

1	Effects of the dynamic effective porosity on watertable fluctuations and seawater
2	intrusion in coastal unconfined aquifers
3	
4	Zhaoyang Luo ^{1,2,#} , Jun Kong ^{1,3,#} , Lili Yao ⁴ , Chunhui Lu ¹ , Ling Li ^{5,6} , David Andrew Barry ²
5	
6	¹ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai
7	University, Nanjing, China
8	² Ecological Engineering Laboratory (ECOL), Environmental Engineering Institute (IIE),
9	Faculty of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique
10	Fédérale de Lausanne (EPFL), Lausanne, Switzerland
11	³ Key Laboratory of Coastal Disaster and Protection (Ministry of Education), Hohai
12	University, Nanjing, China
13	⁴ Department of Civil, Environmental, and Construction Engineering, University of Central
14	Florida, Orlando, USA
15	⁵ School of Engineering, Westlake University, Hangzhou, China
16	⁶ School of Civil Engineering, The University of Queensland, Brisbane, Australia
17	
18	[#] Corresponding authors: Zhaoyang Luo (<u>zhaoyang.luo@epfl.ch</u>) and Jun Kong
19	(<u>kongjun999@126.com</u>)
20	
21	

22 Abstract

23	Watertable fluctuations and seawater intrusion are characteristic features of coastal
24	unconfined aquifers. The dynamic effective porosity due to watertable fluctuations is analyzed
25	and then a modified (empirical) expression is proposed for the dynamic effective porosity
26	based on a dimensionless parameter related to the watertable fluctuation frequency. After
27	validation with both experimental data and numerical simulations, the new expression is
28	implemented in existing Boussinesq equations and a numerical model, allowing for
29	examination of the effects of the dynamic effective porosity on watertable fluctuations and
30	seawater intrusion in coastal unconfined aquifers, respectively. Results show that the
31	Boussinesq equation accounting for the vertical flow in the saturated zone and dynamic
32	effective porosity can accurately predict experimental dispersion relations (that all existing
33	theories fail to predict), highlighting the importance of the dynamic effective porosity in
34	modeling watertable fluctuations in coastal unconfined aquifers. This in turn confirms the
35	utility of the real-valued expression of the dynamic effective porosity. An outcome is that the
36	phase lag between the total moisture (above the watertable) and watertable height measured in
37	laboratory experiments using vertical soil columns (1D systems) can be ignored when
38	predicting watertable fluctuations in coastal unconfined aquifers (2D systems). A dynamic
39	effective porosity that is, by comparison, smaller than the soil porosity leads to a reduction in
40	vertical water exchange between the saturated and vadose zones and hence watertable waves
41	can propagate further landward. The dynamic effective porosity further plays a critical role in
42	simulations of seawater intrusion, since it predicts a more landward seawater-freshwater

- ⁴³ interface and a higher position of the upper saline plume.
- 44
- 45 **Keywords:** Dynamic effective porosity; Boussinesq equation; watertable fluctuation;
- ⁴⁶ dispersion relation; seawater intrusion

47 Highlights

- $_{48}$ > A modified expression is proposed for the dynamic effective porosity due to watertable
- 49 fluctuations
- $_{50}$ > The Boussinesq equation correctly predicts watertable fluctuations with involving the
- ⁵¹ vertical flow and dynamic effective porosity
- ⁵² > Numerical models further underestimate seawater intrusion if ignoring the dynamic
- 53 effective porosity

54 **1. Introduction**

55	As a transition zone between the ocean and land, coastal unconfined aquifers respond to
56	interactions between terrestrial fresh groundwater and seawater. Due to oceanic oscillations
57	(e.g., tides or waves), water flows into or out of the aquifer periodically, which directly affects
58	a range of groundwater-dependent processes including sediment mobilization, seawater
59	intrusion, submarine groundwater discharge, solute transport and chemical loading to the
60	ocean (e.g., Parlange et al., 1984; Li et al., 1999; Moore, 2010; Xin et al., 2010; Bakhtyar et
61	al., 2011; Werner et al., 2013; Robinson et al., 2018; Wallace et al., 2020). Watertable
62	fluctuations induced by oceanic oscillations are an important signal for quantifying these
63	processes, and their prediction is a longstanding topic (e.g., Philip, 1973; Smiles & Stokes,
64	1976; Parlange et al., 1984). They are investigated by field measurements (e.g., Nielsen et al.,
65	1990; Raubenheimer et al., 1999; Robinson et al., 2006; Heiss & Michael, 2014; Trglavcnik et
66	al., 2018), laboratory experiments (e.g., Cartwright et al., 2004; Robinson & Li, 2004;
67	Shoushtari et al., 2016, 2017), numerical simulations (e.g., Li et al., 1997; Cartwright et al.,
68	2006; Shoushtari et al., 2015; Brakenhoff et al., 2019) and analytical solutions (e.g., Parlange
69	& Brutsaert, 1987; Barry et al., 1996; Nielsen et al., 1997; Li et al., 2000a,b; Teo et al., 2003;
70	Song et al., 2007; Kong et al., 2013, 2015). Among these, analytical solutions based on the
71	1D Boussinesq equation describe watertable fluctuations and give results that are easily
72	computed, present explicit relations between parameters that impact watertable fluctuations,
73	and can be used as benchmarks for numerical simulations.

74

The Dupuit-Forchheimer based Boussinesq equation describes groundwater flow in the

75	saturated zone (Bear, 2012). It is amenable to analytical investigations, and so is used to
76	reveal mechanisms that influence watertable wave propagation (e.g., Nielsen, 1990; Li et al.,
77	2000a; Teo et al., 2003; Jeng et al., 2005a). To underline the effects of vertical flow on
78	watertable fluctuations, Nielsen et al. (1997) and Liu and Wen (1997) proposed an
79	intermediate-depth Boussinesq equation based on different approximation methods. However,
80	all these investigations ignore unsaturated flow that arises when the watertable rises and falls,
81	which affects predictions of watertable fluctuations (e.g., Gillham, 1984; Kong et al., 2016;
82	Luo et al., 2018). To improve such predictions, modifications to the Boussinesq equation are
83	used. An early step in this direction was taken by Parlange and Brutsaert (1987), who
84	presented a Boussinesq equation that included vertical exchange between the saturated and
85	vadose zones. Barry et al. (1996) presented an approximate analytical solution that considered
86	the effect of this exchange on watertable fluctuations for the case of a periodic boundary
87	condition. Following the method of Parlange and Brutsaert (1987), Jeng et al. (2005b) further
88	improved the Boussinesq model by proposing a higher-order capillarity correction. These
89	modifications were all based on the 1D Boussinesq equation (horizontal flow only) without
90	explicit consideration of the vertical flow (although the effect of the unsaturated zone is
91	considered indirectly). The combined effects of unsaturated and vertical flows were
92	investigated by Li et al. (2000b) and Shoushtari et al. (2016), who extended the intermediate-
93	depth Boussinesq model proposed by Nielsen et al. (1997). Recently, Kong et al. (2013, 2015)
94	developed two types of Boussinesq equation involving horizontal unsaturated flow under the
95	assumption of a hydrostatic vertical pressure distribution, accounting for both short (Kong et

96	al., 2013) and long (Kong et al., 2015) period watertable fluctuations.
97	When applied to analyze watertable fluctuations in coastal unconfined aquifers subjected
98	to archetypal case of a single-component boundary fluctuation, most of the abovementioned
99	Boussinesq equations predict an asymptotic amplitude decay rate and zero phase lag increase
100	rate (standing wave behavior) of watertable waves for increasing dimensionless aquifer depth,
101	$n_e \omega D/K_s$ (where n_e [-] is the static effective porosity, ω [T ⁻¹] is the angular frequency of the
102	boundary forcing, $D[L]$ is the aquifer depth and $K_s[LT^{-1}]$ is the saturated hydraulic
103	conductivity) (e.g., Barry et al., 1996; Liu & Wen, 1997; Nielsen et al., 1997; Li et al., 2000a;
104	Kong et al., 2013, 2015). Nevertheless, the laboratory experiments of Shoushtari et al. (2016),
105	which cover a wide range of $n_e \omega D/K_s$ in an unconfined aquifer with a vertical boundary,
106	indicated an increase of both the amplitude decay rate and phase lag increase rate of
107	watertable waves with increasing $n_e \omega D/K_s$. They concluded that all existing Boussinesq
108	equations cannot predict experimental results correctly. This discrepancy between
109	experimental data and theoretical predictions, especially for the phase lag increase rate,
110	motivates further investigations on the potential mechanisms controlling watertable
111	fluctuations in coastal unconfined aquifers.
112	Few of the abovementioned Boussinesq equations consider the dynamic effective
113	porosity observed during watertable fluctuations (Nielsen & Perrochet, 2000; Cartwright et
114	al., 2005; Acharya et al., 2012; Pozdniakov et al., 2019). Shoushtari et al. (2016) combined
115	the complex, frequency-dependent effective porosity proposed by Cartwright et al. (2005)
116	with the infinite-order Boussinesq equation of Nielsen et al. (1997), but their new theory

