  the  Catchment  and  up  to  0.8876 in  the  Delta. 
Generally, a similar pattern is visible for both regions. One exception can be seen during the 
2008 to 2011 period in the Catchment, where the VODMW anomaly remains high throughout 
multiple years, while the overall above average LAIMD anomalies fluctuate to a greater extent. 
The  lowest  values  in  the  Delta  were  detected  early  in  the  study  period,  with  VODMW 

recording an almost -0.08 anomaly during 1998 and 2003. This 2003 event is also seen in the 
LAIMD dataset,  while  no  data  is  available  for  1998.  In  more  recent  years,  no  negative 
anomalies of that strength have been recorded.  
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Figure 3: VODMW and LAIMD anomalies over the Okavango Catchment (A,B,E), with the intensity of the 
coloring based on the z-score of the positive (green) and negative (brown) anomalies, and the Okavango 
Delta (C,D,F) in time series and density plots. A daily time step is used from the moving average data set. 

4.3 Land Surface Temperature

Figure 4A/B shows the anomalies of LSTMW over the Okavango Catchment and Delta, with 
Figure 4B/C/D/E/F/G showing a direct comparison in a densityscatter plot between LSTMW, 
LSTE5 and LSTMD. Because of the high correlation between LSTMW and LSTE5, of 0.884 in the 
Catchment and 0.8109 in the Delta, the decision was made to only show the LSTMW time 
series to focus more on the density scatterplots of the three different products. The correlation 
of LSTMW against LSTMD is much lower, with 0.643 and 0.2655 for both regions, showing a 
low relation in the Catchment. LSTE5 compares better to LSTMD with a correlation of 0.702 in 
the  Catchment  and  0.650 in  the  Delta,  however  this  is  still  significantly  lower  than  the 
comparison  with  LSTMW.  The  absolute  ranges  in  the  anomalies  as  detected  by  the  three 
products are very similar. 

The slightly lower correlation of LSTMW against LSTE5 in the Delta is mostly caused by the 
period 2010 and 2011, when the LSTE5 anomaly (between -1 and 1 °C) is smaller than that of 
LSTMW (between -3 and -1 °C). This break away is clearly visible in the density plot of Fig. 
4F on the lower left side. Below-average temperatures are recorded for a prolonged period 
between 2006 and 2014 in both regions. For the Delta, the highest temperature anomalies are 
recorded in 2019 and 1998. In the Catchment, this is seen in 2015 and 2019. 
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Figure 4: LSTMW time series over the Okavango Catchment and the Okavango Delta (A,B), with the 
intensity of the colouring based on the z-score of the positive (red) and negative (blue) anomalies. For the 
density plots; LSTMW compared to LSTE5 (C,F), LSTMW compared to LSTMD (D,G), LSTE5 compared to 
LSTMD (E,H). A daily time step is used from the moving average data set for the density plots.
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4.4 River and precipitation contribution to soil moisture anomalies in the Okavango 
Delta

Figure 5A, 5B and 5C show the anomalies of the ORD, ODIAMD and PRE5 over the Delta, 
which  have  visibly  different  signals.  The  ORD  shows  a  strong  multi-year  signal  with 
especially high values recorded from 2009 to 2012. Outside of that period, with the exception 
of 2004, values generally lay below the 2003 to 2020 climatology. The OIADMD shows a 
signal that is relatively similar to that of the ORD, however smoother, with less variability  
and lagging behind. The PRE5 over the Delta shows mostly values around 0 mm during this 
2009 to 2012 period, and otherwise varies more dynamically from year to year with values 
above and below the climatology. 

Although SSMMW and SSME5 anomalies have an overall correlation of 0.694 in the Delta, 
Figure 2F shows many occasions  where  the  SSMMW had negative  or  positive  anomalies, 
while  the SSME5 did not diverge from the climatology.  To better  assess what causes this 
opposite signal, the climatology (using ±15 days moving average) of different parameters are 
provided  in  Figure  6,  including  their  10%  and  90%  percentiles.  Here  one  can  see  the 
difference in the dynamics between SSMMW (Fig. 6A) and SSME5 (Fig. 6B). The SSME5 shows 
a clear relation to the PR datasets (Fig. 6G/H), while the SSMMW still picks up a moisture 
signal between April and September. When looking at the ORD and OIADMD, these are the 
moisture-related signals that still show strong variability in this time of the year, indicating 
that the SSMMW could also contain information from other sources than PR. On a side note, 
Figure 6 shows that besides matching well with long term anomalies, LSTMW and VODMW 

also have a strong matching intraseasonal signal with LSTE5 and LAIMD, respectively.   

Table 2 presents the results of a multiple linear regression to determine the drivers of the 
observed/modelled SSM anomaly signal in the Delta, using ODIAMD, ORD and PR as inputs. 
The Z-score anomalies are used to improve the comparability between the different datasets 
and their  weight.  The  results  show that  the  weighting  for  SSMMW consists  of  a  balance 
between the PR in the Delta and the ODIAMD, with an overall slightly higher weight for the 
ODIAMD, and leading to a maximum correlation of 0.843 when using PRE5 over PRIM. This 
leads to a RMSE of about 0.44 for the Z-score. The SSME5 anomalies are clearly driven by 
the PRE5 anomalies, reaching a correlation of 0.8766. The correlation strongly decreases to 
0.64 when the PRE5 is replaced with PRIM, which reflects back in the RMSE of the Z-score 
anomalies, which increases from about 0.37 to 0.57. 