137

117	failed to predict the experimental results. Therefore, they did not further analyze the effects of
118	the dynamic effective porosity on watertable fluctuations in detail, and it remains unclear
119	whether the dynamic effective porosity affects watertable fluctuations. In addition, as
120	indicated by Hilberts and Troch (2006), the complex-valued expression for the dynamic
121	effective porosity proposed by Cartwright et al. (2005) has limited practical use.
122	Watertable fluctuations are of additional interest since they affect seawater intrusion
123	behavior in coastal unconfined aquifers. In such aquifers, density-driven flow leads to two
124	different salt areas: a saltwater wedge and an upper saline plume (Robinson et al., 2007).
125	Seawater intrusion under watertable fluctuations is usually investigated numerically (e.g.,
126	Brovelli et al., 2007; Xin et al., 2010; Liu et al., 2014; Robinson et al., 2014; Levanon et al.,
127	2016; Yu et al., 2019). Levanon et al. (2017) investigated the responses of seawater intrusion
128	and watertable to surface water level fluctuations combining field measurements with
129	numerical simulations. More recently, Fang et al. (2021) examined the response of seawater
130	intrusion to tide-induced unstable flow using laboratory experiments and numerical
131	simulations. For more information regarding this topic, readers are referred to the
132	comprehensive reviews of Robinson et al. (2018) and Werner et al. (2013). Models of density-
133	dependent flow in coastal aquifers, like the abovementioned Boussinesq models, treat the
134	effective porosity as a constant.
135	Here, the effects of the dynamic effective porosity effects on watertable fluctuations and
136	seawater intrusion are further explored. First, it is determined empirically from existing

7

experimental measurements and numerical results. Then, modified governing equations that

- consider the effects of the dynamic effective porosity are proposed to predict watertable
- ¹³⁹ fluctuations. This allows for exploration of the underlying mechanisms causing the
- discrepancy between experimental data and existing theoretical predictions for watertable
- fluctuations. Since saltwater intrusion is affected by watertable fluctuations, we further
- examine to what extent the dynamic effective porosity will affect saltwater intrusion in coastal
- ¹⁴³ unconfined aquifers based on numerical simulations.

144 **2. Methods**

149

145 **2.1 Original Governing Equations for Watertable Fluctuations**

Under the assumption that streamlines are parallel to the underlying bedrock (assumed
 horizontal) and neglecting unsaturated flow, watertable fluctuations (due, e.g., to tidal forcing)
 in a coastal unconfined aquifer (supporting information Figure S1) can be described by,

$$n_e \frac{\partial h}{\partial t} = K_s \frac{\partial}{\partial x} \left(h \frac{\partial h}{\partial x} \right)$$
(1)

where t [T] is time, x [L] is the horizontal distance from the vertical seaward boundary, and h

[L] is the watertable elevation above the aquifer base. Bear (2012) discusses the physical

basis of equation (1), often called the Boussinesq equation in groundwater literature (e.g.,

Hogarth & Parlange, 1999; Parlange et al., 2001). To account for the effects of vertical flow

during watertable fluctuations, equation (1) is modified as (Liu & Wen, 1997),

155
$$n_e \frac{\partial h}{\partial t} = K_s \frac{\partial}{\partial x} \left(h \frac{\partial h}{\partial x} \right) + \frac{K_s D^3}{3} \frac{\partial^4 h}{\partial x^4}$$
(2)

Setting $\eta = h - D$ and assuming $\eta \ll D$, equations (1) and (2) are respectively linearized to (Liu & Wen, 1997),

$$n_e \frac{\partial \eta}{\partial t} = K_s D \frac{\partial^2 \eta}{\partial x^2}$$
(3)

$$n_e \frac{\partial \eta}{\partial t} = K_s D \left(\frac{\partial^2 \eta}{\partial x^2} + \frac{D^2}{3} \frac{\partial^4 \eta}{\partial x^4} \right)$$
(4)

Note that equation (4) is the same as the linearized form of the second-order approximation of
Nielsen et al. (1997). For the archetypal case of a single-component sinusoidal tide at the sea
boundary (semi-infinite domain, perpendicular beach at the sea boundary, Figure S1), the
corresponding dispersion relations of watertable waves for equations (3) and (4) are,

respectively (Liu & Wen, 1997; Nielsen et al., 1997; Shoushtari et al., 2016),

$$kD = \sqrt{\frac{n_e \omega D}{K_s}i}$$
(5)

$$kD = \sqrt{\frac{3}{2}} \sqrt{-1 + \sqrt{1 + \frac{4}{3} \frac{n_e \omega D}{K_s} i}}$$
(6)

where $k = k_r + ik_i$ is the watertable wave number with $i = \sqrt{-1}$. The real (k_rD) and imaginary (k_iD) parts represent the amplitude spatial decay rate and phase lag increase rate of watertable waves, respectively (Liu & Wen, 1997).

170 **2.2 Relation between the Effective Porosity and Fluctuation Frequency**

The effective porosity is defined as the volume of water that an unconfined aquifer

releases or gains per unit surface area of aquifer per unit change of the watertable height

- (Childs, 1960). In most existing Boussinesq equations, the effective porosity is treated as a
- soil-dependent constant (e.g., Barry et al., 1996; Nielsen et al., 1997; Kong et al., 2013, 2015).
- However, experimental (Nielsen & Perrochet, 2000; Cartwright et al., 2005), numerical
- (Acharya et al., 2012; Pazdniakov et al., 2019) and field (Rabinovich et al., 2015) evidence

165

166

- indicates that the effective porosity is dynamic and may depend on the porewater velocity.
- Recently, Pazdniakov et al. (2019) proposed an approximate expression to predict the
- dynamic effective porosity under seasonal or diurnal groundwater level fluctuations.
- 180 Motivated by the results of Cartwright et al. (2005) and Pazdniakov et al. (2019) and
- assuming no truncation of the capillary fringe, we introduce a modified empirical expression
- to describe the relation between the dynamic effective porosity and fluctuation frequency,

$$n_{t} = n_{e} \left[1 - \exp\left[-\left(\frac{a}{\tau_{\omega}}\right)^{b} \right] \right]$$
(7a)

184 with

185

186

$$\tau_{\omega} = \frac{n_e H_{\psi} / K_s}{1 / \omega} = \frac{n_e \omega H_{\psi}}{K_s}$$
(7b)

$$n_e H_{\psi} = \int_0^\infty (\theta - \theta_r) d\psi \tag{7c}$$

¹⁸⁷ where n_t [-] is the dynamic effective porosity, τ_{ω} [-] is a dimensionless parameter related to ¹⁸⁸ the watertable fluctuation frequency and soil properties, *a* [-] and *b* [-] are the fitting ¹⁸⁹ parameters (Section 3.1), θ [-] is the soil water content related to the capillary suction ψ ¹⁹⁰ [L], θ_r [-] is the residual soil water content, and H_{ψ} [L] is a measure of the equivalent ¹⁹¹ saturated height of the unsaturated zone (Parlange & Brutsaert, 1987; Cartwright et al., 2005). ¹⁹² Note that equation (7a) has the same functional form as that of Pazdniakov et al. (2019) but a ¹⁹³ with different variable τ_{ω} . We will discuss equation (7a) in more detail below.

To solve equation (7c), the relation between θ and ψ is described by a modified van Genuchten model (Troch, 1993; Kong et al., 2016; Luo et al., 2019),

196
$$\theta = (\theta_s - \theta_r) S_e + \theta_r = (\theta_s - \theta_r) \left[1 + (\alpha_1 \psi)^{n_1} \right]^{-1 - 1/n_1} + \theta_r$$
(8)

where θ_s [-] is the saturated soil water content, S_e is the effective saturation, and α_1 [L⁻¹] and n_1 [-] are the parameters obtained by fitting equation (8) to measurements of the soil moisture characteristic curve. Other expressions (e.g., van Genuchten, 1980) can also be used to describe the relation between θ and ψ , but equation (7c) may then need to be evaluated numerically. Observe that the difference between equation (8) and the original van Genuchten (1980) model (VG model) is the exponent, which makes equation (8) integrable to attain simple analytical expression, i.e., substituting equation (8) into equation (7c) leads to,

$$H_{\psi} = \frac{1}{\alpha_1} \tag{9}$$

²⁰⁵ By comparison, Pazdniakov et al. (2019) derived τ_{ω} from the relation between the ²⁰⁶ hydraulic conductivity and the capillary suction, whereas here it is derived from the relation ²⁰⁷ between soil water content and capillary suction. In addition, τ_{ω} is an approximation in ²⁰⁸ Pozdniakov et al. (2019) (their equation (12)), whereas here it is an exact expression (due to ²⁰⁹ use of equation (8)) related to the fluctuation period and porewater velocity.

210 2.3 Modified Governing Equations that Consider the Dynamic Effective Porosity

By replacing n_e in equations (3) and (4) with n_t from equation (7a), the governing equations for watertable fluctuations become, respectively,

213
$$n_e \left[1 - \exp\left[-\left(\frac{a}{\tau_{\omega}}\right)^b \right] \right] \frac{\partial \eta}{\partial t} = K_s D \frac{\partial^2 \eta}{\partial x^2}$$
(10)

214
$$n_{e}\left[1 - \exp\left[-\left(\frac{a}{\tau_{\omega}}\right)^{b}\right]\right]\frac{\partial\eta}{\partial t} = K_{s}D\left(\frac{\partial^{2}\eta}{\partial x^{2}} + \frac{D^{2}}{3}\frac{\partial^{4}\eta}{\partial x^{4}}\right)$$
(11)

The corresponding dispersion relations of watertable waves from equations (10) and (11)

```
<sup>216</sup> are, respectively,
```

217

218

$$kD = \sqrt{\left[1 - \exp\left[-\left(\frac{a}{\tau_{\omega}}\right)^{b}\right]\right]} \frac{n_{e}\omega D}{K_{s}}i$$
(12)

$$kD = \sqrt{\frac{3}{2}} \sqrt{-1 + \sqrt{1 + \frac{4}{3} \left[1 - \exp\left[-\left(\frac{a}{\tau_{\omega}}\right)^{b}\right]}\right] \frac{n_{e}\omega D}{K_{s}}i}$$
(13)

Below, the effects of the dynamic effective porosity on watertable fluctuations will be examined. Consistent with previous studies, possible truncation of the capillary fringe by the soil surface is ignored when examining watertable fluctuations using the Boussinesq equation (e.g., Parlange & Brutsaert, 1987; Barry et al., 1996; Li et al., 2000; Song et al., 2007; Kong et al., 2015).

3. Results and Discussion

3.1. Effects of Watertable Fluctuations on the Dynamic Effective Porosity: 1D Column Experiments

²²⁷ The main reason that the dynamic effective porosity varies with watertable fluctuation

rate is the filling/drainage of the unsaturated zone above the aquifer, which is rate-limited due

- to the water flow rate (Li et al., 1997; Cartwright, 2014). Previous experiments to quantify
- this exchange used 1D column experiments (Figure S2). For simplicity, readers are referred to
- 231 Cartwright et al. (2005) for details about the 1D column experiment. To establish the relation
- between the dynamic effective porosity (n_t) and forcing fluctuation frequency (ω) , the
- dimensionless parameter τ_{ω} (equation 7b) is used. Physically, it is the ratio of the response

234	timescale of the unsaturated zone $(n_e H_{\psi}/K_s)$, the minimum time needed by the unsaturated zone
235	to fully respond to a boundary disturbance) to the timescale of the surface water level
236	fluctuation imposed on the aquifer $(1/\omega)$. If the response time of the unsaturated zone is much
237	longer than the timescale of the surface water level fluctuation (i.e., large τ_{ω}), the water in
238	the unsaturated zone will not have sufficient time to reach equilibrium during watertable
239	fluctuations. Then, the water exchange between the saturated and unsaturated zones will
240	reduce, thus leading to a smaller n_i . This behavior is consistent with experimental evidence
241	(Cartwright et al., 2005; Cartwright, 2014; Luo et al., 2020) and the complex (dynamic)
242	effective porosity concept of Nielsen and Perrochet. (2000) and Cartwright et al. (2005).
243	Equation (7a) captures this behavior since n_t approaches n_e for small τ_{ω} , whereas it tends to
244	zero for large τ_{ω} .
245	The appropriateness of the functional form of equation (7a) is checked by fitting it to n_t

obtained from experiments and numerical simulations. Using the similar experimental 246 apparatus presented in Figure S2, Cartwright et al. (2005) carried out 63 experiments 247 involving three different soils. For simplicity, readers are referred to Cartwright et al. (2005) 248 for more details about the experiments. As can be seen from Figure 1a, the range of n_t/n_e and 249 au_{ω} for these experiments varies from 10^{-2.5} to 10^{-0.4} (two orders of magnitude) and 10⁻² to 10³ 250 (five orders of magnitude), respectively. As expected, n_t/n_e declines with increasing τ_{ω} . In 251 addition, regardless of soil type there is a clear relation between n_t/n_e and τ_{ω} , which can be 252 fitted (MATLAB[©] ver. 9 function "lsqcurvefit") by equation (7a) with a = 0.0335 and b =253 0.4444 (Figure 1a). In general, equation (7a) performs well although there is small deviation 254

255	between equation (7a) and experimental data at larger τ_{ω} . The fitted values match well with
256	the experimental values ($R^2 = 0.94$), indicating that equation (7a) satisfactorily describes the
257	dynamic effective porosity as it varies with the fluctuation frequency for different soils.
258	Since the ranges of n_t/n_e and τ_{ω} obtained from experiments are relatively narrow, we
259	consider also the numerical simulations of Pozdniakov et al. (2019). A total of 299 cases
260	covering 100 random soils was simulated with HYDRUS 1D (Šimůnek et al., 2020).
261	Compared with available experiments, these numerical simulations cover wider ranges of
262	n_t/n_e and τ_{ω} , with the former varying from 10 ⁻³ to 10 ⁰ (three orders of magnitude) and the
263	latter from 10^{-3} to 10^{5} (eight orders of magnitude). As shown in Figure 2a, n_t/n_e is equal to
264	unity at small τ_{ω} and then decreases rapidly with increasing τ_{ω} , suggesting a frequency-
265	dependent n_t/n_e . Again, numerical results show a clear dependence of n_t/n_e on τ_{ω} although
266	both n_t/n_e and τ_{ω} span a broad range. For the numerical model results, the relation between
267	n_t/n_e and τ_{ω} can be approximated by equation (7a) with a small deviation at large τ_{ω} taking
268	$a = 0.1216$ and $b = 0.3642$. We also plotted the fitted n_i/n_e versus numerical n_i/n_e (Figure 2b).
269	The fitted values match well with the numerical values ($R^2 = 0.98$).
270	Based on the experimental and numerical data, the effective porosity will be significantly
271	impacted by watertable fluctuations when τ_{ω} is larger than 0.01 (green dashed line in
272	Figures 1a and 2a). This gives a critical value to identify whether the unsaturated zone has
273	sufficient time to respond to a boundary fluctuation. It is worth noting that the values of a and
274	b are different for experimental and numerical results, which leads to a small deviation
275	between the optimal fitting curves (Figure 2a). This systematic deviation could be induced by

276	either the experiments or the simulations. On the one hand, hysteresis is ignored in the
277	numerical simulations. On the other hand, there is a lack of measurements for n_t/n_e close to 1
278	for experiments, which will affect the fitting results. In addition, a linear response of the
279	watertable is assumed to determine the experimental dynamic effective porosity (Cartwright
280	et al., 2005), i.e., the governing equation was linearized above under the assumption of a
281	small amplitude fluctuation, which may contribute to the deviation. Overall, despite these
282	uncertainties, the relation between the dynamic effective porosity and fluctuation frequency
283	can be predicted by equation (7a). In practice, we suggest that the fit of equation (7a) to the
284	experimental data is preferred.
285	Both the 1D sand column experiments carried out by Nielsen and Perrochet (2000) and
286	Cartwright et al. (2005) indicate a phase lag between the total moisture (above the watertable)
287	and watertable height during watertable fluctuations. In order to account for this phase lag,
288	Cartwright et al. (2005) suggested a complex-valued expression, where the real and imaginary
289	parts respectively represent the effective porosity and phase lag, to describe the dynamic
290	effective porosity. However, in this study, we focus on watertable fluctuations in coastal
291	unconfined aquifers (2D systems) as they respond boundary forcing with a fixed frequency,
292	not the moisture content above the watertable. For this case, in the following section we
293	examine the impact of equation (7a) in predicting watertable fluctuations in careful 2D
294	experiments for horizontal transmission of watertable fluctuations forced by a single-
295	component watertable change at the boundary.