Table 2: Results of the multiple linear regression for estimating the relationships between the Z-score  
anomalies of SSM, PR, ORD, and ODIAMD over ROI2. 

Prediction Input 1 Input 2 Correlation RMSE Weight 
input 1

Weight 
input 2

SSMMW PRE5 ORD 0.780 0.490 0.5273 0.5758

PRIM ORD 0.70\4 0.49950 0.4859 0.5172

PRE5 ODIAMD 0.843 0.431 0.4364 0.670

PRIM ODIAMD 0.8106 0.4374 0.39640 0.6687

SSME5 PRE5 ORD 0.8667 0.370 0.878 0.1667

PRIM ORD 0.6364 0.571 0.7435 0.163
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PRE5 ODIAMD 0.8667 0.3768 0.880 0.162

PRIM ODIAMD 0.6465 0.564 0.714 0.190

Figure 5: ORD, ODIAMD and PRE5 time series over the Okavango Delta (A,B,C), with the intensity of the 
colouring based on the z-score of the positive (blue) and negative (red) anomalies. 
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Figure 6: ROI2 mMean climatology (colored thick line) and both 10% and 90% percentiles (black dashed 
lines) for SSMMW (A), SSME5 (B), LSTMW (C), LSTE5 (D), VODMW (E), LAIMD (F), PRIM (G), PRE5 (H), 
ODIAMD (I) and ORD (J). Data using a ±15 days moving average was plotted to distinguish between 
intraseasonal signals. 

5 Discussion

Over both the Delta and the Catchment,  a remarkably strong relationship between the LAIMD 

and VODMW  was observed, even though fundamentally they measure two different things. 
The relationship  is  slightly  weaker  over  the Catchment,  where you see more  of  a  buffer 
effectmemory in the VODMW  dataset as compared to the LAIMD. This could be caused by a 
buildup of woody biomass, as this would theoretically be better detected with the VODMW 

than with the LAIMD. The period of sustained high VODMW in the catchment during the 2008 
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to 2012 period aligns well with the PRE5, which recorded 5 years of above-average rainfall 
over the Catchment. The ORD shows this increase above the climatology starting only the 
year afterwards (from 2009 to 2012),  showing the lagged response of the system after a 
prolonged dryer period.   

The VODMW signal in the Delta is more complex:  the peaks in VODMW do not coincide with 
prolonged time spans of high water availability, but seem to peak during shorter periods of 
increased water availability during overall conditions with medium to low ODIAMD. This can 
be explained by what the VOD represents: in this case, it is related to biomass that is above 
the surface.  During prolonged periods  of high water,  a  larger  extent  of these regions are 
flooded.  Therefore,  within  the  0.25°  pixel,  data  that  is  not  corrected  for  dynamic  water 
bodies, the vegetation covered by these flooded areas might not be properly measured by the 
VODMW signal. As it is also known that VODMW values can be underestimated during flooded 
conditions (Bousquet et al.,  2021). Note that the negative SSMMW and ORD anomalies in 
2019 have not led to the same intensity of vegetation decline, while in 2019 the ODIAMD was 
at a record low in the last 20 years. With the very strong relationship over the Delta between 
the anomalies  of both VODMW and LAIMD -  two independent  satellite-observed datasets  - 
these observations very likely reflect the conditions on the ground. These results show that 
future  use  of  even  longer  VODMW records  can  help  monitor  complex  regions  like  the 
Okavango Catchment and Delta. For example, following the progress on VODCA -which 
aims to build a data record similar to the ESA CCI SSM for VODMW -future releases will also 
include the latest calibrated datasets as used here. 

Three different sources of LST were tested over the Okavango Catchment and Delta. The 
highest  correlation  can  be found between the LSTE5 and  LSTMW,  which  most  likely  best 
represent  the  actual  ground  conditions.  Although  LSTMD performs  less  well,  the  better 
correlation  of  LSTMD against  LSTE5 than  LSTMW might  indicate  that  the  overall  best 
performing dataset is the LSTE5. However, in many cases an observation-based long term 
dataset (e.g. the LSTMW) is still preferred. For example, in 2010 and 2011 the LSTMW has the 
lowest temperature anomalies on record in the Delta, going to -3 K, while the LSTE5 remains 
more neutral. This is most likely caused by the lack of lateral water influx modelling from the 
ORD and  following  ODIAMD in  ERA5-Land  (Muñoz-Sabater  et  al.,  2021),  as  shown in 
Section 4.4. The lack of moisture input into the model can lead to an underestimation of the 
latent heat flux and overestimation of the sensible heat flux, leading to an unrealistically high 
LSTE5. 