296 **3.2. Effects of the Dynamic Effective Porosity on Watertable Fluctuations: 2D Aquifer**

297 Experiments

298	Here, we use an extensive set of existing 2D experimental results to examine the effects
299	of the dynamic effective porosity on watertable fluctuations. Specifically, the combination of
300	equation (7a) with existing Boussinesq equations produced modified governing equations,
301	equations (10) and (11), which can be used to predict the effects of the dynamic effective
302	porosity on watertable wave propagation in coastal unconfined aquifers. Following previous
303	studies (e.g., Nielsen, 1990; Barry et al., 1996; Li et al., 2000a; Cartwright et al., 2004; Kong
304	et al., 2015), the dispersion relation linking the amplitude decay rate $(k_r D)$ with phase lag
305	increase rate $(k_i D)$, is adopted to characterize the propagation of watertable waves. A total of
306	122 sand flume experiments, covering a wide range of $n_e \omega D/K_s$ values, were conducted by
307	Shoushtari et al. (2016) and are used here to examine the validity of these predictions. The
308	experiments were carried out in a sand flume with dimensions of 9 m (length) \times 0.15 m
309	(width) \times 1.5 m (height). Readers are referred to Shoushtari et al. (2016) for details about the
310	sand flume experiment. Since the properties are similar, the two sands adopted in Shoushtari
311	et al. (2016)'s experiments are considered to have the same VG fitting parameters (van
312	Genuchten, 1980). As can be seen from Figure 3a, equation (8) matches well with the VG
313	model based on the parameters listed in Table 1.
314	Figure 4 of Shoushtari et al. (2016) shows the predictions of the dispersion relations in
315	equations (5) and (6), which were derived from equations (3) and (4), respectively.

³¹⁶ Specifically, their Figure 4 plots predicted $k_r D$ vs $k_i D$ curves and experimental data. Equation

317	(5) performs poorly whereas equation (6) compares well with the data. Note that plots of $k_r D$
318	vs $k_i D$ are independent of any specific form selected for n_e since such plots depend on a single
319	dimensionless parameter, $n_e \omega D/K_s$ (Nielsen et al., 1997; Shoushtari et al., 2016). The role of
320	$n_e \omega D/K_s$ is instead explored by examining each of $k_r D$ and $k_i D$ as a function of $n_e \omega D/K_s$, as
321	done in Figure 4, to check the applicability of the modified equations (10) and (11) (i.e.,
322	approximate analytical solutions of the dispersion relation shown in equations (13) and (14),
323	respectively). Since there is a small deviation between the best-fit curves for the experimental
324	and numerical data of n_i/n_e and τ_{ω} , two pairs of curves for the two pairs of best-fit <i>a</i> and <i>b</i>
325	values are compared: one pair of values obtained from fitting to experimental data and
326	another pair obtained from fitting to numerical data. In contrast to the relation between $k_r D$
327	and $k_i D$ (which, as mentioned, is independent of the functional form of n_e), there are large
328	deviations between predictions of $k_r D$ and $k_i D$ as they vary with $n_e \omega D/K_s$ from governing
329	equations with or without considering the dynamic effective porosity effects, depending on
330	the values of a and b. Moreover, these deviations increase for increasing $n_e \omega D/K_s$. Again, this
331	emphasizes that the effective porosity is increasingly influenced by watertable fluctuations as
332	$n_e \omega D/K_s$ increases. Compared to the original equations (3) and (4) (i.e., approximate
333	analytical solutions of the dispersion relation shown in equations (5) and (6), respectively)
334	that assume a constant effective porosity, for a given $n_e \omega D/K_s$, both $k_r D$ and $k_i D$ are smaller
335	when the dynamic effective porosity is considered. This is because a smaller effective
336	porosity corresponds to reduced vertical water exchange and hence watertable waves can
337	propagate further landward, i.e., smaller $k_r D$ and $k_i D$ (Li et al., 2000b).

338	Shoushtari et al. (2016) analyzed their experimental results and demonstrated that all
339	existing theories are unable to predict the measured dispersion relation correctly (Figure S3 in
340	supporting information and Figure 5 in Shoushtari et al. (2016)), even considering different
341	factors (e.g., capillary effect, hysteresis, porous media deformation (Shoushtari & Cartwright,
342	2017)). In contrast, equation (11) predicts well the relations between $k_r D$ or $k_i D$ and $n_e \omega D/K_s$,
343	despite the fact that experimental and numerical results do not agree (and give rise to different
344	values of a and b). The success of equation (11) highlights the significant role played by the
345	dynamic effective porosity on watertable fluctuations, and so confirms that equation (7a)
346	fitted by nonlinear least squares can be used to describe the relation between the dynamic
347	effective porosity and fluctuation frequency. Moreover, this in turn suggests that the phase lag
348	between the total moisture and watertable height measured in laboratory experiments using
349	vertical soil columns can be ignored when predicting watertable fluctuations. It should be
350	noted that substituting the complex-valued expression for the dynamic effective porosity
351	proposed by Cartwright et al. (2005) into equation (2) cannot predict the measured dispersion
352	relation well (Figure S4). Furthermore, experiments conducted by Parlange et al. (1984) and
353	Cartwright et al. (2003) were used to check the validity of equation (11). As can be seen from
354	Figures 5 and 6, predictions of equation (11) agree well with the measured watertable in both
355	experiments. The analytical solution of h is given in Appendix based on the dispersion
356	relation.

By comparison, equation (11) with a and b from experiments (a = 0.0335 and b =357 0.4444) performs better than the corresponding simulation-derived values in predicting 358

- experimental results of Shoushtari et al. (2016) and Cartwright et al. (2003). Therefore, the
- $_{360}$ experimentally-determined values of *a* and *b* are recommended for practical use when
- ³⁶¹ predicting watertable fluctuations in coastal unconfined aquifers.

362 3.3. Effects of the Dynamic Effective Porosity on Seawater Intrusion

- As seen above, the dynamic effective porosity and watertable fluctuations are
- ³⁶⁴ functionally related, especially for high frequency fluctuations. Therefore, one would
- intuitively anticipate that the dynamic effective porosity will also influence seawater intrusion
- in coastal unconfined aquifers. To explore the influence of the effects of the dynamic effective
- porosity on seawater intrusion, we use SUTRA, a 3D variable-saturation and variable-density
- 368 groundwater model (Voss & Provost, 2008).

Numerical simulations were carried out for the experiment of Shen et al. (2020), who investigated seawater intrusion under watertable fluctuation influences in a sand flume with dimensions of 7.7 m (length) \times 1.2 m (height) \times 0.16 m (width). Figure S5 illustrates the

- numerical model geometry for the base case, as well as relevant numerical settings. Again,
- equation (8) matches perfectly the VG model of Shen et al. (2020) (Figure 3b, parameters
- listed in Table 1). A high-frequency water level fluctuation with a period of 240 s was
- imposed at the sea boundary, leading to dynamic effective porosities of 0.12 and 0.2
- $_{376}$ computed using the pairs of *a* and *b* obtained above by fitting equation (7a) to experimental
- and numerical data, respectively (the static effective porosity is 0.4, Table 1). Only the
- effective porosity is changed while other parameters are fixed for these two cases. All
- numerical simulations were run for 26 h, with a time step of 4 s. The model domains were

380	discretized with node spacings of 0.02 and 0.1 m in the horizontal and vertical directions,
381	respectively, to satisfy the Péclet number stability criterion (Voss & Souza, 1987). Different
382	mesh schemes were tested to ensure mesh-independent numerical results. The transient
383	locations of the saltwater wedge and upper saline plume were observed to ensure quasi-steady
384	state results, defined as when the locations of the saltwater wedge and upper saline plume
385	remain unchanged after one period. The direct solver in SUTRA (DIRECT) was adopted in
386	the numerical simulations with convergence tolerances of 10^{-10} kg/m/s ² and 10^{-10} for solver
387	iterations during pressure and transport solutions, respectively.
388	Figure 7 compares the experimental and numerical results, which show two different salt
389	areas under tidal forcing: a saltwater wedge and an upper saline plume. For the base case with
390	$n_t = 0.4$ (without considering the dynamic effective porosity, Figure 7b), the numerical model
391	significantly underestimates the seawater-freshwater interface location while it overestimates
392	the area of upper saline plume. Once the dynamic effective porosity is considered, however,
393	the numerical model performs much better in predicting seawater intrusion. For the case with
394	$n_t = 0.2$ (a and b obtained by fitting equation (7a) to numerical data, Figure 7c), the numerical
395	model predicts almost the same magnitude of the upper saline plume as the experiment,
396	despite a small deviation for the seawater-freshwater interface location. In contrast, the
397	numerical model with $n_t = 0.12$ (a and b obtained by fitting equation (7a) to experimental
398	data, Figure 7d) predicts more accurately the seawater-freshwater interface location, while it
399	slightly underestimates the area of the area of upper saline plume. These results highlight the
400	importance of including the dynamic effective porosity in numerical models for assessing

401	saltwater intrusion. Since the location of the saltwater wedge is more important for coastal
402	groundwater management, the experimentally-determined values of a and b are also
403	recommended for practical use when predicting seawater intrusion in coastal unconfined
404	aquifers.
405	Observe that a smaller effective porosity leads to a more landward seawater-freshwater
406	interface with a higher position of the upper saline plume (Figure 7a). In the governing flow
407	equation used in the numerical solution, a decrease of the effective porosity is equivalent to an
408	increase of the hydraulic conductivity. As a result, the seawater-freshwater interface moves
409	more landward while the upper saline plume moves toward a higher position. Note that a
410	landward movement of the bottom saltwater wedge will push the upper saline plume upward
411	to maintain the outward flow of inland freshwater. Regardless of the values of a and b
412	obtained from fitting equation (7a) to measured or numerical data, the numerical results match
413	well with the experiments (Figure 7a). This again confirms that equation (7a) fitted by
414	nonlinear least squares can be used to describe the relation between the dynamic effective
415	porosity and fluctuation frequency. Again, this suggests that the phase lag between the total
416	moisture and watertable height measured in laboratory experiments using vertical soil
417	columns can be ignored when predicting seawater intrusion.

In reality, wave-dominated unconfined aquifers are widely distributed along the coast (e.g., Xin et al., 2010; Robinson et al., 2014). Additionally, high-frequency fluctuations are usually adopted at the sea boundary when conducting seawater intrusion experiments (e.g., Kuan et al., 2012; Yu et al., 2019; Shen et al., 2020). Under these conditions, neglecting the

422	dynamic effective porosity will lead to an inappropriate estimation of seawater intrusion
423	based on numerical models. Zhang et al. (2016) found that only an increase of K_s (from 17.28
424	to 132.3 m/d, one order of magnitude larger) enabled their model to perform well in
425	predicting groundwater flow and seawater intrusion in a field aquifer. Our results suggest that,
426	in part at least, this increase in K_s is due to their neglect of the dynamic effective porosity
427	since, as mentioned earlier, an increase of K_s is equivalent to a decrease of n_t in numerical
428	models.
429	4. Conclusions
430	This study evaluates the effects of the dynamic effective porosity on watertable
431	fluctuations and seawater intrusion in coastal unconfined aquifers. Following Pazdniakov et
432	al. (2019), we propose a new modified expression to predict the dynamic effective porosity
433	under watertable fluctuations. After validating against both experiments and numerical
434	simulations, this expression is coupled with existing governing equations and a numerical
435	model to examine the effects of the dynamic effective porosity on watertable fluctuations and
436	seawater intrusion, respectively. The results lead to the following conclusions:
437	(1) The new modified expression is able to predict the dynamic effective porosity
438	accurately during watertable fluctuations. Moreover, coupling this real-valued expression of
439	the dynamic effective porosity with existing governing equations leads to accurate predictions
440	of watertable fluctuations, suggesting the phase lag between the total moisture (above the
441	watertable) and watertable height measured in laboratory experiments using vertical soil
442	columns (1D systems) can be ignored when predicting watertable fluctuations in coastal

columns (1D systems) can be ignored when predicting watertable fluctuations in coastal

443	unconfined aquifers (2D systems). In other words, this work demonstrates that a real-valued
444	expression for the dynamic effective porosity is sufficient for practical use.
445	(2) The modified governing equation taking into account the vertical flow in the saturated
446	zone and dynamic effective porosity can accurately predict experimental dispersion relations,
447	highlighting the importance of the dynamic effective porosity in modeling watertable
448	fluctuations. For a given soil, the dynamic effective porosity decreases with increasing
449	fluctuation frequency, leading to a decrease in vertical water exchange between the saturated
450	zone and unsaturated zone and hence watertable waves can propagate further landward,
451	especially for high frequency fluctuations.
452	(3) In addition to watertable fluctuations, the dynamic effective porosity further plays an
453	important role in controlling seawater intrusion. As confirmed by laboratory experimental
454	data, by including the dynamic effective porosity, the numerical model predicts a more
455	landward seawater-freshwater interface and a higher position of the upper saline plume. This
456	suggests that neglecting the dynamic effective porosity leads to inappropriate estimations of
457	seawater intrusion in coastal unconfined aquifers.
458	The empirical expression for the dynamic effective porosity proposed here is based on
459	numerical results, and data from 1D sand column experiments. More measured data, obtained
460	under a variety of conditions, would be helpful to further examine the expression for the
461	dynamic effective porosity. For example, the dynamic effective porosity could be related to
462	pore water velocity given that the boundary signal is usually irregular (combination of tides
463	and waves), and the watertable fluctuation amplitude. Although uncertainties due to these

- 464 factors could provide further insights, despite its empirical basis this study shows that the
- ⁴⁶⁵ dynamic effective porosity plays an important role in modeling watertable fluctuations and
- seawater intrusion. The real-valued effective porosity model presented here leads to reliable
- ⁴⁶⁷ predictions of groundwater response, which is essential for understanding many groundwater-
- dependent processes in coastal unconfined aquifers.

469	Appendix	
470	Assuming a single-component sinusoidal tide at the sea boundary, we have,	
471	$h(0,t) = D + A\sin(\omega t) \tag{6}$	(A1)
472	Based on the dispersion relation, the analytical solution of h is (Parlange & Brutsaert,	1
473	1987),	
474	$h = D + A \exp(-k_r Dx) \sin(\omega t - k_i Dx) \tag{6}$	(A2)

475 Code/Data availability

- The paper is theoretical, and data used in this study can be found in Parlange et al.
- (1984), Cartwright et al. (2003, 2005), Shoushtari et al. (2016), Pozdniakov et al. (2019) and
- 478 Shen et al. (2020).

479 Author contribution

- 480 All authors contributed to the design of the research. ZL carried out data collation,
- developed the theories and prepared the manuscript with contributions from all co-authors.
- 482 All authors contributed to the interpretation of the results and provided feedback.

483 Competing interests

⁴⁸⁴ The authors declare that they have no conflict of interest.

485 Acknowledgments

- ⁴⁸⁶ This research was supported by the National Natural Science Foundation of China
- 487 (51979095) and Marine Science and Technology Innovation Project of Jiangsu
- 488 (JSZRHYKJ202105). ZL acknowledges EPFL for financial support and JK acknowledges
- the Qing Lan Project of Jiangsu Province (2020). We gratefully appreciate N. Cartwright for
- ⁴⁹⁰ providing the experimental data of Shoushtari et al. (2016), P. Wang for providing the
- ⁴⁹¹ numerical data of Pozdniakov et al. (2019), and Y. Shen for providing the experimental data
- ⁴⁹² of Shen et al. (2020).