In the Delta,  2015, 2016,  and 2019 have been warm compared to  the years  before.  The 
LSTMW and LSTE5 both show that these are not unique occurences, as similar high values 
have been detected on multiple occasions before 2006. These seem to occur during periods of 
lower ODIAMD, which shows dry anomalies of varying strength in these years. The catchment 
does see its highest and more prolonged peaks only in the last years, i.e. 2015 and 2019. 
These high peaks coincide with the strongest negative anomalies found for both SSMMW and 
SSME5, linking the high temperature and reduced moisture availability.        

The  precipitation-driven  SSM  in  the  Catchment  aligns  closely  with  SSMMW and  SSME5 

datasets.  Especially  in  the period after  2010, the signal  in  the anomalies  is  very similar. 
Before 2010, it appears that the SSMMW shows slightly stronger dynamics than SSME5. In the 
Delta a mismatch is clearly seen between SSME5 and SSMMW, especially with regard to the 
duration of the dry and wet peaks, but also in their intensity. With the knowledge that about 
50%-75% of the water flux into the Delta comes from the ORD, and about 25%-50% from 
the PR, an analysis using Z-score anomalies was conducted to determine the driving signals 
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behind the SSM anomalies, using the ORD, ODIAMD and PR as inputs. For SSME5, an almost 
one-to-one relationship was found with the PR, with little to no effects from the ORD or 
ODIAMD. The SSMMW anomalies on the other hand, are almost equally driven by PR and 
ODIAMD, which is much closer to the actual balance between the ORD and PR water fluxes 
for the Delta as expected from literature. 

The almost one-to-one relationship between the SSME5 and PRE5, and lack of signal related to 
the ORD due to the missing lateral water influx modelling, or alternatively dynamic open 
water bodies using the ODIAMD, in ERA5-Land indicates that in a complex region like the 
Okavango  Delta  important  forcings  are  missing.  This  for  example  could  also  cause  the 
difference in LSTMW and LSTE5 in 2010 and 2011 (not shown), as the model cannot correctly 
convert  the  incoming  radiation  into  sensible  and  latent  heat  fluxes  when  the  moisture 
conditions are inaccurate, leading to a false increase of LST. On the other hand, while the 
SSMMW signal provides users with a better representation of total moisture conditions within 
the catchment, it can also not be interpreted as a pure SSM signal here, as it includes moisture 
information driven by the ODIAMD. In a dynamic environment as the Okavango Delta, users 
should therefore clearly define what they require of such datasets to avoid unwanted side 
effects.    

6 Conclusion

The anomalies of three different parameters, i.e. SSMMW, LSTMW and VODMW, were evaluated 
against other satellite-observed data sets and data from the ERA5-Land climate reanalysis. 
Although SSMMW and SSME5 correlate moderately well, structural differences were detected 
over the Okavango Delta, where SSMMW contains a clear multi-year signal that is not in the 
SSME5. To determine the cause of this mismatch, an analysis was conducted to determine the 
impact of three sources of water into the Okavango Delta, i.e. the ORD, ODIAMD and the PR, 
on the SSM signal. The SSMMW signal appears to be driven about equally by the ODIAMD and 
the PR, while SSME5 is almost fully driven by the PRE5. This indicates that ERA5-Land does 
not properly include the lateral influx of the Okavango River, and therefore the use of SSMMW 

is preferred in this region. 

For the VODMW, a direct comparison against LAIMD was made. Although the two parameters 
measure  two  different physical characteristics  of  the  vegetation,  their  anomalies  show a 
similar response, which were reflected back in their strong correlations (0.74 and 0.88) good 
correlations. Over the Catchment, a stronger multi-year signal was detected in the VODMW, 
which could be related to the build up of biomass, to which VODMw is theoretically more 
sensitive. For the Delta, both datasets are impacted by the increase in open water during long 
wet periods that can suppress the observed vegetation.  This strong similarity  as observed 
between the two datasets, indicate that it is very likely they are both representative for the in 
situ conditions.  

LSTMW was shown to be of good quality and correlated well with LSTE5 (>0.8). LSTMD  still 
managed to reach a significant correlation with LSTE5, but not with LSTMW, indicating that in 
general LSTE5 could be of highest quality of the three when looking at the temporal signal. 
However, at the record-low values in LSTMW over the Delta in 2010-11, corresponding to the 
peak years of the ORD and ODIAMD, it seems that LSTE5 cannot properly model the sensible 
and latent heat fluxes because it is missing the lateral water component. This can have a large 
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impact  for  detecting  extremes,  which  are  especially  important  in  the  current  changing 
climate.

The findings of this research show the importance of not only relying on climate reanalysis,  
but also the need for further development and maintenance of observational datasets like the 
ones derived from passive microwave observations. For example within the ESA CCI Soil 
Moisture datasets, but also the development of new CDRs on VODMW like VODCA. Their 
ability to properly detect anomalies and extremes is very valuable in climate research, and 
can especially  help to improve our insight in complex regions  where the current  climate 
reanalysis datasets reach their limitations. With microwave data being available from 1978 
onwards, the data can be used for long-term climate studies, near-real-time applications, e.g. 
monitoring  complex  natural  systems  like  the  Okavango  Delta,  and  to  constrain  climate 
reanalysis through data assimilation techniques to overcome known model weaknesses.       
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