493 **References**

- 494 Acharya, S., Jawitz, J. W., & Mylavarapu, R. S. (2012). Analytical expressions for drainable
- ⁴⁹⁵ and fillable porosity of phreatic aquifers under vertical fluxes from evapotranspiration
- and recharge. *Water Resources Research*, 48(11), W11526.
- 497 <u>https://doi.org/10.1029/2012WR012043</u>
- ⁴⁹⁸ Bakhtyar, R., Brovelli, A., Barry, D. A., & Li, L. (2011). Wave-induced water table
- ⁴⁹⁹ fluctuations, sediment transport and beach profile change: Modeling and comparison
- with large-scale laboratory experiments. *Coastal Engineering*, 58(1), 103–118.
- 501 https://doi.org/10.1016/j.coastaleng.2010.08.004
- 502 Barry, D. A., Barry, S. J., & Parlange, J.-Y. 1996. Capillarity correction to periodic solutions
- 503 of the shallow flow approximation, In *Mixing Processes in Estuaries and Coastal*
- 504 Seas, C. B. Pattiaratchi (editor), Coastal and Estuarine Studies, Volume 50, American
- ⁵⁰⁵ Geophysical Union, Washington, DC, pp. 496–510. <u>https://doi.org/10.1029/CE050</u>.
- ⁵⁰⁶ Bear, J. (2012). *Hydraulics of Groundwater*. Dover Publications, Inc., Mineola, New York.
- ⁵⁰⁷ Brakenhoff, L. B., Smit, Y., Donker, J. J. A., & Ruessink, G. (2019). Tide-induced variability
- in beach surface moisture: Observations and modelling. *Earth Surface Processes and Landforms*, 44(1), 317–330. https://doi.org/10.1002/esp.4493
- 510 Brovelli, A., Mao, X., & Barry, D. A. (2007). Numerical modeling of tidal influence on
- density-dependent contaminant transport. *Water Resources Research*, 43(10), W10426.
- 512 https://doi.org/10.1029/2006WR005173
- ⁵¹³ Cartwright, N. (2014). Moisture-pressure dynamics above an oscillating water table. *Journal*

514	of Hydrology, 512, 442-446. https://doi.org/10.1016/j.jhydrol.2014.03.024
515	Cartwright, N., Jessen, O. Z., & Nielsen, P. (2006). Application of a coupled ground-surface
516	water flow model to simulate periodic groundwater flow influenced by a sloping
517	boundary, capillarity and vertical flows. Environmental Modelling & Software, 21(6),
518	770–778. https://doi.org/10.1016/j.envsoft.2005.02.005
519	Cartwright, N., Nielsen, P., & Dunn, S. (2003). Water table waves in an unconfined aquifer:
520	Experiments and modeling. Water Resources Research, 39(12), 1330.
521	https://doi.org/10.1029/2003WR002185
522	Cartwright, N., Nielsen, P., & Li, L. (2004). Experimental observations of watertable waves in
523	an unconfined aquifer with a sloping boundary. Advances in Water Resources, 27(10),
524	991-1004. https://doi.org/10.1016/j.advwatres.2004.08.006
525	Cartwright, N., Nielsen, P., & Perrochet, P. (2005). Influence of capillarity on a simple
526	harmonic oscillating water table: Sand column experiments and modeling. Water
527	Resources Research, 41(8), W08416. https://doi.org/10.1029/2005WR004023
528	Childs, E. C. (1960). The nonsteady state of the water table in drained land. Journal of
529	Geophysical Research, 65(2), 780–782. <u>https://doi.org/10.1029/JZ065i002p00780</u>
530	Fang, Y., Zheng, T., Zheng, X., Yang, H., Wang, H., & Walther, M. (2021). Influence of tide-
531	induced unstable flow on seawater intrusion and submarine groundwater discharge.
532	Water Resources Research, 57(4), e2020WR029038.
533	https://doi.org/10.1029/2020WR029038
534	Gillham, R. W. (1984). The capillary fringe and its effect on water-table response. Journal of

535	Hydrology, 67(1-4), 307-324. https://doi.org/10.1016/0022-1694(84)90248-8
536	Heiss, J. W., & Michael, H. A. (2014). Saltwater-freshwater mixing dynamics in a sandy
537	beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resources Research,
538	50(8), 6747–6766. <u>https://doi.org/10.1002/2014WR015574</u>
539	Hilberts, A. G. J., & Troch, P. A. (2006). Comment on "Influence of capillarity on a simple
540	harmonic oscillating water table: Sand column experiments and modeling" by Nick
541	Cartwright et al. Water Resources Research, 42(11), W11601.
542	https://doi.org/10.1029/2006WR005042
543	Hogarth, W. L., & Parlange, JY. (1999). Solving the Boussinesq equation using solutions of
544	the Blasius equation. Water Resources Research, 35(3), 885-887.
545	https://doi.org/10.1029/1998WR900082
546	Jeng, DS., Mao, X., Enot, P., Barry, D. A., & Li, L. (2005a). Spring-neap tide-induced beach
547	water table fluctuations in a sloping coastal aquifer. Water Resources Research, 41(7),
548	W07026. https://doi.org/10.1029/2005WR003945
549	Jeng, DS., Seymour, B. R., Barry, D. A., Li, L., & Parlange, JY. (2005b). New
550	approximation for free surface flow of groundwater: Capillarity correction. Advances
551	in Water Resources, 28(10), 1032–1039.
552	https://doi.org/10.1016/j.advwatres.2004.05.012
553	Kong, J., Shen, C., Luo, Z., Hua, G., & Zhao, H. (2016). Improvement of the hillslope-storage
554	Boussinesq model by considering lateral flow in the unsaturated zone. Water
555	Resources Research, 52(4), 2965–2984. https://doi.org/10.1002/2015WR018054

556	Kong, J., Shen, CJ., Xin, P., Song, Z., Li, L., Barry, D. A., Jeng, DS., Stagnitti, F.,
557	Lockington, D. A., & Parlange, JY. (2013). Capillary effect on water table
558	fluctuations in unconfined aquifers. Water Resources Research, 49(5), 3064–3069.
559	https://doi.org/10.1002/wrcr.20237
560	Kong, J., Xin, P., Hua, GF., Luo, ZY., Shen, CJ., Chen, D., & Li, L. (2015). Effects of
561	vadose zone on groundwater table fluctuations in unconfined aquifers. Journal of
562	Hydrology, 528, 397–407. https://doi.org/10.1016/j.jhydrol.2015.06.045
563	Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li, L. (2012). Tidal influence on
564	seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48(2),
565	W02502. https://doi.org/10.1029/2011WR010678
566	Levanon, E., Shalev, E., Yechieli, Y., & Gvirtzman, H. (2016). Fluctuations of fresh-saline
567	water interface and of water table induced by sea tides in unconfined aquifers.
568	Advances in Water Resources, 96, 34–42.
569	https://doi.org/10.1016/j.advwatres.2016.06.013
570	Levanon, E., Yechieli, Y., Gvirtzman, H., & Shalev, E. (2017). Tide-induced fluctuations of
571	salinity and groundwater level in unconfined aquifers-Field measurements and
572	numerical model. Journal of Hydrology, 551, 665-675.
573	https://doi.org/10.1016/j.jhydrol.2016.12.045
574	Li, L., Barry, D. A., & Stagnitti, F. (2000a). Beach water table fluctuations due to spring-neap
575	tides: Moving boundary effects. Advances in Water Resources, 23(8), 817-824.
576	https://doi.org/10.1016/S0309-1708(00)00017-8

577	Li, L., Barry, D. A., Stagnitti, F., & Parlange, JY. (2000b). Groundwater waves in a coastal
578	aquifer: A new governing equation including vertical effects and capillarity. Water
579	Resources Research, 36(2), 411-420. https://doi.org/10.1029/1999WR900307
580	Li, L., Barry, D. A., Stagnitti, F., & Parlange, JY. (1999). Submarine groundwater discharge
581	and associated chemical input to a coastal sea. Water Resources Research, 35(11),
582	3253-3259. https://doi.org/10.1029/1999WR900189
583	Li, L., Barry, D. A., Parlange, JY., & Pattiaratchi, C. B. (1997). Beach water table fluctuations
584	due to wave run-up: Capillarity effects. Water Resources Research, 33(5), 935-945.
585	https://doi.org/10.1029/96WR03946
586	Liu, Y., Mao, X., Chen, J., & Barry, D. A. (2014). Influence of a coarse interlayer on seawater
587	intrusion and contaminant migration in coastal aquifers. Hydrological Processes,
588	28(20), 5162-5175. https://doi.org/10.1002/hyp.10002
589	Liu, P. L. F., & Wen, J. (1997). Nonlinear diffusive surface waves in porous media. Journal of
590	Fluid Mechanics, 347, 119-139. https://doi.org/10.1017/S0022112097006472
591	Luo, Z., Kong, J., Ji, Z., Shen, C., Lu, C., Xin, P., Zhao, Z., Li, L., & Barry, D. A. (2020).
592	Watertable fluctuation-induced variability in the water retention curve: Sand column
593	experiments. Journal of Hydrology, 589, 125125.
594	https://doi.org/10.1016/j.jhydrol.2020.125125
595	Luo, Z., Kong, J., Shen, C., Lu, C., Hua, G., Zhao, Z., Zhao, H., & Li, L. (2019). Evaluation
596	and application of the modified van Genuchten function for unsaturated porous media.
597	Journal of Hydrology, 571, 279–287. https://doi.org/10.1016/j.jhydrol.2019.01.051

598

599	unsaturated flow on hillslope recession characteristics. Water Resources Research,
600	54(3), 2037–2056. <u>https://doi.org/10.1002/2017WR022257</u>
601	Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual
602	Review of Marine Science, 2(1), 59–88. <u>https://doi.org/10.1146/annurev-marine-</u>
603	<u>120308-081019</u>
604	Nielsen, P. (1990). Tidal dynamics of the water table in beaches. Water Resources Research,
605	26(9), 2127–2134. https://doi.org/10.1029/WR026i009p02127
606	Nielsen, P., Aseervatham, R., Fenton, J. D., & Perrochet, P. (1997). Groundwater waves in
607	aquifers of intermediate depths. Advances in Water Resources, 20(1), 37-43.
608	https://doi.org/10.1016/S0309-1708(96)00015-2
609	Nielsen, P., & Perrochet, P. (2000). Watertable dynamics under capillary fringes: Experiments
610	and modelling. Advances in Water Resources, 23(5), 503-515.
611	https://doi.org/10.1016/S0309-1708(99)00038-X
612	Parlange, JY., Stagnitti, F., Heilig, A., Szilagyi, J., Parlange, M. B., Steenhuis, T. S.,
613	Hogarth, W. L., Barry, D. A., & Li, L. (2001). Sudden drawdown and drainage of a
614	horizontal aquifer. Water Resources Research, 37(8), 2097–2101.
615	https://doi.org/10.1029/2000WR000189
616	Parlange, JY., Stagnitti, F., Starr, J. L., & Braddock, R. D. (1984). Free-surface flow in
617	porous media and periodic solution of the shallow-flow approximation. Journal of

Luo, Z., Shen, C., Kong, J., Hua, G., Gao, X., Zhao, Z., Zhao, H., & Li, L. (2018). Effects of

618 *Hydrology*, 70(1–4), 251–263. <u>https://doi.org/10.1016/0022-1694(84)90125-2</u>

619	Parlange, JY., & Brutsaert, W. (1987). A capillarity correction for free surface flow of
620	groundwater. Water Resources Research, 23(5), 805-808.
621	https://doi.org/10.1029/WR023i005p00805
622	Philip, J. R. (1973). Periodic nonlinear diffusion: An integral relation and its physical
623	consequences. Australian Journal of Physics, 26(4), 513-520.
624	https://doi.org/10.1071/PH730513
625	Pozdniakov, S. P., Wang, P., & Lekhov, V. A. (2019). An approximate model for predicting the
626	specific yield under periodic water table oscillations. Water Resources Research,
627	55(7), 6185–6197. https://doi.org/10.1029/2019WR025053
628	Rabinovich, A., Barrash, W., Cardiff, M., Hochstetler, D. L., Bakhos, T., Dagan, G., &
629	Kitanidis, P. K. (2015). Frequency dependent hydraulic properties estimated from

- oscillatory pumping tests in an unconfined aquifer. *Journal of Hydrology*, *531*, 2–16.
- 631 https://doi.org/10.1016/j.jhydrol.2015.08.021
- Raubenheimer, B., Guza, R. T., & Elgar, S. (1999). Tidal water table fluctuations in a sandy
- ocean beach. *Water Resources Research*, 35(8), 2313–2320.
- 634 <u>https://doi.org/10.1029/1999WR900105</u>
- Robinson, C., Gibbes, B., & Li, L. (2006). Driving mechanisms for groundwater flow and salt
- transport in a subterranean estuary. *Geophysical Research Letters*, *33*(3), L03402.
- 637 <u>https://doi.org/10.1029/2005GL025247</u>
- Robinson, C., & Li, L. (2004). Effect of tidal oscillations on water exchange and mixing in a
- 639 coastal aquifer. Developments in Water Science, 55(Part 2), 1583–1594.

|--|

- Robinson, C., Li, L., & Barry, D. A. (2007). Effect of tidal forcing on a subterranean estuary.
- 642 *Advances in Water Resources*, *30*(4), 851–865.
- 643 https://doi.org/10.1016/j.advwatres.2006.07.006
- Robinson, C., Xin, P., Li, L., & Barry, D. A. (2014). Groundwater flow and salt transport in a
- subterranean estuary driven by intensified wave conditions. *Water Resources*
- 646 Research, 50(1), 165–181. <u>https://doi.org/10.1002/2013WR013813</u>
- ⁶⁴⁷ Robinson, C. E., Xin, P., Santos, I. R., Charette, M. A., Li, L., & Barry, D. A. (2018).
- ⁶⁴⁸ Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers:
- ⁶⁴⁹ Controls on submarine groundwater discharge and chemical inputs to the ocean.
- 650 *Advances in Water Resources*, *115*, 315–331.
- https://doi.org/10.1016/j.advwatres.2017.10.041
- ⁶⁵² Shen, Y., Xin, P., & Yu, X. (2020). Combined effect of cutoff wall and tides on groundwater
- flow and salinity distribution in coastal unconfined aquifers. Journal of Hydrology, 581,
- 654 124444. <u>https://doi.org/10.1016/j.jhydrol.2019.124444</u>
- 655 Shoushtari, S. M. H. J., & Cartwright, N. (2017). Modelling the effects of porous media
- deformation on the propagation of water-table waves in a sandy unconfined aquifer.
- 657 *Hydrogeology Journal*, 25(2), 287–295. <u>https://doi.org/10.1007/s10040-016-1487-7</u>
- ⁶⁵⁸ Shoushtari, S. M. H. J., Cartwright, N., Nielsen, P., & Perrochet, P. (2016). The effects of
- 659 oscillation period on groundwater wave dispersion in a sandy unconfined aquifer:
- ⁶⁶⁰ Sand flume experiments and modelling. *Journal of Hydrology*, *533*, 412–420.

661	https://doi.org/10.1016/j.jhydrol.2015.12.032
662	Shoushtari, S. M. H. J., Cartwright, N., Perrochet, P., & Nielsen, P. (2015). Influence of
663	hysteresis on groundwater wave dynamics in an unconfined aquifer with a sloping
664	boundary. Journal of Hydrology, 531, 1114–1121.
665	https://doi.org/10.1016/j.jhydrol.2015.11.020
666	Shoushtari, S. M. H. J., Cartwright, N., Perrochet, P., & Nielsen, P. (2017). Two-dimensional
667	vertical moisture-pressure dynamics above groundwater waves: Sand flume
668	experiments and modelling. Journal of Hydrology, 544, 467-478.
669	https://doi.org/10.1016/j.jhydrol.2016.11.060
670	Šimůnek, J., van Genuchten, M. Th., & Šejna, M. (2020). The HYDRUS software package for
671	simulating the two-and three-dimensional movement of water, heat, and multiple
672	solutes in variably-saturated porous media. Technical Manual. <u>https://www.pc-</u>
673	progress.com/downloads/Pgm_Hydrus3D3/HYDRUS3D_Technical_Manual_V3.pdf,
674	last accessed 18 March 2021
675	Smiles, D. E., & Stokes, A. N. (1976). Periodic solutions of a nonlinear diffusion equation
676	used in groundwater flow theory: Examination using a Hele-Shaw model. Journal of
677	Hydrology, 31(1-2), 27-35. <u>https://doi.org/10.1016/0022-1694(76)90018-4</u>
678	Song, Z., Li, L., Kong, J., & Zhang, H. (2007). A new analytical solution of tidal water table
679	fluctuations in a coastal unconfined aquifer. Journal of Hydrology, 340(3-4), 256-260.
680	https://doi.org/10.1016/j.jhydrol.2007.04.015

Teo, H. T., Jeng, D. S., Seymour, B. R., Barry, D. A., & Li, L. (2003). A new analytical

682	solution for water table fluctuations in coastal aquifers with sloping beaches. Advances
683	in Water Resources, 26(12), 1239–1247.
684	https://doi.org/10.1016/j.advwatres.2003.08.004
685	Trglavcnik, V., Morrow, D., Weber, K. P., Li, L., & Robinson, C. E. (2018). Analysis of tide
686	and offshore storm-induced water table fluctuations for structural characterization of a
687	coastal island aquifer. Water Resources Research, 54(4), 2749-2767.
688	https://doi.org/10.1002/2017WR020975
689	Troch, P. (1993). Conceptual basin-scale runoff process models for humid catchments:
690	Analysis, synthesis and applications. RUG. Faculteit Landbouwkundige en Toegepaste
691	Biologische Wetenschappen. http://hdl.handle.net/1854/LU-8566676, last accessed 18
692	March 2021
692 693	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic
692 693 694	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal</i> , 44(5), 892–
692 693 694 695	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal</i> , 44(5), 892– 898. <u>https://doi.org/10.2136/sssaj1980.03615995004400050002x</u>
692693694695696	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal</i> , 44(5), 892– 898. <u>https://doi.org/10.2136/sssaj1980.03615995004400050002x</u> Voss, C. I., & Provost, A. M. (2008). <i>SUTRA: A model for saturated-unsaturated, variable</i>
 692 693 694 695 696 697 	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal</i> , 44(5), 892– 898. <u>https://doi.org/10.2136/sssaj1980.03615995004400050002x</u> Voss, C. I., & Provost, A. M. (2008). <i>SUTRA: A model for saturated-unsaturated, variable</i> <i>density groundwater flow with solute or energy transport</i> . Reston, VA: U.S.
 692 693 694 695 696 697 698 	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal, 44</i> (5), 892– 898. <u>https://doi.org/10.2136/sssaj1980.03615995004400050002x</u> Voss, C. I., & Provost, A. M. (2008). <i>SUTRA: A model for saturated-unsaturated, variable</i> <i>density groundwater flow with solute or energy transport</i> . Reston, VA: U.S. Geological Survey. <u>https://water.usgs.gov/nrp/gwsoftware/sutra/SUTRA_2_2-</u>
 692 693 694 695 696 697 698 699 	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal</i> , 44(5), 892– 898. https://doi.org/10.2136/sssaj1980.03615995004400050002x Voss, C. I., & Provost, A. M. (2008). <i>SUTRA: A model for saturated-unsaturated, variable</i> <i>density groundwater flow with solute or energy transport</i> . Reston, VA: U.S. Geological Survey. https://water.usgs.gov/nrp/gwsoftware/sutra/SUTRA_2_2- documentation.pdf, last accessed 28 December 2021
 692 693 694 695 696 697 698 699 700 	March 2021 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. <i>Soil Science Society of America Journal</i> , 44(5), 892– 898. https://doi.org/10.2136/sssaj1980.03615995004400050002x Voss, C. I., & Provost, A. M. (2008). <i>SUTRA: A model for saturated-unsaturated, variable</i> <i>density groundwater flow with solute or energy transport</i> . Reston, VA: U.S. Geological Survey. https://water.usgs.gov/nrp/gwsoftware/sutra/SUTRA_2_2- documentation.pdf, last accessed 28 December 2021 Voss, C. I., & Souza, W. R. (1987). Variable density flow and solute transport simulation of

702 Resources Research, 23(10), 1851–1866. <u>https://doi.org/10.1029/WR023i010p01851</u>

703	Wallace, C. D., Sawyer, A. H., Soltanian, M. R., & Barnes, R. T. (2020). Nitrate removal
704	within heterogeneous riparian aquifers under tidal influence. Geophysical Research
705	Letters, 47(10), e2019GL085699. https://doi.org/10.1029/2019GL085699
706	Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B.,
707	Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation
708	and management: Recent advances and future challenges. Advances in Water
709	Resources, 51, 3-26. https://doi.org/10.1016/j.advwatres.2012.03.004
710	Xin, P., Robinson, C., Li, L., Barry, D. A., & Bakhtyar, R. (2010). Effects of wave forcing on
711	a subterranean estuary. Water Resources Research, 46(12), W12505.
712	https://doi.org/10.1029/2010WR009632
713	Yu, X., Xin, P., & Lu, C. (2019). Seawater intrusion and retreat in tidally-affected unconfined
714	aquifers: Laboratory experiments and numerical simulations. Advances in Water
715	Resources, 132, 103393. https://doi.org/10.1016/j.advwatres.2019.103393
716	Zhang, Y., Li, L., Erler, D. V., Santos, I., & Lockington, D. (2016). Effects of alongshore
717	morphology on groundwater flow and solute transport in a nearshore aquifer. Water
718	Resources Research, 52(2), 990-1008. https://doi.org/10.1002/2015WR017420

Table 1. Soil properties for watertable fluctuation and seawater intrusion experiments.

	K_{s} (m/s)	ne	α^{c} (m ⁻¹)	n ^c	$\alpha_1 (m^{-1})$	n_1	$H_{\psi}\left(\mathbf{m} ight)$
Watertable fluctuation ^a	4.7×10^{-4}	0.32	1.7	9	1.63	8.27	0.61
Seawater intrusion ^b	3×10^{-3}	0.4	11	6	10	5.23	0.1

⁷²⁰ ^aCompiled from Shoushtari et al. (2016)

⁷²¹ ^bCompiled from Shen et al. (2020)

^{r22} ^c α and *n* are the VG fitting parameters (van Genuchten, 1980)

Figure 1. (a) Comparison of experimental and fitted relations between n_t/n_e and τ_{ω} . Note that the green dashed line indicates the critical value (about 0.01) when the effective porosity will be significantly impacted by watertable fluctuations. (b) Fitted n_t/n_e versus experimental n_t/n_e . Experimental data are compiled from Cartwright et al. (2005).

Figure 2. (a) Comparison of numerical and fitted relations between n_t/n_e and τ_{ω} . Note that the green dashed line indicates the critical value (about 0.01) when the effective porosity will be significantly impacted by watertable fluctuations and the blue line is fitted to experimental data of Cartwright et al. (2005). (b) Fitted n_t/n_e versus numerical n_t/n_e . Numerical data are compiled from Pozdniakov et al. (2019).

Figure 3. Comparison between equation (8) and the VG model for the soil adopted in (a)

- vatertable fluctuation and (b) seawater intrusion experiments. Data are compiled from
- ⁷³⁷ Shoushtari et al. (2016) and Shen et al. (2020), respectively

Figure 4. Comparison model predictions and experimental results of (a, c) amplitude decay rate (k_rD) and (b, d) phase lag increase rate (k_iD) versus $n_e\omega D/K_s$. The values of *a* and *b* used for the blue lines and orange lines are based on the experiments (a = 0.0335, b = 0.4444) and numerical simulations (a = 0.1216, b = 0.3642), respectively. Parameters used are consistent with Shoushtari et al. (2016): D = 0.92 m, $H_{\psi} = 0.61$ m and $K_s = 4.7 \times 10^{-4}$ m/s.

744

⁷⁴⁵ **Figure 5.** Comparison of measured watertable and predictions from equation (11).

Experimental data are compiled from Parlange et al. (1984). Since n_e and K_s were not

measured in the experiments of Parlange et al. (1984), the optimal value of n_t/K_s in equation

⁷⁴⁸ (11) was estimated to be 0.5 s/cm based on the measured watertable at different locations.

Figure 6. Comparison of measured watertable and predictions from (a) equation (2) (ignoring

- the dynamic effective porosity), (b) equation (11) with a = 0.0335 and b = 0.4444, and (c)
- equation (11) with a = 0.1216 and b = 0.3642. Experimental data are compiled from

755 Cartwright et al. (2003).

756

Figure 7. Comparison of (a) measurements (Shen et al., 2020) and numerical results (quasi-

steady state) with (b) $n_t = 0.4$ (equal to n_e), (c) $n_t = 0.2$ and (d) $n_t = 0.12$. Three lines in plot (a)

are simulated 50% isohalines corresponding to three cases respectively. In plots (b)-(c), the

- vpper and bottom dashed lines indicate the highest and lowest water levels, respectively, and
- ⁷⁶¹ the middle dotted line represents the mean water level.